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Abstract 

Background 

Inaccurate blood pressure classification results in inappropriate treatment. We tested if 

machine learning (ML), using routine clinical data, can serve as a reliable alternative to 

Ambulatory Blood Pressure Monitoring (ABPM) in classifying blood pressure status. 

Methods 

This study employed a multi-centre approach involving three derivation cohorts from 

Glasgow, Gdańsk, and Birmingham, and a fourth independent evaluation cohort. ML 

models were trained using office BP, ABPM, and clinical, laboratory, and demographic 

data, collected from patients referred for hypertension assessment. Seven ML algorithms 

were trained to classify patients into five groups: Normal/Target, Hypertension-Masked, 

Normal/Target-White-Coat, Hypertension-White-Coat, and Hypertension. The 10-year 

cardiovascular outcomes and 27-year all-cause mortality risks were calculated for the ML-

derived groups using the Cox proportional hazards model. 

Results 

Overall XGBoost showed the highest AUROC of 0.85-0.88 across derivation cohorts, 

Glasgow (n=923; 43% females; age 50.7±16.3 years), Gdańsk (n=709; 46% females; age 

54.4±13 years), and Birmingham (n=1,222; 56% females; age 55.7±14 years). But 

accuracy (0·57-0·72) and F1 scores (0·57-0·69) were low across the three patient cohorts. 

The evaluation cohort (n=6213, 51% females; age 51.2±10.8 years) indicated elevated 10-

year risks of composite cardiovascular events in the Normal/Target-White-Coat and 

Hypertension-White-Coat groups, with heightened 27-year all-cause mortality observed in 

all groups except Hypertension-Masked, compared to the Normal/Target group. 

Conclusions 

Jo
urn

al 
Pre-

pro
of



3 
 

Machine learning has limited potential in accurate blood pressure classification when 

ABPM is unavailable. Larger studies including diverse patient groups and different 

resource settings are warranted. 
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Introduction  

Clinical guidelines now recommend out-of-office blood pressure (BP) measurements using 

ambulatory BP monitoring (ABPM) to screen and diagnose hypertension and to monitor 

on-treatment BP control, as clinic or office (oBP) is prone to error.1-3 Compared to oBP, 

ABPM is a superior predictor of hypertension-mediated organ damage, cardiovascular 

disease (CVD) morbidity and mortality,3 and can additionally identify patients with 

sustained hypertension, white-coat (WC) hypertension (BP overestimation by oBP), and 

masked hypertension (BP underestimation by oBP). WC and masked hypertension 

comprise at least a third of the at-risk population and masked hypertension is more 

prevalent in populations of African ancestry.4 WC and masked hypertension are 

associated with an increased risk of progression to sustained hypertension,5 highlighting 

the importance of early identification for more intensive follow-up even if pharmacological 

therapy is not initiated. However, ABPM has several drawbacks, including limited access 

to devices (often only available in secondary care); significantly higher device costs 

compared to oBP devices; staff training; patient discomfort; and sleep disruption. 6,7 Any 

method that can infer true hypertension status without incurring the expense and 

discomfort of using ABPM will enable effective and timely management in both primary 

and secondary care. We hypothesised that machine learning applied to routine clinical 

data can replace the need for ambulatory blood pressure monitoring. Our primary objective 

was to develop an ML algorithm capable of accurately classifying patients without ABPM 

measurements into distinct BP risk groups that are as informative as classifying with an 

ABPM. Our secondary objective was to demonstrate clinical utility of the ML classification 

by comparing the risk of CVD morbidity and mortality between these groups. The more 

extensive evaluation of all the additional information that an ABPM provides (such as BP 

variability, circadian variation) was beyond the scope of this study. A validated ML tool that 
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performs well in different settings and free from algorithmic bias will help hypertension 

management in both resource-poor and resource-rich settings allowing clinicians and 

nurses to effectively manage hypertension by risk-stratifying hypertensive patients, without 

incurring the added cost or inconvenience to both clinic and patients. 

Methods  

Study datasets 

This is a retrospective study of patients referred for hypertension assessment to the 

Glasgow Blood Pressure Clinic (GBPC) 8 at the Queen Elizabeth University Hospital, 

Glasgow, UK between 2017 and 2019 (Glasgow cohort), patients participating in the 

CARE NORTH study, a prospective study of hypertensive patients from the outpatient 

specialist clinic at the Medical University of Gdańsk, Poland (Gdańsk cohort), and patients 

attending hypertension clinics at Birmingham Heartlands Hospital, Birmingham, UK 

between 2001 and 2020 (Birmingham cohort). A temporally distinct cohort for ML model 

evaluation was extracted from the GBPC database comprising patients referred to the 

clinic between 1985 and 2011 and followed up until 2013 (Glasgow non-ABPM cohort; 

non-overlapping with the Glasgow Cohort). Details of the cohorts and ethics statements 

are provided in the Supplemental Appendix S1.  

BP Groups 

Based on office systolic BP (oSBP) and the average systolic BP from 24-hr ABPM (aSBP), 

we defined five clinically relevant BP groups using BP oSBP and aSBP thresholds 

obtained from current US, European and UK guidelines1-3,9. These are described in Table 

1 and in the Supplemental Appendix S1. 

If both oSBP and aSBP meet non-hypertensive thresholds, this indicates normal SBP in 

the absence of treatment or at target SBP if on treatment; these patients are grouped 

together as ‘Normal/Target’. The group ‘Hypertension’ defines sustained hypertension. 
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The group ‘Hypertension-Masked’ defines hypertensive aSBP in the presence of normal 

oSBP. Those with a WC effect are divided into two groups: normal aSBP in the presence 

of hypertensive oSBP are labelled ‘Normal/Target-WC’, whereas those with hypertensive 

aSBP and oSBP where oSBP is >=15 mmHg higher than aSBP are labelled 

‘Hypertension-WC’. Any difference <15mmHg between the oSBP and aSBP of an 

individual with hypertensive oSBP and aSBP qualifies the individual for the group 

‘Hypertension’. We assigned each patient to one of five BP groups based on the 

definitions in Table 1 for the Glasgow, Gdańsk, and Birmingham cohorts. ML models were 

derived using these labels. 

Clinical Features  

Demographics, cardiovascular disease, antihypertensive therapy, and blood chemistry test 

results were used to develop the model (see Supplemental Table S1). At the time of 

ABPM or within a 3-month window preceding ABPM, features were obtained from 

standard clinical assessment of patients with hypertension in primary or secondary care 

who underwent ABPM. However, there were cohort-specific variations in the available 

features, reflecting differences in clinical practice in the real world. The Glasgow cohort 

has 14 features, the Gdańsk cohort has 12 features, and the Birmingham cohort has 10 

features (see Supplemental Tables S1-S4). 

Machine Learning 

All data analysis and ML were performed in Python 3.8 using Scikit-learn, XGBoost, and 

Matplotlib software libraries. Missing data were imputed using the k-nearest neighbor 

(kNN) algorithm. The Shapiro-Wilk test was utilized to examine normality, and the Chi-

square test was utilized to examine the independence of categorical variables.  

We derived seven ML models from clinical features (excluding ABPM but including oBP 

measurements) including multinomial logistic regression (MLR), support vector machine 
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(SVM), k-nearest neighbor (kNN), naïve Bayes (NB), decision tree (DT), random forest 

(RF), and tree-based eXtreme Gradient Boosting (XGBoost).10 Using stratified five-fold 

cross-validation, separate ML models were developed for each of the three cohorts due to 

the distinct features of each and performance metrics reported for each (see 

Supplemental Appendix S1). 

Performance Metrics 

Performance of models was reported using the area under the receiver operating 

characteristic curve (AUROC) and measures calculated from confusion matrices 

generated for each BP group: accuracy, precision (positive predictive value (PPV); 

proportion of relevant instances among the retrieved instances), recall (sensitivity), 

specificity, F1-score (the harmonic mean of precision and recall), negative predictive value 

(NPV), and number needed to misdiagnose (the number of patients who need to be tested 

in order for one to be misdiagnosed by the test; NNM). Calibration (the degree of similarity 

between observed and predicted probability) was assessed by calibration plot and Brier 

score as recommended by TRIPOD guidelines (see Supplemental Appendix S1).11 The 

performance of a model was obtained by averaging the performance across all five folds. 

Results were reported as mean ± standard deviation (SD). In all cases, the significance 

level was p<0.05. 

Predicting BP Group in the Glasgow non-ABPM Cohort 

Models derived from the Glasgow, Gdańsk and Birmingham cohorts were used to predict 

model-specific BP groups for the 7,812 patients in the Glasgow non-ABPM cohort. 

Hypertension duration and number of antihypertensive medications were not available for 

the Glasgow non-ABPM cohort, so these features were omitted from the models. 
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Survival Analysis 

Survival analysis was conducted on the Glasgow non-ABPM cohort by applying models 

derived from Glasgow, Gdańsk and Birmingham ABPM cohorts. The outcomes analyzed 

were all-cause mortality and CVD composite outcome (defined as time to first CVD 

admission or CVD death from myocardial infarction, ischemic heart disease, 

cerebrovascular accident, heart failure, or peripheral vascular disease) (see 

Supplemental Appendix S1). The patients were followed from their first BP clinic visit 

until death, emigration, or April 1, 2011 (the end of follow-up). Multivariable Cox 

proportional hazards models were used to assess the prognostic effect of the ML-derived 

BP groups on all-cause mortality and composite CVD events after adjustment for baseline 

variables, age, sex, body mass index (BMI), cholesterol, smoking status, Charlson 

comorbidity index, and a variable on year of the first visit strata (epochs) to adjust for 

secular trends in mortality. Schoenfeld residuals were used to test the proportional 

hazards assumption. Multiple imputation by chained equations (MICE) was performed for 

variables with <10% of values missing (BMI and cholesterol). Ten imputation datasets 

were generated, and pooled estimates from Cox regression are reported.  

Results 

Table 2 and Supplemental Tables S2-S4 summarizes the clinical, laboratory, and 

demographic characteristics of the three study datasets. The proportion of patients on 

antihypertensive medication varied across cohorts (54% in Glasgow, 96% in Gdańsk, and 

42% in Birmingham). Glasgow's cohort had the highest oBP and ABPM readings, while 

Gdańsk’s cohort had the lowest. In Supplemental Tables S2-S4, the distribution of 

patients across the five BP groups and a summary of the clinical features of the three 

cohorts are presented. The BP groups with the smallest proportion of patients were 

Hypertension-Masked in the Birmingham (2.1%) and Glasgow (5.6%) cohorts and 
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Hypertension-WC in the Gdańsk cohort (6.8%). Normal/Target-WC in Glasgow (37.7%), 

Normal/Target-WC in Gdańsk (46.3%), and Normal/Target-WC in Birmingham (44.8%) 

cohorts had the highest proportion of patients. 

Model Performance 

The performance measures are presented in Table 3 and Supplemental Table S5. Table 

3 shows the performance of the XGBoost machine learning model in classifying patients 

into distinct blood pressure groups, as defined ABPM data, which we consider the gold 

standard in this context. Overall, XGBoost and RF models with AUROC values between 

0·85 and 0·88 had the highest performance (see Supplemental Figures S1 and S2). For 

XGBoost, accuracy ranged between 0·57 and 0·72 and F1 between 0·57 and 0·69 across 

the three patient cohorts. The simplest kNN (Glasgow, Gdańsk) and NB (Glasgow, 

Birmingham) models performed the worst. The confusion matrices and the corresponding 

performance metrics for XGBoost's classification of patients into the five BP groups in the 

three cohorts are depicted in Table 3 and Supplemental Figure S3. Across all three 

cohorts, XGBoost correctly classified 79% -99% of Normal/Target patients and 60% -80% 

of Normal/Target-WC patients. The classification accuracies for Hypertension and 

Hypertension-Masked were variable across the three cohorts with misclassification as 

Normal/Target-WC and Normal/Target respectively.  Supplemental Figure S4 depicts 

XGBoost calibration. 

Feature Importance 

The XGBoost model revealed that in all cohorts, oSBP, age, cholesterol, and creatinine 

were the most influential predictors (see Supplemental Figure S5). There were 

substantial variations in influential characteristics between models and between cohorts 

(see Supplemental Figure S6). XGBoost demonstrated a balanced contribution from all 
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features, whereas other models exhibited a predominance of one to three features in 

determining model performance (Supplemental Figure S6). 

Survival Analysis 

The demographic characteristics of the Glasgow non-ABPM cohort are summarized in 

Supplemental Table S6. The results of Cox regression analysis are displayed in Table 4 

and Supplemental Figure S7. A significantly higher 10-year risk of composite CVD events 

was evident for the Normal/Target-WC (H.R. 1·3 [1·09;1·55], P=0·003) and Hypertension-

WC (1·38 [1·14;1·67], P=0·001) groups compared to Normal/Target when predicted by the 

model derived from the Glasgow cohort. When heterologous models, i.e., Birmingham or 

Gdańsk XGBoost models, were applied to the Glasgow non-ABPM cohort, the outcomes 

were largely consistent. Hypertension-WC groups predicted by Birmingham (1·42 

[1·21;1·66] P<0·0001) and Gdańsk (1·33 [1·12;1·57] P=0·001) XGBoost models were 

associated with higher 10-year CVD risk compared to Normal/Target. The predicted 

Normal-Target WC groups did not show an increased risk of 10-year cardiovascular 

events for the Birmingham (1·16 [0·99;1·36] P=0·059) and Gdańsk (1·16 [0·96;1·39] 

P=0·127) cohorts.  Interestingly, the Glasgow and Gdańsk models did not reveal an 

increased risk of CVD outcomes in the Hypertension group. Normal/Target-WC and 

Hypertension-WC groups showed significantly higher all-cause mortality compared to 

Normal/Target for all three models. The Hypertension group showed significantly 

increased mortality risk with the Glasgow and Gdańsk models. Hypertension-Masked 

showed significantly increased mortality risk only with the Glasgow model. For all-cause 

mortality outcomes, Normal/Target-WC (Glasgow: 1·42 [1·17;1·73], P=0·0004; 

Birmingham: 1·2[1·01;1·42], P=0·036; Gdańsk:1·25 [1·03;1·52], P=0·025) and 

Hypertension-WC (Glasgow:1·69[1·38;2·07], P<0·0001; Birmingham:1·5 [1·27;1·76], 

P<0·0001; Gdańsk: 1·39 [1·17;1·66], P=0·0002) showed significant associations  
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regardless of the classification model used. All-cause mortality for the Hypertension group 

did not attain statistical significance for the Birmingham model (Glasgow:1·33 [1·02;1·74], 

P=0·034; Birmingham: 1·44 [0·99;2·07], P=0·052; Gdansk: 1·23 [1·0;1·51], P=0·049)   and  

Hypertension-Masked group showed an increased risk of death only with the Glasgow 

model (1·35 [1·01;1·82], P=0·046). 

Discussion  

In our proof-of-concept investigation, we explored the viability of using machine learning 

(ML) applied to routine clinical data as a substitute for Ambulatory Blood Pressure 

Monitoring (ABPM) in the clinical management of hypertension. Despite the modest 

accuracy of the machine learning classifications, our analysis of associations with clinical 

outcomes revealed that certain ML-derived categories correlate with a higher risk when 

compared to the reference category of normal/target BP. This observation suggests that 

even with current accuracy limitations, ML classifications can provide preliminary insights 

into risk stratification that merit further investigation.  The implications for our results, 

despite the acknowledged low accuracies are two-fold. First, it demonstrates the potential 

clinical relevance of ML classifications in identifying risk groups, which could be refined 

and validated in larger, more diverse datasets. Second, it underscores the importance of 

enhancing accuracy and reliability in future research. The observed associations, despite 

the current limitations, indicate a promising direction for leveraging ML in hypertension 

management, especially in scenarios where ABPM is not feasible. An interesting insight 

from our study is the potential generalizability of the ML model regardless of the originating 

cohort in consistently identified individuals exhibiting the white coat effect with consequent 

increased cardiovascular risk. Our approach to classifying individuals into five risk groups 

differs from previous efforts, which primarily focused on deducing ABPM BP values from 

oBP and other clinical parameters.12  
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Our ML algorithms exhibited some degree of misclassification across all three cohorts, 

particularly between the Normal/Target and Hypertension-Masked groups and within the 

trio of Normal/Target-WC, Hypertension-WC, and Hypertension. While the models showed 

high AUROCs, these misclassifications resulted in suboptimal calibration metrics.  

XGBoost model performed better in the Glasgow cohort (40%) in the detection of 

Hypertension and Hypertension-Masked (54%) compared to Gdańsk and Birmingham 

cohorts (20% and 9% for Hypertension and 20% and 0% for Hypertension-Masked 

respectively). The relatively higher detection rate for the smaller Hypertension-Masked and 

Hypertension groups in the Glasgow cohort may be attributable to the Glasgow cohort 

having more input features (Supplemental Table S1) and a more balanced distribution of 

groups between the two cohorts (Supplemental Tables S2-S4). The advantage of 

XGBoost models is that they harmonized a range of covariates, including demographic and lab 

values, to construct the prediction with no single covariate predominating in contrast to logistic 

regression (see Supplemental Figure S6). Nevertheless, the development of ML models 

from unbalanced data can result in predictions that are skewed toward the majority group 

and deceptively high performance. Typically, this phenomenon is referred to as the 

accuracy paradox. Consequently, despite the Glasgow cohort's superior predictive ability 

for smaller subgroups, its model produced lower accuracy, F1, and AUROC scores than 

those of the Gdańsk and Birmingham cohorts. Performance matrices (Supplemental 

Table S5), which provide a more in-depth analysis of the model's classification accuracy, 

demonstrated that the Glasgow cohort's model has the best performance in detecting 

clinically significant smaller subgroups. Oversampling implicitly increases the prior 

probability of smaller subgroups, which could lead to misclassifications of patients from the 

majority group. 

ABPM is considered the gold standard for diagnosing hypertension.2,3,9,13 ABPM provides 

a more precise hypertension diagnosis, which benefits both the individual patient and the 
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healthcare system. Avoiding unnecessary antihypertensive treatment in patients has 

resulted in a 3-14% decrease in treatment costs. However, due to the requirements for 

technology and other resources, the immediate cost of ABPM is significantly higher than 

that of routine clinic BP measurement.6,7 ABPM is also more taxing on patients since the 

BP cuff inflates and deflates at least twice or thrice hourly: a third of patients report pain or 

bruising during the 24-hour monitoring process, and two-thirds report sleep disturbances.  

The primary strengths of our study are the development of multiple ML models in three 

temporally and geographically distinct cohorts which strengthen the study's conclusions, 

the use of cross-validation to generate robust confidence intervals for our estimates, the 

demonstration of an impact on long-term outcomes, and adherence to the current 

TRIPOD-AI guidelines for reporting prediction models.11 However, our study did not come 

without limitations. In addition to the misclassification and poor calibration metrics noted 

above, some of the BP groups were underrepresented due to the small sample size, most 

notably Hypertension-Masked, and the majority of patients were white Europeans with little 

ethnic diversity. We were unable to account for secular effects between cohorts in the 

survival analyses and used only the year of inclusion as a covariate to address this. The 

Glasgow non-ABPM cohort comprised hypertensive patients attending the Glasgow BP 

clinic – thus all were managed nearly similarly at a specialist clinic. The discrepancy in the 

CV outcomes risk seen in the hypertensive group and the white-coat groups compared to 

the normal/target BP group on applying models derived from the three cohorts on 

outcomes in the Glasgow non-ABPM cohort may reflect the existing unmet need where 

those patients with white coat effect may still be under-treated. We surmise further 

research using larger datasets will help determine the predictive power of the ML models 

and clarify the implications on long-term outcomes. 
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This study serves as a foundational proof of concept, demonstrating the potential of ML to 

categorize patients into clinically pertinent risk groups when ABPM is unavailable, though it 

underscores that ML cannot completely supplant ABPM at this juncture. Our findings 

advocate for the conduct of more extensive prospective studies, with the inclusion of a 

diverse array of racial and ethnic groups and a variety of resource settings, alongside 

ensuring adequate representation across all blood pressure classifications. Furthermore, 

the successful and ethical deployment of ML in healthcare, particularly in resource-poor 

settings, requires a participatory approach that includes patients, healthcare providers, and 

other stakeholders from these communities from the outset.  In conclusion, it is essential to 

conduct a comprehensive evaluation to determine the true potential of machine learning as 

either a direct substitute for or a significant complement to ambulatory blood pressure 

monitoring. By integrating ML into the clinical pathway, we have the opportunity to 

revolutionize the management of hypertension, enabling timely and effective interventions 

across diverse healthcare environments. Acknowledgements 
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Table Legends 

 

Table 1: Definition of five BP groups. aSBP: ABPM 24-hr systolic blood pressure average; 

oSBP: office systolic blood pressure; BP: blood pressure; WC: white-coat. 

Table 2: Summary of patient characteristics presented as mean ±SD, unless presented as 

proportion (%) of total cohort. Distribution of patients across five BP groups is also shown. 

Grey shading indicates absence of data. ABPM: ambulatory blood pressure monitoring; 

ALT: alanine aminotransferase; CVD: cardiovascular disease; DBP: systolic blood 

pressure; oBP: office blood pressure; SBP: systolic blood pressure; WC: white-coat. 

Table 3: Summary of XGBoost performance in the three cohorts for each BP group. 

AUROC: area; PPV: positive predictive value (precision); WC: white coat. Sensitivity, 

Specificity, and PPV are reported for each fold. 

Table 4: Results of Cox regression analysis for 27-year all-cause mortality and for 10-year 

composite cardiovascular events.  
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Table 1: Definition of five BP groups. aSBP: ABPM 24-hr systolic blood pressure average; 

BP: blood pressure; oSBP: office systolic blood pressure; WC: white-coat. 

BP Group oSBP (mmHg) aSBP (mmHg) oSBP-aSBP (mmHg) 

Normal/Target ≤140 ≤135 ·· 

Hypertension-Masked ≤140 >135 ·· 

Normal/Target-WC >140 ≤135 ·· 

Hypertension-WC >140 >135 ≥15 

Hypertension >140 >135 ·· 
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Table 2: Summary of patient characteristics presented as mean ±SD, unless presented as 

proportion (%) of total cohort. Distribution of patients across five BP groups is also shown. 

Grey shading indicates absence of data. ABPM: ambulatory blood pressure monitoring; 

ALT: alanine aminotransferase; CVD: cardiovascular disease; DBP: systolic blood 

pressure; oBP: office blood pressure; SBP: systolic blood pressure; WC: white-coat. 

 Glasgow Gdańsk Birmingham 

n=923 n=709 n=1,222 

Demographics 

Age (years) 50·7±16·3 54·4±13·1 55·7±13·9 

Sex (% female) 43·1 45·6 56·2 

BP Measurements & Hypertension Status 

oBP – SBP (mmHg) 163·1±22·5 139·9±19·5 157·4±19·9 

oBP – DBP (mmHg) 95·4±14·3 82·2±11·2 94·6±12·0 

ABPM - SBP (mmHg) 138·0±15·9 129·1±12·3 132·3±13·1 

ABPM - DBP (mmHg) 81·5±11·5 77·3±8·9 78·5±9·7 

Hypertension Duration (years) 3·7±4·7 12·1±8·9 ·· 

Prevalent CVD (%) 56·6 16·2 7·8 

Antihypertensive Treatment (% 
treated) 

54·0 96·1 42·2 

BP Groups 

Normal/Target 96 (10·4%) 328 (46·3%) 210 (17·2%) 

Hypertension-Masked 52 (5·6%) 75 (10·6%) 26 (2·1%) 

Normal/Target-WC 348 (37·7%) 184 (26·0%) 547 (44·8%) 

Hypertension-WC 249 (27·0%) 48(6·8%) 326 (26·7%) 

Hypertension 178 (19·3%) 74 (10·4%) 113 (9·2%) 

Blood Chemistry 

Sodium (mmol/L) 139·4+2·5 140·0±2·5 140·1±2·7 

Potassium (mmol/L) 4·4±0·4 4·2±0·4 4·3±0·4 

Creatinine (μmol/L) 75·7±19·3 73·6±13·1 80·7±17·7 

Cholesterol (mmol/L) 5·4±1·2 5·0±1·1 5·4±1·1 
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Triglyceride (mmol/L) 1·9±1·2 1·5±0·8 ·· 

ALT (U/L) 28·5±18·6 ·· ·· 

Bilirubin (μmol/L) 10·5±5·3 ·· ·· 
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Table 3: Summary of XGBoost performance in the three cohorts for each BP group. 

AUROC: area; PPV: positive predictive value (precision); WC: white coat. Sensitivity, 

Specificity, and PPV are reported for each fold. 

 Hypertension 
Classification 

AUROC Accuracy F1 Score Sensitivity Specificity PPV 

Glasgow (n=923) 

Normal/Target 
0·877 ± 
0·008 

0·574 ± 
0·032 

0·570 ± 
0·032 

0·792 ± 
0·116 

0·971 ± 
0·009 

0·761 ± 
0·048 

Hypertension-Masked 
0·877 ± 
0·008 

0·574 ± 
0·032 

0·570 ± 
0·032 

0·535 ± 
0·182 

0·977 ± 
0·013 

0·587 ± 
0·141 

Normal/Target-WC 
0·877 ± 
0·008 

0·574 ± 
0·032 

0·570 ± 
0·032 

0·604 ± 
0·113 

0·69 ± 
0·014 

0·54 ± 
0·048 

Hypertension-WC 
0·877 ± 
0·008 

0·574 ± 
0·032 

0·570 ± 
0·032 

0·582 ± 
0·086 

0·84 ± 
0·045 

0·574 ± 
0·092 

Hypertension 
0·877 ± 
0·008 

0·574 ± 
0·032 

0·570 ± 
0·032 

0·399 ± 
0·142 

0·915 ± 
0·031 

0·532 ± 
0·185 

Gdańsk (n=709) 

Normal/Target 
0·938 ± 
0·004 

0·664 ± 
0·036 

0·729 ± 
0·031 

0·969 ± 
0·051 

0·816 ± 
0·027 

0·82 ± 
0·017 

Hypertension-Masked 
0·938 ± 
0·004 

0·664 ± 
0·036 

0·729 ± 
0·031 

0·067 ± 
0·119 

0·984 ± 
0·026 

0·45 ± 
0·714 

Normal/Target-WC 
0·938 ± 
0·004 

0·664 ± 
0·036 

0·729 ± 
0·031 

0·913 ± 
0·054 

0·819 ± 
0·028 

0·639 ± 
0·038 

Hypertension-WC 
0·938 ± 
0·004 

0·664 ± 
0·036 

0·729 ± 
0·031 

0·371 ± 
0·466 

0·983 ± 
0·02 

0·654 ± 
0·523 

Hypertension 
0·938 ± 
0·004 

0·664 ± 
0·036 

0·729 ± 
0·031 

0·107 ± 
0·16 

0·991 ± 
0·025 

0·69 ± 
0·623 

Birmingham (n=1,222) 

Normal/Target 
0·937 ± 
0·010 

0·692 ± 
0·047 

0·724 ± 
0·045 

0·986 ± 
0·038 

0·974 ± 
0·004 

0·888 ± 
0·014 

Hypertension-Masked 
0·937 ± 
0·010 

0·692 ± 
0·047 

0·724 ± 
0·045 

0·0 ± 0·0 
0·997 ± 
0·007 

0·0 ± 0·0 

Normal/Target-WC 
0·937 ± 
0·010 

0·692 ± 
0·047 

0·724 ± 
0·045 

0·812 ± 
0·081 

0·716 ± 
0·085 

0·699 ± 
0·09 

Hypertension-WC 
0·937 ± 
0·010 

0·692 ± 
0·047 

0·724 ± 
0·045 

0·687 ± 
0·134 

0·884 ± 
0·038 

0·684 ± 
0·069 

Hypertension 
0·937 ± 
0·010 

0·692 ± 
0·047 

0·724 ± 
0·045 

0·089 ± 
0·101 

0·989 ± 
0·016 

0·521 ± 
0·538 
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Table 4: Results of Cox regression analysis for 27-year all-cause mortality and for 

10-year composite cardiovascular events.  

 Glasgow 
XGBoost Model 

Birmingham 
XGBoost Model 

Gdańsk XGBoost 
Model 

27-year all-cause mortality  

Normal/Target 1 1 1 

Normal/Target-
WC 

1·42 [1·17;1·73] 
P=0·0004 

1·2 [1·01;1·42] 
P=0·036 

1·25 [1·03;1·52] 
P=0·025 

Hypertension-
Masked 

1·35 [1·01;1·82] 
P=0·046 

0·4 [0·06;2·86] 
P=0·362 

0·85 [0·59;1·22] 
P=0·365 

Hypertension -
WC 

1·69 [1·38;2·07] 
P<0·0001 

1·5 [1·27;1·76] 
P<0·0001 

1·39 [1·17;1·66] 
P=0·0002 

Hypertension 
1·33 [1·02;1·74] 

P=0·034 
1·44 [0·99;2·07] 

P=0·052 
1·23 [1·0;1·51] 

P=0·049 

        

10-year composite cardiovascular events  

Normal/Target 1 1 1 

Normal/Target-
WC 

1·3 [1·09;1·55] 
P=0·003 

1·16 [0·99;1·36] 
P=0·059 

1·16 [0·96;1·39] 
P=0·127 

Hypertension-
Masked 

1·03 [0·77;1·37] 
P=0·853 

1·47 [0·47;4·6] 
P=0·509 

0·83 [0·60;1·14] 
P=0·24 

Hypertension -
WC 

1·38 [1·14;1·67] 
P=0·001 

1·42 [1·21;1·66] 
P<0·0001 

1·33 [1·12;1·57] 
P=0·001 

Hypertension 
1·05 [0·81;1·35] 

P=0·708 
1·4 [0·99;1·98] 

P=0·058 
1·13 [0·93;1·37] 

P=0·223 
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