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A B S T R A C T

This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedas-
ticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial
autoregressive spill-over effects, as they are usually present in geo-referenced data. Furthermore,
spatial and temporal cross-variable effects in the conditional variance are explicitly modelled.
We transform the model to a multivariate spatiotemporal autoregressive model using a log-
squared transformation and derive a consistent quasi-maximum-likelihood estimator (QMLE).
For finite samples and different error distributions, the performance of the QMLE is analysed
in a series of Monte-Carlo simulations. In addition, we illustrate the practical usage of the
new model with a real-world example. We analyse the monthly real-estate price returns for
three different property types in Berlin from 2002 to 2014. We find weak (instantaneous)
spatial interactions, while the temporal autoregressive structure in the market risks is of higher
importance. Interactions between the different property types only occur in the temporally
lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility
spillovers.

1. Introduction

In general, spatiotemporal processes can be represented as multivariate time series. However, when analysing spatial and
spatiotemporal data, one has to account for one key difference compared to multivariate time series. Due to their spatial nature,
geographical proximity between the observations induces instantaneous interactions between them. This is commonly known as
Tobler’s first law of geography: ‘‘Everything is related to everything, but near things are more related than distant things’’ (Tobler,
1970). This applies not only to the mean behaviour of the data but also to their variance. Thus, spatiotemporal models should always
allow for instantaneous spatial interactions.1 Particularly in the case of high-resolution data, it is commonly noted that smaller spatial
units exhibit greater heterogeneity, thereby elevating the local variance, in contrast to larger aggregated spatial units that tend to
display greater homogeneity (Espa et al., 1996).

This paper introduces a multivariate spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH,
briefly spARCH) model. Using a vector representation, the approach follows the same logic as classical time-series vec-ARCH models
(cf. Engle and Kroner 1995, see Silvennoinen and Teräsvirta 2009 for an overview on multivariate GARCH models) but has an
additional spatial dimension. In that sense, the model aligns with the spatial ARCH models of Otto et al. (2018), Sato and Matsuda
(2021), Otto and Schmid (2019). We call the new multivariate, spatiotemporal ARCH process vec-spARCH. All these approaches
trace back to the seminal papers of Engle (1982) and Bollerslev (1986). In contrast to previous multivariate spatiotemporal GARCH
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1 When the contemporaneous spatial dependence is neglected, as often seen in economic models or applications, in favour of the theoretical advantages

offered by (multivariate) time series models – they benefit from a clear causal ordering, where only past information can influence the future observation – and
only temporally lagged spatial interactions are included, the inherent spatial dependence gets inadvertently projected onto these temporally delayed interactions.
This could lead to an incorrect interpretation that economic agents respond to information from neighbouring areas with a temporal delay.
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models (e.g., Borovkova and Lopuhaa 2012, Caporin and Paruolo 2015), we allow for contemporaneous/instantaneous dependence
over space at the same time point, which is important for spatial models. Thus, our multivariate vec-spARCH model can also be
applied for purely spatial data when there are spatial volatility clusters (i.e., clustered regions of high/low volatilities).

From an economic perspective, spatiotemporal GARCH models are motivated by the fact that concurrent decisions made by
arket participants lead to immediate spatial connections. For example, these decisions can range from trading multiple stocks
ithin a financial network to making purchases in the real estate market. In the context of real estate, price and market risk

nherently depend on spatial factors due to geographical limitations and the shared reliance on local amenities. This means that
uyers often limit their search to specific localities, thereby introducing natural spatial dependencies. Moreover, in finance, the
ariance is commonly used to evaluate the risk of an investment (over time), with high variances signalling a higher uncertainty.
ikewise, risk assessments vary geographically, highlighting the importance of spatial GARCH models for studies focusing on regional
ynamics. Here, the evaluation of risk is influenced by the specific location and the associated risks of neighbouring areas. Another
romising area for multivariate spatiotemporal ARCH models is the analysis of European electricity production from different
ources, which is highly correlated across space/time and the energy sources, esp. renewable energy sources, or the analysis of
lectricity prices. In the latter case, it comes to pronounced spatial dependence in the price variations/uncertainties due to non-
omogenous electricity networks (i.e., some regions are ‘‘closer’’ connected than others). We refer the interested reader to Ziel and
eron (2018), Berrisch and Ziel (2024).
Generally, univariate spatiotemporal models can be considered as multivariate time series models with an unknown covariance

atrix, which has to be estimated. This covariance matrix represents the above-mentioned instantaneous interaction across space.
ince the number of variables (i.e., the number of cross-sectional or spatial units) is typically large compared to the time points,2 the

full covariance cannot directly be estimated, but a certain structure is implied. The most straightforward structure assumes the same
degree of correlation between all spatial units as in the dynamic equicorrelation model of Engle and Kelly (2012). However, this
approach violates Tobler’s first law and is typically not applicable in spatial settings, where the dependence declines with increasing
distance between the locations. Thus, in spatial ARCH and GARCH models, the dependence structure is described with a so-called
spatial weights matrix, which specifies the relation between the locations, similar to an adjacency matrix in network models.

In contrast to multivariate GARCH models that have two dimensions (i.e., the temporal dimension and the cross-variable
dimension), the novel multivariate, spatiotemporal ARCH process has one additional dimension. To be precise, the process has
a temporal, a cross-sectional, and a cross-variable dimension. It is worth noting that the cross-sectional dimension represents the
spatial domain and is, therefore, at least a two-dimensional space. Moreover, using the vec-representation, the vec-spARCH is nested
in the above-mentioned spatial GARCH proposed by Otto and Schmid (2019), so their results can also be directly applied. Alternative
models that allow instantaneous spatial interactions in the variance are spatial stochastic volatility models, as proposed by Taspinar
et al. (2021).

The vec-spARCH process distinguishes between three different effects: (1a) instantaneous spatial effects of the same variables,
(1b) instantaneous cross-variable spatial effects, (2a) temporal autoregressive effects of the same variables, (2b) cross-variable
temporal autoregressive effects, and (3) variable-specific unconditional volatility levels. Each effect is described by a parameter
matrix or vector, for which we derive a quasi-maximum-likelihood (QML) estimator. For estimation, a logarithmic transformation
of the vec-spARCH is applied (cf. Robinson 2009), such that the model can be represented as a multivariate spatiotemporal
autoregressive model of the transformed quantity. The consistency of the QML estimator has been shown by Yang and Lee
(2017) for a multivariate spatial autoregressive model (i.e., without temporal dimension) and by Yu et al. (2008) for a univariate
spatiotemporal autoregressive process. Under certain regularity conditions, which are commonly used in spatial econometrics, we
show the identifiability and consistency of the estimators.

In practice, spatiotemporal ARCH models are particularly important because an ARCH error process can also account for variation
due to latent factors. In particular, for small spatial units, it is often difficult to quantify influential factors with the same spatial
resolution. For instance, the average income of households in small spatial units, e.g. postal-code areas, does not necessarily reflect
these particular units’ economic power because people’s daily cycles usually span multiple small spatial units. People do not
necessarily live where they work or spend most of their time. In such cases, spatial and spatiotemporal ARCH models are important
error distributions of any model to account for unobservable factors. This again highlights the importance of instantaneous spatial
effects because latent factors would immediately affect the outcome variable, but not via temporally lagged relations.

The remainder of the paper is structured as follows. Firstly, we introduce the multivariate modelling framework and discuss
how the model can be transformed into a regular univariate spatiotemporal process. Further, we derive the logarithmic likelihood
and show the consistency for the QML estimator under several regularity assumptions that are usually met in spatial statistics.
Secondly, we analyse the finite-sample performance of the proposed estimator for several model specifications and two different
error distributions, namely standard normal and heavy-tailed errors (𝑡3-distributed). Thirdly, a real-world application is presented,
or which we show that it is important to account for instantaneous spatial interactions and cross-variable correlations. To be precise,
erlin real-estate prices of three different property types are analysed, and we find weak contemporaneous spatial interactions,
ven though the temporal effects dominate them. These interdependencies are more pronounced when the spatial units and time
ntervals are small. Finally, Section 5 concludes the paper with a summary and brief outlook on future research and potential fields
f application.

2 Note that the number of unknown parameters is order (𝑛2) when 𝑛 is the number of spatial locations.
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2. Multivariate spatiotemporal ARCH model

In spatial statistics, autoregressive dependence needs to be contemporaneous. From an economic perspective, contemporaneous
nteractions arise due to the simultaneity of decisions of economic agents, e.g., on a real estate market, property purchase decisions
re done also using information from nearby locations (i.e., if the market risks are high in adjacent locations, agents on the real
state market will instantaneously adjust their own risk evaluation). A widespread risk measure is the variance of the process. That
s, no time lag is required for shocks to affect neighbouring locations. Instead, we assume that the conditional variance can vary over
pace depending on the realised variance at adjacent locations. This results in spatial clusters of high and low variances. Considering
he real estate market example in the multivariate setting, changes in the risks of different property types (e.g., condominiums,
ne-family houses, terraced houses, etc.) will typically affect each other.

For previous univariate or multivariate spatiotemporal GARCH models, such as proposed by Borovkova and Lopuhaa (2012),
aporin and Paruolo (2015), Hølleland and Karlsen (2020), spatial spill-overs could only occur after one time instance. In other
ords, the conditional variance at each location depends on the past squared observations at the same location and its neighbours,
ut not on their neighbouring locations at the same time point. This is the fundamental difference between multivariate time series
odels covering spatiotemporal data and approaches from spatial statistics.

Moreover, if the model is applied to the errors of any other spatiotemporal regression model, the autoregressive conditional
eteroscedasticity can capture locally varying model uncertainties, opening various fields of applications apart from economics,
uch as environmental science or epidemiology.

.1. Model specification

Assume that
{

𝒀 𝑡(𝒔) ∈ R𝑝 ∶ 𝒔 ∈ 𝐷𝒔 ⊂ R𝑞 , 𝑡 ∈ Z
}

is a 𝑝-variate spatiotemporal stochastic process in a 𝑞-dimensional space 𝐷𝒔 with
positive volume (cf. Cressie and Wikle 2011) across time. More precisely, the process is observed at 𝑛 different sites 𝒔1,… , 𝒔𝑛,
i.e., at each location 𝒔𝑖 and time point 𝑡 we observe a vector 𝒀 𝑡(𝒔𝑖) = (𝑌1,𝑡(𝒔𝑖),… , 𝑌𝑝,𝑡(𝒔𝑖))′. Moreover, let 𝒀 𝑗,𝑡 = (𝑌𝑗,𝑡(𝒔1),… , 𝑌𝑗,𝑡(𝒔𝑛))′
the vector of the 𝑗th characteristic at all locations and 𝐘𝑡 = (𝒀 1,𝑡,… , 𝒀 𝑝,𝑡) be an 𝑛×𝑝 matrix of all observations

(

𝑌𝑗,𝑡
(

𝒔𝑖
))

𝑖=1,…,𝑛,𝑗=1,…,𝑝
at time point 𝑡. Suppose that the process is observed for 𝑡 = 1,… , 𝑇 . It is worth mentioning that a multivariate spatial log-ARCH
model is present if 𝑇 = 1, and classical time-series log-ARCH models are also nested if 𝐷𝒔 is a singleton (i.e., 𝑛 = 1).

Univariate spatial and spatiotemporal ARCH and log-ARCH models have been introduced by Otto et al. (2018) and Sato and
Matsuda (2017), respectively. Moreover, Otto and Schmid (2019) generalised the model in a unified framework nesting spatial
GARCH, E-GARCH, and log-GARCH models. In this paper, we follow the idea of the symmetric spatial log-GARCH model of Sato
and Matsuda (2021), which includes elements of GARCH and E-GARCH models but does not coincide with one or the other even if
𝐷𝒔 consist of only a single location (i.e., the classical time series case). More precisely, the link function between the spatial volatility
term is logarithmic, like for E-GARCH models, while the volatility term depends on some transformation of the squared observed
process (similar to GARCH models). In contrast to time-series models, in which the temporal lag is clearly defined by the past
observations and future observations are not allowed to influence the current observation, there are complex interdependencies
in spatial settings and there is no causal relation between the observations anymore. For instance, with two locations 𝒔1 and 𝒔2
(i.e., 𝑛 = 2), location 𝒔1 would influence 𝒔2 at each time point and vice versa. This would correspond to a simultaneous influence
from future and past values in a time series context. Thus, for direct generalisation of GARCH or E-GARCH models like in Otto et al.
(2018), Otto and Schmid (2019), difficult assumptions for the existence or invertibility of the process are required in the general
case. In addition, existing software could be used directly with some adaptations for the spatiotemporal case (see Otto 2019).

The multivariate spatiotemporal ARCH model (vec-spARCH) is given by
{

𝐘𝑡 = 𝐇(1∕2)
𝑡 ◦Ξ𝑡 with

𝐇(ln)
𝑡 = 𝐀 +𝐖𝐘(ln,2)

𝑡 Ψ + 𝐘(ln,2)
𝑡−1 Π ,

(1)

where 𝐇(1∕2)
𝑡 =

(

ℎ1∕2𝑗,𝑡 (𝒔𝑖)
)

𝑖=1,…,𝑛,𝑗=1,…,𝑝
is the 𝑛 × 𝑝-dimensional matrix of the element-wise square roots of ℎ𝑗,𝑡, 𝐇(ln)

𝑡 =
(

lnℎ𝑗,𝑡(𝒔𝑖)
)

𝑖=1,…,𝑛,𝑗=1,…,𝑝 is the matrix of all natural logarithms of ℎ𝑗,𝑡(𝒔𝑖), and 𝐘(ln,2)
𝑡 =

(

ln 𝑌 2
𝑗,𝑡(𝒔𝑖)

)

𝑖=1,…,𝑛,𝑗=1,…,𝑝
denotes the 𝑛 × 𝑝-

dimensional matrix of log-squared observations. In all that follows, the superscript means that the transformation is applied
element-wise to each matrix entry. The matrix 𝐇𝑡 is the spatial equivalent of the conditional volatility (see Otto et al. 2019), i.e., the
volatility given all past and neighbouring observations (more precisely, log-squared observations as a measure of volatility). Thus,
it can serve as a spatiotemporal risk measure on economic markets, e.g., real estate market risks for each location, time point and
property type, as we will demonstrate in Section 4. The Hadamard product is denoted by ◦. Moreover, the 𝑛×𝑝-dimensional matrix of
disturbances is denoted by Ξ𝑡 = (𝜺1,𝑡,… , 𝜺𝑝,𝑡) with independent and identically distributed random vectors 𝜺𝑗,𝑡 = (𝜀𝑗,𝑡(𝒔1),… , 𝜀𝑗,𝑡(𝒔𝑛))′
with 𝐸(𝜺𝑗,𝑡) = 𝟎 and 𝐶𝑜𝑣(𝜺𝑗,𝑡) = 𝐈𝑛 for all 𝑗 = 1,… , 𝑝 and 𝑡 = 1,… , 𝑇 , where 𝐈𝑛 is the 𝑛-dimensional identity matrix. The 𝑛 × 𝑝-
dimensional intercept matrix of the volatility equations is denoted by 𝐀. The elements are the constant terms of the conditional
volatilities of each response variable for all locations. The weight 𝑛×𝑛-dimensional matrix 𝐖 defines the spatial dependence structure,
i.e., which locations are considered to be adjacent. Moreover, the cross-variable spatial effects are represented by the off-diagonal
elements of Ψ, and the temporally lagged cross-variable effects are given by the off-diagonal elements of Π. Both matrices have
dimension 𝑝 × 𝑝. In addition, the own-variable spatial and temporal autoregressive ARCH effects are summarised by the diagonal
entries of Ψ and Π, respectively.
3
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The multivariate spatiotemporal ARCH model can be written as a multivariate spatiotemporal autoregressive process by applying
log-squared transformation,

𝐘(ln,2)
𝑡 = 𝐇(ln)

𝑡 +Ξ(ln,2)
𝑡 .

hen, we get that

𝐘(ln,2)
𝑡 = 𝐀 +𝐖𝐘(ln,2)

𝑡 Ψ + 𝐘(ln,2)
𝑡−1 Π +Ξ(ln,2)

𝑡 .

With 𝐔𝑡 = Ξ(ln,2)
𝑡 − 𝐸

(

Ξ(ln,2)
𝑡

)

and 𝐀̃ = 𝐀 + 𝐸
(

Ξ(ln,2)
𝑡

)

, the model can be rewritten as

𝐘(ln,2)
𝑡 = 𝐀̃ +𝐖𝐘(ln,2)

𝑡 Ψ + 𝐘(ln,2)
𝑡−1 Π + 𝐔𝑡 . (2)

Assuming a standard normal error matrix Ξ𝑡, 𝐸
(

Ξ(ln,2)
𝑡

)

is the expectation of a log-Gamma distribution, i.e., the expectation of

each element is equal to 𝐸
(

ln 𝜀2𝑗,𝑡(𝒔𝑖)
)

= −𝛾 − log(2) ≈ −1.27 for all 𝑖, 𝑗, 𝑡. Then, 𝐀 can be determined from 𝐀̃, which facilitates the
interpretation. Note that we do not need the normality assumption later to derive the consistency of the QML estimator. According
to (2), we see that the vec-spARCH model coincides with a multivariate spatiotemporal autoregressive process of the log-squared
transformed process 𝐘(ln,2)

𝑡 . For the multivariate but purely spatial case, Yang and Lee (2017) has derived conditions for identification
and the consistency and asymptotic normality of a QML estimator. Furthermore, Yu et al. (2008) derive asymptotic results for a
QML estimator of the spatiotemporal but univariate process (𝑝 = 1) when both 𝑛 and 𝑇 are large. We combine these two results to
propose a QML estimator for the spatiotemporal, multivariate ARCH model in Section 2.3.

Moreover, analogue to multivariate vec-ARCH time-series model of Engle and Kroner (1995), we can rewrite (1) to get the
vectorised form

𝑣𝑒𝑐(𝐇(ln)
𝑡 ) = 𝑣𝑒𝑐(𝐀) + (Ψ′ ⊗𝐖)𝑣𝑒𝑐(𝐘(ln,2)

𝑡 ) + (Π′ ⊗ 𝐈𝑛)𝑣𝑒𝑐(𝐘
(ln,2)
𝑡−1 ) . (3)

The Kronecker product is denoted by ⊗, and 𝑣𝑒𝑐 is the vectorisation of a matrix. Interestingly, using such vec-representation, one
can see that the multivariate ARCH model is a special case of a (univariate) 𝑛𝑝-dimensional spatiotemporal autoregressive model
with a weight matrix Ψ′ ⊗𝐖. Thus, spatial GARCH and E-GARCH models can be constructed similarly, and all results of Otto and
Schmid (2019) can directly be applied. However, this will not be the focus of this paper.

Below, let 𝒀̈ 𝑡 = 𝑣𝑒𝑐(𝐘(ln,2)
𝑡 ) for an easier notation. With 𝐒𝑛𝑝 = 𝐈𝑛𝑝 − Ψ′ ⊗𝐖, we can derive the sample log-likelihood for the

spatiotemporal model given by (2) with 𝑇 time points, i.e.,

ln(𝐀,Ψ,Π|𝐘0) = −
𝑇 𝑛𝑝
2

ln(2𝜋) +
𝑛 ln 𝜎2𝑢
2𝑝

+ 𝑇
𝑛𝑝

ln |𝐒𝑛𝑝|

− 1
2𝑛𝑝𝜎2𝑢

𝑇
∑

𝑡=1

[

𝐒𝑛𝑝𝒀̈ 𝑡 − 𝑣𝑒𝑐(𝐀̃) − (𝐈𝑝 ⊗ 𝐘(ln,2)
𝑡−1 )𝑣𝑒𝑐(Π)

]′

×
[

𝐒𝑛𝑝𝒀̈ 𝑡 − 𝑣𝑒𝑐(𝐀̃) − (𝐈𝑝 ⊗ 𝐘(ln,2)
𝑡−1 )𝑣𝑒𝑐(Π)

]

,

here 𝜎2𝑢 is the variance of the transformed errors (i.e., all elements of 𝐔𝑡), which is a known quantity in our case. Otherwise, 𝐀̃ would
ot be identifiable. Furthermore, for standard normal errors Ξ𝑡, we get 𝜎2𝑢 = 𝜓(1∕2) ≈ 4.93, where 𝜓 denotes the trigamma function.
t is worth mentioning that we derived the Gaussian log-likelihood, but the transformed errors 𝐔𝑡 are, in fact, skewed because of
he logarithmic transformation. In the following Section 2.2, however, we suppose much weaker conditions on the moments of 𝐔𝑡,
hich are fulfilled in the case of standard normal errors Ξ𝑡 but also for other distributional assumptions.

Below, let 𝐀0, Ψ0, and Π0 be the true data-generating parameters of 𝐀, Ψ, and Π, respectively. Furthermore, 𝐒𝑛𝑝0 = 𝐈𝑛𝑝−Ψ′
0⊗𝐖.

ith 𝐸(𝒀̈ 𝑡) = 𝐒−1𝑛𝑝0
(

𝑣𝑒𝑐(𝐀̃0) +Π′
0 ⊗ 𝐘(ln,2)

𝑡−1

)

, we get the expected log-likelihood as

𝐸(ln(𝐀,Ψ,Π|𝐘0)) = −
𝑇 𝑛𝑝
2

ln(2𝜋) +
𝑛 ln 𝜎2𝑢
2𝑝

+ 𝑇
𝑛𝑝

ln |𝐒𝑛𝑝|

− 1
2𝑛𝑝𝜎2𝑢

𝑇
∑

𝑡=1

[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]′

×
[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]

− 𝑇
2𝑛𝑝𝜎2𝑢

𝑡𝑟
(

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝

)

.

2.2. Assumptions and parameter space

Below, we discuss important model assumptions that are needed to show the consistency of the QML estimators.
4

Assumption 1. Suppose that each element of Ξ𝑡 is not equal to zero with probability one for all 𝑡 = 1,… , 𝑇 .



Spatial Statistics 60 (2024) 100823P. Otto

z

I
w
p
a
‖

A
p

To be able to apply the log-squared transformation of the observed process, we must assume that the response is not equal to
ero with probability one. This is true for any continuous error process Ξ𝑡. In practice, there is sometimes an excess of zeros due to

missing values. In this case, a small number is often added to the zero values, such that the logarithmic transformation is feasible
(see, e.g., Francq et al. 2013, Francq and Zakoian 2011). If there are empirically observed zeros—still occurring with probability
zero, though—Sucarrat and Escribano (2018) proposed an expectation-maximisation algorithm for estimation in the time-series
case. This would be an interesting extension for future research. Further, we need some basic assumptions on the transformed error
process 𝐔𝑡 to apply the results of Yang and Lee (2017) and Yu et al. (2008).

Assumption 2. Assume that each column 𝑗 = 1,… , 𝑝 of 𝐔𝑡, say 𝑼 𝑗,𝑡 = (𝑢𝑗,𝑡(𝒔1),… , 𝑢𝑗,𝑡(𝒔𝑛))′, is a random vector with zero mean
and covariance 𝜎2𝑢 𝐈𝑛 that is i.i.d. across time. Additionally suppose that 𝐸(|𝑢𝑡,𝑖𝑘𝑢𝑡,𝑖𝑙𝑢𝑡,𝑖𝑟𝑢𝑡,𝑖𝑠|1∕𝛿) <∞ for all 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 and
𝑘, 𝑙, 𝑟, 𝑠 = 1,… , 𝑝 and some 𝛿 > 0.

Moreover, the parameter space needs to be compact, as formulated in the following assumption, to prove the uniform convergence
of the log-likelihood function.

Assumption 3. The parameter spaces for 𝐀̃, Ψ and Π are compact sets, and all parameters in their interior generate a stable
process. Moreover, the data-generating parameters 𝐀̃0, Ψ0 and Π0 are in the interior of corresponding parameter space.

The key question of this assumption is the stability of the process. To analyse the stability, we rewrite the model in its reduced
form as

𝒀̈ 𝑡 = 𝐒−1𝑛𝑝 (𝑣𝑒𝑐(𝐀̃) + (Π′ ⊗ 𝐈𝑛)𝒀̈ 𝑡−1 + 𝑣𝑒𝑐(𝐔𝑡))

= 𝐒−1𝑛𝑝 𝑣𝑒𝑐(𝐀̃) + 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛)

[

𝐒−1𝑛𝑝 𝑣𝑒𝑐(𝐀̃) + 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛)𝒀̈ 𝑡−2 + 𝐒−1𝑛𝑝 𝑣𝑒𝑐(𝐔𝑡−1)

]

+ 𝐒−1𝑛𝑝 𝑣𝑒𝑐(𝐔𝑡)
⋮

= (𝐈𝑛𝑝 + 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛) +⋯ + (𝐒−1𝑛𝑝 (Π

′ ⊗ 𝐈𝑛))𝑗 )𝑣𝑒𝑐(𝐀̃) + (𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛))𝑗 𝒀̈ 𝑡−𝑗

+
𝑗−1
∑

𝑖=0
(𝐒−1𝑛𝑝 (Π

′ ⊗ 𝐈𝑛))𝑖𝑣𝑒𝑐(𝐔𝑡−𝑖)

Hence, the stability of the process does not only depend on the temporal parameter matrix Π but also on the weight matrix 𝐖 (via
𝐒−1𝑛𝑝 ), which is assumed to be constant over time. If the above series converges, we get a stable and stationary process.

Proposition 1. Suppose that 𝐒𝑛𝑝 = 𝐈𝑛𝑝 −Ψ′ ⊗𝐖 is invertible. If all eigenvalues of 𝐒−1𝑛𝑝 (Π′ ⊗ 𝐈𝑛) are smaller than one, the multivariate
spatiotemporal ARCH process is stable across time.

Note that each stable spatiotemporal ARCH process is also weakly stationary. Furthermore, the boundary region of Ψ where
|𝐒𝑛𝑝| = 0 can be problematic in practice. However, as long as the true parameter Ψ0 is bounded away from this region, the
maximisation algorithm will not get to these boundaries with a large probability (see also Yang and Lee 2017).

The stability condition mainly depends on the parameter matrices Π and Ψ (via 𝐒−1𝑛𝑝 ). Let 𝜌(⋅) be the spectral radius and ‖ ⋅ ‖ be
a matrix norm. Using the sufficient condition that

𝜌(𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛)) ≤ 𝜌(𝐒−1𝑛𝑝 )𝜌(Π

′ ⊗ 𝐈𝑛) ≤ ‖𝐒−1𝑛𝑝 ‖ ⋅ ‖Π
′ ⊗ 𝐈𝑛‖ < 1 , (4)

we can obtain suitable ranges of the parameter matrices (see Horn and Johnson, 2012, spectral radius theorem). Since any eigenvalue
of a Kronecker product is some product of the eigenvalues of the two matrices, the eigenvalues of (Π′⊗ 𝐈𝑛) are less than one if the
eigenvalues of Π are less than one. For example, this is the case if the radius 𝜌(Π) is smaller than one or if Π is strictly diagonally
dominant, i.e., the diagonal entry of each row—the temporal autoregressive effect of the own component—is smaller than the sum
of the magnitudes of all the other entries in this row—the cross-component temporal autoregressive effects (see Horn and Johnson,
2012, Gershgorin circle theorem). Moreover,

‖𝐒−1𝑛𝑝 ‖ = ‖𝐈𝑛𝑝 +Ψ′ ⊗𝐖 + (Ψ′ ⊗𝐖)2 +⋯ ‖ (5)

≤ ‖𝐈𝑛𝑝‖ + ‖Ψ′ ⊗𝐖‖ + ‖(Ψ′ ⊗𝐖)‖2 +⋯ (6)

= 1
1 − ‖Ψ′ ⊗𝐖‖

. (7)

f the spectral radius of Ψ′ ⊗𝐖 is less than one, the spatial component is stable. For instance, if 𝐖 is a row-standardised spatial
eight matrix, implying that the largest eigenvalue of 𝐖 is one, similar conditions can be considered for Ψ like for the temporal
arameter matrix. If Ψ is strictly diagonally dominant, i.e., the own-component spatial effects are smaller than the sum of all
bsolute cross-component spatial effects, the spectral radius is smaller than one and ‖Ψ′⊗𝐖‖ < 1. Thus, we can the condition that
Π‖ ∕ (1 − ‖Ψ‖) < 1, under which the process is stable. Note that this is a more restrictive condition than in Proposition 1.

ssumption 4. The row and column sums of 𝐖 in absolute values are uniformly bounded in 𝑛. Moreover, 𝐒𝑛𝑝 is invertible for all
−1
5

ossible matrices Ψ in the parameter space and 𝐒𝑛𝑝 is uniformly bounded in absolute row and column sums.
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Assumption 4 is classical in spatial statistics to obtain a stable process across space (cf. Yang and Lee 2017, Kelejian and Prucha
998, Lee 2004). Here, we could adopt the assumption as formulated in Yang and Lee (2017) for multivariate spatial autoregressive
odels. Together with Proposition 1, we obtain a stable process across space and time. In practice, the spatial weight matrices are

ften standardised to meet these regularity conditions, e.g. the most widely adopted row-wise standardisation.

ssumption 5. Let 𝑛 be a non-decreasing function of 𝑇 and 𝑇 → ∞.

Assumption 5 implies that 𝑛, 𝑇 → ∞ simultaneously.

.3. Consistency of the QML estimator

Due to the presence of endogenous variables, i.e., the instantaneous spatial interactions, the identification of spatial models is
enerally more difficult than in the strict time-series case, where all spatiotemporal interaction may only occur after one time lag.
hus, we initially focus on the identification of the parameters which is needed for the consistency of the QML estimator in the
ollowing Theorem 1. Since the identification is inherent with the spatial dimension of the model, we could follow the same strategy
s in Yang and Lee (2017) for multivariate spatial autoregressive models. The identification is based on the information inequality,
s proposed by Rothenberg (1971).

roposition 2. If the Assumptions 1–5 are fulfilled, then 𝐀̃0, Ψ0 and Π0 are uniquely identifiable.

For the identification, we make use of the fact that the spatial dependence is constant across time, and the temporal dependence
s constant for all spatial locations. If either of them varies in space or time, further identifying information would be needed.
oreover, in contrast to Yang and Lee (2017), the errors are uncorrelated by definition, and the error variance is supposed to be

nown. The assumption of an uncorrelated error process is essential for GARCH models for the identification of the parameters in
he conditional volatility equation, i.e., the so-called GARCH effects. Moreover, the assumption of a known error variance 𝜎2𝑢 is, of

course, restrictive (see also Francq and Zakoian 2011, Brockwell and Davis 2006), and it is often difficult to choose an appropriate
value. Ex-post scale adjustments have been proposed for time series to circumvent this assumption (see Bauwens and Sucarrat
2010, Sucarrat et al. 2016). However, this paper follows the classical approach and points to future research for these ex-post
scale adjustments. Moreover, for the purely spatial case with 𝑇 = 1, 𝐀̃0 must be constant across space to be identifiable. That is,
̃ 0 = (𝑎̃10𝟏′𝑛,… , 𝑎̃𝑝0𝟏′𝑛)

′ is an 𝑛× 𝑝-dimensional matrix with constant entries for each row. Similarly, we can see that for the classical
ime series case with 𝑛 = 1 that 𝐀̃0 is an 1 × 𝑝 row vector (𝑎̃10,… , 𝑎̃𝑝0).

To estimate the parameters, we propose a QML estimator based on the log-likelihood function given by . That is, the parameters
𝝑 = (𝑣𝑒𝑐(𝐀̃)′, 𝑣𝑒𝑐(Ψ)′, 𝑣𝑒𝑐(Π)′) can be estimated by

𝝑̂𝑛𝑇 = argmax
𝝑∈𝛩

ln(𝐀,Ψ,Π|𝐘0),

where 𝛩 is the parameter space that fulfils Assumption 3. It is worth noting that we need to condition on the observed vector at
𝑡 = 0, 𝐘0, because of the temporal autoregressive structure. The consistency of this QML estimator is summarised in the following
theorem.

Theorem 1. Under Assumptions 1–5, 𝝑0 = (𝑣𝑒𝑐(𝐀̃0)′, 𝑣𝑒𝑐(Ψ0)′, 𝑣𝑒𝑐(Π0)′) can be uniquely identified and 𝝑̂𝑛𝑇
𝑝
→ 𝝑0.

All proofs can be found in the appendix.

3. Monte Carlo simulations

In the following section, we present the results of a series of simulations on the consistency of the parameters for finite samples.
To give a first visual impression, we display a bivariate spatial ARCH process (𝑇 = 1, 𝑛 = 900, Rook’s contiguity matrix) with and
without spatial cross-correlation in Fig. 1. For both examples, the spatial ARCH effects are equal to 0.5, a moderate level of spatial
dependence. Therefore, spatial volatility clusters can be seen in both cases. They are indicated by a higher variance, that is, more
intensely coloured pixels, whereas clusters of low variance are close to zero indicated by evenly grey-coloured pixels. Now, for the
case with a cross-correlation of 0.35 (top panels), these clusters are aligned across the variables, while they are located at different
positions in the lower panels with zero cross-correlation.

Our Monte Carlo simulation study simulated three different bivariate models (A, B, C) with two different error distributions
(standard normal and 𝑡3) with 1000 replications. For each combination, we successively increased the size of the spatial field
𝑛 ∈ {25, 49, 100} and the length of the time series 𝑇 ∈ {30, 100, 200}. We simulated the process on a two-dimensional grid as
visualised in Fig. 1, and the spatial weight matrix was chosen as a row-standardised Queen’s contiguity matrix. The data-generating
parameters of the three considered models are as follows:

(A) Spatiotemporal model with a weak spatial cross-correlation: 𝐀0 = 𝟏𝑛𝟏′𝑝, Ψ0 =
(

0.5 0.1
0.1 0.5

)

, and Π0 =
(

0.3 0
0 0.3

)

(B) Spatiotemporal model without temporal dependence, but the same spatial dependence as for Model A: 𝐀0 = 𝟏𝑛𝟏′𝑝, Ψ0 =
(

0.5 0.1
)

, and Π0 =
(

0 0
)

6
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Fig. 1. Simulated random fields (first row: high cross correlation 𝜓12 = 𝜓21 = 0.35; second row: no cross correlation 𝜓12 = 𝜓21 = 0). The spatial ARCH coefficients
re identical for all components and both settings, i.e., 𝜓11 = 𝜓22 = 0.5.

(C) Spatiotemporal model with pronounced cross-correlation and weak spatial correlation, same temporal autocorrelation like

for Model A: 𝐀0 = 𝟏𝑛𝟏′𝑝, Ψ0 =
(

0.2 0.4
0.4 0.2

)

, and Π0 =
(

0.3 0
0 0.3

)

.

For the first simulated model, i.e., Model A with standard normal errors, the parameter estimates are depicted as a series of
oxplots for the three increasing sizes (𝑛, 𝑇 )′ ∈ {(25, 30)′, (49, 100)′, (100, 200)′} in Fig. 2. In all cases, we see that the QML estimator
onsistently estimates the true values because the boxplots are getting more centred around zero. Moreover, we see the typical
ias of the QML estimators for small spatial fields, which rapidly vanishes with increasing sample size. The same behaviour can be
bserved for all other settings and error distributions. The average bias and the root-mean-square errors (RMSE) of the estimators
re reported in Tables 1 and 2, respectively. Both the absolute values of the bias and the RMSE are approaching zero if 𝑛 and 𝑇 are
ncreasing.

. Real-world example: Berlin real-estate prices

In the following section, we will show the application of the process to a real example. For this purpose, we model the changes
n the average sales prices of undeveloped land, developed land and condominiums in Berlin. The data are monthly average prices
er square metre of land or living space in each post-code region from 2002 to 2014. The average prices across all spatial locations
re depicted in Fig. 3 as a time series process.

First of all, it must be noted that there are typically geographical dependencies in the housing market, unlike other financial
arkets where trading can take place regardless of location. One of the most important factors in a purchase decision is the property’s

ocation, whereby the surrounding neighbourhood also influences prices. This dependency is, in turn, influenced by road connections,
nfrastructure or public transport. Furthermore, the price in the past also plays a role, as is typical for all time series. The temporal
roximity creates a causal statistical dependence that decreases the further one looks into the past. These dependencies are observed
oth in the price process and in the risks in terms of price changes. Moreover, in a regression context (i.e., if the real-estate prices are
odelled directly), multivariate spatial ARCH models are appealing error models, especially when spatially correlated variables are

mitted from the mean model. These omitted variables lead to statistical dependence in the error variance. This issue is pronounced
n spatial statistics where key variables are often omitted due to unavailability or measurement challenges at small spatial scales,
.g., local income levels.

This motivates applying the proposed multivariate spatiotemporal ARCH process to property sales returns. More precisely, we
nalysed the logarithmic monthly returns of the average sales prices in each category for all 𝑛 = 190 post-code regions in Berlin. All
7
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Fig. 2. Estimation performance of the QML estimator for Model A with standard normal errors. Top row: unconditional variance level 𝑎, centre: spatial coefficient
matrix Ψ, bottom: temporal coefficient matrix Π. For each plot, we show the difference between the parameter estimate and the true data-generating parameter.

regions are displayed in Fig. 4 together with their spatial weights. Specifically, we have chosen 𝐖 to be a queen contiguity matrix.
Notice that all obtained results need to be interpreted in the light of this assumption, i.e., the estimated spatial parameters represent
interactions to the directly adjacent postcode areas. The length of the time series is 𝑇 = 156 and the process is 𝑝 = 3-dimensional.
To display the log-return process, Fig. 5 shows the average log returns across all locations in the temporal domain. Especially for
the developed and undeveloped land, there were much fewer sales, such that the average returns are more volatile. In the case
of no transactions in certain months and areas, we assumed that the average sales price did not change and, thus, the log returns
are zero. These missing values (or zero returns), we imputed by randomly simulating from a normal distribution a mean zero and
standard deviation of 0.0001. In contrast to sample mean or moving average imputations or replacing zeros by (small) constant
values (see also Francq et al., 2013), this preserves the underlying evolution of the real price series. In future, a more detailed
8

analysis, including a zero-transaction model, would be interesting, especially for smaller time granularities and spatial locations. In
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Table 1
Average bias of the QML estimates for all considered settings.

Average bias 𝑎 𝜓11 𝜓21 𝜓12 𝜓22 𝜋11 𝜋21 𝜋12 𝜋22
Model A, data-generating parameters 1 0.5 0.1 0.1 0.5 0.3 0 0 0.3

𝑛 = 25, 𝑇 = 30 −0.0464 −0.0115 −0.0021 −0.0003 −0.0112 −0.0036 −0.0010 −0.0008 −0.0055
Normal errors 𝑛 = 49, 𝑇 = 100 −0.0093 −0.0024 0.0005 0.0002 −0.0028 −0.0013 −0.0002 −0.0002 −0.0004

𝑛 = 100, 𝑇 = 200 −0.0027 −0.0005 0.0001 −0.0001 −0.0006 −0.0001 −0.0003 0.0000 −0.0003
𝑛 = 25, 𝑇 = 30 0.0269 −0.0106 −0.0026 −0.0040 −0.0103 −0.0042 0.0006 −0.0035 −0.0050

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0029 −0.0005 −0.0007 −0.0005 −0.0010 −0.0016 −0.0009 −0.0002 −0.0010
𝑛 = 100, 𝑇 = 200 0.0009 −0.0005 0.0004 −0.0006 −0.0003 −0.0001 0.0001 0.0001 0.0000

Model B, data-generating parameters 1 0.5 0.1 0.1 0.5 0 0 0 0
𝑛 = 25, 𝑇 = 30 0.0249 0.0143 0.0194 0.0189 0.0149 −0.0014 −0.0009 −0.0019 −0.0004

Normal errors 𝑛 = 49, 𝑇 = 100 −0.0021 −0.0008 −0.0005 −0.0003 −0.0004 −0.0001 −0.0003 0.0007 −0.0004
𝑛 = 100, 𝑇 = 200 −0.0009 0.0001 −0.0005 0.0004 −0.0005 0.0001 0.0001 0.0000 −0.0002
𝑛 = 25, 𝑇 = 30 0.0088 0.0013 0.0006 −0.0019 −0.0011 −0.0026 −0.0017 −0.0003 0.0006

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0017 0.0010 0.0011 −0.0008 −0.0005 −0.0002 0.0000 −0.0005 0.0001
𝑛 = 100, 𝑇 = 200 0.0001 0.0001 −0.0011 0.0017 −0.0003 0.0000 −0.0002 0.0002 0.0002

Model C, data-generating parameters 1 0.2 0.4 0.4 0.2 0.3 0 0 0.3
𝑛 = 25, 𝑇 = 30 −0.0448 −0.0075 −0.0057 0.0018 −0.0120 −0.0037 −0.0003 −0.0014 −0.0031

Normal errors 𝑛 = 49, 𝑇 = 100 −0.0095 −0.0025 −0.0003 0.0002 −0.0022 −0.0002 −0.0009 −0.0003 −0.0008
𝑛 = 100, 𝑇 = 200 −0.0012 −0.0004 0.0001 0.0003 −0.0001 −0.0002 −0.0001 −0.0002 −0.0001
𝑛 = 25, 𝑇 = 30 0.0140 −0.0086 −0.0048 −0.0016 −0.0092 −0.0029 −0.0017 −0.0016 −0.0033

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0023 −0.0018 −0.0003 −0.0006 −0.0011 0.0001 −0.0002 −0.0003 −0.0009
𝑛 = 100, 𝑇 = 200 0.0001 0.0001 −0.0011 0.0005 −0.0009 0.0000 −0.0001 0.0000 −0.0003

Table 2
Root-mean-square errors of the QML estimates for all considered settings.

RMSE 𝑎 𝜓11 𝜓21 𝜓12 𝜓22 𝜋11 𝜋21 𝜋12 𝜋22
Model A, data-generating parameters 1 0.5 0.1 0.1 0.5 0.3 0 0 0.3

𝑛 = 25, 𝑇 = 30 0.1237 0.0456 0.0580 0.0589 0.0444 0.0326 0.0317 0.0313 0.0313
Normal errors 𝑛 = 49, 𝑇 = 100 0.0442 0.0173 0.0218 0.0228 0.0176 0.0121 0.0119 0.0124 0.0122

𝑛 = 100, 𝑇 = 200 0.0221 0.0087 0.0117 0.0110 0.0089 0.0061 0.0060 0.0060 0.0060
𝑛 = 25, 𝑇 = 30 0.0948 0.0443 0.0718 0.0712 0.0433 0.0313 0.0292 0.0318 0.0336

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0288 0.0167 0.0268 0.0256 0.0172 0.0129 0.0115 0.0117 0.0123
𝑛 = 100, 𝑇 = 200 0.0148 0.0086 0.0130 0.0130 0.0088 0.0059 0.0052 0.0050 0.0059

Model B, data-generating parameters 1 0.5 0.1 0.1 0.5 0 0 0 0
𝑛 = 25, 𝑇 = 30 0.1366 0.0912 0.1304 0.1291 0.0941 0.0336 0.0305 0.0295 0.0339

Normal errors 𝑛 = 49, 𝑇 = 100 0.0252 0.0191 0.0372 0.0368 0.0183 0.0128 0.0124 0.0122 0.0130
𝑛 = 100, 𝑇 = 200 0.0120 0.0095 0.0201 0.0197 0.0092 0.0065 0.0058 0.0060 0.0066
𝑛 = 25, 𝑇 = 30 0.0717 0.0511 0.1308 0.1278 0.0489 0.0338 0.0302 0.0300 0.0350

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0266 0.0187 0.0528 0.0540 0.0186 0.0129 0.0112 0.0110 0.0130
𝑛 = 100, 𝑇 = 200 0.0130 0.0099 0.0296 0.0296 0.0095 0.0064 0.0053 0.0054 0.0065

Model C, data-generating parameters 1 0.2 0.4 0.4 0.2 0.3 0 0 0.3
𝑛 = 25, 𝑇 = 30 0.1218 0.0598 0.0813 0.0794 0.0580 0.0350 0.0299 0.0305 0.0341

Normal errors 𝑛 = 49, 𝑇 = 100 0.0433 0.0236 0.0313 0.0315 0.0235 0.0131 0.0119 0.0120 0.0129
𝑛 = 100, 𝑇 = 200 0.0222 0.0122 0.0152 0.0161 0.0117 0.0064 0.0059 0.0059 0.0066
𝑛 = 25, 𝑇 = 30 0.0889 0.0596 0.0819 0.0850 0.0597 0.0338 0.0305 0.0303 0.0323

𝑡3-distr. errors 𝑛 = 49, 𝑇 = 100 0.0311 0.0233 0.0321 0.0334 0.0245 0.0130 0.0112 0.0118 0.0126
𝑛 = 100, 𝑇 = 200 0.0147 0.0118 0.0160 0.0163 0.0120 0.0063 0.0055 0.0055 0.0062

particular, for finer temporal and spatial resolutions, the GARCH effects appear to be more evident, but we would observe more
zero transactions, especially for the undeveloped areas. Thus, for this study, we balance the time/spatial granularity with only a
small percentage of zero transactions.

The estimated parameters of the multivariate spatiotemporal ARCH process are reported in Table 3 along with their empirical
tandard errors obtained as Cramer–Rao bounds based on the Hessian matrix of the log-likelihood. The intercept variance levels
ere assumed to be constant across space but vary with the property types, i.e., 𝐀̃ = (𝑎̃1𝟏′𝑛, 𝑎̃2, 𝑎̃3𝟏

′
𝑛)

′. Bearing in mind that we have
odelled monthly returns, we observe interesting results. First, spatial dependence is dominated by temporal dependence, which

ppears to be more important. Second, spatial spill-overs are positive (i.e., we observed clusters of higher variances/risks), but they
re only significant for developed land. This highlights the importance of including instantaneous spatial interactions (as mentioned
n the introduction). If spatial interactions were only allowed at the first temporal lag, these effects would be erroneously identified
s temporally lagged spatial interactions (i.e., spatiotemporal effects). Hence, the resulting parameters for such models should be
nterpreted with caution. When increasing the temporal intervals from monthly to quarterly data, these spatial interactions will
isappear. The same holds when grouping the spatial locations into larger areas. Thus, spatial GARCH models are particularly useful
or small spatial units and time granularities (as it is also well-known in finance). Third, cross-variable spill-overs are only significant
t the first temporal lag (i.e., after one time period). More precisely, we see significant interactions only between developed and
ndeveloped land, but not for condominium prices. It is important to remember that the spatial and temporal ARCH effects will
9
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Fig. 3. Monthly average prices (Euro/𝑚2) of undeveloped, developed land, and condominium across 190 post-code regions in Berlin from January 2002 to
December 2014.

Fig. 4. Spatial locations including their spatial weights matrix 𝐖 (green). The size of the centroids is proportional to the number of neighbouring locations.

also cover changes in the variance due to latent variables. Fourth, the unconditional variance varies across the property types, with
developed land experiencing the highest variance, followed by condominium and undeveloped land. Note that undeveloped land
usually does not have and will not get building permission.

Moreover, the models allow us to estimate the conditional log-volatility level for each location, time point, and response variable.
These volatilities are given in the 𝑛×𝑝 matrix 𝐇̂𝑡. Fig. 6 shows the averages across space and time. Several conclusions can be drawn
from these figures. Firstly, the conditional volatilities are the lowest for undeveloped land, followed by developed areas, and they are
the highest for condominiums. Hence, the highest risks are observed for the condominium market. Secondly, we observe increased
volatility at the end of the years for developed land and condominiums, mainly for the first half of the considered time horizon.
The highest variation in the market risks is observed for developed areas — the most scarce type of real estate in an urban area.
Thirdly, when looking at the maps, we see that risks are different across space. For instance, regarding condominiums, the highest
average risks are observed for the former East-Berlin areas. For the other two types, a pronounced risk cluster can be seen in the
North-Western city, Berlin-Reinickendorf, an area with a low population density and a large share of water and forest areas.
10
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(
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Fig. 5. Monthly log-returns of the price series displayed in Fig. 3 for all property types (from top to bottom: undeveloped land, developed land, condominiums).
Left: Log returns across space at the first time point, centre: average log returns as time series (averaged across space), right: log returns across space at the last
time point. Note that the log returns were computed from the raw spatiotemporal data and averaged afterwards to be depicted as a time series.

Table 3
QML estimates and standard errors of the empirical example. Spatial ARCH effects are highlighted in light green and temporal
ARCH effects in dark green. Significant effects are marked by an asterisk (* 𝑡-value > 1.9, ** 𝑡-value > 2).

Undeveloped land Developed land Condominium
Estimate Standard error Estimate Standard error Estimate Standard error

𝐀̃ −4.686** 1.381 0.187 1.372 -2.652* 1.337

Undeveloped land 0.111 0.074 0.016 0.075 −0.057 0.074
𝚿 Developed land 0.014 0.064 0.144** 0.062 0.000 0.064

Condominium −0.085 0.090 0.008 0.090 0.113 0.086

Undeveloped land 0.583** 0.038 0.129** 0.038 −0.014 0.038
𝚷 Developed land 0.080** 0.031 0.553** 0.031 0.027 0.031

Condominium −0.028 0.044 0.078 0.044 0.606** 0.044

5. Summary and conclusion

In this paper, we have introduced a multivariate spatiotemporal autoregressive model for conditional heteroscedasticity
multivariate vec-spARCH). While ARCH and GARCH models are well-known in time-series econometrics and finance, there are
nly a few spatiotemporal extensions that typically do not account for spatial simultaneity. For any geographical phenomena, spatial
nteractions occur instantaneously due to the spatial proximity between the observations. Instead, previous papers typically only
11
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Fig. 6. Estimated conditional log-volatilities 𝐇̂𝑡. Left: Average conditional log-volatilities of all spatial locations plotted across time for all three response variables
(from top to bottom: undeveloped land, developed land, condominiums). The shaded area corresponds to the area spanned by the 5% and 95% quantiles. Right:
Average conditional log volatility of all time points plotted on a map. The colour scale represents the average market risks 𝐇̂𝑡 from low (green), average (yellow)
to high (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

allowed for time-lagged spatial dependence. The model introduced in this paper explicitly accounts for instantaneous spatial and
cross-variable interactions and temporal dependence in conditional variance. Thus, the model would also be suitable for purely
spatial data without needing observations over time. In the empirical application, it is evident that the log returns of several
real estate types are spatially autocorrelated. This indicates local clusters of increased volatilities and market risks – even though
12
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the temporal dependence appears to be more important. Thus, we could show that there are temporally and spatially varying
volatilities. Furthermore, we found significant cross-variable dependence in the first temporal lags but no significant instantaneous
cross-variable interactions. Again, this motivates applying a multivariate spatiotemporal ARCH model in such studies instead of
multivariate time-series models.

For this new model, we discussed parameter estimation using a QML approach. For this reason, the process is reformulated in
vec-representation, and a log-squared transformation is applied to obtain a multivariate spatiotemporal autoregressive process.
e showed the consistency of the QML estimator under regular assumptions for the error process when the spatial and temporal

imensions increase. In the finite-sample case, we could see rapidly decreasing RMSEs in a series of simulations with different model
pecifications and error distributions. All our simulations could be performed in a reasonable amount of time using a standard
omputer. The required computational resources are usually the bottleneck of the QML approach due to the computation of the
og-determinant of the Jacobian matrix.

There are many further directions for future research and potential fields of applications. First, we only considered logarithmic
tructures in the volatility models, but no classical ARCH structures. However, since the multivariate spatiotemporal model could
e transformed into purely spatial models using the vec-representation, previous results of spatial ARCH and GARCH models could
e applied. Furthermore, all these spatial econometric models rely on a (correctly) specified spatial weight matrix, which is mostly
nknown in practice. Hence, estimation methods for the entire spatial dependence structures (i.e., each spatial weight) are desirable
rom a practical perspective. Penalised methods are promising in this case because many links can be considered to be zero.
onsidering long time series, it is also likely that the spatial dependence changes over time (see, e.g., Catania and Billé, 2017,

or dynamic spatial panel models) and it would be interesting to consider time-varying spatial parameters or weight matrices.
espite their theoretical benefits of the non-negativity of 𝐇𝑡, logarithmic ARCH approaches require strictly non-zero observations.
imilar to the approach in Sucarrat and Escribano (2018), handling zero observations in univariate and multivariate spatiotemporal
ogarithmic ARCH/GARCH models should be a priority of future research.

Apart from applications in econometrics, environmental and climate processes would be interesting and potential fields for
pplying the spatiotemporal multivariate ARCH model. The process parameters can be interpreted as local risk measures, which
re highly relevant in environmental studies. Furthermore, when considering our model as an error process, the statistical model
an reflect spatially and temporally varying measurement or modelling uncertainties. For example, this might be of interest to
NSS positioning in urban environments. Epidemiological and medical studies are other fields where local risks and cross-variable

nteractions are highly relevant.
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ppendix. Proofs

roof of Proposition 1. If all eigenvalues of 𝐒−1𝑛𝑝 (Π′⊗ 𝐈𝑛) are smaller than one and (𝐈𝑛𝑝−𝐒−1𝑛𝑝 (Π
′⊗ 𝐈𝑛))𝑗 → 0 for an increasing power

, we get that

(𝐈𝑛𝑝 + 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛) +⋯ + (𝐒−1𝑛𝑝 (Π

′ ⊗ 𝐈𝑛))𝑗 )𝑣𝑒𝑐(𝐀̃) → (𝐈𝑛𝑝 − 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛))−1 (8)

nd

𝒀̈ 𝑡 = (𝐈𝑛𝑝 − 𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛))−1 +

∞
∑

𝑖=0
(𝐒−1𝑛𝑝 (Π

′ ⊗ 𝐈𝑛))𝑖𝐔𝑡−𝑖 . (9)

he stability follows from the convergence of the (𝐒−1𝑛𝑝 (Π
′ ⊗ 𝐈𝑛))𝑖. If the spectral radius of 𝐒−1𝑛𝑝 (Π

′ ⊗ 𝐈𝑛) is smaller than one,
−1
𝑛𝑝 (Π

′ ⊗ 𝐈𝑛) → 0 (e.g., Gentle 2017). □

roof of Proposition 2. We have to show that
1
𝑇 𝑛𝑝

𝐸
(

ln(𝐀̃,Ψ,Π|𝐘0)
)

− 1
𝑇 𝑛𝑝

𝐸
(

ln(𝐀̃0,Ψ0,Π0|𝐘0)
)

≤ 0,

here the equality holds if and only if 𝐀̃ = 𝐀̃0, Ψ = Ψ0, and Π = Π0.
1
𝑇 𝑛𝑝

𝐸
(

ln(𝐀̃,Ψ,Π|𝐘0)
)

− 1
𝑇 𝑛𝑝

𝐸
(

ln(𝐀̃0,Ψ0,Π0|𝐘0)
)

= 1
𝑛𝑝

(ln |𝐒𝑛𝑝| − ln |𝐒𝑛𝑝0|)

− 1
2𝑛𝑝

𝑇
∑

𝑡=1

[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]′

×
[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]

− 1 𝑡𝑟
(

𝐒𝑛𝑝𝐒−1 𝐒
′−1𝐒′

)

13
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= 1
𝑛𝑝

ln |𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝|

1∕𝑛𝑝

− 1
2𝑛𝑝

𝑇
∑

𝑡=1

[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]′

×
[

𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

]

− 1
2𝑛𝑝

𝑡𝑟
(

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝

)

First, we focus on the convergence of the quadratic term

1
2𝑛𝑝

𝑇
∑

𝑡=1
𝐕′
𝑡𝐕𝑡 (10)

with

𝐕𝑡 = 𝐒𝑛𝑝𝐒−1𝑛𝑝0(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1)

=
(

𝐈𝑛𝑝 − ((Ψ′ −Ψ′
0)⊗𝐖)𝐒−1𝑛𝑝0

)

(𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + ((Π′
0 −Π′)⊗ 𝐈𝑛)𝒀̈ 𝑡−1) .

Thus, under Assumption 5, (10) is equal to zero if and only if 𝐀̃ = 𝐀̃0 and Π = Π0. Note that 𝐀̃0 is constant across time, while 𝒀̈ 𝑡
is varying due to the random variation in Ξ𝑡. Thus, if 𝑇 = 1, 𝐀̃0 must be assumed constant across space to obtain identifiability.

Second,
1
2𝑛𝑝

𝑡𝑟
(

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝

)

s only a function of Ψ and
1
𝑛𝑝
𝑡𝑟
(

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝

)

≥ |𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝|

1∕𝑛𝑝. (11)

by the arithmetic and geometric means inequality of eigenvalues of 𝐒𝑛𝑝. Further,

𝐒𝑛𝑝(Ψ)𝐒−1𝑛𝑝0 = 𝐈𝑛𝑝 − ((Ψ′ −Ψ′
0)⊗𝐖)𝐒−1𝑛𝑝0

is equal to 𝐈𝑛𝑝 if and only if Ψ = Ψ0 as 𝑛→ ∞. Then, the equality of (11) holds.
As a consequence, is equal to zero if and only if the parameters coincide with their true values Ψ0, Π0, and 𝐀̃0. Hence, the

arameters are uniquely identifiable. □

emma 1 (Yang and Lee (2017), Lemma 1). The sequences 𝐒𝑛𝑝 and 𝐒−1𝑛𝑝 are uniformly bounded in column sum norm, uniformly in Ψ, if
upΨ,𝑛 ‖Ψ

′ ⊗𝐖𝑛‖1 < 1. They are uniformly bounded in row sum norm, uniformly in Ψ, if supΨ,𝑛 ‖Ψ
′ ⊗𝐖𝑛‖∞ < 1.

emma 2 (Yu et al. (2008), Lemma 9). Under Assumptions 1, 4 and 5, it holds for an 𝑛𝑝-dimensional non-stochastic, uniformly bounded
atrix 𝐁𝑛𝑝 that

1
𝑛𝑝𝑇

𝑇
∑

𝑡=1
𝒀̈ ′
𝑡𝐁𝑛𝑝𝒀̈ 𝑡 −

1
𝑛𝑝𝑇

𝐸

[ 𝑇
∑

𝑡=1
𝒀̈ ′
𝑡𝐁𝑛𝑝𝒀̈ 𝑡

]

= 𝑂𝑝

(

1
√

𝑛𝑝𝑇

)

, (12)

1
𝑛𝑝𝑇

𝑇
∑

𝑡=1
𝒀̈ ′
𝑡𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡) −

1
𝑛𝑝𝑇

𝐸

[ 𝑇
∑

𝑡=1
𝒀̈ ′
𝑡𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡)

]

= 𝑂𝑝

(

1
√

𝑛𝑝𝑇

)

, (13)

1
𝑛𝑝𝑇

𝑇
∑

𝑡=1
𝑣𝑒𝑐(𝐔𝑡)′𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡) −

1
𝑛𝑝𝑇

𝐸

[ 𝑇
∑

𝑡=1
𝑣𝑒𝑐(𝐔𝑡)′𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡)

]

= 𝑂𝑝

(

1
√

𝑛𝑝𝑇

)

, (14)

where 𝐸
[

∑𝑇
𝑡=1 𝒀̈

′
𝑡𝐁𝑛𝑝𝒀̈ 𝑡

]

is 𝑂(1), 𝐸
[

∑𝑇
𝑡=1 𝒀̈

′
𝑡𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡)

]

is 𝑂(1∕𝑇 ) and 𝐸
[

∑𝑇
𝑡=1 𝑣𝑒𝑐(𝐔𝑡)

′𝐁𝑛𝑝𝑣𝑒𝑐(𝐔𝑡)
]

is 𝑂(1).

roof of Theorem 1. The proof of the theorem consists of two parts; first, the identification of the parameters, and, second, the
niform and equicontinuous convergence of 1

𝑛𝑝𝑇 ln𝑛𝑇 (𝝑|𝒀 0) to 1
𝑛𝑇 𝑄(𝝑|𝒀 0) in probability with 𝝑0 being a unique maximiser of 𝑄(𝝑).

Then, the consistency of the QML estimator follows.

1. The unique identification of the parameters is shown in the proof of Proposition 2.
2. Let

𝑼̃ 𝑡(𝜗) = 𝐒𝑛𝑝 ln 𝑣𝑒𝑐(𝐘
(2)
𝑡 ) − 𝑣𝑒𝑐(𝐀̃) − (Π′ ⊗ 𝐈𝑛) ln 𝑣𝑒𝑐(𝐘

(2)
𝑡−1)

and

𝑼 = 𝐒 ln 𝑣𝑒𝑐(𝐘(2)) − 𝑣𝑒𝑐(𝐀̃ ) − (Π′ ⊗ 𝐈 ) ln 𝑣𝑒𝑐(𝐘(2) ),
14

𝑡 𝑛𝑝0 𝑡 0 0 𝑛 𝑡−1
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the true error vector of the transformed process, i.e., 𝑣𝑒𝑐(Ξ(ln,2)
𝑡 ). Furthermore, let

𝑼̃ 𝑡(𝜉) = 𝑼 𝑡 − (Ψ′ −Ψ′
0)⊗𝐖𝒀̈ 𝑡 − 𝑣𝑒𝑐(𝐀̃ − 𝐀̃0) − ((Π′ −Π′

0)⊗ 𝐈𝑛)𝒀̈ 𝑡−1

with 𝜉 being the differences in the parameters. Then,

𝑼̃ 𝑡(𝜉)′𝑼̃ 𝑡(𝜉) = 𝑼 ′
𝑡𝑼 𝑡 − 𝑣𝑒𝑐(𝐀̃ − 𝐀̃0)′𝑣𝑒𝑐(𝐀̃ − 𝐀̃0)

+ (Ψ′ −Ψ′
0)

′ ⊗𝐖′𝒀̈ ′
𝑡 𝒀̈ 𝑡𝐖⊗ (Ψ′ −Ψ′

0)

− ((Π′ −Π′
0)⊗ 𝐈𝑛)′𝒀̈

′
𝑡−1𝒀̈ 𝑡−1((Π′ −Π′

0)⊗ 𝐈𝑛)

+ 2(Ψ′ −Ψ′
0)

′ ⊗𝐖′𝒀̈ ′
𝑡 𝒀̈ 𝑡−1((Π′ −Π′

0)⊗ 𝐈𝑛)

− 2(Ψ′ −Ψ′
0)

′ ⊗𝐖′𝒀̈ ′
𝑡𝑼 𝑡

− 2((Π′ −Π′
0)⊗ 𝐈𝑛)′𝒀̈

′
𝑡−1𝑼 𝑡

+ 2(Ψ′ −Ψ′
0)

′ ⊗𝐖′𝒀̈ ′
𝑡𝑣𝑒𝑐(𝐀̃ − 𝐀̃0)

+ 2((Π′ −Π′
0)⊗ 𝐈𝑛)′𝒀̈

′
𝑡−1𝑣𝑒𝑐(𝐀̃ − 𝐀̃0)

− 2𝑣𝑒𝑐(𝐀̃ − 𝐀̃0)′𝑼 𝑡 .

Using Lemmas 1 and 2, it follows that

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1 𝑼

′
𝑡𝑼 𝑡 −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1 𝑼

′
𝑡𝑼 𝑡

] 𝑝
→ 0,

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡 𝒀̈ 𝑡(𝐖⊗ 𝐈𝑝) −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡 𝒀̈ 𝑡(𝐖⊗ 𝐈𝑝)

] 𝑝
→ 0,

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1 𝒀̈

′
𝑡−1𝒀̈ 𝑡−1 −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1 𝒀̈

′
𝑡−1𝒀̈ 𝑡−1

] 𝑝
→ 0,

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡 𝒀̈ 𝑡−1 −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡 𝒀̈ 𝑡−1

] 𝑝
→ 0,

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡𝑼 𝑡 −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1(𝐖⊗ 𝐈𝑝)′𝒀̈

′
𝑡𝑼 𝑡

] 𝑝
→ 0, and

* 1
𝑛𝑝𝑇

∑𝑇
𝑡=1 𝒀̈

′
𝑡−1𝑼 𝑡 −

1
𝑛𝑝𝑇 𝐸

[

∑𝑇
𝑡=1 𝒀̈

′
𝑡−1𝑼 𝑡

] 𝑝
→ 0.

Because 𝐀̃−𝐀̃0 is uniformly bounded, the remaining terms converge to zero in probability by Chebycheff’s inequality. Moreover,
as 𝝑 = (𝑣𝑒𝑐(𝐀̃)′, 𝑣𝑒𝑐(Ψ)′, 𝑣𝑒𝑐(Π)′)′ is bounded in 𝛩, we get that

1
𝑛𝑝𝑇

𝑇
∑

𝑡=1
𝑼̃ 𝑡(𝜉)′𝑼̃ 𝑡(𝜉) −

1
𝑛𝑝𝑇

𝐸

[ 𝑇
∑

𝑡=1
𝑼̃ 𝑡(𝜉)′𝑼̃ 𝑡(𝜉)

]

𝑝
→ 0

uniformly in 𝝑 ∈ 𝛩, and, thus,
1
𝑛𝑝𝑇

ln𝑛𝑇 (𝐀̃,Ψ,Π|𝐘0) −
1
𝑛𝑝𝑇

𝑄(𝐀̃,Ψ,Π|𝐘0)
𝑝
→ 0

uniformly in 𝝑 ∈ 𝛩.
Further, the equicontinuity of the expected likelihood must be shown. Let 𝜄𝑖𝑗 be a matrix with the (𝑖, 𝑗)-th entry equal to
one, and all other entries are zero. First, 1

𝑛𝑝
𝜕 ln |𝐒𝑛𝑝|
𝜕𝜓𝑖𝑗

= 1
𝑛𝑝 𝑡𝑟(𝐒

′−1
𝑛𝑝 (𝜄𝑖𝑗 ⊗𝐖)) is uniformly bounded by a constant, uniformly in Ψ,

because 𝐒−1𝑛𝑝 is uniformly bounded according to Lemma 1. Secondly, 1
𝑛𝑝 ln |𝐒𝑛𝑝| is a Lipschitz function in Ψ and, thus, uniformly

equicontinuous. Thirdly,
𝑇
∑

𝑡=1
𝑼̃ 𝑡(𝜉)′𝑼̃ 𝑡(𝜉) =

[

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + 𝐒𝑛𝑝𝐒−1𝑛𝑝0(Π
′
0 −Π′)𝒀̈ 𝑡−1

]′

×
[

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝑣𝑒𝑐(𝐀̃0 − 𝐀̃) + 𝐒𝑛𝑝𝐒−1𝑛𝑝0(Π
′
0 −Π′)𝒀̈ 𝑡−1

]

is uniformly equicontinuous, because 𝐀̃ and Π are bounded, 𝐒𝑛𝑝(Ψ) is uniformly bounded in Ψ and 𝒀̈ ′
𝑡 𝒀̈ 𝑡 is 𝑂(1) in 𝝑 according

to Lemma 2. Then, since 𝐒−1𝑛𝑝 is 𝑂(1) in Ψ and 𝐒𝑛𝑝(Ψ)𝐒−1𝑛𝑝0 = 𝐈𝑛𝑝 − ((Ψ′ −Ψ′
0)⊗𝐖)𝐒−1𝑛𝑝0, also

1
2𝑛𝑝

𝑡𝑟
(

𝐒𝑛𝑝𝐒−1𝑛𝑝0𝐒
′−1
𝑛𝑝0𝐒

′
𝑛𝑝

)

= 1
2𝑛𝑝

𝑡𝑟
(

(𝐈𝑛𝑝 − ((Ψ′ −Ψ′
0)⊗𝐖)𝐒−1𝑛𝑝0)(𝐈𝑛𝑝 − ((Ψ′ −Ψ′

0)⊗𝐖)𝐒−1𝑛𝑝0)
′
)

is a Lipschitz function in Ψ. Thus, this term is uniformly equicontinuous.
Because all terms are uniformly equicontinuous, also 1

𝑛𝑝𝑇 𝑄(𝐀̃,Ψ,Π|𝒀 0) is uniformly equicontinuous.

Because 𝝑0 is uniquely identified and the log-likelihood uniformly converges to the uniformly equicontinuous 1
𝑛𝑝𝑇 𝑄(𝐀̃,Ψ,Π|𝐘0) in

𝝑 = (𝑣𝑒𝑐(𝐀̃)′, 𝑣𝑒𝑐(Ψ)′, 𝑣𝑒𝑐(Π)′)′, the consistency follows. This completes the proof. □
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