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Abstract—Power grid consists of interconnected cyber and
physical networks. The complexity of which is increasing as a
result several factors including: the convergence of low carbon
technologies, the increased coupling of other critical networks,
and a need for new distributed control and forecasting capa-
bilities. These trends are creating unprecedented complexity in
our critical networks, as well as introducing new threats to
their functionalities. Hence, the network design is crucial to
ensure the power grid’s inherent security and resilience. Given
its multilayered nature, this necessitates an understanding of the
interdependence between cyber and physical networks. However,
the heterogeneity between these networks makes it challenging to
holistically analyze the power grid’s cyber-physical architecture
without losing granularity. To address this, higher-order motifs,
defined as small connected subgraphs, can be employed to dis-
close the topological interdependence of heterogeneous networks
at a local level. This paper uses an augmented cyber-physical
WSCC 9-Bus System to investigate its 4-node motif patterns
under different cyber attack scenarios. Certain 4-node motifs
demonstrate their necessity to secure power grid functionality.

Index Terms—Resilient Power Grid, Higher-order Motifs,
Cyber-Physical Network, Cybersecurity, Resilience

I. INTRODUCTION

The modern power grid is a multilayered, interdependent
network where cyber and physical systems are interconnected.
With the integration of renewable energy sources (RES) and
bi-directional energy transaction toward a decarbonized grid,
human and weather factors play an increasingly important
role in maintaining the functionality of the power grid. The
growing diversity in energy generation, especially through the
highly distributed integration of intermittent RES, and more
dynamic and decentralized energy networks necessitate that
the cyber physical network of power grids must maintain crit-
ical network services, whilst analysing an increasingly stochas-
tic and complex network of cyber and physical assets [1].
Cyber-physical networks can enable rapid decarbonisation, im-
proved services, reduction in energy costs, improved resilience
and enhanced accessibility to energy services. However, such
complex and coupled cyber and physical networks can create
risks to coupled networks and present new vulnerabilities e.g.
cyber attacks, if not designed appropriately. Network topology
lays the foundation for the power grid’s resilience and security
[2]. Given the power grid’s multilayered nature, this calls for
a holistic understanding and design of the power grid’s cyber-
physical network to improve its inherent resilience.

It is intrinsically challenging to capture the interdependence
between cyber and physical networks due to the heterogeneity
of their network structures and functionalities. However, both
cyber and physical networks can be modeled with graphs

where nodes and edges are assigned with different values to
represent their attributes. The cyber-physical power grid can
be viewed as two interconnected graphs that interact with each
other. By leveraging the graph representation and topological
properties, various graph-theoretic approaches have been used
to evaluate the risk, reliability, and robustness of cyber-
physical power systems against adversaries from the cyber
and physical domains. For example, Umunnakwe et al. have
used betweenness centrality, considering the cyber-physical
graphs, to evaluate the risk and vulnerability of components
in the power grid [3]. Huang et al. have applied ecological
network analysis to cyber-physical power systems to evaluate
their robustness and resilience with different cyber network
structures [4]. Zhou et al. have used weighted spectral analysis
on cyber-physical power systems to quantify resilience against
cyber attacks [5]. The metrics and methodologies used in the
aforementioned works primarily use lower-order connectivity
features that aggregate the properties of individual nodes and
edges in the system. The interdependence between cyber and
physical networks cannot be clearly captured or understood.

Higher-order motifs are defined as patterns of inter-
connections or subgraphs occurring in complex networks at
numbers that are significantly higher than those in randomized
networks [6]. Recognizing higher-order motifs embedded in
a larger network could indicate the presence of evolution-
ary design principles or have an overly influential role on
system-wide dynamics [7]. Analysis of higher-order motifs
can provide invaluable insights into network functionality and
organization beyond trivial scale studies on individual nodes
and edges. Several works have utilized higher-order motifs to
study and evaluate the robustness, reliability, and resilience
of power networks against cascading failures [8]–[10]. Motif
patterns can also help operators efficiently identify the list
of N-k contingencies in power systems [11]. Although these
works only apply the motif-based analyses on the physical
network, there is a significant potential to utilize higher-
order motifs for understanding local network structure within
multilayered networks, such as cyber-physical power systems,
accounting for their interdependence.

The research question raised in this paper is “what can
higher-order motifs inform about the interdependence between
cyber and physical networks in the modern power grid? ” This
paper presents a preliminary study utilizing all connected 4-
node motifs to characterize the topological interdependence
between cyber and physical networks in the power grid under
different cyber attacks based on their network properties. By



comparing motif dynamics at different domains and power
grid’s functionality during cyber attacks, we can observe that
certain 4-node motif pattern (M2, M3, and M4) are crucial for
the cyber-physical power grid’s security and resilience.

The rest of the paper is organized as follows: Section II
reviews the concepts and applications of higher-order mo-
tifs in network studies. Section III introduces a topological
importance-based cyber attack algorithm, which launches cy-
ber attacks to compromise the functionalities of cyber-physical
power grids. Section IV demonstrates case studies of higher-
order motif on the cyber-physical WSCC 9-bus power grid
under cyber attacks. Section V presents the key findings and
introduces future research.

II. HIGHER-ORDER MOTIFS

Higher-order motifs were initially used to analyze the struc-
tural properties of ecological food webs and neuron networks.
They are recurrent and statistically significant subgraphs or
patterns of a larger graph [6]. Let G = (V,E) be an undirected
graph, where V is the set of nodes and E is the set of edges.
The order and size of G are defined as |V | and |E|, which
are the number of nodes and edges, respectively. A graph
G′ = (V ′, E′) is a subgraph of G, if V ′ ⊆ V and E′ ⊆ E. If
G′ = (V ′, E′) is a subgraph of G and E′ contains all edges
euv ∈ E such that u,v ∈ V ′, then G′ is an induced subgraph of
G. Two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′) are called
isomorphic if there exists a bijection h: V ′ → V ′′ such that
any two nodes u and v of G′ are adjacent in G′ if and only if
h(u) and h(v) are adjacent in G′′. A motif G′ = (V ′, E′) is
defined as a recurrent multiple-node subgraph pattern, which
is a n-node subgraph of G, where |V ′| is n. If there exists an
isomorphism between G′ and G′′, G′′ ∈ G, we say that there
exists an occurrence or embedding of G′ in G.

Fig. 1: Seven different Social-Ecological Systems motif fam-
ilies [12].

The 4-node motifs have been used to disentangle intangible
social–ecological systems. In order to understand the social-
ecological interdependencies, Bodin and Tengö utilized the 4-
node motifs where two nodes are from social systems (social
actors) and two nodes are from ecological systems (ecological
resources) [12]. Fig. 1 shows all possible patterns of interde-
pendence between social and ecological systems, considering

the direction of connectivity between social and ecological
systems. Both social-ecological systems and cyber-physical
systems are multilayered networks. Intuitively, the patterns of
interdependence between social and ecological systems could
also be employed to understand the interdependence between
cyber and physical networks at their boundaries. Fig. 1 also
illustrates how the complexity of cyber-physical networks
grows with the variability (type) and scale of assets. Given
that, these networks, as per the introduction, need to tackle an
increasingly more complex system of systems.

In this paper, we focus on all connected 4-node motifs
shown in Fig. 2. The dynamics of these local structures have
been shown to be related to the resilience and reliability of
power grid and complex networks under intentional attacks
[10]. The significance of motifs for a particular network can
be assessed by motif concentration (Ci), which associates with
the robustness and reliability of power networks. The Ci of a
n-node motif of the type i motif is the ratio of its number of
occurrences (Ni) to the total number of n-node motifs in the
network. The formulation is Ci =

Ni∑
i Ni

, where
∑

i Ni is the
total occurrence of all n-node motifs in the original network.

Fig. 2: All connected 4-node motifs.

In the following analyses, we examine the dynamics of 4-
node motifs in cyber, physical, and cyber-physical networks
under different cyber attacks considering their network prop-
erties of node degree, closeness centrality, and betweenness
centrality, respectively. Besides, the social-ecological systems
motifs are also employed to study the interdependence at the
boundary between cyber and physical networks. This boundary
is referred to as the cyber-physical connection, where two
nodes are from cyber networks and two nodes are from
physical networks.

III. THREAT MODEL IN CYBER NETWORKS

This paper focuses on intentional cyber attacks. It assumes
the adversary has infiltrated the cyber network and can exploit
all available resources to achieve his/her goal [13]. The attack
procedures are outlined in Algorithm 1. Based on the topolog-
ical importance of cyber nodes, the adversary targets the most
important cyber node and removes it along with all connected
edges. Once the cyber attack reaches protective relays, which
controls and monitors physical networks, the connected phys-
ical component is also removed from the physical network.
This action can result in a physical disturbance affecting the
operation of the power system. During each cyber attack, it
will record the 4-node motifs in different networks and store
the removed physical component for simulating disturbances.

For the importance calculation, this paper considers three
network properties including node degree, closeness centrality,
and betweenness centrality. Node degree (ND) is the number
of edges adjacent to the node, which can be formulated as



Algorithm 1 Importance Based Cyber Attack

Input = Cyber Network Topology, Gcy = (Vcy , Ecy)
Calculate Importance (Impv) of nodes in Vcy

H(Gcy) is the sorted Vcy by descending Impv
for t = 1 to |H(Gcy)| do

Vcy = Vcy -H(Gcy)(t)
Ecy = Ecy - (x,y) ∈ Ecy: x = H(Gcy)(t) or y =

H(Gcy)(t)
if H(Gcy)(t) is Ri (protective relay) then

Ephy = Ephy - (a,b) ∈ Ephy: a → Ri or b → Ri

end if
Count 4-node motifs in different networks.
Store the removed physical component for validation.

end for

ND(v) =
∑

u av,u, where au,v is the entries of adjacency
matrix. The higher value of ND means the node is more
densely connected. Closeness centrality (CC) is a measure
of centrality in a network, calculated as the reciprocal of
the average length of the shortest paths between the node
and all other nodes in the graph [14]. The more central a
node is, the closer it is to all other nodes. CC of a node
(v) can be expressed as CC(v) = |V |−1∑

u d(u,v) , where d(u, v)

is the length of the shortest path between vertices v and u.
Betweenness centrality (BC) measures the extent to which
a vertex lies on paths between other vertices [15]. Vertices
with high betweenness may have considerable influence within
a network since more paths that connect different vertices
pass through them. BC of a node (v) can be expressed as
BC(v) =

∑
s,t∈V,s ̸=t̸=v

σs,t(v)
σs,t

, where σs,t(v) is the number
of shortest paths in the graph between s and t that contain
node v, and σs,t represents the number of shortest paths in
the graph between s and t.

IV. CASE STUDY ON A CYBER-PHYSICAL WSCC-9 BUS
SYSTEM

A. Network Topology
Previously, cyber-physical power system studies often as-

sume that cyber and physical networks have the same or
similar topological structure, which overlooks many important
details in both networks. The detailed cyber architecture of
intelligent electronic devices and communication devices is
essential to protect power grid [17]. It should be integrated
with the physical network for a comprehensive analysis and
design against unforeseen events. To provide a holistic view
of cyber-physical topology, Hossain et al. built an augmented
communication network with various types of cyber nodes
for WSCC 9-bus system [16]. The augmented cyber network
has detailed representations of cyber components including
protective relays (R), routers (r), switches (SW), firewall (FW)
and computer nodes of human machine interface (HMI) and
control centers (CC) for the physical network. This cyber
network also considers the redundancy of communication
devices. Fig. 3 shows the physical network, cyber network,
and cyber-physical network of WSCC 9-bus system.

B. Motif Concentrations Under Cyber Attacks
To investigate the interdependence between cyber and phys-

ical networks, the cyber-physical WSCC 9-bus system is

modeled as undirected graph Gcps = (Vcps, Ecps), where Vcps

is a set of nodes and Ecps is a set of edges in both cyber and
physical networks. By applying attack scenarios in Algoritm
1, we can observe motif dynamics in different networks.

Fig. 4-7 show the dynamics of motif concentrations in cyber
network, physical network, cyber-physical network, and cyber-
physical connections under different attack scenarios, respec-
tively. For the cyber-physical connection, we only consider the
all-connected 4-node motifs from the seven social-ecological
systems motif family in [12]. There are four motifs existing
in the cyber-physical WSCC 9-bus system, which are I.C,
I.D, II.D, and VI.B. Both I.C and VI.B are M2 in Fig 2
but with different connectivities between cyber and physical
networks, II.D is M3, and I.D is M4. With the saved infor-
mation, the physical disturbance (disconnect branches, loads,
and generators) can be simulated to examine the system’s
functionality without remedial actions. The “Physical Network
Breakdown”, specified by the black dash lines in figures,
shows the period from the initial physical disturbance triggered
by cyber attacks until all loads are not supplied by the system
or the system is blackout (whichever comes first).

It can be observed that M2 and M3 dominate cyber-physical
network, cyber network, and cyber-physical connections with
the highest motif concentrations, while M2 and M1 dominate
the physical network. These differences stem from the connec-
tivity and size of the networks. It is obvious that cyber network
is more densely connected than physical network. Given that
the size and order of the cyber network are larger than those
of the physical network, the network properties of the cyber-
physical network are closer to the cyber network.

Under different attack scenarios, the initial physical dis-
turbances and the duration of physical network breakdown
vary significantly. The ND-based attack gradually disconnects
the cyber network until only a few 4-node motifs remain
(all motif concentrations are below 0.1). This results in weak
connectivity between the cyber and physical networks through
protective relays. Any further attack can trigger cascading
failures in physical network. This is evident in the sharp decay
rate of C2 in physical network, as shown in Fig. 6(a). The
CC-based attack induces the physical disturbances earlier than
ND-based attack. Some 4-node motifs in the cyber network
still remain, and C2 and C3 are higher than 0.1 but lower
than 0.3. Despite the early onset of physical disturbances,
Fig. 6(b) shows that there are some stages where C2 and C1
remain unaffected, indicating that power systems’ functionality
is not deteriorated. The BC-based attack initiates the physical
disturbance earliest, and the duration of physical network
breakdown is also the longest. When the physical disturbance
happened, most 4-node motifs still exist in the cyber network.
There are also more unaffected stages in Fig. 6(c).

The motifs at the boundary between the cyber and phys-
ical networks exhibit intriguing patterns. Under all attack
scenarios, the physical network breakdown is triggered by
the decrease of M2, M3 and M4. The M2 is I.C in Fig. 1,
wherein two cyber nodes are connected and each one controls
a physical device. Since protective relays bridge the cyber and
physical network, the reduction of above motifs can indicate
the potential risk of cascading failures and disturbances on
power systems’ functionalities.

Based on the results, we observe that the 4-node motifs,



(a) Physical Network (b) Cyber Network (c) Cyber-Physical Network

Fig. 3: WSCC-9 Bus Cyber-Physical Power Grid [16]

(a) Node Degree-based Attack (b) Closeness Centrality-based Attack (c) Betweenness Centrality-based Attack

Fig. 4: Motif Concentration on the WSCC 9-Bus Cyber-Physical Network Under Different Cyber Attacks

(a) Node Degree-based Attack (b) Closeness Centrality-based Attack (c) Betweenness Centrality-based Attack

Fig. 5: Motif Concentration on the WSCC 9-Bus Cyber Network Under Different Cyber Attacks

particularly M2, M3 and M4, can represent the resilience
and reliability of the cyber-physical power grid against cyber
attacks. A higher percentage of M2 and M3 in the system
indicates that the cyber-physical network possesses greater
resistance to prevent cyber attack from disrupting physical
network and thus maintain the functionality of power systems.
It also demonstrates that cyber resilience is paramount for
the power grid’s functionality. Inspecting M2, M3 and M4 at
the boundary of the cyber and physical networks can provide
valuable information about potential risks within the system.

V. CONCLUSION AND FUTURE WORK

This paper has presented a preliminary study of using
higher-order motifs to understand the interdependence between

cyber and physical networks in the power grid. With a detailed
cyber-physical power grid, we utilized three cyber attack
strategies to investigate the dynamics of motif concentrations
in the cyber-physical power grid. The results show that M2,
M3, and M4 are key factors that ensure the security and
functionality of the power grid against malicious activities in
cyber networks. Especially for the cyber-physical connections,
the reduction of the aforementioned motifs coincides with
inducing physical disturbances.

In future work, we plan to investigate larger and more
realistic cyber-physical power systems to further examine their
higher-order motifs under events from different domains. The
growth of RES and electric vehicles in the power grid can incur
unpredictable fluctuations on power flows and a large amount



(a) Node Degree-based Attack (b) Closeness Centrality-based Attack (c) Betweenness Centrality-based Attack

Fig. 6: Motif Concentration on the WSCC 9-Bus Physical Network Under Different Cyber Attacks

(a) Node Degree-based Attack (b) Closeness Centrality-based Attack (c) Betweenness Centrality-based Attack

Fig. 7: Motif Concentration on the WSCC 9-Bus Cyber-Physical Connections Under Different Cyber Attacks

of data being transferred over the network. Such situations can
introduce new threat vectors. With more investigations, there is
a great potential to generalize the application of higher-order
motifs to comprehend and guide the design of multilayered
cyber-physical power grid with other interconnected critical
infrastructures, such as transportation networks and gas net-
works, for their security and resilience.
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