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ABSTRACT—Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This
study explored the potential of machine learning (ML) techniques to bridge the gap between clinical data and gene expression
information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks,
deep learning, and ensemblemethods, to address key evidence gaps and overcome the challenges in sepsis research. The lack
of a clear definition of sepsis is highlighted as a major hurdle, but MLmodels offer a workaround by focusing on endpoint predic-
tion. We emphasize the significance of gene transcript information and its use in MLmodels to provide insights into sepsis path-
ophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accu-
racy and predictive capabilities ofMLmodels for sepsis. Although challenges such as interpretability and bias exist, ML research
offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision med-
icine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation
and translation ofMLmodels into clinical practice.Machine learning has the potential to revolutionize our understanding of sepsis
and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are
needed to fully understand the potential of ML in sepsis management.

KEYWORDS—Machine learning; sepsis; gene expression; septic shock
INTRODUCTION

Sepsis is a global health challenge affecting individuals of all
ages and underlying diseases in low-income, middle-income,
and high-income countries (1). Based on data from the United
States, it is estimated that the global annual incidence of sepsis
ranges from 15 million to 19 million cases. Despite significant
morbidity and mortality associated with sepsis, a comprehensive
understanding of its pathophysiology remains elusive. This com-
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plexity arises from the interplay between host response, pathogen
virulence, and health system response. Existing knowledge gaps,
particularly those tied to the disease's heterogeneity and multivar-
iate data types associated with sepsis, pose a significant obstacle
in creating systematic best practice guidelines for its manage-
ment. Hypothesis-driven clinical studies, typically used to direct
clinical practice, demand a preestablished framework for interfac-
ing clinical data pertaining to specific questions. However, the in-
herent variability of sepsis data complicates traditional system
modeling approaches, leading to a lack of precision and impeding
systematic representation of sepsis. Because sepsis results from
the body's immunological response to pathogens, a deeper under-
standing of the immune response mechanisms in sepsis is indis-
pensable. However, this has been hampered by the difficulty in
accurately modeling the disease. Therefore, novel research strate-
gies are necessary, such as machine learning (ML), a branch of ar-
tificial intelligence, to improve our understanding of sepsis and
reduce morbidity and mortality (Fig. 1).
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FIG. 1. AGene expression-basedML approach for systems-level analysis of sepsis. i, Sepsis is a complex process where a system-level approach provides
an overview of multiple disease mechanisms. This can be applied as a part of an omics strategy, such as using gene expression information—a transcriptional
approach. Data can be handled through various methods that are either statistical or ML based, or a variation of the two. This enables the representation of many
genes to be analyzed and modeled for a systemwide interpretation. Machine learning can be ideal for handling scientific complexity where a suitable framework for
understanding and objectively interpreting sepsis data is lacking. Gene expression studies have focused on ribonucleic acid (RNA), a template for an associated
deoxyribonucleic acid (DNA) code. Such an approach, using ML, may be useful for sepsis prediction and classification problems. ii, Sepsis analysis and modeling
depend upon an accurate definition. For adults, the definition of sepsis was revised in 2016 (Sepsis-3). This provides more objectivity to the definition than earlier
definitions, such as those based on ICD-9. Unlike earlier definitions, Sepsis-3 involves the quantification of severe organ dysfunction associated with a decrease in
SOFA score of greater than 2, which implies a definite physiological change. Although a definition for pediatric sepsis exists, it differs from that of adult sepsis, and
for neonates, no single definition has been agreed upon. iii, Gene expression datasets can be modeled using different approaches. The classical ML approach
includes supervised, unsupervised, and mixed methods. A gene-centric approach is useful because it delays the mapping stage until the end, thereby preserving
the gene expression data structure as much as possible. Certain ML has adopted methods related to sepsis prediction and classification endpoints. One example
is the use of ML algorithms to predict the risk of developing sepsis in hospitalized patients. Furthermore, ML algorithms can be trained using data from electronic
health records and other sources to identify the patterns and risk factors that predict sepsis. This can allow healthcare providers to intervene early and potentially
prevent sepsis progression. Other applications of ML in sepsis include the development of diagnostic tools that can accurately identify sepsis, identify potential
therapeutic targets, and optimize treatment regimens for sepsis. Machine learning is useful for modeling large sepsis datasets and assisting with prediction and
classification problems. iv, High-throughput gene sequencing techniques such as microarray, RNA-seq, and scRNA-seq generate large datasets. Such datasets
are ideal for ANNs, which use the concept of DL to solve classification and prediction problems. v, The challenge in applying ML to sepsis is that the solutions are
mainly black box because the “workings” are hidden from the clinician. The black-box nature of ML may be a reason for the paucity of ML in prospective clinical
trials. Interpretable (white-box) solutions can also be formulated using ML, which may improve the palatability of ML when applied to sepsis. Another option is to
use clinician-in-the-loop combined with ML algorithms in what is known as an ensemble ML model. Annotation created with BioRender.com.
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An international consensus proposed modifications to the
2005 adult sepsis definitions, characterizing sepsis as a “life-
threatening organ dysfunction resulting from a dysregulated host
response to infection.” Septic shock was defined as “a subset of
sepsis in which particularly profound circulatory, cellular, and
metabolic abnormalities are associated with a greater risk of mor-
tality than sepsis alone” (2). Despite these revisions, persistent
ambiguity has hampered the development of guidelines and pro-
tocols for the management of clinical sepsis (Fig. 2). This ambi-
guity persists despite decades of immune system research focus-
ing on the host-pathogen response in sepsis. This could involve
understanding the timing of infection initiation, discrepancies in
infection load, type of organism, and variations in the age of the
animal model among other factors. Researchers have attempted
to control for sepsis heterogeneity by simplifying study effects,
such as by reducing the complexity of study effects. However,
such a reductionist approach may limit the applicability of these
findings to the clinical context. For example, research model
simplification may be counterproductive for adequately captur-
ing the complexity and heterogeneity of sepsis, which may be
essential for developing a wider application of therapies across
the sepsis spectrum. In vitro studies allow for enhanced control
over disease heterogeneity; however, they can complicate the
process of back-extrapolation to the clinical context. The sim-
plification of in vivo investigations can be initiated and imple-
mented in complex biological systems in diverse ways; how-
ever, these methodologies hinge on biostatistical methods,
which can be resource intensive. Such scientific approaches
are yet to yield the radical therapeutic advances required to af-
fect global sepsis-related mortality. Therefore, new approaches
are required to address sepsis and its heterogeneity to develop
specific research criteria, milestones, and endpoints. There are
still significant gaps in our understanding of the immunologi-
cal, biochemical, molecular, and cellular changes that occur dur-
ing sepsis, particularly those relating these factors to patients at
the bedside.

Omics methodologies, including lipomics, proteomics, and
transcriptomics, are broad-scale data-intensive techniques that of-
fer a holistic view of biological systems. Langston et al. (3) re-
viewed leukocyte phenotyping in sepsis using omics, functional
analysis, and silicon modeling. Omics provides a system-level
view through simultaneous analysis of multiple biological path-
ways. This approach has the potential to provide a comprehensive
understanding of sepsis pathogenesis. However, the use of “omics”
strategies to analyze sepsis data using statistical methods neces-
sitates preestablished interpretative frameworks. Thus, relating
omics data to clinical parameters noted in sepsis using traditional
analytical techniques may not be straightforward. For example,
temporal analysis of sepsis suggests that mRNA gene expression
techniques may not be viable for biomarker discovery (4). How-
ever, using an ML model with the same data yielded predictive
benefits (5). Thus, ML is an alternative method to model data that
does not require a predetermined understanding of either the data
structure or variable relationships, thereby circumventing past
statistical limitations. Machine learning approaches may be use-
ful for the early detection of sepsis, as suggested by Stolarski et al.
(6) in murine models, showing that it was possible to determine
different sepsis phenotypes 6 and 24 h after infection.
In essence, for a computer to learn from the input data, it must
be taught to identify sepsis and, ideally, do so promptly. For ex-
ample, Akram et al. (2021) adoptedML using bedside physiolog-
ical markers after temporal changes to predict early sepsis (7).
However, omics studies are a proxy for cellular processes and
may enhance sepsis modeling, with high-throughput gene expres-
sion used to track changes in biological functions. Hence, to un-
derstand the importance of gene expression information in the
context of ML, this narrative review first explored the issue of de-
fining sepsis. Subsequently, the focus shifts toward sepsis identi-
fication and the importance of timing in this process. Finally, the
application of ML algorithms to sepsis is discussed. The applica-
tion of ML was demonstrated based on the transcriptomic sepsis
literature selected using a systematic search strategy (Fig. 3) and
tabulated (Tables 1–3).

As part of this narrative, the temporal dynamics of sepsis are
considered, which are crucial in modeling the sepsis trajectory
from the initial detection. Within this narrative, it is essential to
consider the temporal dynamics of sepsis as they play a critical
role in modeling the trajectory of sepsis from its initial detection.
By understanding the changing patterns and progression of sepsis
over time, ML algorithms can be optimized to provide accurate
and timely predictions, aiding in early intervention to improve pa-
tient outcomes.

Types of ML for the computational modeling of sepsis,
bridging the gap in clinical extrapolation

Machine learning algorithms can be broadly classified based on
whether they use labeled or unlabeled data, leading to categories
such as supervised, unsupervised, semisupervised, and reinforce-
ment learning. Supervised learning leverages a labeled dataset to
make predictions, which is common in classification and regres-
sion tasks. By contrast, unsupervised learning uses unlabeled data
to decipher the data structure, which is frequently used in cluster-
ing tasks. These techniques have applications in managing sepsis,
as detailed in Table 1A (unsupervised) and Table 1B (supervised).
Semisupervised learning leverages labeled and unlabeled data
when the latter are abundant.

The categories described in this section cover many ML ap-
proaches. However, many other variations and hybrid methods
have been developed.

Sepsis definitions quandaries and ML workarounds

Shehab et al. (24) provided a comprehensive review of ML
and its applications in the medical field. Machine learning can
be useful in addressing the limitations of traditional approaches
in modeling sepsis complexity, which includes the important is-
sue of a suitable definition. Defining any condition is central to
the progress of research and the application of statistical or ML
approaches. However, ambiguity in the definition of sepsis repre-
sents a challenge, causing various disconnects, such as the
misreporting of adult sepsis mortality rates (2). Sepsis committees
tasked with developing protocols for adult and pediatric sepsis face
a dearth of evidence in many clinical areas, primarily because of
the lack of a clear definition of sepsis. Multiple revisions have been
implemented to improve adult sepsis guidelines, including those pf
1991, 2005, and 2016 (25,26). The next iteration of the pediatric
sepsis guidelines and definitions is keenly awaited. Moreover, a



FIG. 2. Challenges of genomic research in sepsis in relation to host-pathogen factors and implications for high-throughput gene experiments. This
figure outlines the “challenges of sepsis research,” including the application of genomic analysis. The heterogeneity caused by host and pathogen factors, as
illustrated, impacts the portability of sepsis research across different sepsis studies. Pathogen considerations: Sepsis is a complex disease initiated by various
pathogens, either singularly or in combination (commensals or newly invading organisms). Different pathogens may have differing immunological host effects. Also,
if the host is infected by one organism, this may weaken the host's immune system and ease secondary bacterial infection. This is known as the two-hit or, when
multiple organisms are involved, a multihit hypothesis. Host-pathogen interactions: The transformation from initial bacteremia or viremia to clinical infection is
contingent upon host-pathogen interactions and the pace of progression through various stages, leading from infection to sepsis and eventually septic shock.
Timely treatment is essential to reverse the infection trajectory. Delayed intervention and host susceptibility significantly influence treatment response and the
patient's ability to recover from infection and respond to sepsis. Port of entry: The port of entry from infection to sepsis, including the invading entry site, is
consequential to sepsis progression. In some individuals, pathogens may be commensals, but at the same site, in other individuals, the same organisms may be
pathogenic. For example, Neisseria meningitidis resides in the throat as a commensal in some cases, whereas in others, it is responsible for invasive
meningococcal sepsis and meningitis. Host factors: Transformation of the initial bacteremia or viremia progressing to clinical infection depends on host-pathogen
factors and the rate of progress through the different stages. Age may play an important role in sepsis in neonates, infants, and the elderly, causing higher
morbidity and mortality. Host comorbidities and genetic variation may also be key factors in determining disease progression. Sepsis treatment: There are only a
few immunomodulators used in sepsis, with the mainstay of treatment being early intervention, according to the principles of “Sepsis-6.” Early antibiotic treatment
and stabilization of bacterial sepsis remain cornerstones of treatment. Steroids may have value in septic shock as part of various treatments to maintain
hemodynamics and treat diffuse intravascular coagulopathy (DIC). Treatment variation: Despite protocolized approaches, several factors, such as late patient
arrival, clinical inexperience, and treatment inequities related to location or patient demographics, may result in delayed sepsis treatment. Furthermore, aligning
patients according to the onset of infection can be complex, leading to heterogeneity in the clinical presentation. Genetic implications for both the host and
pathogen: The genetic profiles of both the host and pathogen significantly affect the development, progression, and treatment response of sepsis. Host genetics
influence susceptibility to infection, response to treatment, and prognosis, largely because of gene variations associated with the immune response and drug
metabolism. Pathogen genetics determine virulence, antimicrobial resistance, and adaptability, with certain genetic elements enabling evasion of the host's immune
system, resistance to antibiotics, and survival under varying conditions. Understanding these genetic influences offers valuable insights for personalized sepsis
management, although further research is required to translate these findings into clinical practice. Implications for mRNA research: Owing to the heterogeneity of
sepsis mRNA studies, a notorious challenge in high-throughput mRNA technologies is the portability of insights from one mRNA-based study to another. There can
be issues with experimental variation owing to the platform itself and the data variance. This may be caused by differences in experimental techniques or external
factors. Transcriptomic endotyping has been applied to sepsis for disease classification, particularly in complex disorders, to categorize patients into homogeneous
subgroups based on the underlying biological or pathophysiological mechanisms that drive sepsis. Sepsis definition: The definition of sepsis has been adapted to
mirror advances in the clinical field. However, such definitions are heavily dependent on clinical interpretation rather than on the immunological patterns of the
disease. Differences in definitions can affect patient selection, diagnosis timing, and input and output characteristics. Although high-throughput gene sequencing
has been applied to sepsis, the heterogeneity of sepsis may lead to complex and diverse genetic data, challenging interpretation, and meaningful applications.
Sophisticated bioinformatics and statistical approaches are often required to analyze and interpret these data. The advantage of ML is in the ability to model a
complex, multivariable process, without a detailed understanding of disease mechanism.

SHOCK JANUARY 2024 ML ADVANCING THE UNDERSTANDING OF CLINICAL SEPSIS 7

D
ow

nloaded from
 http://journals.lw

w
.com

/shockjournal by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0h
C

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 03/27/2024
suitable definition that adequately encompasses all age groups re-
mains elusive. This latter point could be related to the fact that sepsis
research seldom crosses age boundaries set by medical specialists.

An optimal sepsis definition should encapsulate practical and
objective insights concerning biological changes to quantify the
alterations under investigation. Nonetheless, characterization of
immunological shifts in sepsis in a universally applicable manner
remains a scientific quandary. To deepen our understanding of the
clinical practice paradigm, in which the patient (host) is the cen-
tral figure affected by sepsis, one potential approach could be to
depict the biological transformation of sepsis, either as an internal
or external manifestation (Fig. 4A).
Clinical scoring is an established part of hospital practice and
is useful for risk stratification. However, ML models predict sep-
sis more accurately than clinical scores. The use ofML to connect
to the complex and diverse temporal sepsis datasets, including
gene expression data and clinical scores, is shown (Fig. 5). In-
cluding temporal genomic data in ML modeling may provide a
cellular perspective that would otherwise be lacking when using
clinical data alone.

The absence of a clear definition of sepsis gives the paradoxi-
cal question of howML can accurately interface with critical sep-
sis characteristics. To navigate this quandary, ML specialists have
made assumptions in framingMLmodels, thereby circumventing



FIG. 3. Study search criteria. This article adopted a comprehensive search strategy for the narrative review. Studies were identified and screened for keywords
using the search on the PubMed website maintained by the NCBI. The eligibility criteria were to include studies in the past 10 years in human subjects, with the final
inclusion criteria selecting research related to gene expression. Supervised and unsupervised ML studies were selected after the search as shown (A), identifying 53
studies. “Supervised” or “unsupervised” was added to the start of the search term, allowing filtering into eligible studies consisting of supervised (n = 9) and
unsupervised groups (n = 3). The NCBI search was also undertaken for ANN studies identifying four studies that were all eligible to be included in this article (B).
Ensemble ML studies were selected from the past 10 years, with 18 studies being identified, of which 10 were from the last 10 years (C); 7 studies were deemed
eligible for inclusion.
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the issue of a nebulous definition. For example, changes indica-
tive of sepsis can be used in an ML approach by labeling events
during the progression and characterization of clinical sepsis.
This workaround becomes feasible as the application of ML to
clinical sepsis primarily focuses on the endpoint, bypassing the
necessity for forward hypothesis testing, typically demanded by
statistical analysis. Currently, when designing aML risk prediction
model, ML operators must understand how to best define the clin-
ical event (sepsis) to be predicted. In the future,ML algorithms that
are pivotal in feature classification could prove invaluable in the
pursuit of a pragmatic definition. The following section on tempo-
ral modeling underscores the value of ML in the context of sepsis.

Temporal considerations of sepsis pathogenesis

Early intervention in sepsis is crucial for favorable outcomes,
and delayed management is a significant prognostic risk factor.
Consequently, the immediate administration of antibiotics and
fluids upon clinical suspicion alone is strongly advocated by expert
consensus. Timely diagnosis of sepsis is therefore of utmost
importance, and the ability to identify the condition several hours
before its onset could potentially be lifesaving. Therefore, for ML
to effectively impact sepsis outcomes, early prediction is required
during the clinical interactions (27).

However, sepsis heterogeneity has clinical implications, resulting
in variations in treatment, timing of interventions, and differential
host responses. Unfortunately, sepsis cannot be reduced to a simple,
discrete phenomenon from clinical, immunological, and pathophys-
iological viewpoints. The progression from infection to clinical
sepsis is complex. To fully comprehend the evolution of sepsis,
it is essential to understand its temporal dynamics from clinical
and laboratory perspectives, including its ability to track the con-
dition over time (Fig. 6). Given its highly nonlinear and complex
multivariable nature, sepsis is an ideal target for ML approaches.

As noted by Lauritsen et al. (29), effectiveMLmodels for sep-
sis prediction require close collaboration between clinicians and
data scientists. Another challenge is the lack of a suitable immune
biomarker for close temporal tracking, which limits the modeling
precision. Temporal predictions in ML hinge on the specification



TABLE 1A. Unsupervised ML

Study Description Results Ref

Classification of patients with sepsis
according to blood genomic endotype:
a prospective cohort study.

This study identified biologically relevant
molecular endotypes in patients with sepsis.
The study involved consecutive patients
admitted to two intensive care units in the
Netherlands and 29 ICUs in the UK.
Genomewide blood gene expression profiles
were generated and analyzed using
unsupervised consensus clustering and ML.

Four molecular endotypes, designated
Mars1–4, were identified in the discovery
cohort and were associated with 28-d
mortality. The worst outcome was found for
patients classified as having a Mars1
endotype, with 39% of 90 people dying at
28 d. A 140-gene expression signature
reliably stratified patients with sepsis to the
four endotypes. Only Mars1 was consistently
significantly associated with 28-d mortality
across the cohorts. A biomarker was derived
for each endotype, and BPGM and TAP2
reliably identified patients with a Mars1
endotype. This study provides a method for
molecular classification of patients with
sepsis to four different endotypes upon ICU
admission, potentially aiding in personalized
patient management and trial selection.

(8)

Exploration of the shared gene
signatures between myocardium and
blood in sepsis: evidence from
bioinformatics analysis.

This study using bioinformatics and ML
methods identified 1,049 genes commonly
changed in the blood and myocardium of
septic patients. Upregulated genes were
related to inflammation pathways, whereas
downregulated genes were related to
mitochondrial and aerobic metabolism. The
study divided 468 sepsis patients into two
groups based on mortality-related commonly
changed genes.

A six-gene model was obtained, which
performed well in classifying groups and
predicting mortality. The study highlighted
the potential of genes as biomarkers for
septic cardiomyopathy and the potential
impact of co-occurring pathological
processes on sepsis prognosis.

(9)

Revealing novel pyroptosis-related
therapeutic targets for sepsis based
on ML.

This study aimed to uncover pyroptosis genes
associated with sepsis and provide early
therapeutic targets for treatment. The
GSE134347 dataset was used to mine
sepsis-related genes, and a protein-protein
interaction (PPI) network was constructed.
Unsupervised consensus clustering of
sepsis patients was performed, and ML
prediction models were used to identify
PRGs mostly associated with sepsis. The
prolactin signaling pathway and IL-17
signaling pathway were the primary
enrichment pathways.

Unsupervised consensus clustering of sepsis
patients was performed, and ML prediction
models were used to identify PRGs mostly
associated with sepsis. The prolactin
signaling pathway and IL-17 signaling
pathway were the primary enrichment
pathways. NLRC4, the PRG most strongly
associated with sepsis, was considered a
potential target for treatment. The ceRNA
network around NLRC4 could serve as a
further research direction to uncover the
deeper pathogenesis of sepsis.

(10)

Shown here are examples of unsupervisedML approach in sepsis research as data labeling is not required, that is, allowing analysis without a preconceived
understanding of a diseasemechanism. Thismethodology canbe helpful in sepsismanagement at various stages in the patient journey. Once the analysis is
generated, one can engage with the mapped to understand clusters, groupings, or the utility of prediction models.
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of distinct time points, which can be facilitated by using a range of
time windows to construct temporal ML models (Fig. 4C). Sev-
eral studies have selected time windows of 48 h before and 24 h
after suspicion of infection (SI) events, that is, when sepsis is initially
suspected, whereas others have chosen a time frame of 24 h before
and up to 12 h after SI as the window (30–32). However, such
temporal configurations have not yet been applied to sepsis using
time-associated gene sequence information. Incorporating gene
expression information could enrich a systemwide perspective by
serving as a surrogate for cellular alterations at the molecular level.

An approach based on time windows has enabled sepsis re-
searchers tomake predictions without knowing the time of the infec-
tion onset. However, the original adult sepsis definitions were based
on the International Classification of Diseases, Ninth Revision and
used subjective labels and definitions, thus not allowing for rele-
vant time signposting for ML. In 2016, the definition of adult
sepsis was modified to incorporate a temporal component, as
reflected in the Sepsis-3 definition, with respect to the change in
the SOFA score (2). An increased Sequential Organ Failure Assess-
ment (SOFA) score of greater than 2, a proxy for a change in phys-
iological state, was used to define a multiorgan dysfunction syn-
drome, a feature of severe sepsis. As with the Sepsis-3 definition,
parameterization should be incorporated into future enhancements
of the sepsis definitions. The enhanced (Sepsis-3) definition pro-
vides a temporal milestone, a feature that allows the comparison
of patient trajectories. However, the current Sepsis-3 definition lacks
objectivity of immunological or biochemical features, reflecting a
gap in our understanding of the dynamics of sepsis pathophysiology.

Using artificial neural networks for enhanced sepsis
biomarking and temporal analysis

Artificial neural networks (ANNs) are a subset of ML algo-
rithms inspired by the structure and function of the human brain.
They are proficient in recognizing patterns, interpreting sensory



TABLE 1B. Supervised ML

Study Description Results Ref

Identification of a novel four-gene
diagnostic signature for patients with
sepsis by integrating weighted gene
co-expression network analysis and
support vector machine algorithm.

This study aimed to identify sepsis-related
diagnostic genes using integrated analysis,
weighted gene co-expression network analysis,
and gene regulatory networks. Results showed
a significantly lower immune score in patients
with sepsis compared with normal samples.

The identified genes were associated with
functions like neutrophil degranulation,
activation, and immunity. The study also
identified a four-gene signature,
including hub genes LCK, CCL5,
ITGAM, and MMP9, which could be
used to diagnose patients with sepsis.

(11)

The use of gene-expression profiling to
identify candidate genes in human
sepsis.

A genomewide study examined gene-expression
profiling of neutrophils to identify signature
genes and pathways in a sepsis clinical
syndrome. The study used oligonucleotide
microarrays on peripheral blood samples of 94
critically ill patients.

The molecular signature of sepsis was
generated from 44 samples and
validated in 50. The diagnostic
performance was high, regardless of
age, comorbidities, or antibiotic
treatment. The study found that genes
involved in immune modulation and
inflammatory response had reduced
expression in patients with sepsis, with
the activation of the nuclear
factor-kappaB pathway reduced and its
inhibitor gene, NFKBIA, significantly
upregulated.

(12)

Fungal biomarker discovery by
integration of classifiers.

The study used mixed integer linear programming
(MILP) classifiers to generate a gene signature
for distinguishing fungal and bacterial infected
samples. Combining classifiers increased the
consistency of the biomarker gene list, with a
43% increase in pairwise overlap.

The refined gene list ranked 19 genes
based on consistency in expression,
most linked to the ERK-MAPK signaling
pathway. The method achieved an
average accuracy of 83% on unseen
datasets.

(13)

A six-gene support vector machine
classifier contributes to the diagnosis of
pediatric septic shock.

A study using four microarray datasets
(GSE26378, GSE26440, GSE13904, and
GSE4607) from the Gene Expression Omnibus
database explored the mechanisms of pediatric
septic shock (PSS). The MetaDE package
screened consistently differentially expressed
genes (DEGs) in the datasets, whereas the
WGCNA package identified
disease-associated modules and genes. The
caret package selected optimal feature genes,
and a support vector machine (SVM) classifier
was built using the e1071 package.

The study found 2,699 consistent DEGs
across the four datasets, and four stable
modules were enriched with consistent
DEGs. These modules selected six
optimal feature genes, and an effective
SVM classifier was constructed based
on the six optimal genes. This classifier
can potentially improve early PSS
diagnosis accuracy and suggest
molecular intervention targets.

(14)

Patient-specific early classification of
multivariate observations.

The early classification model (ECM) is a novel
approach for early, accurate, and
patient-specific classification of multivariate
observations. It combines the widely used
hidden Markov model (HMM) and support
vector machine (SVM) models. ECM has
shown promising results in datasets,
outperforming baseline models that required
full-time series classification. In experiments
involving multiple sclerosis patients, ECM used
only an average of 40% of a time series,
outperforming some baseline models.

In sepsis therapy datasets, ECM
outperformed standard threshold-based
methods and state-of-the-art methods
for early multivariate time series
classification.

(15)

A generalizable 29-mRNA neural
network classifier for acute bacterial
and viral infections.

A generalizable 29-mRNA neural network
classifier has been developed for acute
bacterial and viral infections. The classifier uses
training data from 18 retrospective
transcriptomic studies and has a bacterial-vs.-
other AUROC of 0.92 and a viral-vs.-other
AUROC of 0.85. The classifier, inflammatix-
bacterial-viral-noninfected-version 1 (IMX-
BVN-1), is applied to an independent cohort of
163 patients.

The IMX-BVN-1 AUROCs are 0.86 for
bacterial infections and 0.85 for viral
infections. In patients enrolled within
36 h of hospital admission, the IMX-
BVN-1 AUROCs are 0.92 for bacterial
infections and 0.91 for viral infections.
With further study, IMX-BVN-1 could
provide a tool for assessing patientswith
suspected infection and sepsis at
hospital admission.

(16)

Continued next page
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TABLE 1B. (Continued)

Study Description Results Ref

Personalized identification of differentially
expressed pathways in pediatric sepsis.

Identifying core pathways in an individual is crucial
for understanding septic mechanisms and
applying custom therapeutic decisions.

A study using samples from a control
group and a pediatric sepsis group
identified 277 enriched pathways as
attractors, with 81 pathways with
P < 0.05 and 59 with P < 0.01. The
individualized pathway aberrance score
(iPAS) was calculated to distinguish
differences. Cluster analysis of pediatric
sepsis using the iPAS method identified
seven pathway clusters and four sample
clusters, indicating that core pathways
can be detected in most pediatric sepsis
samples. This novel procedure
identifies dysregulated attractors in
individuals with pediatric sepsis,
potentially improving the personalized
interpretation of disease mechanisms
and potentially useful in the era of
personalized medicine.

(17)

Prediction of feature genes in trauma
patients with the TNF rs1800629 A allele
using support vector machine.

This study predicted feature genes in trauma
patients with the TNF rs1800629 A allele using
a support vector machine (SVM) classifier. The
study used 58 gene expression data sets from
Gene Expression Omnibus to predict the TNF
rs1800629 A allele in trauma patients. The SVM
classifier model was applied, combined with the
leave-one-out cross-validation method.
Functional annotation of feature genes was
carried out to study their biological function. A
total of 133 feature genes were screened out,
and the SVM classifier peaked in predictive
accuracy with a 100% correct rate in the training
set and 86.2% in the testing set.

Functional annotation revealed that
HMOX1 and RPS7 were mainly
enriched regarding cell proliferation and
the ribosome. HMOX1 and RPS7 may
be key feature genes associated with
the TNF rs1800629 A allele, playing a
crucial role in the inflammatory
response in trauma patients. The cell
proliferation and ribosome pathways
may contribute to the progression of
severe trauma.

(18)

The study investigates the mechanisms of
sepsis, a systemic inflammatory
response syndrome induced by infection
in the lungs, abdomen, and urinary tract.

The expression profiles of E-MTAB-4421 and E-
MTAB-4451 leukocytes were downloaded.
Differentially expressed genes (DEGs) were
identified and performed with hierarchical
clustering analysis. A protein-protein interaction
(PPI) network was constructed using the
BioGRID database and Cytoscape software. A
total of 384 DEGs were screened in the survival
group. The PPI network was divided into four
modules, involving 11 DEGs, including
microtubule-associated protein 1 light chain 3
alpha (MAP1LC3A), protein kinase C-alpha
(PRKCA), metastasis associated 1 family
member 3 (MTA3), and scribbled planar cell
polarity protein (SCRIB). Functional enrichment
demonstrated that MAP1LC3A in module D
was enriched in autophagy vacuole assembly.

The SVM classifier correctly identified the
samples in E-MTAB-4451. In
conclusion, DEGs such as MAP1LC3A,
PRKCA, MTA3, and SCRIB may be
implicated in sepsis progression and
require further confirmation.

(19)

Research studies using a supervisedMLapproach are shown. Supervised techniques are useful for predictive purposeswhen distinct groups are known and
thereby already classified.
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data, and identifying patterns in large and complex datasets. Arti-
ficial neural networks simulate and solve distinct problems, par-
ticularly in pattern recognition and prediction tasks.

Artificial neural networks have been used to analyze sepsismi-
croarray experiments, providing the advantage of working with
small sample sizes (Table 2). However, most ML frameworks re-
quire determining the time of sepsis onset (T0) or the initiation of
a period when patterns are consistent with sepsis as a distinct entity.
Kim et al. (33) recently adopted this approach. Larie et al. (34)
implemented ANNs using long short-term memory (LSTM) and
multilayer perceptrons for sepsis prediction. The study used five
time points with 11 simulated cytokine concentrations to forecast
prospective cytokine trajectories, with the multilayer perceptron
performing best when using 24-h postinfection data. However,
biomedical systems are stochastic, and incorporating randomness
into clinical modeling is crucial for their validity. Zhang et al. (35)
attempted a “back in time” approach in a primate study using a
mathematical cluster modeling technique known as “nearest



FIG. 4. EnhancingML-based prediction by closing the gap between internal and external features associatedwith the patient sepsis journey.Challenges
of genomic research in sepsis in relation to host-pathogen factors and implications for high-throughput gene experiments. Block figure showing internal and external
features. Internally quantifiable data (IQ-data) include molecular, DNA, mRNA, cellular, lipid, or proteomic signals. External data (EQ-data) encompass clinical
descriptors, such as physiological and clinical scores, and physical textual data. Data were categorized as internal and external from the patients' perspectives.
Internal data were quantified through blood testing, and external data were obtained through various data collection processes, such as clinical observations (A).
Machine learning specialists have defined time windows to aid in understanding temporal dynamics. The observation window is a retrospective period before the
index event, based on independent variables or features. By contrast, the prediction window samples the outcome or event, a dependent variable from which the
outcome is derived. This allows the construction of various temporal framework structures using the chosen ML models. In addition, a discussion of the different
components of the temporal framework is included. This incorporates the index prediction event (sepsis) and the timeframe windows before and after the event.
The prediction time was calculated using the model, which, in this case, involved the time of sepsis diagnosis. The observation window is a retrospective period
before the index event and relies on independent variables or features. The prediction window then samples the outcome of the event. This period was the
dependent variable from which outcomes were derived. The prediction window starts after the prediction time or is delayed. When there is a prediction delay, this is
called the lead window, also known as the gap window. This allowed various temporal framework structures to be constructed using the selected ML models (B).
Labeling key events can help derive key milestones in the patient journey. Red indicates the index event (I), which was the diagnosis of sepsis. The timing of the
index event varies according to the different patient journeys, and as outlined in the diagram, patients can present with sepsis in different clinical contexts. Patient
variability is governed by patient help-seeking behaviors and the dynamics of the health system. Machine learning can be applied at three locations in a hospital
setting: the emergency department, ward, or critical care area. The pathogenesis from infection to sepsis and then to septic shock varies according to multiple
factors. Thus, the relationship between sepsis diagnosis and ensuing complications can be highly variable (C). Annotation created with BioRender.com.
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FIG. 5. Sepsis time and gene expression. This figure illustrates the application of transcriptomics in correlating cellular changes with critical clinical parameters in
sepsis research. Clinical scoring systems suchas the SOFA, qSOFA, and PELOD scores are used to stratify patients' risk andmonitor disease progression. TheSOFA
score is used in adult ICUs to evaluate six organ systems and the severity of a patient's illness, with higher scores indicating greater dysfunction and mortality risk. The
qSOFA score is a rapid assessment tool for identifying sepsis risk outside the ICU based on low blood pressure, high respiratory rate, and altered mental status. The
PELOD score, designed for pediatric ICUs, assesses the severity of organ dysfunction in critically unwell children, with higher scores signifying severe dysfunction and
increased risk of mortality death. These scores can be usefully linked to cellular function based on the proxies provided by gene expression data. Gene expression
information is often derived from the peripheral white cells of patients with sepsis, drawn from patient blood sampling. Temporal sequential data may then be used
to understand underlying disease processes or to classify and predict sepsis-associated phenomena. Annotation created with BioRender.com.
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neighbor.” Two pig models were used to validate the methodol-
ogy: one with surgically induced peritonitis and the other using
an lipopolysaccharide infusion-induced approach. This study
did not incorporate other immunological information in addition
to biomarker assay levels. Combining temporal vital sign moni-
toring with a single biomarker measurement resulted in a highly
accurate estimate of infection onset time. In addition, the study
assumed that the timing of the onset of infection was aligned with
physiological changes indicative of sepsis.

Additional types of ANNs include recurrent neural networks
(RNNs) and convolutional neural networks (CNNs). Their poten-
tial usefulness in gene expression sepsis studies suggests promising
avenues for exploration, which will be discussed here. However,
the lack of existing studies citing the use of such ANNs in com-
bination with gene expression profiling suggests the potential
for future work in harnessing such algorithms. Recurrent neural
networks were designed to process the input sequential data. Be-
cause they use their internal (hidden) state to process input se-
quences, they possess a form of memory; thus, RNNs are a suitable
choice for sequential datasets. Bedoya et al. (36) applied dual
multi-output Gaussian processes (MGPs) with RNNs, also known
as MGP-RNNs, to both dynamic and static clinical data related to
sepsis prediction. The likelihood of developing sepsis was com-
puted within 4 h of each marked time point. Different MLmethods
were compared using the same datasets, and MGP-RNN was
found to be superior. Sheetrit et al. (37) focused on time intervals
instead of strict time points in their RNN methods. An interval
approach may be more desirable because clinical data are often
multivariate and originate from different sources. This approach
allowed the discovery of frequently repeated temporal patterns
within the datasets, thereby creating a probabilistic distribution
model of temporal patterns. A temporal probabilistic profile (TPF)
was developed, allowing the prospective classification of new
data and outcome prediction. Large benchmark clinical datasets
were used to apply TPF, demonstrating improved sepsis predic-
tion and enhanced performance compared with other MLmodels.
Convolutional neural networks are another type of ANN designed
to process data with a gridlike topology, which can be viewed as a
2D grid of pixels. Because of their proficiency in extracting spatial
features, they are commonly used in image and video processing
tasks. They are particularly adept at spatial hierarchies, and CNNs
may also be useful in temporal modeling. Using temporal CNNs,
Kok et al. (38) developed an automated sepsis prediction tool that
involved per-time-step metrics. This tool showed a high predictive
capability for the development of sepsis (Area Under the Receiver
Operating Characteristic [AUROC] 98%).

Deep learning in sepsis—enhanced modeling in sepsis using
transcript information

Deep learning (DL) is a powerful subfield of ML that uses
multilayered ANNs to learn complex representations of data that
are useful for dimensional reduction in genomic studies and for
predictive modeling of large and complex biological datasets (39).
Deep learning can be unsupervised, (semi)-supervised, or rein-
forcement learning based (40). Reinforcement learning is based
on an agent gaining environmental feedback using a reward or pe-
nalization system. It is ideal for large, complex biological datasets
and is not discussed within this article because of the paucity of
sepsis studies using this method. Deep learning models can be ap-
plied throughout the data processing pipeline, from data acquisition

http://BioRender.com


FIG. 6. Sepsis and the concept of time. A, Temporal appreciation of sepsis is illustrated. Acute sepsis presents a complex challenge due to host variability, as
depicted in A. Furthermore, treating neonates, infants, and the elderly presents additional difficulties, as theymay display physiological instability during the early phase
of sepsis. The diagram illustrates that patients have differing time characteristics in relation to arriving in the hospital setting. Temporal variations can occur because of
age differences, comorbidities, and other factors. Significant delays in the patient journey can result in adverse and terminal outcomes. A blue arrow in the diagram
represents the sepsis process and its evolution, with patients arriving at different time points along this trajectory. One key issue is that it is impossible to signpost
the progression from bacteremia to shock against immunological milestones. Sepsis can progress from sepsis (S) to severe sepsis (SS) and then to septic shock
(SH). The blue arrow depicts the sepsis process and its evolution. To better understand the immunopathological aspects of sepsis, some researchers have
conducted time-course experiments using peripheral blood sampling. In such experiments, a sequence of blood collections is obtained from individual patients
(e.g., patients 1, 2, or 3 in A), starting from the initial sample collected at admission (labeled “time zero” or T0). Subsequent samples can then be compared with the
T0 sample to identify DGE. In some cases, a control sample may be nominated from any of the patient's samples, such as when a patient is physiologically stable;
that sample is considered akin to a control. However, control samples can only be used for that patient, as each patient will have their own control. However, as
illustrated, timing gene expression experiments in clinical sepsis is challenging, as patients arrive at various time points along the sepsis trajectory. Moreover, the
inability to accurately time or categorize sepsis from an immunopathological perspective in the clinical setting adds to the complexity. Differences in therapies and
experimental sites and the potential influence of clinical treatment on disease trajectory and transcriptomic profiles can also impact gene expression results.
Researchers can focus on a specific pathogen, age group, and treatment plan to mitigate these potential confounding factors. However, this approach may limit the
sample size. Further research is needed to develop effective interventions and protocols that can improve patient outcomes while accounting for the heterogeneity
of the patient population and potential confounding factors in gene expression experiments. B, To effectively mitigate the impact of experimental design in clinical
sepsis studies, it is crucial to consider the temporal dynamics of the disease. Sequential sampling is essential because patients may transition between different
phases of sepsis during their illness. For example, up to 50% of patients have been shown to exhibit endotype switching within the first 5 days of ICU admission
(28). However, determining the optimal timing for sample collection presents a significant challenge. Addressing the challenge of time zero (T0) through
standardization could be useful from a temporal sepsis research perspective. Despite efforts to capture changes through regular sampling, constructing temporally
resolved clinical studies is beset by numerous challenges. A systemic inflammatory response syndrome was described because of the predilection of acute sepsis
to cause physiological instability (C). The different trajectories are shown related to host factors, such as host age, the timing of diagnosis, etc. As illustrated, sepsis
was initially thought to be solely related to an inflammatory component, with anti-inflammation not featuring in early disease models. However, transcriptomic work
has suggested that both components may coexist (D). The eventual summated trajectory (red dashed line) could vary according to the degree and timing of the
pro- and anti-inflammatory components. Annotation created with BioRender.com.
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TABLE 2. Artificial neural network applied to sepsis

Study Description Results Ref

Using ML algorithms, developing an
autophagy-related gene classifier for early
diagnosis, prognosis, and prediction of
immune microenvironment features in
sepsis.

The study focuses on the model developed
using a systematic search in ArrayExpress
and Gene Expression Omnibus cohorts from
2005 to May 2022. The ARG classifier was
analyzed using multitranscriptome data and
correlated with immunological characteristics,
including immune cell infiltration, immune and
molecular pathways, cytokine levels, and
immune-related genes.

The model exhibited excellent diagnostic
values (AUC > 0.85) and superior
differentiation of sepsis from other critical
illnesses. The identified hub ARGs were
significantly associated with immune cell
infiltration, immune and molecular
pathways, and cytokine levels. The ARG
classifier exhibited superior diagnostic
performance compared with procalcitonin
and C-reactive protein in patients with
sepsis. The ARG classifier can assist
clinicians in diagnosing sepsis and
identifying high-risk patients, guiding
personalized treatment, and facilitating
personalized counseling for specific
therapy.

(20)

Studying a bioinformatical framework for the
identification and validation of biomarkers in
SIRS, sepsis, and septic shock patients

A methodologic framework for identifying and
validating gene biomarkers in sepsis, sepsis,
and septic shock patients was described,
using a 2-tier gene screening and ANN data
mining technique.

Eight key hub markers were identified,
which could delineate distinct core
disease processes and inform underlying
immunological and pathological
processes. These markers do not show
enough fold change differences between
different disease states to be useful as
primary diagnostic biomarkers but were
instrumental in identifying candidate
pathways and other associated
biomarkers for further exploration.

(21)

Shown here are examples of ANNs applied to sepsis. Artificial neural networks are ML algorithms that use interconnected nodes or neurons in a layered
structure that resembles the human brain.
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to gene and pathway enrichment, thereby improving biological
data analysis. For example, DL has been used to reexamine images
generated from previous microarray experiments, revealing imag-
ing defects in many studies. For example, using a DL, Qin et al.
(41) reexamined the images generated from previous microarray
experiments. This study analyzed microarray-generated images
based on fluorescent signals from previously published studies.
The results showed the presence of imaging defects in 26.73%
of the microarray studies analyzed. In addition, DL may be a use-
ful adjunct in the quality control process for testing the accuracy
of data capture. Schaack et al. (42) performed a meta-analysis
of publicly available data series extracted from National Center
for Biotechnology Information (NCBI) Gene Expression Omni-
bus and EMBL-EBI ArrayExpress to create a comprehensive
meta-expression set. They compared variousMLmethods against
the traditional technique of differential gene expression (DGE)
analysis. Consequently, DLwas themost resilient among the tested
methods, including DGE, random forest, support vector machine,
and decision tree analysis. The DL classifiers allowed for the dif-
ferentiation of patients with and without sepsis. They found that
DLneural networks performed the best, especiallywhen the datawere
noisy or incomplete, highlighting the efficacy of DLmodels in facil-
itating sepsis modeling. Yuan and Bar-Joseph (43) applied DL to
sequential single-cell RNAdata using a supervisedmethod.Gene in-
teractions were predicted using 3D tensors and trained convolutional
and RNNs. The model accurately identified regulatory and causal
gene-gene interactions and new gene function assignments.

The deduction of gene relationships predicated on DGE neces-
sitates an array of computational frameworks, extending from
Pearson correlation to undirected graphical modeling. Neverthe-
less, such a stratified approach presents challenges for DL because
unsupervised processing can mistakenly identify noise-associated
genes as significant. To address these complications, Yuan and
Bar-Joseph (44) devised a DL CNN for co-expression applied to
single-cell RNA data. This innovative approach offers a methodol-
ogy for inferring gene relationships from imagelike objects pro-
duced from expression data, thereby facilitating the identification
of causality, gene-disease predictors, and functional assignments.

A significant challenge associated with DL models is their
black-box nature, which could hinder the future incorporation of
ML in clinical contexts. This becomes particularly problematic
when clinicians are expected to take responsibility for decisions in-
fluenced by ML and the underlying methodology is obscured ow-
ing to its inherent modeling complexity. To mitigate this black-box
issue, Hanczar et al. (45) proposed a DL approach grounded based
on layerwise relevance propagation (LRP). Layerwise relevance
propagation, a gradient method for neural network interpretation,
identifies themost critical neuronal network responsible for predicting
and pinpointing gene sets that activate the same neuron. Signifi-
cant neurons and genes are subsequently mapped onto transla-
tional databases, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG), Gene Ontology (GO), and the Disease Ontol-
ogy Annotation List (DOLite), thereby offering a biological con-
text. This methodology surpasses classical ML, which typically
measures neuronal effectiveness using the weighted average of
output connections. Nonetheless, the biological interpretation
rendered is that of the model, which may not consistently align
with actual biological parameters. Additional limitations include
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the fact that DL models primarily search for correlations between
inputs and outputs rather than causality, and reliance on databases
may introduce biases.

Various platforms are available for studying gene expression.
Unfortunately, earlier platforms, such as microarray and RNA-seq,
produced averaged gene expression results because RNA is de-
rived from many cells. Conversely, single-cell RNA sequencing
(scRNA-seq) offers multiple expression profiles at the expense
of generating substantial data, while maintaining the capability
to concentrate on specific cell types. Large datasets obtained by
scRNA-seq have introduced new computational challenges. How-
ever, they also make it an ideal application for DL neural net-
works, which require large amounts of data for effective learning.
Deep learning neural networks have been used to interpret mRNA
gene expression. For instance, solely from the gene sequences,
deep convolutional networks can predict 60% to 80% of human
RNA abundance variation (46,47). By applying DL principles,
Magnusson et al. (48) studied the impact of transcription factors
on gene regulation. This methodology is called the “advancing
past the black box” ML model. This allowed the prediction of
the relationship between transcription factors and the target gene
network, thus providing a mechanistic understanding of disease
processes. Because the training was constrained, the derived pre-
dictive models were interpretable. In a related study, Yuan and
Bar-Joseph (43) used temporal scRNA-seq data and trained DL
models, including RNNs and convolutional models, to identify
regulatory and causal gene relationships and assign new func-
tions to genes. These studies demonstrate the potential of DL
Neural Networks in understanding gene expression regulation.
The authors suggest that this is the first step toward developing
fully interpretable white-box models.

Deep learning algorithms have also shown promise in ana-
lyzing medical time series data despite the challenge of dealing
with sensor- and noise-based errors (33). However, small sam-
ple sizes can lead to overfitting, which can be addressed using
self-supervised learning, transfer learning, or data augmenta-
tion (49). Kim et al. (33) applied a RNN to a time series dataset
using a neural architecture search method to optimize the archi-
tecture and a genetic algorithm approach to balance the computa-
tional resources and search efficiency. An autoencoder was also
used to denoise the data and improve the learning process. The
TABLE 3. Ensemble learning tec

Ensemble algorithm types

WGCNA and gene ensemble noise reduction Training a gradient
COVID-19 sever
isolation but act
and protein comp
imbalance in the
disease patholog
expression of the
gene alteration. T
and severe COV
WGCNA demon

Four ML algorithms (random forest, recursive feature
elimination using support vector classifier, logistic
regression with lasso, and Boruta

A ML ensemble ap
data identifying 2
septic patients fr

The use of an ensembleML approach applied to sepsis is shown. The ensemble
the accuracy of decisions.
model outperformed the standard clinical scores (SOFA, quick
Sequential Organ Failure Assessment [qSOFA], and Simplified
Acute Physiology Score II) and LSTM, and its performance de-
creased with extended prediction times, as indicated by the lower
sensitivity, specificity, and AUROC values. Rafie et al. (50) used
a combined DL approach with LSTM and convolutional and
fully connected layers to improve the earliest time of sepsis pre-
diction, achieving better AUROC values than other methods.
For ML to achieve wider application in clinical sepsis, its inter-
pretability may be a happy middle ground. Another option is to
combine ML algorithms with clinical inputs, as described in the
next section on Ensemble ML.

Ensemble learning techniques—to improve clinical modeling

Ensemble learning is a powerful computational technique that
combines multiple models such as experts or classifiers to solve
complex problems. This approach has been shown to improve
the accuracy of predictions and can incorporate a clinician's ex-
pertise to guide the development and validation of ML tech-
niques. Ensemble techniques have broad applicability across
various domains, including studying biological systems and an-
alyzing sepsis as a disease process (Table 3). EnsembleML aims
to decrease the variance and bias associated with single models
by incorporating multiple ML algorithms into a combined pre-
dictive model.

Ensemble techniques have been applied to various problems,
including predicting cellular dynamics in biological systems and
analyzing sepsis as a disease process. Ensemble methods com-
bine processes to make sense of data inputs, including different
neural networks with inherent strengths and weaknesses. These
models may be structured in parallel or sequentially and can in-
corporate weightage or “learning” from different models based
on averaging or regression. Ensemble models may be useful for
supervised tasks related to classification and unsupervised tasks
related to clustering. One particularly novel approach in ensemble
learning is the “expert in the loop” ensemble method, which in-
corporates the expertise of a clinician to guide the development
and validation ofML techniques. This approach combines deduc-
tive analysis with inductive (data-driven) learning and is particu-
larly useful for optimal feature selection, error correction, and in-
cremental learning tasks. In addition, certain algorithms, such as
hnique in sepsis research

Study details Ref

-boosted regression tree model to classify
ity. They argued that genes do not function in
as ensembles representing biological pathways
lex subunits. Furthermore, they suggested that an
expression of the gene ensemble results in
y. Then they inferred that variance in gene
ensemble or “gene ensemble noise” is related to
he model accurately predicted patients with mild
ID-19. Using gene ensemble noise versus
strated equal accuracy.

(22)

proach was used to analyze the gene expression
39 genes in urine, which effectively classified
om those with other chronic conditions.

(23)

MLmethods combine the insights frommultiple learningmodels to improve
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the LSTM neural network, are well suited for capturing temporal
relationships and can remember the sequencing of datasets over
long periods. In addition, the process of transforming weak
learners into strong learners by forming a different algorithm for
classifying rules is known as “boosting.” Boosting is a key aspect
of ensemble learning and has been shown to improve model per-
formance by reducing bias and variance.

DISCUSSION

The discussion section of this article illuminates key findings
and potential implications of using ML techniques in the study
and management of sepsis. These encompass potential opportuni-
ties, inherent challenges, and various ML applications in augment-
ing our understanding and handling of this complex condition.
Sepsis is multifaceted and characterized by diverse etiologies and
heterogeneous clinical manifestations. Conventional methods have
limitations in deciphering the complex interplay between the host
response, pathogen virulence, and various clinical factors. How-
ever, ML, given its ability to analyze extensive and varied datasets,
including gene expression data, has emerged as a promising ap-
proach to addressing this complexity. Notably,ML algorithms such
as neural networks and DL can discern patterns and relationships
within data, facilitating more accurate predictions and insights into
the pathogenesis of sepsis.

A persistent challenge is the ambiguity in the definition of sep-
sis, which complicates the modeling and analysis of sepsis data.
However, ML models offer a workaround by prioritizing end-
point prediction over a predefined understanding of the disease.
The capability of these models to learn effectively from labeled
and unlabeled data enables them to discern sepsis patterns and
categorize patients based on their clinical characteristics and gene
expression profiles. Despite the lack of a definitive sepsis defini-
tion, MLmodels present a feasible solution by harnessing the pre-
dictive power of gene expression data.

An essential aspect of sepsis research is understanding its
temporal dynamics for early detection and intervention. Ma-
chine learning models can incorporate time-related information
by considering specific time windows and data sequences. This
is particularly relevant in sepsis, in which disease progression
and host response evolve. Furthermore, gene expression data
are instrumental in recording the cellular and molecular changes
associated with sepsis. Machine learning models that integrate
this information can provide a holistic perspective of sepsis path-
ogenesis and aid in detecting biomarkers for early disease identi-
fication and monitoring (51).

One major challenge with ML models, particularly those based
on DL algorithms, is their “black-box” nature, which makes it dif-
ficult to interpret their decision-making processes. This issue could
potentially obstruct the integration of ML models into clinical
practice. However, ongoing endeavors are to enhance the interpret-
ability of ML modules by leveraging techniques such as LRP and
ensemble learning.

Despite the promising potential of ML in sepsis research, sev-
eral limitations of this study need to be addressed. Small sample
sizes, data representation bias, identifying causal relationships
are important considerations. Future research should focus on de-
veloping interpretableMLmodels, validating the efficacy ofML in
sepsis management through prospective studies, and integrating
clinical expertise withML algorithms using ensemble techniques.
The successful implementation and translation ofMLmodels into
clinical settings hinge on collaboration between clinicians, data
scientists, and researchers.

CONCLUSION

Machine learning offers a substantial potential for transforming
our comprehension and management of sepsis. Although the in-
tricate nature of sepsis poses considerable challenges, ML tech-
niques propose pioneering solutions that amalgamate clinical
data with gene expression data. These techniques facilitate the
prediction, classification, and temporal analysis of sepsis. Nota-
bly, ML in sepsis research overcomes the lack of a universally ap-
plicable definition of sepsis, shifting the focus toward predicting
endpoints and classifying patients. Despite the interpretability
challenges owing to the black-box nature of ML algorithms, ef-
forts are in progress to develop understandable “white-box”
models. Further research is needed to fully understand the causal
relationships in sepsis and develop more interpretable models.

By integrating gene expression data and temporal analysis,
ML models aid in early disease detection and improve patient
outcomes. Temporal considerations play a crucial role in sepsis
management, and ML excels at capturing temporal relationships
in complex datasets. In particular, DL neural networks have
shown promise in analyzing temporal sequences and predicting
sepsis outcome. Machine learning models can facilitate early de-
tection and intervention by integrating gene expression data and
temporal analysis, ultimately improving patient outcomes. Al-
though ML offers tremendous opportunities, challenges remain.
Small sample sizes, overfitting, and the search for correlations rather
than causality inDLmodelsmust be addressed using self-supervised
learning, transfer learning, and data augmentation techniques. En-
semble learning techniques offer a powerful approach for enhancing
the performance and robustness ofMLmodels in sepsis research. By
combining multiple models and incorporating the expertise of clini-
cians, ensemble methods can improve prediction accuracy, feature
selection, and incremental learning.

Machine learning has immense potential to enhance our under-
standing of sepsis and boost patient outcomes by integrating clinical
data, gene expression, and temporal analyses. Collaboration between
clinicians and data scientists is crucial for the successful implemen-
tation of ML models in clinical practice, potentially leading to more
personalized sepsis management strategies. With further advance-
ments, ML can substantially contribute to revolutionizing sepsis
care, expanding the implementation of precision medicine in sepsis,
and reducing the devastating impact of this condition.
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