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ABSTRACT

Context. Hard X-ray bremsstrahlung continuum spectra, such as from solar flares, are commonly described in terms of power-law fits,
either to the photon spectra themselves or to the electron spectra responsible for them. In applications various approximate relations
between electron and photon spectral indices are often used for energies both above and below electron low-energy cutoffs.
Aims. We examine the form of the exact relationships in various situations, and for various cross-sections, showing that empirical
relations sometimes used can be highly misleading especially at energies below the low-energy cutoff, and consider how to improve
fitting procedures.
Methods. We obtain expressions for photon spectra from single, double and truncated power-law electron spectra for a variety of
cross-sections and for the thin and thick target models and simple analytic expressions for the non-relativistic Bethe-Heitler case.
Results. We show that below the low-energy cutoff Kramers and other constant spectral index forms commonly used are very poor
approximations to accurate results, but that our analytical forms are a good match; and that above a low-energy cutoff, the Kramers
and non-relativistic Bethe-Heitler results match reasonably well with results for up to energies around 100 keV.
Conclusions. Analytical forms of the non-relativistic Bethe-Heitler photon spectra from general power-law electron spectra are good
match to exact results for both thin and thick targets and they enable much faster spectral fitting than evaluation of the full spectral
integrations.

Key words. Sun: flares – Sun: X-rays, gamma rays – methods: data analysis

1. Introduction

Hard X-ray bremsstrahlung spectra are important diagnostics of
flare electron acceleration and propagation – e.g., Brown (1971);
Lin & Schwartz (1987); Johns & Lin (1992); Thompson et al.
(1992); Piana (1994); Holman et al. (2003). Extensive use of this
diagnostic power has been enabled by the high resolution spectra
being observed by RHESSI (Lin et al. 2002), which handles very
large spectral and dynamic ranges. At low energies (a few keV
for microevents and up to 20 or so keV for large flares), the spec-
trum is usually consistent with isothermal bremsstrahlung – e.g.
Holman et al. (2003) – while at higher energies it is usually con-
sistent with bremsstrahlung from a (sometimes broken) power-
law electron spectrum with a low-energy cutoff. Broadly similar
forms, such as the shifted power law (E + Es)−δ (with Es a shift-
ing energy value), can also be consistent with the data in many
cases. One should bear in mind that the data I(ε) to be considered
are those after application of corrections for the albedo spec-
trum contribution (Kontar et al. 2006) as well as instrumental
effects. Here we focus on the properties of the deka-keV energy
power-law domain, especially truncated power-law forms (in-
cluding broken power-laws) since these are so widely used and
discuss the relationship between the “local” spectral indices δ(E)
of the source electrons and γ(ε) of the observed photons. In data
analysis it is quite common (e.g. Hannah et al. 2008) to assume
constant values of γ(ε) and of δ(E) over specific finite energy
ranges and definite linear relationships between γ and δ in these

– for example, in the energy ranges below and above the electron
cutoff. However, as we show below, for general bremsstrahlung
cross-sections, most such relationships are at best approximate
and the various ad hoc relationships used can be quite mislead-
ing. Our aim is to show the exact form of these relationships
for various cross-sections and derive analytic expressions sim-
ple enough for easy use in fast spectral analysis software.

For both the thin- and thick-target models this is accom-
plished by first showing numerically that the non-relativistic
Bethe-Heitler approximation for the bremsstrahlung cross-
section is reliable enough to reproduce quite well the true photon
spectrum corresponding to a truncated power-law electron spec-
trum. Then for both models we obtain exact analytical expres-
sions for I(ε) and γ(ε) based on the non-relativistic Bethe-Heitler
cross-section. Finally these expressions are used to best fit simu-
lated and measured photon spectra and determine electron spec-
trum parameters. The effectiveness of this method is assessed by
comparisons with two different fitting approaches currently em-
ployed: (1) fitting with a numerical expression for I(ε) obtained
by full numerical integration (Holman et al. 2003) of truncated
power-law electron spectra F̄(E) and F0(E0) (thin and thick tar-
get, respectively); (2) fitting data on I(ε) with a broken power-
law characterized by two distinct constant photon spectral in-
dices, one above and one below a “knee” energy (e.g. Hannah
et al. 2008). With respect to the first approach, we find that
our new method yields comparably good χ2 values and resid-
uals especially at lower energies but with substantially higher
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computational speed (much higher in the case of thick targets).
With respect to the second approach, our method is no faster but
much more accurate and meaningful. In fact the I(ε) used in ap-
proach (2) is unphysical, corresponding to no real F̄(E) so it may
give excessive χ2 values due to large residuals near the knee.

Section 2 provides the general equations for bremsstrahlung
spectra for both collisionally thin and thick target sources.
Section 3 establishes our notation for a power-law F̄(E) [F0(E0)]
of constant δ (δ0) truncated below the low-energy cutoff E1
(E01), and shows how arbitrarily truncated and multiple (bro-
ken) power-laws can be expressed in terms of these. Section 4
defines the Kramers and non-relativistic Bethe-Heitler approx-
imate bremsstrahlung cross-sections and contrasts the results
they give for I(ε) and γ(ε) for power-law electron spectra com-
pared with that for the fully relativistic cross-section. In Sects. 5
and 6 we obtain analytic expressions, in both thin- and thick-
target cases, for I(ε) and γ(ε). In Sect. 7 we report numerical
tests of the speed and accuracy of using these to fit real and sim-
ulated data, as compared with other approximate methods and
with full integration. Section 8 summarises our conclusions.

2. Thin and thick target bremsstrahlung and energy
losses

For a general inhomogeneous optically thin source of plasma
density n(r) and electron flux energy spectrum F(E, r) in
volume V , the bremsstrahlung photon flux energy spectrum
I(ε) (cm−2 s−1 per unit ε at Earth distance R) can be written
(Brown 1971):

I(ε) =
n̄V

4πR2

∫ ∞

ε

F̄(E)Q(ε, E)dE, (1)

with

n̄ =
∫

V
ndV/V (2)

and

F̄(E) =
∫

V
n(r)F(E, r)dV/(n̄V) (3)

where Q(ε, E) is the bremsstrahlung cross-section differential in
photon energy ε. In general, F̄(E) and Q(ε, E) have to be treated
as anisotropic and Eq. (1) involves an integral over solid angle
(Brown 1972; Massone et al. 2004) though most data treatments
assume source isotropy.

In a purely collisional thick target, F̄(E) is related to the
thick-target injection rate spectrumF0(E0) (electrons per second
per unit injection energy E0) through equation

F̄(E) =
1

Kn̄V
E

∫ ∞

E
F0(E0)dE0 (4)

regardless of Q(ε, E), with K = 2πe4Λ and Λ the Coulomb log-
arithm – Brown & Emslie (1988). Though they consider only
the case K = 2πe4Λ for collisional losses only in a uniformly
ionized target, Eq. (4) applies to any energy loss rate coeffi-
cient K(E) if the loss rate can be written in the form dE/dN =
−K(E)/E where N is the column density along the electron path
such as for collisional losses at high E with relativistic correc-
tion. Synchrotron losses cannot be written in this way unless
the magnetic field and electron pitch angle distribution do not
vary along the path, but these also only matter at high energies.
The most serious approximation involved in using constant K for

lower energies is in (common) neglect of the fact that K varies
with target hydrogen ionization x (Brown 1973; Emslie 1978)
being K = 2πe4Λ(1 + ax)/(1 + a) with a ≈ 1.6. This is impor-
tant around the energies of electrons E∗ ≈ (2KN∗)1/2 stopping
around the flare transition zone column density N∗, where atmo-
sphere ionization drops rather abruptly with consequent drop in
energy loss coefficient K (for details of the effect of this on the
hard X-ray spectra, see Brown 1973; Kontar et al. 2003). Apart
from early stages of flares, prior to much evaporation, E∗ is well
above typical values of the low-energy cutoff considered here.
Since we are concerned mainly with small E around low-energy
cutoff values, henceforth we address only the case of constant K
and take Λ = 25.

3. Single and broken power-laws

We consider first the widely used single power-law form with
low-energy cutoff for the thin target F̄(E)

F̄(E) = (δ − 1)
F1

E1

⎧⎪⎪⎨⎪⎪⎩
[

E
E1

]−δ
E ≥ E1

0 E < E1
(5)

where F1 =
∫ ∞

E1
F̄(E)dE is the total mean electron flux at E ≥

E1, a low-energy cutoff1, and δ is the (thin target; Brown 1971)
constant electron spectral index.

Before considering the photon spectral properties of such
single power-law electron spectra we note that our results for
these can easily be generalised to fitting of double (broken)
power-laws in F̄(E) with lower and upper cutoff energies. The
following decomposition expressions apply equally well to any
broken and truncated power-laws such as in photon space I(ε).
The general case is

F̄(E) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 E < Ec

AE−δ1 Ec ≤ E < Eb

AE−δ1+δ2b E−δ2 Eb ≤ E < Ea

0 E ≥ Ea

(6)

where A, Ec, Eb, Ea, δ1, δ2 are constants (we note that in the gen-
eral case (6) the low-energy cutoff is denoted with Ec). Writing
the parameterized single power-law Fpl(c, d, E∗) as

Fpl(c, d, E∗) =
{

cE−d E ≥ E∗
0 otherwise, (7)

F̄(E) in (6) can be always written as

F̄(E) = Fpl(A, δ1, Ec) − Fpl(A, δ1, Eb) (8)

+Fpl(AE−δ1+δ2b , δ2, Eb) − Fpl(AE−δ1+δ2b , δ2, Ea).

By inserting Eq. (8) into Eq. (1), the corresponding I(ε) can be
found simply as the sum and difference of the relevant I(ε) ex-
pressions for single power-laws.

For the thick target model, we have to revisit the problem
and evaluate the form of F̄(E) and hence of I(ε) for a truncated
power law in F0(E0), not in F̄(E). Note also that we have to
distinguish between the spectral index δ0 for a pure power-law
injection spectrum F0(E0) from the index δ for F̄(E). For an
injection spectrum truncated at E0 ≤ E01

F0(E0) =

⎧⎪⎪⎨⎪⎪⎩ (δ0 − 1)F01
E01

[
E0
E01

]−δ0
E0 ≥ E01

0 E0 < E01,
(9)

1 If one wishes to use an electron flux reference energy E∗ distinct from
the cutoff energy E1 one must replace F1 in Eq. (5) by F∗(E∗/E1)−δ+1.
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where F01 =
∫ F (E0)dE0 and Eq. (4) gives

F̄(E) =
F01E01

Kn̄V

⎧⎪⎪⎨⎪⎪⎩
[

E
E01

]−δ0+2
E ≥ E01

E
E01

E < E01,
(10)

i.e., the relation between δ0 and δ at E ≥ E01 being δ = δ0 − 2.
To find F̄(E) from a broken and truncated power-law form of
the injected thick target F0(E0), one would first use the anal-
ogy of expression (8) to get the total F0(E0) as the sum of a set
of single power-law F0(E0) forms, insert it into Eq. (4) and use
expression (10) for each term in the sum to get the correspond-
ing F̄(E). Then, such F̄(E) is inserted into Eq. (1) to obtain the
corresponding I(ε) for the broken power-law thick-target case.

4. Cross-sections

The bremsstrahlung cross-section Q(ε, E) can be written as

Q(ε, E) =
Q0mc2

εE
q(ε, E), (11)

incorporating a high Z element correction factor
∑

Z AZZ2 in Q0,
the Gaunt factor q(ε, E) depending on the actual cross-section
used. For the Kramers approximation

q(ε, E) = qK(ε, E) = 1; (12)

while for the non-relativistic Bethe-Heitler approximation

q(ε, E) = qBH(ε, E) = log
1 +
√

1 − ε/E
1 − √1 − ε/E · (13)

The most widely used isotropic formula (neglecting electron-
electron bremsstrahlung which is important at high energies
Kontar et al. 2007) is q(ε, E) = q3BN(ε, E), corresponding to the
fully relativistic Bethe-Heitler 3BN formula from Koch & Motz
(1959). This formula (or its corrected version including Elwert
factor) is used in inversion and forward fits in Piana et al. (2003);
Kontar et al. (2005); Brown et al. (2006); Johns & Lin (1992).
From hereafter we will refer to the non-relativistic Bethe-Heitler
Eq. (13) as the Bethe-Heitler formula and to the fully relativistic
Bethe-Heitler formula 3BN in Koch & Motz (1959) with Elwert
factor included as the 3BN formula. In the case of a truncated
power-law, the sensitivity of the predicted thin- and thick-target
photon spectra to the form of the cross-section used is illustrated
in Fig. 1 by numerically computing the local photon spectral in-
dex, defined by Brown & Emslie (1988) as

γ(ε) = − ε
I

dI
dε
= −d log I

d log ε
, (14)

for single power-laws with δ = 3, δ = 5; δ0 = 5, δ0 = 7 and
various q. In Fig. 1 we also show the percentage difference in
photon fluxes defined as

ΔI(ε) =
I3BN(ε) − IBH(ε)

I3BN(ε)
, (15)

where I3BN is the photon flux using q3BN and IBH corresponds
to the photon flux using qBH. It is clear firstly that, particularly
below the cutoff, Bethe-Heitler results are a rather good approxi-
mation for computing local photon spectral indices γ(ε) and pho-
ton fluxes. In particular, the relative error in the computation of
the photon flux is between 10% and 15% around the low-energy
cutoff, much smaller at lower energies and grows up to 20% only
for energies larger than 100 keV. Second, above and especially

below the cutoff γ(ε) is not in any way constant, as sometimes
assumed (Hannah et al. 2008).

As a further check, Fig. 2 demonstrates the behaviour of γ(ε)
and ΔI(ε) for a broken power-law in the electron space. Figures 1
and 2 thus clearly suggest that the analytical expressions of I(ε)
and γ(ε) based on the Bethe-Heitler formula could be useful for
spectral computation in forward spectral fitting, especially at low
energies. At energies approaching 100 keV the approximation is
poorer and it needs to be used with some caution in locating fea-
tures like high energy cutoffs, though these are always uncertain
even for exact computation – cf. Brown et al. (2006).

Note that Fig. 1 shows results for only one value of
E1(E01) = 20 keV and presents them only as functions of ε/E1
(ε/E01) whereas one might in general expect results to depend
on ε and E1 (E01) separately (an analogous situation occurs in
Fig. 2, where the results are shown only for one value of Ec).
However, we carried out a range of test calculations for several
different E1 (E01) in the few deka-keV range and found that re-
sults were, to a very good approximation, functions only of ε/E1
(ε/E01) at these energies. Second, the most general Q is actually
anisotropic and the above expressions have to be generalised to
integrate over electron angle as well as energy (Massone et al.
2004). However, the effect of this on I(ε) is small at low energies
and in any case is mainly an ε-independent scaling rather than a
spectral effect. In fact some numerical experiments showed that
there is little effect on our conclusions of using anisotropic F̄,Q.

5. Thin target spectra and spectral indices

Using Eq. (11), Eq. (1) becomes

I(ε) =
Q0mc2

4πR2

nV
ε

∫ ∞

ε

F̄(E)q(ε, E)
dE
E
· (16)

We are interested here in results for photon spectra I(ε)
when F̄(E) is a single power-law with constant δ and a low-
energy cutoff (Eq. (5)), for various forms of q(ε, E), for compar-
ison of γ(ε) with the use (e.g. Hannah et al. 2008) of constant γ
approximations. For any q(ε, E) Eq. (16) can be written

I(ε) =
δ − 1
δ

C
E1

ε

∫ min[1,(E1/ε)δ]

0
q
(
ε, E1/x

1/δ
)

dx (17)

where x = (E1/E)δ, and

C =
Q0mc2

4πR2

nVF1

E2
1

· (18)

Note that in special cases where q(ε, E) = q(ε/E) only, γ(ε) takes
the form

γ(ε) =

⎧⎪⎪⎨⎪⎪⎩
δ + 1 ε ≥ E1

1 − d
d log ε log

[∫ 1

0
q(x1/δε/E1)

]
dx ε < E1.

(19)

5.1. Kramers cross-section

For Kramers q(ε, E) = 1 and we have immediately

I(ε) =
δ − 1
δ

C
E1

ε

⎧⎪⎪⎨⎪⎪⎩
[

E1
ε

]δ
ε ≥ E1

1 ε < E1
(20)

and

γ(ε) =

{
δ + 1 ε ≥ E1

1 ε < E1.
(21)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Left panels: local
bremsstrahlung photon spectral
index γ(ε) behaviour com-
puted numerically for three
different q(ε, E) – Kramers,
Bethe-Heitler and 3BN and
a single power-law with
E1(E01) = 20 keV. Right pan-
els: corresponding percentage
difference ΔI(ε) in photon flux
as defined in Eq. (15). a) and b)
Thin target with δ = 3. c) and
d) Thin target with δ = 5. e)
and f) Thick target with δ0 = 5.
g) and h) Thick target with
δ0 = 7.

5.2. Bethe-Heitler cross-section

The spectrum and the spectral index can be written solely in
terms of the electron spectral index δ and the dimensionless pa-
rameter a = ε/E1. Integration by parts leads to:

I(δ, a) =
δ − 1
δ

C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
aδ+1 B

(
δ, 1

2

)
a ≥ 1

1
a

[
log 1+

√
1−a

1−√1−a
+ 1

aδ Ba

(
δ, 1

2

)]
a < 1

(22)

with B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx and Bx(α, β) =

∫ x

0
tα−1(1 −

t)β−1dt the incomplete beta function.

For the spectral index:

γ(δ, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + δ a ≥ 1

1 +
δ
aδ

Ba(δ, 1
2 )

log

[
1 +
√

1 − a
1 − √1 − a

]
+ 1

aδ
Ba(δ, 1

2 )
a < 1 . (23)

We note that the previous analytical formulas for I(δ, a) and
γ(δ, a) are written in terms of beta functions and incomplete
beta functions. The computation of these functions is included
in standard library routines for data visualization and analysis,
making the implementation of the exact formulas (22) and (23)
easy and fast.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809496&pdf_id=1
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(a) (b)

(c) (d)

Fig. 2. The same as in Fig. 1 but for a
broken power-law with Ec = 20 keV
and Eb = 80 keV. a) and b) Thin tar-
get with δ1 = 3, δ2 = 5. c) and d) Thick
target with δ01 = 5, δ02 = 7.

6. Thick target spectra and spectral indices

Inserting (10) into (16) leads to

I(ε) =
D
δ0 − 2

E01

ε
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ( E01
ε

)δ0−2

0
q
(
ε, E01/y

1
δ0−2

)
dy ε ≥ E01

∫ 1

0
q
(
ε, E01/y

1
δ0+2

)
dy+

(δ0 − 2)
∫ 1

ε/E01
q(ε, ξE01)dξ ε < E01,

(24)

where D = Q0mc2F01

4πR2K , the integrals on the right hand side of (24)
being expressed below in terms of the dimensionless parame-
ter a = ε/E01, the constant D and the spectral index δ0 for the
truncated electron power-law F0(E0).

6.1. Kramers cross-section

Integration by parts with Kramers unity Gaunt factor gives

I(δ0, a) =
D
δ0 − 2

{
a−δ0+1 a ≥ 1
1+(δ0−2)(1−a)

a a < 1
(25)

and

γ(δ0, a) =

{
δ0 − 1 a ≥ 1

δ0−1
1+(δ0−2)(1−a) a < 1. (26)

6.2. Bethe-Heitler cross-section

Integration by parts with the Bethe-Heitler Gaunt factor qBH
leads to

I(δ0, a) =
D
δ0 − 2

1
a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(δ0 − 2, 1
2 )

[
1
a

]δ0−2
a ≥ 1

[
δ0 − 1 − δ0−2

2 a
]

log
[

1+
√

1−a
1−√1−a

]
−(δ0 − 2)

√
1 − a

+ 1
aδ0−2 Ba

(
δ0 − 2, 1

2

)
a < 1

(27)

and

γ(δ0, a) =

⎧⎪⎪⎨⎪⎪⎩
δ0 − 1 a ≥ 1

A1+A2 Ba(δ0−2, 12 )

A3−
√

1−a+A4Ba(δ0−2, 12 )
a < 1, (28)

where

A1 = A1(δ0, a) =
δ0 − 1
δ0 − 2

log
1 +
√

1 − a

1 − √1 − a
, (29)

A2 = A2(δ0, a) =
δ0 − 1
δ0 − 2

1
aδ0−2

, (30)

A3 = A3(δ0, a) =

(
δ0 − 1
δ0 − 2

− a
2

)
log

1 +
√

1 − a

1 − √1 − a
(31)

and

A4 = A4(δ0, a) =
1
δ0 − 2

1
aδ0−2

· (32)

Thus, as in the thin target case, integral expressions for I(δ0, a)
and γ(δ0, a) can be written analytically in terms of beta functions
and incomplete beta functions.

7. Tests against data and comparison
with other fitting methods

To show the usefulness of our formulation in terms of accuracy
and speed, we have tried it out on simulated and real data. Our
specific goals here for simulated noisy data are to determine:

1. how good and how fast is use of our functional approxi-
mations to I(ε) in fitting data to estimate [δ, nVF1, E1] or
[δ0,F01, E01] for a [thin] or [thick] target single truncated
power-law [F̄(E)], or [F0(E0)], in comparison with other
fitting routines. To answer this we use simulated data I(ε)
generated with NASA SolarSoft (SSW) routines using the
full bremsstrahlung cross-section and numerical integration
over E or E0, respectively (Holman et al. 2003);

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809496&pdf_id=2
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Table 1. Computational cost test. The test was performed on a 3.2 GHz
PC with 1GB RAM. Times are in seconds.

SSW-thick Eq. (27) SSW-thin Eq. (22)
δ, δ0 = 3

E1 , E01 = 10 7.45 0.721 1.27 0.726
δ, δ0 = 3

E1 , E01 = 20 7.32 0.594 0.951 0.726
δ, δ0 = 3

E1 , E01 = 30 9.99 0.585 0.931 0.599
δ, δ0 = 5

E1 , E01 = 10 9.99 0.721 1.36 0.724
δ, δ0 = 5

E1 , E01 = 20 7.46 0.594 1.07 0.595
δ, δ0 = 5

E1 , E01 = 30 7.05 0.583 1.20 0.597

2. how well do the speed and accuracy compare with other ap-
proaches? In particular with: (a) Holman et al. (2003) who,
in carrying out the best fit parameter searches, perform full
integrations with the full cross-section in each iterative step;
and (b) an approach which, instead of fitting the I(ε) pre-
dicted for an electron power-law with cutoff, fits a parametric
piecewise power-law photon I(ε) with distinct constant pho-
ton spectral indices γ1, γ2 at ε ≤,≥ εb, with γ1 either a free
fit parameter or prescribed, e.g. as in Hannah et al. (2008)
where γ1 = 1.5 (to be compared with γ(ε) in Fig. 1). Loosely
speaking, for example in the case of thin targets, the value of
the photon break energy εb is meant to reflect an electron
low-energy cutoff energy E1, though in reality such a pho-
ton spectrum does not correspond to any real (non-negative)
electron spectrum except for Kramers cross-section in which
case γ1 = 1, γ2 = δ + 1;

3. how each of the above findings changes when we add a rea-
sonable isothermal contribution to I(ε) for thermal parame-
ters EM and T .

We have carried out these simulated data comparisons for the
following parameter sets: δ, δ0 = 3, 5, E1, E01 = 10, 20, 30 keV,
n̄VF1 = 5, 20× 1055 electrons cm−2 s−1; F01 = 5, 20× 1035 elec-
trons s−1, EM = 0.5, 1 × 1049 cm−3, and kT = 1, 1.5 keV.

I(ε) were generated using SSW routines for thin and
thick target (f_thin.pro and f_thick.pro, respectively) and
optionally with isothermal component (f_vth.pro) in the
3–100 keV energy range with 1 keV energy binning. Then,
these I(ε) were converted to counts using the RHESSI detector
response matrix for attenuator state 0. Finally, we added Poisson
noise. Such simulated count spectra were then fitted within the
OSPEX environment2 in the 3–100 keV range.

The results of comparisons for the simulated spectra without
a thermal component are as follows:

1. for both thin and thick cases, acceptable fits in terms of re-
duced χ2, χ2

ν , and normalised residuals were found for all
simulated spectra using expressions (22) and (27), respec-
tively. The fitted parameters were close to the input ones –
within ∼10% or less.
Concerning the computational time (see Table 1) for the fit-
ting procedures, the SSW thin fit routine was about 2 times
slower than our method for similar accuracy while the
SSW thick fit routine is 10–20 times slower than our method;

2 http://hesperia.gsfc.nasa.gov/ssw/packages/spex/doc/
ospex_explanation.htm

2. as regards the matter of trying to get a meaningful fit to the
actual form of I(ε) from truncated power-laws F(E),F0(E0)
by using double power-law fits to the photon spectra (con-
stant γ above and below some break energy εb – bpow.pro)
we found that this failed to produce an acceptable overall fit
(generally, χ2

ν > 2) and that normalised residuals clustered
near ε ∼ E1, E01. Using a fixed value of γ1 such as 1, 1.5, 1.7
did not help.

Adding a plausible isothermal component with the above values
for parameters EM and T to the thin and thick target spectra
modifies the fit behaviour described above only if the thermal
component contributes significantly to or dominates the spec-
trum at ε >∼ E1, E01. For such spectra, e.g. thin-target case
EM = 1 × 1049 cm−3, kT = 1.5 keV, δ = 3, E1 = 10 keV, the
fitting functions introduced in this paper do give an acceptable fit
but only an upper limit on E1 can be obtained. This limit is close
to the energy where the thermal spectrum steepens and falls be-
low the non-thermal part, fits with smaller E1 being also consis-
tent with the data since lost in the dominant thermal emission.

Photon spectra with a thermal component can also usually
be fitted with a nonthermal component close to a single power-
law so the value of εb obtained by double photon power law
fits is not a good indicator of E1, E01. Depending on the com-
bination of thermal and non-thermal parts, acceptable fits using
bpow yield εb which can be either lower or higher than the input
E1, E01. Therefore, using εb for an estimate of the non-thermal
energy (e.g. Hannah et al. 2008) can be misleading. On the other
hand, our expressions generally give E1, E01 much closer to the
input E1, E01 than εb is.

The proposed expressions have been also tested on two cases
of real data. Figure 3 shows thin and thick target fits to the
20-Feb.-2002 11 UT flare and compares the parameters obtained
by our and SSW expressions. Both thin and thick fits give simi-
lar F(E) and F0(E0). This flare was near the limb so required no
albedo correction.

Next, we applied our thick target expression to the early im-
pulsive phase of the flare of 02-Jun.-2002 which shows flatten-
ing and evidence of a low-energy cutoff at E01 above the thermal
component in the 18–38 keV range (Sui et al. 2007). In this case
albedo correction was applied, as is essential for such events.
Figure 4 shows the time evolution E01(t) obtained for the time
variation of the best fit low-energy cutoff and for the correspond-
ing total non-thermal electron power (as total energy per 4 s inte-
gration). These curves are closely comparable with those found
by Sui et al. (2007) in their Fig. 4.

Thin and thick target formulas (Eqs. (22), (27)) have been
incorporated into the SSW tree. Prospective users may access
them as OSPEX fitting functions named photon_thin.pro and
photon_thick.pro.

8. Conclusions

We have shown that results for thin and thick target
bremsstrahlung photon spectra I(ε) and γ(ε) from power-law
electron spectra with constant index δ and low-energy spectral
cutoff E1, E01 obtained using the non-relativistic Bethe-Heitler
cross-section are close to those from the exact cross-section, at
photon energies both above and below the cutoff, at least at keV
to deka-keV energies. We have shown further that the non-
relativistic Bethe-Heitler expression allows the bremsstrahlung
integrals for I(ε) to be written as analytic forms in terms of
beta functions of δ(δ0) and a only, which are part of standard

http://hesperia.gsfc.nasa.gov/ssw/packages/spex/doc/ospex_explanation.htm
http://hesperia.gsfc.nasa.gov/ssw/packages/spex/doc/ospex_explanation.htm
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Fig. 3. Thin and thick target fits to February 20, 2002 flare spectrum
using our expressions. The labels show the comparison between SSW
and our approach.

numerical packages, and that these give results very close to the
exact I(ε).

For both the thin and especially for the thick target models,
we find that this formulation enables almost equally accurate but
much faster spectral fitting than evaluation of the full spectral
integrations. This will be valuable in analysis of bremsstrahlung
HXR data such as from RHESSI, providing, for example, a
fast method to obtain first approximation to F(E) or F0(E0) for
input to inversion methods. Our analytic fast fit approach can
also replace the unphysical practice of fitting broken power-laws
in I(ε).
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