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Co-inhibition of TGF-β and PD-L1 pathways in a metastatic colorectal cancer mouse 
model triggers interferon responses, innate cells and T cells, alongside metabolic 
changes and tumor resistance
Reshmi Naira, Tamsin R. M. Lannaganb, Rene Jackstadtb, Anna Andrusaitea, John Colea, Caitlin Boynea, 
Robert J. B. Nibbsa, Owen J. Sansomb,c, and Simon Millinga

aSchool of infection and immunity, University of Glasgow, Glasgow, UK; bCancer Research UK Scotland Institute, Glasgow, UK; cSchool of Cancer 
Sciences, University of Glasgow, Glasgow, UK

ABSTRACT
Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20–30%), 
especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted 
and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. 
To understand the therapeutic modulation of immune response in mCRC, we have used a genetically 
engineered mouse model (GEMM), “KPN”, which resembles the human ‘CMS4’-like subtype. We show here 
that transforming growth factor (TGF-β1), secreted by KPN organoids, increases cancer cell proliferation, 
and inhibits splenocyte activation in vitro. TGF-β1 also inhibits activation of naive but not pre-activated 
T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-β inflames the 
KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing 
neutrophils and epithelial cells. Co-inhibition of TGF-β and PD-L1 signaling further enhances cytotoxic 
CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simulta-
neous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden 
and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs 
to predict better immunotherapies for mCRC.
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Introduction

Colorectal carcinoma (CRC) is one of the most prevalent cancers 
worldwide and has a mortality rate of 20–30%. Metastasis of 
tumor to adjacent organs is the major cause of death and almost 
20% of the patients diagnosed with CRC have metastasis.1,2 The 
current options for targeted therapies are very limited such as 
anti-Vascular Endothelial Growth Factor (VEGF), Anti- 
Epidermal Growth Factor Receptor (EGFR) and anti- 
Programmed Cell Death-1 (PD1) but only a fraction of patients 
respond to the therapies. Many treated individuals either do not 
respond to these therapies (innate resistance) or show recurrence 
or develop resistance to treatments (adaptive resistance).3,4 Patient 
stratification is limited to screening of PD-L1 expression for 
immunotherapy, and no other clinical biomarkers have been 
identified to differentiate responders from non-responders.5–7 

Hence, there is a need to identify combinatorial therapies to the 
right subset of patients with CRC.

CRC can be differentiated into four Consensus Molecular 
Subtypes (CMS) based on microsatellite instability (MSI) and 
chromosomal instability (CIN). Driver mutations in genes like 
APC, TP53, SMAD4, KRAS, and PIK3CA initiate tumor develop-
ment and chromosomal instability, making the tumor invasive 
and metastatic.8 In CRC, mutations in KRAS (40–50%), TP53 

(43%), and NOTCH (16.5–25%) genes are common,7,9,10 and 
23% tumors are CMS4 (mesenchymal) subtype.11,12 CMS4 
tumors are characterized by SMAD4 mutations, TGF-β upregula-
tion, presence of endothelial cells and cancer-associated fibro-
blasts (CAFs), making these tumors highly metastatic with poor 
survival.11,13 Hence, it is critical to use for appropriate preclinical 
models resembling human CRC subtypes to test immune thera-
pies that may improve treatment of CMS4 mCRC.

The KPN mouse model (villinCreERKrasG12D/+Trp53fl/fl 

Rosa26N1icd/+) represents the CMS4 CRC.14 These genes are 
under the control of cre-recombinase driven by a tamoxifen- 
inducible villin promoter expressed in intestinal epithelial cells. 
Mutation in the Kras affects the RAS/MAPK pathway, result-
ing in uncontrolled cell proliferation15 Deletion of Trp53 
results in genetic instability.16 Constitutively active truncated 
Notch1 intracellular domain “N1icd” drives KPN toward an 
immunosuppressive TGF-β-driven tumor microenvironment 
(TME).14 The combination generates tumors in the intestine 
with metastases in the liver and adjoining organs.14 Late-stage 
liver metastasis is modeled using the intra-splenic transplanta-
tion. Organoids derived from KPN liver metastases are injected 
as single cells into the spleen, rapidly generating metastasis in 
the liver. Thus, these intra-splenic KPN mice provide a model 
to understand therapy-driven immune regulation in mCRC.
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The TGF-β cytokine superfamily includes ligands TGF- 
β1,2 and 3.12 Upon activation, the inactive TGF-β1 ligand 
binds to the serine/threonine kinase receptors, TGF-βRI 
(ALK5) and TGF-βRII. This binding activates or represses 
target genes associated with either tumor suppression or 
progression.12 Tumorigenic effects of TGF-β include pro-
moting epithelial to mesenchymal transition (EMT), angio-
genesis, immune evasion, myofibroblast generation, and 
metastasis.12,17 TGF-β also inhibits natural killer (NK), 
CD8+T cells, M1-like macrophages, and N1 neutrophils 
and promotes the activity of T regulatory cells (Treg), M2- 
like macrophages, and N2 neutrophils near the TME, 
resulting in disease aggravation18,19 Blocking circulating 
TGF-β inhibits immune suppression and tumor progres-
sion. ALK5 inhibitor (ALK5i) or anti-TGF-β antibody inhi-
bit TGF-β signaling pathway by either inhibiting 
phosphorylation of TGF-βRI kinase domain, or by blocking 
TGF-β ligand to receptor interactions14,20,21

Programmed cell death ligand 1(PD-L1/CD274), expressed by 
tumor cells and antigen presenting cells (APCs), is the ligand for 
Programmed Cell Death 1(PD-1/CD279), on T cells. The inhibi-
tory interaction between PD1 with PD-L1 enables the tumor cells 
to escape host immune surveillance by suppressing antigen recog-
nition, lymphocyte infiltration, and effector functions.22 Antibody 
targeting of PD-L1 inhibits PD1/PD-L1 interactions, potentially 
allowing T cells to proliferate, perform their effector functions, 
and reestablish the anti-tumor immune response.23

Though there have been significant advancements in preci-
sion/targeted therapy for cancer, limited information is available 
about the optimum treatment of CMS4 subtype of tumors with 
high TGF-β and activated Notch signaling. Since KRAS, TRP53, 
and NOTCH1 gene mutations play a critical role in mCRC in 
humans, the human-CMS4 like CRC tumor characteristics in 
KPN makes it an interesting model to evaluate therapy driven 
anti-tumor immune response. We have used this model to answer 
(a) whether targeting TGF-β alongside with immune checkpoint 
blockade would help in modulating immune response and curing 
liver metastasis of KPN tumors and (b) what could be the under-
lying mechanisms of resistance if the combination therapy is not 
efficacious. To test this hypothesis, in vitro and in vivo experi-
ments were conducted using KPN organoids and with the help of 
techniques such as flow cytometry, immunohistochemistry and 
TempOseq-based RNA sequencing we have investigated the 
mechanisms modulating the immune response and potential 
resistance mechanisms in mCRC after co-inhibition of TGF-β 
and PD-L1 signaling pathways. Our study highlights the impor-
tance of using GEM models like KPN to predict novel immune 
therapy combinations that may have a higher chance of translat-
ability to the clinic.

Results

KPN organoids secrete TGF-β1, enhancing tumour 
proliferation and inhibiting splenocyte activation

TGF-β signaling is characteristic of the CMS4 CRC, and 
Notch drives epithelial TGF-β2 expression in KPN 
tumors.14 Since TGF-β1 is the most abundant isoform,17 

we tested its role in KPN organoids, and in inhibiting 

T cell activation. In vitro, cell culture supernatant of KPN 
organoids contained TGF-β1 (Figure 1(a)), and conditioned 
media (CM) from organoid cultures increased KPN prolif-
eration to a similar extent as addition of recombinant TGF- 
β1 (Figure 1(b)). To evaluate TGF-β1-mediated immune 
cell suppression, anti-CD3-stimulated splenocytes were cul-
tured with TGF-β1 or CM. Reductions in cell proliferation 
and IFN-γ release were observed with TGF-β1 and CM, 
and restored with ALK5i (Galunisertib), and anti-TGF-β 
antibody (1D11) (Figure 1(c,d), FigS1A-S1B). Because 
TGF-β1 drives both pro and antitumorigenic responses, 
we tested its effects on naïve and preactivated T cells. 
IFN-γ release and proliferation of activated splenocytes 
(naïve T cells) was inhibited by TGF-β1, and inhibition 
was blocked by anti-TGF-β antibody or ALK5i 
(Figure 1(e) FigS1C). In contrast, inhibition was not 
observed when splenocytes were pre-stimulated, rested, 
and restimulated with added TGF-β1 (Figure 1(f), 
FigS1D). Thus, CM from KPN tumors has tumor prolif-
erative and immunosuppressive properties like recombinant 
TGF-β1, and TGF-β1 inhibits activation of naïve but not 
pre-stimulated T cells.

TGF-β inhibitor enhances Ly6C+MHCII+ monocytic 
infiltrate into KPN liver metastases

To understand immune responses in KPN metastatic tumors 
treated with ALK5i, liver metastases were generated by intra- 
splenic transplantation of KPN organoids. A week after trans-
plantation, treatment with ALK5i or vehicle was performed 
twice daily for 3 weeks (Figure 2(a)). Livers were then weighed 
and sectioned. Treatment with ALK5i reduced the liver: body 
weight ratio, suggesting a decrease in liver metastases 
(Figure 2(b)). Liver metastases were digested and stained to 
identify EpCAM+ epithelial cells and infiltrating immune cells. 
Flow cytometry showed that ALK5i treatment significantly 
reduces the number of EpCAM+ cells (Figure 2(c)). 
Immunohistochemistry (IHC) showed reduction numbers of 
Ly6G+ neutrophils (Figure 2(d,e)). A significant increase in 
numbers and frequency of Ly6C+ monocytes and 
Ly6C+MHCII+ monocytic intermediates occurred after 
ALK5i treatment (Figure 2(f,g), FigS 2A, S2B, S2C). There 
was no change in numbers of Ly6C−MHCII+ macrophages 
(Figure 2(g)). Further, RNA expression analysis by TempO- 
Seq also showed upregulation of Ly6c1 after ALK5i treatment 
(Figure 2(h)). More CD64+ cells and Ly6C+MHCII+ intermedi-
ates were also observed in liver tissue of mice with low KPN 
metastatic tumor burden (Fig-S2D). These data indicate that 
KPN tumors have an inflammatory TME which is modulated 
after ALK5i treatment.

TGF-β inhibitor enhances infiltration of lymphocytes into 
KPN liver metastases

Since lymphoid cells play a critical role in anti-tumor 
responses, we also evaluated changes in T-lymphocytes 
after ALK5i treatment (Fig-S3). Increases in the numbers 
of tumor infiltrating CD4+T and CD8+T cells were 
observed after treatment (Figure 3(a)). Total CD45+cells 
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did not change in frequency or numbers. The 
T lymphocytes were also activated, with higher CD69 
expression after ALK5i treatment (Figure 3(b)). Since 
T cells were activated, we evaluated their expression of 
immune checkpoint proteins-PD1 and PD-L1. ALK5i sig-
nificantly increased expression of PD-L1 on both CD3− and 
CD3+ cells. Interestingly, a higher proportion of CD3− cells 
were PD-L1+ than CD3+ cells (Figure 3(c)). TempO-Seq 
analysis of liver metastases also showed an increase in 
Cd274 (PD-L1) gene expression (Figure 3(d)). The tSNE 

plot shows an increase in the frequency of CD3+, CD4+ 

and CD8+T cells, CD69, PD1 and PD-L1 expression on 
T cells, and a decrease in the frequency of epithelial cells 
after treatment, indicating enhanced anti-tumor immune 
responses (Fig S4A and S4B). We also observed an increase 
in the frequencies of CD3+T-bet+, CD3+IFN-γ+ cells in the 
mesenteric lymph nodes (MLN) and spleens from KPN 
mice after ALK5i treatment (Figure 3(e)), indicating 
enhanced systemic Th1 immune responses in KPN tumor- 
bearing mice.

Figure 1. Effect of TGF-β1 on organoids and immune cells. (a) TGF-β1 in conditioned medium (CM) from KPN organoids at 72 h. (b) KPN cells cultured with mouse TGF- 
β1 or CM for 72 h. (c) Anti-CD3 stimulated splenocytes (St) cultured with CM for 72 h. (d) Unstimulated or anti-CD3 stimulated splenocytes (St) cultured with CM and 
ALK5i or anti-TGF-β for 72 h. (e) To activate naïve cells, anti CD3 stimulated splenocytes treated with TGF-β1 and ALK5i, or anti-TGF-β for 72 h. (f) For pre-activation, anti- 
CD3 stimulated cells rested, restimulated with anti-CD3, with TGF-β1 and treated for 72 h. In Fig B-D, cell proliferation evaluated by cell titer glo. In Fig E-F, IFN-γ 
measured by ELISA. Data shown as mean±SD (n = 2–3). Statistical analysis: One-way ANOVA with Tukey’s multiple comparison test (Prism v9) p-value for significance 
*<0.05, **<0.01, ***<0.001, ****<0.0001.
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TGF-β inhibition upregulates interferon-associated genes 
in KPN liver metastases

To understand the effects of ALK5i on immune associated 
pathways, we analyzed formalin fixed paraffin embedded 
(FFPE) liver sections from metastatic tissue by whole 
mouse transcriptome RNA expression analysis using the 
TempO-Seq platform. Volcano plot shows significantly 

upregulated and downregulated genes between vehicle and 
ALK5i treatment groups (Figure 4(a)). Differential gene 
expression (DEG) analysis show that the genes associated 
with the closely related interferon regulatory factor (IRF)-1, 
and STAT1 pathways are enriched and most activated 
upstream regulators (TRUSST database) (Figures 4(b,c)). 
Gene ontology (GO) analysis also showed an increase in 

Figure 2. TGF-β1 inhibitor reduces neutrophils, epithelial cells and enhances inflammatory monocytes in KPN metastases in vivo. (a) Dosing strategy for mice with KPN 
metastatic tumors, treated with ALK5i or vehicle, by oral gavage (OG). (b) Normalised liver: body weight ratio between vehicle (n = 5) and ALK5i treated (n = 4). (c) 
Differences in EpCAM+ cells between vehicle and ALK5i (n same as B). (d) Counts of Ly6G+ neutrophils between vehicle (n = 5) and ALK5i (n = 5), from IHC. (e) Metastatic 
area selected for counting Ly6G+ cells from untreated and ALK5i treated mice(representative). (f) Flow cytometer plots and (g) counts showing Ly6C+ monocytes, 
Ly6C+MHCII+ monocytic intermediates and Ly6C−MHCII+ macrophages (n same as B). Data presented with median, minimum, and maximum values. Statistical analysis 
using Mann Whitney test, with p-value for significance *<0.05, **<0.01. (h) Expression of Ly6c1 gene from metastatic area of liver FFPE sections, evaluated by TempOseq. 
Ly6c1 is significant at p adj value of 0.006, represented as ** in the boxplot.
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the expression of genes: Nos224 and Trim31,25 in the 
Cellular_Response_to_Interferon_Gamma pathway, that 
are associated with modulation of tumor associated 

immune responses (Figure 4(d)). Thus, ALK5i enhances 
IRF and STAT1 gene expression, and enhances anti- 
tumor immune responses.

Figure 3. TGF-β1 inhibitor enhances lymphocyte infiltration and PD-1/PD-L1 expression into KPN metastases. KPN liver metastases, treated with ALK5i or vehicle, were 
digested and stained. Live CD45+CD3+ cells were gated. (a) Counts of CD45+ cells, CD3+T, CD4+T and CD8+T lymphocytes in KPN metastases treated with vehicle control 
(n = 5) or ALK5i (n = 4). (b) counts of CD69+CD3+T cells, CD69+CD4+T cells, and CD69+CD8+T cells. (c) PD-L1 on CD3− and CD3+T cells and PD1 on CD3+T cells between 
vehicle (n = 5) and ALK5i (n = 4). Statistical analysis: Mann Whitney, with p-value <0.05 considered significant (*<0.05) (Prism). (d) Boxplot of Cd274 expression 
(TempOSeq), from metastatic liver FFPE sections comparing vehicle with ALK5i treatment. (e) Difference in frequencies of CD3+T-bet+ cells, CD3+IFN-γ+ in the MLN and 
CD3+IFN-γ+ in the spleen between vehicle (n = 5) and ALK5i (n = 5). Statistical analysis for Figures A, B, C and E was done using an unpaired Mann Whitney test. p value 
for significance *<0.05, **<0.01.
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Co-inhibition of TGF-β and PD-L1 boosts infiltration of 
CD8+ T cells in KPN liver metastases

The PD1/PD-L1 axis is often associated with T cell exhaustion, 
leading to immune evasion and tumor progression.23 Since 
ALK5i treatment of KPN metastases led to high PD1/PD-L1 
expression but did not completely inhibit tumor growth, we 
hypothesized that dual inhibition of TGF-β and PD1/PD-L1 
would further reduce KPN metastasis. KPN metastases were 
therefore treated with combination of ALK5i and anti-PD-L1 
antibody, or with the individual treatments, or appropriate vehi-
cle/isotype controls (Figure 5(a)). Samples were analyzed at end-
point by flow cytometry. Frequencies of CD3+T cells are shown 
in Figure 5(b). No changes were observed in the counts of 
CD45+ leukocytes (Figure 5(c)). ALK5i-treated animals showed 
a significant increase in counts of CD3+T cells and CD4+T cells 
over vehicle-treated mice. The combination treatment also 
caused a significant increase in the frequency of CD3+T cells 
over the vehicle. No changes were observed in CD3+ or 
CD4+T cell frequency or counts after anti-PD-L1 treatment 
(Figure 5(c)). Unlike CD4, CD8+T cells did not significantly 
increase in number after ALK5i treatment. However, Anti-PD- 
L1 single and combination treatments showed significant 
increases in CD8+T cells in the KPN tumor (Figure 5(c)).

We also evaluated activation of these infiltrating T cells, by 
assessing their CD69 expression. ALK5i alone and in combina-
tion with anti-PD-L1 caused a significant increase in the fre-
quency of CD69+CD3+T cells and CD69+CD8+T cells, 
indicating CD8+T cell activation (Figure 5(d)) The combina-
tion treatment also elevated PD1 expression on CD3+T cells 
(Figure 5(d)). Intracellular cytokine staining showed higher 
frequency of granzymeB+CD8+T cells after anti-PD-L1 single, 
and combination treatment with ALK5i (Figure 5(e)). This 

increase in the frequency of CD8+PD1+, CD8+CD69+ and 
granzymeB+CD8+T cells was also observed in livers of mice 
with low KPN metastatic tumor burden (Fig-S5A-5D). Overall, 
co-inhibition of TGF-β and PD1/PD-L1 signaling increases 
infiltration of granzymeB-expressing cytolytic CD8+T cells 
into KPN metastatic tumors.

Co-inhibition of TGF-β and PD-L1 upregulates innate 
immune responses in the KPN liver metastases

To investigate mechanisms modulating the immune response in 
KPN tumors after combination treatment, we performed RNA 
sequencing of metastases from FFPE liver sections by TempO- 
Seq. We observed differential expression of genes (DEG) between 
vehicle, single and combination treatment groups (Fig-S6A-C, 
supplementary table S1). Since DEG were highest between vehicle 
and combination groups, pathway analysis was used to compare 
between them. This showed an increase in genes regulating and 
activating innate_immune_response, cell_surface_receptor_-
signalling, Fc_receptor_signalling, and metabolic_processes and 
cellular response to interferon gamma (Figure 6a, S6D-F). Thus, 
co-inhibition of TGF-β and PD-L1 pathways boosts the interferon 
gene expression in KPN metastases (Figure 6(b)).

Upregulation of cancer associated metabolic pathway 
genes associates with tumour resistance after dual 
treatment

Though we observed increases in both infiltration of 
CD8+T lymphocytes and IFN gene expression, there was no 
observed reduction of met counts, liver to body weight ratio, or 
in the proportion of epithelial cells after combination 

Figure 4. TGF-β1 inhibitor enhances expression of IRF1 associated genes. TempO-Seq results from metastases from liver FFPE sections after vehicle or ALK5i treatment. 
(a) Volcano plot representing differentially expressed genes between the two treatment groups (significantly upregulated genes in red, downregulated genes in blue 
and no change in black). (b-c) Changes in gene expression of IRF1 and STAT1 pathway associated genes (most activated upstream regulators, TRUSST database) 
between vehicle (n = 2) and ALK5i (n = 2). (d) Genes associated with cellular response to interferon gamma are significantly upregulated after ALK5i treatment (Nos2 
p-adj value 0.03 represented as * and Trim31 p-adj value 0.006 represented as **)
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Figure 5. Inhibition of TGF-β and PD-L1 boosts infiltration of CD8+T cells. (a) Schematic representation of KPN metastases treated with vehicle, single and combination 
treatments. (b) Dot plots showing frequencies (%) of CD3+T cells. (c) Counts of CD45+, CD3+, CD4+ and CD8+T cells between vehicle (n = 6), ALK5i + isotype (n = 5), anti- 
PD-L1+ vehicle (n = 4) and ALK5i + anti-PD-L1 (n = 4). (d) CD69+CD3+, CD69+CD4+, CD69+CD8+T cells, and PD1+CD3+T cells (n as for C) in the four groups. (e) Granzyme 
B+CD8+T cells between treatments (n as for C). Data plotted as mean ± SEM. Statistical analysis: Kruskal Wallis with Dunn’s multiple comparison test. All treatment 
groups are compared to vehicle, and p < 0.05 considered significant (*<0.05, **<0.01, ***<0.001).
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Figure 6. Co-inhibition of TGF-β and PD-L1 upregulates IRF-1 and cancer associated metabolic pathway genes. Mice with KPN metastases treated with vehicle + isotype 
(n = 2), ALK5i + isotype (n = 2), anti-PD-L1 + vehicle (n = 3), or ALK5i + anti-PD-L1 (n = 3). TempO-Seq sequencing performed with metastases from liver FFPE sections. 
(a) 5 most enriched GO pathways comparing combination treatment to vehicle and (b) response to Type1 interferon associated genes. * Represents adjusted p value *< 
0.05 and **<0.01 (treatment groups compared to vehicle). (c) Heatmap and boxplot showing top 50 genes synergistically upregulated after combination treatment. 
Clustering shown is hierarchical. (d) Bar graph showing ratio observed/expected and associated pathways for synergistic genes, evaluated using KEGG and Reactome 
pathway analyses. P adj value *<0.05, **<0.01, ***<0.001 and ****<0.0001 (combination treatment vs vehicle).
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treatment (data not shown). Thus, we investigated potential 
mechanisms underlying this tumor resistance. We evaluated 
genes that were upregulated after combination treatment 
(Figure 6(b,c)) and identified the KEGG and Reactome path-
ways relating to the top 50 upregulated genes. The majority of 
the genes synergistically upregulated by inhibition of both PD- 
L1 and TGF-β were associated with metabolic pathways (Nqo1, 
Hmgsc1, Sult1a1, Pla2g7, Ugt1A5, Ugt2B5, Abcb1a), that 
enhance cancer cell proliferation, invasion, and metastasis 
(Fig-6D). This upregulation of cancer-related metabolic genes 
correlated with limited control of tumor burden, despite the 
combination treatment. Our data therefore indicate that the 
combination of ALK5i with anti-PD-L1 potentially induces 
tumor resistance, and correlates with upregulation of cancer- 
associated metabolic pathways in the KPN tumor.

Discussion

mCRC has a 5-year overall survival of 14% and almost 50% 
of patients undergoing surgery develop metastasis within 
these 5 years.5,26 Hence, there is significant unmet clinical 
need. The KPN model provides an investigational tool to under-
stand mechanisms modulating therapy-induced immune 
responses, to help develop better immunotherapy combinations 
to treat CMS4 type mCRC.

Jackstadt et al. has reported comparable TGF-β1 expression 
in both primary tumors and organoids derived from KPN 
mice.14 TGF-β1 secreted by KPN organoids has a direct effect 
on KPN tumors, enhancing proliferation, and inhibiting IFN-γ 
release by activated T cells. Immunosuppressive effect of TGF- 
β was primarily on naive and not pre-activated T cells. 
Similarly, TGF-β inhibits proliferation of naïve T cells but 
not antigen experienced cells in diabetes.27 However, 
a contrary report showed TGF-β1 attenuated effector function 
of tumor antigen-specific human memory CD8+T cells.28 The 
effects of TGF-β on naïve and preactivated T cells could be 
different due to downregulation of TGF-βRII expression on 
activated T cells.29 Thus, the timing of TGF-β inhibition and 
the mode of T cell stimulation play critical roles in determining 
its pleiotropic effects.

Since KPN tumors resemble the CMS4-CRC with high 
TGF-β, we evaluated the effect of ALK5i on myeloid cells in 
these tumors. High numbers of Ly6C+ monocytes and 
Ly6C+MHCII+ monocytic intermediates reveal an inflamma-
tory TME. This increase in monocytic intermediates is like that 
observed in the inflamed intestine.30 TGF-β is also indispen-
sable for monocyte to macrophage differentiation in the intes-
tine and could also play this role in tumors.31 Neutrophils 
contribute to inflammation and metastasis, and a decrease in 
Ly6G+ neutrophil after ALK5i treatment modulates inflamma-
tory TME.

ALK5i treatment enhanced T cell infiltration into tumors, 
increasing numbers of activated CD69+CD4+ and CD8+T cells. 
In addition, fewer EpCAM+ epithelial cells indicated 
a reduction in tumor cellularity. TempO-seq analysis con-
firmed upregulation of IRF-associated genes in the tumor 
and enhanced systemic Th1 immune responses. Therefore, 
inhibiting TGF-β in KPN tumors enhances the anti-tumor 
immune response.

Despite the ALK5i-mediated enhancement in infiltrating 
T cells and inflammatory myeloid cells, treatment was not 
highly effective. The T-lymphocytes showed high expression 
of exhaustion markers PD1 and PD-L1. Exhaustion of T cells 
could enable tumor resistance, so we treated tumors with 
a combination of ALK5i and anti-PD-L1. This significantly 
increased the activated CD8+T cells, and enhanced expression 
of granzymeB+CD8+T cells. Our data indicate that combina-
tion treatment of KPN tumors with ALK5i and anti PD-L1 
antibody skews toward Type 1 interferon and interferon 
gamma mediated immune response by innate cells and 
CD8+CTLs. These cells are often associated with improved 
survival of colorectal and other cancers32.

TempO-Seq analysis showed upregulation of innate 
immune response and IRF pathway genes (IRF1, IRF7, 
IFNAR2, JAK1, STAT1), yet no reduction was observed in the 
metastatic tumors. Thus, the combination of ALK5i and anti- 
PD-L1 was insufficient to eliminate metastatic KPN tumors. 
An increase in the gene expression of Nos2 was observed in the 
combination treatment group when compared to vehicle. Nos2 
has a dichotomous role in modulating tumor immune response 
as it is induced by interferon gamma and is often associated 
with tumorigenesis and poor prognosis in cancer.33,34 In addi-
tion to Nos2, an increase in the expression of cancer-associated 
metabolic genes (Nqo1, Hmgsc1, Pla2g7, Sult1a1, Ugt1A5, 
Ugt2B5, Abcb1a) indicates reprogramming of tumor metabolic 
pathways, potentially leading to the observed tumor 
resistance.35–42 Abcb1 encodes the ABC transporter protein, 
which confers multidrug resistance in cancer, fosters cancer 
stem cell-like properties, and facilitates epithelial–mesenchy-
mal transition.43 Interestingly, inhibiting ABCB1 overcomes 
acquired resistance of non-small cell lung cancer cells to 
MET inhibitors.41

The metabolic genes, Nqo1, Hmgcs1, Pla2g7, and Sult1a1, 
encode enzymes such as cytosolic reductase, mevalonate, phos-
pholipase, and sulfotransferase. Like Abcb1, upregulation of 
these genes is closely linked with the advancement of cancer 
and its metastatic spread.35,37,39,42 Some of these metabolic 
genes modulate anti-tumor immune responses. For instance, 
Sult1a1 contributes to immune exclusion, which manifests as 
a negative correlation with crucial immune cell populations 
including CD8+ cells, CD4+ cells, macrophages, and 
neutrophils.42 Furthermore, therapeutic targeting of NQO1 
and HMGCS1 can augment T-cell responses by fostering pyr-
optosis, an inflammatory form of cell death, and ultimately 
enhancing anti-tumor immunity.44,45 Recent findings suggest 
that PLA2G7high macrophages create an immunosuppressive 
microenvironment in the tumor and hinder CD8 T-cell activa-
tion, and its inhibition enhances efficacy of anti-PD1 
treatment.46 These findings highlight the therapeutic potential 
of modulating metabolic pathways to boost the immune 
response against cancer.

Another colon cancer metastasis mouse model, AKPT, 
showed tumor regression after inhibition of TGF-β and 
PD-1/PD-L1.19 Enhanced Notch 1 activation and neutrophil 
infiltration differentiates the KPN model used here from 
other CRC models, including AKPT, and these factors may 
influence the therapeutic response. In a phase II trial for 
CMS4 mCRC, patients received bintrafusp alfa, a dual PD- 
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L1 antibody/TGFβ trap alongside radiation. Though 
changes in IFN-γ signature was observed, efficacy was 
low.47 This correlates with our observation of combination 
treatment in the KPN tumors. Therefore, aggressive mCRC 
will require additional treatment along with TGF-β and 
PD-L1 inhibitors. GEMMs like KPN, resembling human 
CRC,48 will continue to be helpful in evaluating pre- 
clinical efficacy and immune modulatory mechanisms in 
hard-to-treat metastatic colorectal cancer.

Materials and methods

KPN organoid culture

KPN liver metastasis organoids were generated as previously 
described.14 Organoids were cultured in Base Medium includ-
ing Supplements (BMS), with 50 ng/mL Human EGF and 100  
ng/mL murine noggin (Peprotech, USA). Organoids were 
mixed with Growth Factor Reduced Matrigel (Corning, USA) 
before seeding. Organoids were frozen in Recovery cell culture 
freezing medium (ThermoFisher, USA) and thawed as 
required.

For in vitro assays, organoids (BVKPN RKAC13.1e) were 
trypsinized with TrypLE and washed with 1 mL FACS buffer 
(PBS +2%FBS +1 mM EDTA). For flow cytometry, cells were 
stained with fixable viability dye (FVD) (ThermoFisher, USA) 
and anti-mouse EpCAM (clone G8.8, Biolegend, USA). 
Supernatant from KPN organoid culture at 72 h was used for 
TGF-β1 estimation using ELISA (R&D systems, USA). For 
proliferation assay, KPN cells were washed and seeded in 
BMS medium. Recombinant mouse TGF-β1 (0.5 ng/mL, 
R&D systems, USA) or conditioned medium (CM), from orga-
noids cultured for 72 h, was added and proliferation measured 
after 72 h using cell titer glo (Promega, USA).

Splenocyte proliferation assay

Splenocytes were harvested from C57BL/6 mice and frozen 
in RPMI with 90%FBS (Gibco, USA) and 10% DMSO 
(Sigma, USA). On the day of the assay, frozen cells were 
revived in RPMI media containing 10% FBS and seeded in 
a 96 well plate as 1–2×105 million cells/well. The cells were 
stimulated (St) using plate-coated anti-CD3 (0.5 μg/mL) in 
the presence of either TGF-β1 (0.5 ng/mL), or 50 μL of CM. 
Some wells were supplemented with anti-TGF-β1 antibody 
(10 μg/mL, Bioxcell, USA) or ALK5i (Galunisertib,10 μM, 
Tocris, U.K). After 72 h, proliferation was measured by cell 
titer glo (Promega, USA) and cytokine release by IFN-γ 
ELISA (R&D systems, USA).

T cell re-stimulation assay

To assess the effects on previously activated T cells, frozen 
splenocytes seeded in anti-CD3 coated (0.5 μg/mL) plates. 
After 24 h, cells were washed and rested overnight. Cells were 
re-seeded for anti-CD3 re-stimulation and treated as described 
above.

Intra-splenic model of metastatic cancer and treatments

Mouse experimental work was carried out in accordance with 
UK Home Office regulations (Project Licenses 70/8646 and 70/ 
9112), adhered to ARRIVE guidelines, and were subject to 
ethical review at the University of Glasgow. Injection of liver 
metastatic KPN organoids were performed as previously 
described14 on C57BL/6 mice, 6–7 weeks old (Charles River, 
UK) under specific pathogen-free conditions. Mice received 
a single intra-splenic injection of 5 × 105 BVKPN RKAC3.2f 
cells in 50 µL of phosphate buffer saline (PBS).

ALK5i treatment of KPN metastatic tumour bearing mice

One week after intra-splenic injection mice received either 
vehicle (n = 5) or ALK5i treatment (n = 5). 50 mg/kg of 
ALK5i (AstraZeneca AZ12601011) was dosed twice daily by 
oral gavage in 100 µL of 0.5% Hydroxypropyl Methylcellulose 
(HPMC) and 0.1% Tween-80 (vehicle). After 3 weeks the mice 
were euthanized and tissues were collected for analysis.

ALK5i and anti-PD-L1 treatment

One week after intrasplenic injection, mice received (a) rat 
IgG2b isotype antibody (Bioxcell BE0090) and vehicle (0.5% 
HPMC/0.1% Tween-80) (n = 6), (b) ALK5i and isotype anti-
body (n = 6), (c) anti-PD-L1 antibody (Bioxcell BE0101) and 
vehicle (n = 6), or (d) combination of ALK5i and anti-PD-L1 
antibody (n = 6). Anti-PD-L1 and isotype antibody were 
injected at 10 mg/kg intraperitoneal (IP) twice per week. 
After 3 weeks, mice were euthanized and tissues were collected 
for analysis.

Tumour digestion flow cytometry

Macroscopic tumor metastases were dissected from liver tissue, 
minced (~0.5 mm), and then digested for 30 minutes using 1.5  
mg/mL Collagenase V, 0.1 mg/mL of Hyaluronidase (Sigma, 
USA) and 100 µg/mL DNase I (Roche, Switzerland) in RPMI 
complete medium. Samples were filtered and the enzyme was 
neutralized. 1 × 106 cells from each sample were used for Fc 
blocking (Biolegend, USA) at 4°C followed by staining for 
a lymphoid panel: viability dye (Thermo, USA), anti-mouse 
CD45 (30-F11), CD3 (17A2), CD4 (RM4–5), CD8 (53–6.7), 
CD69 (H1.2F3), PD-1 (29F.1A12), PD-L1 (10F.9G2) and 
EpCAM (G8.8). For the myeloid panel: viability dye, anti- 
mouse CD45 (30-F11), B220 (RA3-6B2), CD64 (X54–5/7.1), 
Ly6C (HK1.4) and MHC-II (M5/114.15.2). All antibodies were 
from Biolegend, USA. Cells were washed and resuspended in 
FACS buffer and acquired using BD Fortessa/LSRII/Aria.

Spleen and lymph node digestion

Spleen and mLN were harvested, chopped into fine pieces, and 
digested using collagenase D (1 mg/mL, Sigma, USA) in com-
plete RPMI, for 25 min at 37°C. Cells were filtered and washed 
with FACS buffer. RBC lysis was carried out for spleen cells 
using ACK lysis buffer (Sigma, USA).
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Transcription factor staining

2×106 cells were Fc blocked (Biolegend) at 4°C for 20 min, 
washed, and stained with viability dye (Thermo, USA), anti- 
mouse CD45 and CD3 (Biolegend, USA). The cells were 
washed and fixed with fixation/permeabilization reagent 
(Thermo, USA) for 30 min at RT, washed with permeabiliza-
tion buffer (Thermo), and stained with anti-mouse T-Bet 
(4B10, Biolegend, USA).

Intracellular staining

2×106 cells were resuspended in complete RPMI with cell stimu-
lation cocktail (Thermo, USA). After washing and Fc blocking, 
they were stained with viability dye (Thermo, USA), anti-mouse 
CD45 (30-F11), CD3 (17A2), CD4 (RM4–5), CD8 (53–6.7), 
CD69 (H1.2F3), (Biolegend, USA). Cells were washed, fixed and 
permeabilized (Thermo, USA), and were stained with anti-mouse 
IFN-γ (XMG1.2) and granzyme B(QA16A02) (Biolegend, USA). 
Cells were washed and resuspended in permeabilization buffer 
before acquisition using BD Fortessa or LSRII flow cytometers.

Analysis

Flowjo v10.8.1 was used for the analysis of flow cytometry data.

Immunohistochemistry (IHC)

4 µm FFPE sections of liver with metastases were H&E stained, 
using standard methods. For Ly6G detection, FFPE sections 
were deparaffinized and hydrated using xylene, graded alcohol 
and rinsed with distilled water. Endogenous peroxide was 
quenched using Bloxall (Vector labs). 0.01 M citrate buffer 
pH 6.0 was used for antigen retrieval. Anti-mouse Ly6G 
(Bioxcell BE0075–1), ImmPRESS reagent (Vector Lab), 
rewashed, and Impact DAB chromogen solution were used to 
visualize Ly6G+ cells. Sections were counter stained with 
Haematoxylin. Metastatic areas (~4×105µm2) were analyzed 
to count Ly6G+ cells using Qupath v0.3.2.

RNA sequencing by TempO-seq

Tumour areas from FFPE liver sections were excised for targeted 
sequencing-based RNA expression analysis using Tempo-Seq. 
Metastatic regions from liver sections were pooled (2–3 mice/ 
group) for sequencing. Differential gene expression was calculated 
using DESEQ2 (1.38.3). Data were explored using Searchlight49 

(V2.0,0) specifying DE workflow for Vehicle vs PDL1, Vehicle vs 
ALK5i, and Vehicle vs Combination, and one MDE workflow 
combining the 3DE. Significance threshold is Wald test with BH 
correction, adjusted p < 0.05. Over-representation analysis used 
GO mouse biological process database and TRUSST mouse data-
base for upstream regulator analysis.

Synergistic response of combination treatment over vehicle 
was calculated using formula: {expected = mean (ALK5i- 
Vehicle) + (aPDL1-Vehicle), observed = mean (combination), 
synergy = ratio of observed/expected}, and confirmed using 
Bliss analysis (EAB=EA+EB-EA*EB), where EA=ALK5i and EB= 

anti PD-L1 and EAB is the additive effect. For a gene to be 
synergistic, counts in combination treatment group > EAB.

Statistical analysis

In vitro data were analyzed as mean±SD and statistical analyses 
was performed using One-way ANOVA and Tukey’s multiple 
comparison test. Statistical analysis between two in vivo groups 
was done using an unpaired Mann Whitney test. Data between 
four treatment groups were analyzed using Kruskal Wallis with 
Dunn’s multiple comparison test. Analysis was performed with 
GraphPad Prism software and p-value *<0.05 was considered 
significant. Sample sizes are included in figure legends.
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