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ABSTRACT

Context. Flare Hard X-rays (HXRs) from non-thermal electrons are commonly treated as solely bremsstrahlung (free-free= f-f),
recombination (free-bound= f-b) being neglected. This assumption is shown to be substantially in error, especially in hot sources,
mainly due to recombination onto Fe ions.
Aims. We analyse the effects on HXR spectra J(ε) and electron diagnostics by including non-thermal recombination onto heavy
elements in our model.
Methods. Using Kramers hydrogenic cross sections with effective Z = Zeff , we calculate f-f and f-b spectra for power-law electron
spectra within both thin and thick target limits and for Maxwellians with summation over all important ions.
Results. We find that non-thermal electron recombination, especially onto Fe, must, in general, be included with f-f for reliable
spectral interpretation, when the HXR source is hot, such as occulted loops containing high ions of Fe (f-b cross-section ∝Z4). The
f-b contribution is greatest when the electron spectral index δ is large and any low energy cut-off Ec is small, because the electron flux
spectrum F(E) emitting f-b photon energy ε is ∝(E = ε − VZ)−δ (VZ is the ionisation potential) and not ∝(E = ε)−δ+1 as for f-f. The
f-b spectra recombination edges mean a cut-off Ec in F(E) appears as an HXR feature at ε = Ec + VZ , offering an Ec diagnostic. For
thick target sources, the presence of Ec appears as edges in J′(ε), not in J(ε), but it is still detectable. Including f-b lowers the F(E)
needed for prescribed HXR fluxes greatly in some cases; and even when small, it seriously distorts F(E) as inferred by inversion or
forward fitting of J(ε) based on f-f alone.
Conclusions. The f-b recombination from non-thermal electrons can be an important contributor to HXR spectra, so it should be
included in spectral analyses, especially for hot sources. Accurate results will require use of better cross sections than ours and
consideration of source ionisation structure.
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1. Introduction

Ever since their first detection (Arnoldy et al. 1968; Kane &
Andersen 1970), flare hard X-ray (HXR) bursts (photon ener-
gies ε > 10 keV or so) have been recognised as an impor-
tant diagnostic of electron acceleration and propagation (e.g.
Brown 1971; Lin & Schwartz 1987; Johns & Lin 1992). The
large electron flux and power imply they play a substantial role
in flare energy budgets and pose challenges for electron acceler-
ation mechanisms (see recent reviews by, e.g. Vilmer et al. 2003;
Brown 2005; MacKinnon 2006). Recent copious high resolution
HXR spectral data from the RHESSI mission (Lin et al. 2002)
have created the possibility of detailed reconstruction of source
electron spectra (following Brown 1971) offering important con-
straints on the electron energy budget and acceleration processes
(Piana et al. 2003; Conway et al. 2003; Massone et al. 2004;
Kontar et al. 2005, 2006; Brown et al. 2006).

In inferring electron flux spectra F(E), the HXR radia-
tion mechanism has always been taken to be f-f collisional
bremsstrahlung of fast electron impacts with atoms and ions, gy-
rosynchrotron and inverse Compton radiation being negligible at
these energies for solar magnetic and radiation fields (Korchak
1971). Though included for thermal electrons in hot (a few keV)
plasma, f-b recombination radiation from non-thermals seems to
have been assumed negligible other than in a preliminary study
by Landini et al. (1973). In view of the importance of details in

the photon spectrum J(ε) (photons s−1 kev−1) for accurate recon-
struction of F(E), we re-examine this assumption, and conclude
(cf. Mallik & Brown 2007) that it is not valid under some con-
ditions, which quite commonly exist in some flare HXR source
regions.

It is not the intention of this paper to analyse precisely the
theoretical recombination radiation spectrum from fast electrons
under conditions (e.g. ionisation structure) for specific flares
which are typically both inhomogeneous and time dependent.
Rather we give approximate theoretical estimates of how im-
portant it may be relative to bremsstrahlung under various lim-
iting conditions. Specifically, we compare the two in the sim-
plest, Kramers, cross-section approximations, for limiting cases
of plasma ionisation. The recombination emission rate per elec-
tron is very sensitive to the ionic charge, being ∝Z4AZ (Kramers
1923) per plasma proton for hydrogenic ions of charge Ze and
number abundance AZ . Thus the emitted f-b flux and spectrum
depend strongly on the ionisation state, hence the temperature, of
the plasma where the fast electrons recombine. In practice this
will involve several ionisation stages of several target plasma
species (since Z4AZ may be large even for small abundance AZ),
which will vary along the paths of the electrons and be time
dependent.

The paper is organised as follows. In Sect. 2 we briefly dis-
cuss relevant processes and the cross-section approximations
we use, and obtain expressions for the total continuum photon

Article published by EDP Sciences

http://dx.doi.org/10.1051/0004-6361:20078103
http://www.aanda.org
http://www.edpsciences.org


508 J. C. Brown and P. C. V. Mallik: Fast electron recombination HXRs

spectral contributions j(ε) expected from an electron flux spec-
trum F(E) from f-f and from f-b processes. In Sect. 3, we com-
pare these for a power-law F(E) with low cut off at E < Ec and
for a shifted power-law, and discuss implications for flare elec-
tron spectra and energy budgets under several limiting plasma
ionisation assumptions. In Sect. 4 we look at thermal and non-
thermal components to show how the relative importance of
each contribution depends on conditions in the flare by vary-
ing parameters around those for a specific real event. Section 5
discusses the effect of including the f-b contribution on in-
verse problem inference of F(E) from j(ε) while Sect. 6 sum-
marises our conclusions and suggests directions for future work.
Details of some of the equations are given in Appendix A. In
Appendix B we discuss the total emission spectra from ex-
tended volumes for thin target, collisional thick target and ther-
mal cases.

2. Free-free and free-bound emissivity spectra

2.1. General considerations

In this section, we discuss only local emissivities j(ε) (pho-
tons cm−3 s−1 per unit ε ). Relativistic and directivity effects are
disregarded (E, ε � mec2) since the f-b/f-f ratio is largest at
low E. Then, if target atom/ion type t has density nt and the fast
electron flux spectrum is F(E) (electrons s−1 cm−2 per unit E),
j(ε) for a collisional radiation process is

j(ε) = Σt jt(ε) = Σtnt

∫ ∞

Etmin(ε)

F(E)
dQt

dε
(ε, E)dE, (1)

where dQt/dε(ε, E) is the relevant cross-section per unit ε for
target species t and the integral is over the range of electron en-
ergies relevant to species t.

2.2. Bremsstrahlung

In the case of f-f (bremsstrahlung), dQt/dε(ε, E) is essentially
the same for any state of ionisation of an atomic species Z (Koch
& Motz 1959), and the t summation in (1) need only be carried
out over elements Z to give, for element abundances AZ (by num-
ber relative to hydrogen), and total proton (p+H) density np,

jB(ε) = npΣZ AZ

∫ ∞

ε

F(E)
dQBZ

dε
(ε, E)dE, (2)

where dQBZ/dε(ε, E) is the bremsstrahlung cross-section for el-
ement Z and Emin = ε since any free-free transition can only
yield a maximum ε = E. The bremsstrahlung cross-section per
nucleus Z scales as Z2 and can be written

dQBZ

dε
=

8αr2
e Z2

3
mec2

εE
q(ε, E), ε ≤ E (3)

(and zero for ε > E). Here α = e2/�c is the fine structure con-
stant and re = e2/mec2 the classical electron radius, while q(ε, E)
is the ratio of the actual cross section to the Kramers cross sec-
tion (Kramers 1923), which is the factor in front of q. While
this is only a first approximation, not suitable for accurate abso-
lute spectral inversion/reconstruction algorithms (Brown 2005),
it will be adequate for the present purpose of comparing f-f with
f-b emission, which we also treat in the Kramer’s approximation.
Then (2) and (3) give, for bremsstrahlung,

jB(ε) =
8αr2

e

3
mec2

ε
ζBnp

∫ ∞

ε

F(E)
E

dE, (4)

where

ζB = ΣZζBZ = ΣZ AZZ2 (5)

is the heavy element correction for bremsstrahlung, with ζB ≈
1.6 for the solar coronal abundances we use – see later.

2.3. Recombination radiation

The situation here is more complicated. Firstly, 2-body radiative
recombination (we neglect 3-body recombination) of a free elec-
tron of energy E to a bound level m of energy−V(Z, i,m) in ionic
stage i yields a photon energy ε, which, apart from quantum un-
certainty, is unique, namely:

ε = E + V(Z, i,m). (6)

That is, when a fast electron does recombine, all of its kinetic
energy E plus V goes into a photon of that energy, in contrast to
bremsstrahlung where photons of all energies ε ≤ E are emitted.

Furthermore, for each element Z, there is a range of Z + 1
distinct ion stages i each with its own distinct set of energy
levels (m) and a set of Z, i,m-dependent recombination cross-
sections. Thus recombination collisions of a mono-energetic
beam with a multi-species plasma gives rise to a set of delta-
function-like spectral features at all energies (6) corresponding
to elements Z, ionic stages i and levels m . For a continuous elec-
tron spectrum, this yields a continuum photon spectrum that is
a sum of an infinite series of energy-shifted electron flux con-
tributions. In contrast to bremsstrahlung it does not involve an
integral over a continuum of electron energies.

For a general plasma the basic particle type “t” onto which
recombination occurs is level m of ion stage i of element Z with
recombination cross-section differential in ε for that t:

dQRt

dε
(ε) = QRtδ(E − ε + Vt), (7)

where QRt is the total radiative recombination cross-section for
species t and δ(E′) is the delta-function in energy such that∫ ∞
−∞ δ(E

′)dE′ = 1. Then the total recombination emission spec-
trum for electron flux spectrum F(E) is

jR(ε) = npΣtAt

∫ ∞

Emin(ε,t)
QRt(ε, E)δ(E − ε + Vt)F(E)dE

= ΣtAtnpQRt(ε, ε − Vt)F(ε − Vt), (8)

where At is the numerical abundance of species t relative to np.
The forms for QRt, for general t, are complicated and have to
be calculated numerically, as do the values of At when individ-
ual ionisation states are considered. However, in the Kramers ap-
proximation (with unit Gaunt factors) there is an analytic expres-
sion for hydrogenic ions, which we will use to estimate d jR/dε
compared with d jB/dε, namely, for recombination onto level m
of the hydrogenic ion of element Z (Kramers 1923; Andersen
et al. 1992; Hahn 1997)

QR =
32π

3
√

3α
r2

e
Z4χ2

m3εE
, (9)

where χ = mee4/2�2 is the hydrogen ionisation potential.
For an element in its highest purely hydrogenic ion state the

emissivity spectrum would then be

jRZ(ε) =
32π

3
√

3α

r2
eχ

2Z4nz

ε
Σm

1
m3

F
(
ε − Z2χ/m2

)
ε − Z2χ/m2

(10)
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Table 1. Elements with their coronal abundances and ionisation poten-
tials at T 	 108 K.

Element Z Az AzZ2 AzZ4 Vz = Z2χ (keV)
H 1 1 1 1 0.0136
He 2 0.096 0.384 1.536 0.0544
C 6 3.57 × 10−4 0.013 0.463 0.490
O 8 8.57 × 10−4 0.055 3.511 0.870
Ne 10 1.07 × 10−4 0.011 1.071 1.360
Mg 12 1.33 × 10−4 0.019 2.755 1.958
Si 14 1.27 × 10−4 0.025 4.871 2.666
S 16 1.61 × 10−5 0.0041 1.053 3.482

Ca 20 8.50 × 10−6 0.0034 1.360 5.440
Fe 26 8.61 × 10−5 0.058 39.336 9.914
Ni 28 6.95 × 10−6 0.0054 4.27 10.662

Σ = 1.58 Σ = 61.2

with the m summation over m ≥ Z(χ/ε)1/2, since recombination
to level m yields only photons of ε ≥ Z2χ/m2. If the source were
so hot that all atoms were almost fully ionised the total for all Z
would be, in this approximation,

jR(ε) =
32π

3
√

3α

r2
eχ

2

ε
nPΣZZ4AZΣm

1
m3

F
(
ε − Z2χ/m2

)
ε − Z2χ/m2

(11)

for element abundances AZ , with the same m summation limits.
In reality even super-hot coronal flare temperatures are not

high enough to equal the ultra-hot T 	 108 K needed to almost
fully ionise all elements into their hydrogenic states, especially
Fe, which is crucial in having by far the highest value of AZZ4

– see Table 1. Consequently, to deal accurately with jR for real
flare data, we would have to take into account the actual ionisa-
tion state of the flare plasma, which varies with time and location
(being radically different in loop tops from loop footpoints), and
actual forms of QR(Z),VZ for non-hydrogenic ion stages.

For our purpose of making first estimates we make the fol-
lowing simplifying approximations:

– We treat all ions using hydrogenic Eqs. (9)–(11) but with
suitably chosen Zeff so that

VZ = Z2
effχ; QRZ =

32π

3
√

3α
r2

e

Z4
effχ

2

m3εE
, (12)

where Zeff makes allowance for screening and other non-
hydrogenic effects. While this will be a rough estimate for
some ions, such approximations are often quite satisfactory
for suitable Zeff (e.g. Hahn & Krstic 1994; Erdas et al. 1993).
Here we adopt Zeff such that hydrogenic Eq. (12) gives the
correct value of QRZ as given by exact calculations such as
those of Arnaud & Raymond (1992) for Fe, which is the most
important ion in our analysis. Typically, for an element of
atomic number Z in an ionic state with z bound electrons
left, Zeff is between Z − z and Z − z + 1.

– Noting that QR ∝ 1/m3 we include here only recombination
to m = 1 (in the sense of the lowest empty level of the ion
– hydrogenic with Z = Zeff – not of the atom). Higher m
contributions are weaker, being ∝ 1/m3 though extending
to lower energies with edges at Z2

effχ/m
2. These should be

included in quantitative data fitting.
– We focus on situations where the emitting region is near

isothermal and either quite cool, so that only low VZ ele-
ment recombination matters, or very hot so that high VZ el-
ements (mainly Fe) are dominant. The former are typically

Table 2. Ionic species of iron at 20 MK.

Element Z − z Zeff ΦZeff Az AzZ4
eff Vz = Z2

effχ (keV)

Fe XXII 21 21.98 0.05 0.43 × 10−5 1.004 6.57
Fe XXIII 22 22.61 0.14 1.21 × 10−5 3.152 6.95
Fe XXIV 23 23.20 0.25 2.15 × 10−5 6.232 7.32
Fe XXV 24 23.77 0.56 4.82 × 10−5 15.381 7.68

loop chromospheric footpoints (thick target) and the latter
very hot coronal loops which are either at the limb with their
footpoints occulted, or are so dense as to be coronal thick
targets (Veronig & Brown 2004).

Under these conditions, Eq. (11) becomes

jR(ε) =
32π

3
√

3α

r2
eχ

2

ε
npΣZeffZ4

effAZeff

F
(
ε − Z2

effχ
)

ε − Z2
effχ

, (13)

where AZeff = AZΦZeff with ΦZeff the fraction of atoms of ele-
ment Z in ionic state Zeff .

Note that, since there is no integration over E here, if F(E)
contains a sharp feature at an electron energy E∗, such as a low
or high E cut-off, this will appear in the recombination contribu-
tion to the photon spectrum j(ε) as a series of sharp features at
photon energies ε(m, Z, E∗) = E∗+Z2

effχ/m
2; m = 1,∞ for every

ion Z present. The same is true for broad features like smooth
bumps or dips. This is in contrast with the bremsstrahlung con-
tribution, in which such features are smoothed out by integration
over E. Thus, even if jR � jB, it may have an important effect
in inferring F(E) from j(ε) since this essentially involves differ-
entiating j(ε) (Sect. 5).

2.4. Element parameters and flare plasma ionisation

The heavy element correction for bremsstrahlung, ζB, is almost
independent of ionisation state (since the bremsstrahlung cross
sections for atoms and ions of the same Z are essentially the
same), being ζB ≈ 1.6 for solar abundances. On the other hand
ζRZeff = Z4

effAZeff depends on the number of empty ion levels avail-
able for recombination. The importance of fast electron recom-
bination radiation thus depends on the state of ionisation of the
plasma in which the fast electrons are moving, which is primar-
ily a function of plasma temperature T .

In Table 1 we show the values of Z, Z2AZ = ζBZ , Z4AZ = ζRZ ,
VZ for various elements/ions whose ζRZ = Z4AZ is large enough
to be significant, if the element is sufficiently ionised. With
ζRZ ≈ 40 for FeXXVI, Fe is by far the most important if con-
ditions are such that it is highly ionised. The kT where maxi-
mum ionisation of an ion stage is reached is typically of the or-
der 0.1Z2

effχ to Z2
effχ. In Table 2 we show more detailed values for

several stages of ionisation of Fe (XXII-XXV, i.e. 21+ to 24+)
with the appropriate AZeff = AZeffΦZeff for each of these Fe ionic
states for the typical coronal flare case of T = 2 × 107 K. These
are taken from Arnaud & Raymond (1992) as are the actual ion-
isation fractions we adopt later (Sect. 4) for the temperatures of
the real flare we consider.

The radiative recombination coefficients give Zeff , which dif-
fer slightly from the Z values, as mentioned in Sect. 2.3. For the
2002 April 14 event, to which we return later, the peak flare tem-
perature was 19.6 MK, ∼5% of the iron appearing as Fe XXII
(Fe21+), ∼14% in the Fe XXIII (Fe22+) state, ∼25% appearing
as Fe XXIV and ∼56% as Fe XXV. The respective Zeff values
are 21.98, 22.61, 23.20 and 23.77.



510 J. C. Brown and P. C. V. Mallik: Fast electron recombination HXRs

Broadly speaking in typical flare/micro-flare conditions we
can consider the following T regimes:

– at T ≤ 104 K (“cold”) even H and other low VZeff ions are
neutral so ζRZ ≈ 0 for all Z. This would be typical of very
dense cool chromospheric thick target footpoints relevant to
deeply penetrating electrons;

– for 105 ≤ T ≤ 106 K (“cool”) the predominant elements
ionised are H, O, Mg, Si giving ΣZζRZ ≈ 15. This is most
relevant to upper chromospheric dense warm plasma reached
by moderate energy thick target electrons;

– at T ≥ 107 K (“hot”) Fe is well ionised up to about Fe XXV
giving ΣZζRZ ≈ 50.
This is relevant to the hot “coronal” loop regime, hence ei-
ther to (i) typical upper (SXR) flare loops of moderate den-
sity (thin target) whose HXR emission is seen in isolation ei-
ther by HXR spectroscopic imaging or volume integrated but
with the cool footpoints occulted because they are over the
solar limb; or (ii) cases of coronal thick target loops (Veronig
& Brown 2004) where the upper loop density suffices to stop
the fast electrons collisionally.

3. Local (thin target) HXR spectra of f-f and f-b
for power-law F(E) with cut-off

3.1. Basic expressions for jB , jR
To estimate how the fast electron recombination jR(ε) compares
with bremsstrahlung jR(ε), we first consider the commonly stud-
ied case of a power-law with a low energy cut-off

F(E) = (δ − 1)
Fc

Ec

(
E
Ec

)−δ
; E ≥ Ec, (14)

where Fc is the total electron flux at E ≥ Ec. Then, from Eqs. (4)
and (14), we obtain for f-f emission

jB(ε) =
δ − 1
δ

8αζB
3

mec2r2
e

ε

npFc

Ec

×
[
ε

Ec

]−δ
; ε ≥ Ec

× 1; ε < Ec, (15)

while for f-b emission from an ion of effective charge Zeff ,

jRZeff (ε) = (δ − 1)
32πζRZeff

33/2α

r2
eχ

2

ε

npFc

E2
c

×
⎡⎢⎢⎢⎢⎣ ε − Z2

effχ

Ec

⎤⎥⎥⎥⎥⎦
−δ−1

; ε ≥ Ec + Z2
effχ

× 0; ε < Ec + Z2
effχ, (16)

where
ζRZeff = AZeffZ

4
eff . (17)

So the total for all relevant VZeff is
jR(ε) = ΣZeff≥[(ε−Ec)/χ]1/2 jRZeff (ε). (18)

3.2. Ratio of jR to jB
For this truncated power-law case, the ratio of f-b to f-f emissiv-
ity is

Ψ =
jR(ε)
jB(ε)

2πδ√
3

χ

ε
ΣZ2

eff>(ε−Ec )/χ)
ζRZeff

ζB

⎡⎢⎢⎢⎢⎣1 − Z2
effχ

ε

⎤⎥⎥⎥⎥⎦
−δ−1

≈ 0.25(δ/5)
ε(keV)

ΣZ2
eff>(ε−Ec)/χ)

ζRZeff

ζB

⎡⎢⎢⎢⎢⎣1 − Z2
effχ

ε

⎤⎥⎥⎥⎥⎦
−δ−1

, (19)

where each term in the summation is zero at ε < Ec + Z2
effχ.

For ε 	 Ec,Ψ→ 0.25ΣZeffAZeffZ
4
eff/ε(keV). In pure ionised H

(ΣZζRZ = 1) this is only 2.5% at 10 keV. This rather small value
of Ψ must be the origin of the conventional wisdom that f-b can
be ignored compared to f-f emission at HXR energies. However,
this notion neglects several crucial facts:

– At high coronal flare temperatures, where all elements are
highly ionised, in plasmas of cosmic chemical abundances,
heavy elements are the main contributors to the AZZ4 sum.
For the extreme ultra-hot case of near-total ionisation of
all Z, and for modern solar coronal abundances the ΣZ factor
is ≈61.2, mainly due to Fe as discussed in Sect. 2.4 – see
Tables 1 and 2. Note that Fe coronal abundance, for exam-
ple, has been assumed to be 2.9 times photospheric Fe abun-
dance (Feldman et al. 1992). Even higher factors of about 4
have been suggested (Dennis, personal communication).

– At lower ε the contribution from each Zeff rises steeply to a
sharp recombination edge at ε = Ec +VZ , where the flux can
be large, especially if Ec is small and δ large.

– At the edge, the [ ] factor in Eq. (19) goes to [1+Z2
effχ/Ec]δ+1.

This is because the flux of electrons emitting recombination
photons of energy ε is not the flux of those at E ≥ ε, as for
bremsstrahlung, but of those at E = ε − Z2

effχ. Consequently
Ψ is not negligible even at ε 	 Ec. For fully ionised Fe
alone, this factor is ≈[1 + 10/Ec(keV)]δ+1, which, for δ = 5
and at ε = 10 keV, is 64, 11.4, 5.5 for Ec = 10, 20, 30 keV
respectively. Even for lower stage Fe ions (e.g. XXV), com-
mon in flare coronal loops, evidently recombination must be
a significant contributor to the HXR emission in those parts
of the flare.

3.3. Typical results in limiting regimes

N.B. All spectrum figures in this paper (except Fig. 5) have been
plotted for a bin-width of 1 keV to match RHESSI’s spectral
resolution. However, in Fig. 5 we use 0.01 keV resolution so as
to compare it with Plot A of Fig. 4 to see how f-b edges would
look if they were observed at a higher resolution. The 1 keV bin-
ning smears out a lot of the edges of different elements that are
clearly noticeable in Fig. 5. Hence in Figs. 3 and 4, the edges are
not “infinitely” steep as they should be; this is evident in Fig. 5
where they do look “infinitely” steep due to the finer resolution.
Also important to note is that the features seen in Figs. 3–5 are
recombination edges and not spectral lines. None of the figures
in this paper includes spectral lines – leaving them out shows
more clearly where f-b edges exist in the HXR continuum.

In Fig. 1 we show for δ = 3, 5 the actual spectral shapes for
Ec = 10, 25 keV respectively in plasmas of normal solar coronal
abundances, which are: ultra-hot (T 	 108 K; Fe is nearly fully
ionised), hot (T = 2×107 K; Fe well ionised up to Fe XXV) and
cool (T = 106 K; elements up to Si are almost fully ionised). In
Fig. 2 we show the ratios Ψ(ε) for the ultra-hot, hot and “cool”
cases, respectively. The following key features of the hot thin
target situation are apparent from these figures:

– The peak non-thermal f-b contribution, in each hot or ultra-
hot case shown, adds at least 50% to the usual f-f one and in
some cases (δ = 5, Ec = 10 keV) is up to 10 times greater
(1000% increase) even when only ions up to Fe XXV are
present. This is essentially due to the high abundance of
Fe – much higher than thought when recombination spec-
tra were first discussed (Culhane 1969; Culhane & Acton
1970). In Appendix A we evaluate the efficiency with which
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Fig. 1. Actual shapes of non-thermal f-b and f-f spectra for different temperature regimes and non-thermal electron parameters. Note that the cool,
hot and ultra-hot totals are almost identical and the dashed curves nearly indistinguishable for Ec = 25 keV.

f-b yields HXRs compared to f-f, and also derive the ratio Ψ
for the case of a smooth F(E) with no cut-off. This proves,
that in a hot enough plasma, far less electrons and power are
needed than is found when only f-f is included and that, for
smooth F(E),Ψ is largest for large δ and low E spectral roll-
over.

– In the “cool” case (T ≈ 106 K) of elements up to Si almost
fully ionised, the f-b contribution is smaller but not in general
negligible. For example, in the bottom left panel of Fig. 1
(δ = 5, Ec = 10 keV), f-b is about 30% of f-f at 15 keV
energies. This is amply large enough to have a major impact
on inferring F(E) by inversion or by forward fitting (Sect. 5).

– In hot plasma, Fe is by far the most important contributor of
recombination radiation.

– The peak ratio of f-b to f-f increases as δ is increased and/or
Ec is decreased. This is because f-b photons of energy ε are
emitted by electrons of energy E − V which have flux F(E −
V) ∝ (E −V)−δ which is greatest when the minimum E = Ec
is smallest, V is largest and the steepness δ greatest.

– Recombination edges are apparent for the elements with the
highest values of AZeffZ

4
eff – Fe, Si, Mg and O and at energies

ε = Ec + Z2
effχ, thereby creating the possibility of finding the

location of a low energy cut-off Ec should one exist.
– The harder asymptotic γ = δ + 1 for f-f compared with
γ = δ + 2 for f–b (Eqs. (15) and (16)) results in an up-
ward “knee” in the total spectrum clearly visible in Fig. 1
for Ec = 10 keV but also present for higher Ec outside the ε

range of the figure. This could be an important signature in
data of a substantial f-b contribution.

While the edge locations and the spectral shape trends will
be roughly right, our use of the hydrogenic and Zeff approxi-
mations, and adoption of unit Gaunt factors, mean that these
curves/analytic forms can only be used for approximate quantita-
tive fitting of real data. As far as we are aware (Kaastra, personal
communication) the Gaunt factors, rates etc. have only ever been
systematically evaluated for Maxwellian F(E) and sometimes
for forms which can be written as sums of these (such as pure
power-laws with no cut-off), and some occasional considera-
tion of specific non-thermal spectra (e.g. Landini et al. 1973).
Comparison of our Maxwellian results, in the unit Gaunt fac-
tor Kramers approximation, with those of Culhane for the same
parameters shows the necessary corrections in the Maxwellian
case to be significant for quantitative comparison with real data.
In addition, in real cases the non-thermal emission will always
be superposed on thermal contributions (especially important for
the very hot plasmas of special interest here) and also in many
cases on a thick target non-thermal contribution (unless this is
from occulted footpoints), from the flare volume as a whole. In
Appendix B we derive the generalisation of the above equations
to the various cases involved in real flares, viz. finite volume thin
targets, Maxwellian plasmas and thick targets for use in Sect. 4,
where we evaluate the sum of all these contributions for a spe-
cific case.
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Fig. 2. Photon flux ratio of non-thermal f-b to f-f emission for different temperature regimes and parameters. Line styles have the same meaning
as in Fig. 1.
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Fig. 3. Spatially localised spectra from a loop
with the 2002 April 14 event plasma parameters
for two values of Ec. The left plot shows a very
distinct iron edge at ≈22 keV (=Ec + VFe24+)
and a much less predominant oxygen edge at
≈15 keV (=Ec), whereas the second plot shows
very distinct oxygen (≈21 keV (=Ec)) and iron
(≈28 keV) edges. This shows the value of re-
combination as an Ec diagnostic. The “edges”
appear to be of finite slope because of the finite
(1 keV) resolution used.

4. Some practical case study results derived
from a real flare

We saw above and in the appendices that the most favourable
conditions for a substantial recombination contribution are when
the maximum possible amount of the observable HXR source is
a hot plasma (e.g. loop) at SXR temperatures. High density max-
imises the emission measure but may make the source/loop colli-
sionally thick and smear recombination edge spectral signatures
of low energy cut offs. So an optimal case could be a loop which
is just tenuous enough to be collisionally thin and for which the

cool dense thick target footpoints are occulted. (Footpoint re-
moval by imaging is limited by RHESSI’s dynamic range). Such
sources will have a strong HXR source in the coronal loop. One
such event was adopted as a basis for a case study, starting from
the real event parameters. This was the 2002 April 14 event,
which Veronig & Brown (2004) showed to be a hot, dense, col-
lisionally thick loop with a strong coronal HXR source and no
footpoints up to at least 60 keV. Thus the hot coronal source of
non-thermal f-b emission was not diluted by cold footpoint thick
target f-f emission though the f-b edges were smeared because
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Fig. 4. The spectral components for 4 different hypothetical situations. We show these spectra by varying the parameters around the results in
the Veronig & Brown (2004) paper that analyses the coronal thick target 2002 April 14 event. In all cases we keep the same values of δ = 6.7,
Ec = 10 keV and T = 19.6 MK. Plot A is for the thick-target coronal case with the actual event parameters np,Foc according to Veronig and
Brown. Plot B was obtained for the same event parameters but with np reduced 25 times to make the loop collisionally thin above 10 keV and with
footpoint emission occulted. The injection rate is the same as Plot A so the density fraction of fast electrons is 25 times higher. The non-thermal
emission is down by 25 times while the thermal is down by a factor of 625. Plot C is the same as B but with cold thick target footpoints included.
The cold footpoint emission (motsly f-f) is dominant. Plot D is the same as C, but with an injection rate reduced by a factor of 25 so that the
density fraction of fast electrons is the same as in Plot A. Evidently the detectability of the f-b contribution and of associated features in F(E) is
sensitive to plasma parameters and observing conditions/geometry.

the hot loop itself slowed the fast electrons to rest. In Fig. 3 we
show the theoretical spectrum from a hypothetical resolved part
of the coronal loop for two Ec values. We have evaluated the the-
oretical thermal, non-thermal and the whole volume hypothetical
total JB(ε), JR(ε) (from Sects. 2, 3 and Appendix B) for such a
loop, based on our approximate Kramers expressions, in three
loop parameter regimes (Fig. 4):

– Plot A: With the actual hot thick target loop parameters
found by Veronig and Brown, namely δ = 6.7; T = 19.6 MK;
L = 45 × 108 cm; A = 19.1 × 1016 cm2; np = 1011 cm−3;
N = 4.9 × 1020 cm−2; F1 = 5 × 1035 s−1 above E1 = 25 keV.
The total J is dominated by thermal f-b and f-f at low ε but
thick-target f-b at medium ε and thick-target f-f at high ε.
Locally within the loop volume, if this were spatially re-
solved, the spectrum j would be like those in Fig. 3, where
edges are clearly visible in positions corresponding to cut-
off energies of 15 and 21 keV. At a higher resolution, these
edges would look similar to the edges shown in Fig. 5.
Should such edges be found in data, they can diagnose the
all-important Ec parameter.

– Plot B: With the actual parameters found by Veronig and
Brown except with np reduced by a factor of 25 so that the
loop is collisionally thin above about 10 keV but with the
footpoints hidden (limb occulted) so there is no cold thick
target contribution. In this case the thermal emission is also
much reduced because EM = 2n2

pAL is down by a factor
of 625. Somewhere between this and the first case should be
the optimum condition for seeing maximum f-b contribution.

– Plot C: The same as B but with the dominant cold footpoint
thick target emission added to show its diluting effect.

– Plot D: The same as C but with a reduced injection rate and
so the thermal is more dominant than in C and this alters the
total spectral shape a little bit.

The upward “knee” apparent in Figs. 4A, B at around 40 keV
due to the transition from a f-b to a f-f dominated spectrum (cf.
Sect. 3 and Fig. 3) is rarely seen in data but may be present
in some events (Conway et al. 2003). A statistical survey of a
large sample of events should shed light on conditions where
non-thermal f-b is important. Also note that an upward “knee”
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Plot A of Fig. 4, which has the same parameters but for 1 keV binning
resolution.

is present at the transition from a thermal- to a non-thermal-
dominated spectrum. The position of this knee depends on the
plasma temperature and may interfere with the f-b to f-f “knee”,
which depends mainly on the Ec parameter. Hence, although for
certain parametric conditions one may be able to notice two sep-
arate upward “knees”, if Ec is low and T is high, the “knees”
may occur at similar ε and may not be distinguishable in real
data.

5. The inverse problem – effect of f-f on F(E)
inferred from data on j(ε)

We note again that, since even the thin target jB involves an
integral over E while jR does not, any sharp features in F(E)
would be smoothed out in the bremsstrahlung contribution to
the photon spectrum but not in the recombination contribution.
Consequently, an important way to study the effect of includ-
ing f-b on the required properties of F(E) is to consider it as
an inverse problem (Craig & Brown 1986) to infer F(E) from
observed j(ε). Here we consider the following experiment for
the thin target case. (Thick target and thermal cases always in-
volve even greater error magnification – Brown & Emslie 1988).
Generate the total j(ε) including f-b as well as f-f from a spec-
ified F1(E) and evaluate the F2(E) which would be erroneously
inferred by solving the inverse problem ignoring the presence
of the f-b term, as is currently done in all HXR data analysis,
whether by inversion or forward fitting.

By (4) and (11) the total f-f + f-b emission spectrum dJ/dε
from a homogeneous volume V can be written

H(ε) =
∫ ∞

ε

G(E)dE + DΣ
Zeff≤
√
ε/χ

Z4
effAZeffG(ε − VZeff ), (20)

where

H(ε) =
3

8αr2
e

1
ζBmec2npV

ε
dJ
dε

; G(E) = F(E)/E (21)

and D is as given in Eq. (A.2). If we ignore the second (recombi-
nation) term in Eq. (20), as has always been done in the past, for
the Kramers f-f term, the inverse is just (Brown & Emslie 1988)

G(ε) = −H′(E). (22)

10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

Photon Energy (keV)

∆G
/G

 

 
E* = 5 keV

E* = 10 keV

E* = 20 keV

delta = 5
Zeff = 23

Fractional Inversion Error

Fig. 6. Fractional error (∆G/G) in G (Eq. (25)) as discussed in Sect. 5
for E∗ = 5, 10, 20 keV respectively for a shifted power-law due to infer-
ence of G from H ignoring the presence of recombination.

The neglect of the second term can be thought of as an “error”
∆H in our data and if we apply inversion formula (22) to this
“data”, ignoring the recombination “error” we get a resulting er-
ror ∆G in the inferred G given by

∆G(E) =
F2(E) − F1(E)

E
= −DΣ

Zeff≤
√
ε/χ

Z4
effAZeffG

′(E − VZeff ). (23)

It is at once clear that any sharp change in j(ε) i.e. in H(E),
such as the presence of f-b edges, however small, can have a
very large effect on the inferred F2(E). (If the inverse problem is
addressed for more realistic smoother forms of f-f cross section
than Kramers, the “error magnification” is in general even larger
– Brown & Emslie 1988; Piana et al. 2000.) For a power law F
with cut off around say 20 keV, analytically speaking this ex-
pression gives infinite negatives in ∆G(E) at the spectral edges
around 30 keV (for Fe). However when smoothed over a few
keV and added to the f-f term the result would be a “wiggle”
in the F(E) solution in the 30–40 keV range. This is just where
enigmatic features have been reported in some RHESSI spec-
tra and variously attributed to the effects of photospheric albedo
(Kontar et al. 2006), possibly pulse pile up (Piana et al. 2003),
or a high value of Ec (Zhang & Huang 2004).

Another case providing insight is that of a smooth shifted
power-law G(E) = A(E + E∗)−δ−1, which has no edges though
the corresponding F(E) has a smooth peak at E = E∗/δ. In this
case the fractional error in G due to applying (22) ignoring the
recombination term can be expressed as

∆G(E)
G(E)

= (δ+1)
D

E + E∗
ΣZeffZ

4
effAZeff

[
1

1 − VZeff /(E + E∗)

]δ+2

, (24)

where each term in the Zeff sum is zero for E < VZeff = Z2
effχ.

In the case of recombination onto Fe XXV alone (hot
plasma), this gives for δ = 5,

∆G
G
≈ 10 keV

E + E∗
[1 − 7 keV/(E + E∗)]−7 , (25)

which is shown in Fig. 6 for E∗ = 5, 10, 20 keV. Evidently
errors due to neglect of recombination can be large at low E.
The reason is that the Zeff recombination contribution to the
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bremsstrahlung solution for G(E) at E comes from the slope
of G, and not just G itself and at E − VZeff not at E. Figure 6
is similar to Fig. A.2 because F2/F1 = G2/G1 = 1 + ∆G/G1.

This error has very serious consequences for past analyses of
HXR flare spectra, at least in cases where a significant hot dense
coronal loop is involved. For example, the f-b emission spectrum
is most important at lower energies (5–30 keV or so), depending
on the plasma temperature T and low energy electron cut-off
or roll-over Ec, E∗ and is steeper than the free-free. This will
offset some of the spectral flattening caused around such ener-
gies by photospheric albedo (Alexander & Brown 2003; Kontar
et al. 2005) resulting in underestimation of the albedo contri-
bution and hence of the downward beaming of the fast elec-
trons. This fact would weaken the finding of Kontar & Brown
(2006) that the electrons are near isotropic, in contradiction of
the usual thick target description, but for the fact that the flares
they used had rather hard spectra and substantial footpoint emis-
sion – conditions where the f-b correction should be rather small.
Nevertheless it illustrates that care is needed to ensure f-b emis-
sion is properly considered.

Finally, recognising the presence of the f-b contribution, one
can in fact convert integral Eq. (20) into a differential/functional
equation for F(E) by differentiation, namely

G(E) − DΣZeff≥E/χ1/2 AZeffZ
4
effG

′(E − Z2
effχ) = −H′(E), (26)

which is a wholly new class of functional equation in need of
exploration.

6. Discussion and conclusions

It is clear from our findings that ignoring non-thermal f-b con-
tribution as negligible, as has been done in the past, is erro-
neous. Even if we ignore coronal enhancement of element abun-
dances, and use photospheric abundances, f-b contribution can
be very significant. In certain flaring regions, especially in dense-
hot coronal sources or occulted loop-top events, fast electron re-
combination can be of vital importance in analysing data prop-
erly and in inferring electron spectra and energy budgets. It can
have a major influence on inferred electron spectra both as an in-
verse problem and also in forward fitting parameters, including
the important potential to find and evaluate low-energy electron
cut-offs, which are vital to flare energy budgets. While incorpo-
rating f-b into spectral fitting procedures will make it consider-
ably more complicated, an advantage is that the f-b, unlike the
f-f, contribution retains its J(ε) signatures of any sharp features
in F(E).

A major consequence of the low energy f-b contribution is
that, to fit an actual photon spectrum, less electrons are needed,
than in f-f only modelling, at the low E end, which is where
most of the power in F(E) lies. For example, if we consider the
case δ = 5, Ec = 10 keV and ionisation up to Fe XXV, then
we see from Figs. 1 and 2 that inclusion of f-b increases j by
a factor of 2–10 in the 15–20 keV range for δ = 3–5. Thus, to
get a prescribed j in that range we need only 10−50% as many
electrons as inferred from f-f emission only.

We also note that the importance of non-thermal f-b emission
is greatest when non-thermal electrons are present at low E and
with large δ such as in microflares with “hard” XRs in the few
to ten KeV range (Krucker et al. 2002). Such low energy elec-
trons have short collisional mfps and so are more likely to emit
mainly in hot coronal regions, if accelerated there. Microflares
are therefore important cases for inclusion of f-b.

Before we conduct any precise fitting of F(E), involving the
f-b contribution, to real data (e.g. from RHESSI) and include it

in software packages it will be important to include, for both f-b
and f-f, more accurate cross-sections with Gaunt factors etc. and
ionisation fractions as functions of plasma temperature. By do-
ing this, it will be possible to show, for certain events, how vital
recombination is and to improve our understanding of electron
spectra and their roles in flares. However, our Kramers results
already bring out the fact that recombination should not be ig-
nored in the future, and that it may be invaluable in some cases
as a diagnostic of the presence or otherwise of electron spectral
features.
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Appendix A: Efficiency and smooth F(E)

A.1. Comparison of the efficiency of f-b versus f-f HXR yield

In Sects. 3.1 and 3.2, we predicted the jB, jR from a power-law
F(E) and found that the jR contribution could sometimes be
more important than jB. It is of interest therefore, to consider
the following question. If one observes a power-law j(ε) ∝ ε−γ
above some ε ≥ VZ , what electron flux FR(E) would be needed
to generate it in a plasma of solar abundances purely by non-
thermal electron recombination on ion Zeff as compared with
the FB(E) required to do so purely by f-f bremsstrahlung? If we
write, from Eq. (15), the latter as FB(E) = CE−γ+1 then the for-
mer has to be, by Eq. (16),

FR(E) = C(E + VZeff )
−γ/DZ4

effAZeff , (A.1)

where

D =
2πχ√

3ζB
≈ 0.04 keV (A.2)

and the ratio measuring recombination efficiency relative to
bremsstrahlung is

FB(E)
FR(E)

= γZ4
effAZeff

D
E

[1 + VZeff /E]γ, (A.3)

which we show in Fig. A.1 for γ = 5 in terms of each of the
dominant f-b contributions from fully ionised O, Mg, Si and
Fe respectively while the f-f is for all elements. Evidently non-
thermal recombination could be dominant over bremsstrahlung
up to many 10 s of keV as the most efficient HXR source
if the electrons are emitted entirely in a plasma hot enough
(T ≈ 20 MK) for elements up to Fe 24+ to be ionised and is
significant even at lower temperatures.

In terms of the total required electron fluxes FR1, FB1 above
energy E1, the ratio is

FB1

FR1
=
γ − 1
γ − 2

Z4
effAZeff

D
E1

[1 + VZeff /E1]γ−1

≈ 0.02Z4
effAZeff

10 keV
E1

[1 + VZeff /E1]γ−1, (A.4)

which is about 10 for Fe, 0.25 for Si and 0.1 for Mg and O at
E1 = 10 keV.

At higher electron energies (E ≥≈ 17 keV), O becomes more
efficient than Mg, as can be seen in Fig. A.1, because of the
combined effects of the AZZ4 factor and the term containing VZ .
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Fig. A.1. The f-b electron efficiency compared to f-f for the 4 elements
discussed in Appendix A. It is evident from the graph that, if present,
highly ionised Fe is the most efficient source of f-b HXRs in terms of
the F(E) needed followed by Si, O and Mg.

Fig. A.2. The Ψsmooth as discussed in Appendix A and Eq. (A.5). It is
the ratio of jR to jB for the smooth F(E) ∝ E(E + E∗)−δ−1 for E∗ =
5, 10, 20 keV respectively.

A.2. Ratio of jR to jB for an example of a smooth F(E)
with no cut-off

All of the above results are for F(E) with a sharp cut off Ec. To
illustrate how the appearance of j(ε) is modified by inclusion of
f-b as well as f-f for a smooth F(E), a simple case to evaluate is
F(E) ∝ E(E + E∗)−δ−1, which behaves as E−δ at E 	 E∗ but has
a smooth roll-over at E∗/δ. It is simple to show that the resulting
jB(ε) ∝ (E + E∗)−δ/δ for f-f alone and that the ratio of f-b to f-f
in this case is, for ion Zeff alone,

Ψsmooth =
DζZeff

ε + E∗

⎡⎢⎢⎢⎢⎣1 − Z2
eff

ε + E∗

⎤⎥⎥⎥⎥⎦
−δ−1

, (A.5)

which is shown in Fig. A.2 for δ = 5, Zeff = 23.77 and E∗ =
5, 10, 20 keV. We see again that Ψsmooth is largest for large δ and
for small E∗.

Appendix B: Whole flare thin target, thermal,
and thick target expressions for f-f and f-b HXR
emission spectra

Here we extend the above results on local emissivities j(ε) to
estimate total spectral emission rate J(ε) (photons s−1 per unit ε)
from extended flare volumes as required for real flare data.

B.1. Thin target coronal loop

A thin target is one in which F(E) is not significantly modified
by energy losses or gains over the volume. For a loop of half
length L, transverse area A, volume 2AL and density np, the to-
tal emission rate spectra contributions Jthin(ε) are for a power
law F(E) with a low energy cut-off, by Eq. (15),

JBthin(ε) =
δ − 1
δ

8αζB
3

mec2r2
e

ε

2npALFc

Ec

×
[
ε

Ec

]−δ
; ε ≥ Ec

1; ε < Ec (B.1)

and by Eq. (16),

JRthin (ε) = (δ − 1)
32πζRZeff

31/2α

r2
eχ

ε

2npALFc

E2
c

× ΣZeff

×
⎡⎢⎢⎢⎢⎣ ε − Z2

effχ

Ec

⎤⎥⎥⎥⎥⎦
−δ−1

; ε ≥ Ec + Z2
effχ

× 0; ε < Ec + Z2
effχ, (B.2)

where the summation is over all Zeff ≤ (ε−Ec]1/2. These spectral
shapes J(ε) are of course just the same as the thin target j forms,
scaled by the plasma volume.

B.2. Hot coronal loop thermal emission (in the Kramers
approximation)

Both f-f and f-b emissions are included in the standard analy-
ses (e.g. Mewe et al. 1987; Dere et al. 1996) of isothermal hot
plasma contributions to flare spectra, using full cross sections
and ionisation balance expressions. It is therefore surprising that
f-b is omitted from calculations of non-thermal emission, espe-
cially at low ε, where electrons of comparable energy are present
in both thermal and non-thermal populations. In applying our
study of the non-thermal f-b to real data we wish to include ther-
mal emission as it is important at energies under about 20 keV
and so dilutes the visibility of non-thermal contributions. In or-
der to treat the thermal and non-thermal j consistently and allow
meaningful comparisons we use the expressions for the thermal j
relevant to the Kramers cross sections just as in the non-thermal
case – but see remarks previously and below concerning Gaunt
factors and absolute accuracy of our results.

For an isothermal plasma the local Maxwellian electron flux
spectrum is

Ftherm(E) =

[
8
πme

]1/2 E
(kT )3/2

np exp (−E/kT ), (B.3)

which, by Eq. (4), gives for the thermal bremsstrahlung emission
from a uniform loop

JBtherm(ε) =
16αr2

e

3
ζBmec2 ×

[
8
πme

]1/2 2n2
pALe−ε/kT

ε(kT )1/2
(B.4)
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Fig. B.1. Non-thermal f-f and f-b spectra for the thick target case (Eqs. (B.11) and (B.12)) shown for 2 different temperatures: 20 MK that is
pertinent to events such as the 2002 April 14 event and 10 MK, which is more in the range of “microflare” temperatures. It is interesting to note
the three distinct energy regimes for the f-b spectrum, namely: ε < VFe; VFe ≤ ε ≤ VFe + Ec; ε > VFe + Ec. Clearly f-b is very important in the
10–50 keV range, precisely where albedo issues are also important.

and for the recombination

JRtherm(ε) = (B.5)√
2π

27me

64r2
eχ

2

α

2n2
pAL

ε(kT )3/2
ΣZeff ζRZeff exp

⎛⎜⎜⎜⎜⎝Z2
effχ − ε

kT

⎞⎟⎟⎟⎟⎠ ·
These results can be compared with those of Culhane (1969);
Culhane & Acton (1970) who were among the first to explic-
itly address the X-ray spectrum from hot coronal plasmas. Using
the Kramers cross sections is essentially equivalent to setting to
unity all Gaunt factors in their expressions. When we do so, the
ε, T dependences of our JRtherm, JBtherm are identical to theirs –
e.g. JRtherm/JBtherm is independent of ε, the only difference be-
ing that our JRtherm is much larger (in absolute value) than theirs,
mainly because they used the very much lower value of AZ for
Fe believed at that time. Examination of the ε, T dependences
of Culhane’s Gaunt factors shows that they affect quite signifi-
cantly both the f-f and the f-b spectra from a Maxwellian F(E)
and we should expect the same to be true for non-thermal F(E)
like power-laws. Thus, any accurate absolute comparison of pre-
dictions with data will require incorporation of appropriate g,G.
However, these do not affect the absolute orders of magnitude
of JRtherm, JBtherm nor the dependencies on np,V, Fc etc., nor the
locations of edges. So, for the present purpose of demonstrating
the importance of f-b, the Kramers expressions will suffice.

B.3. Thick target (dense loop or footpoint) f-f and f-b
emission spectra

In the thick target case, j evolves in space along with the energy
losses of the electrons. To find j locally one uses the continu-
ity equation (Brown 1972) and then integrates over volume to
get J. However, to get the whole volume J, it is actually simpler
(Brown 1971) to start with the electron injection rate spectrum
Fo(Eo) electrons/s per unit injection energy Eo and use the ex-
pression

Jthick(ε) =
∫

Eo

Fo(Eo)η(ε, Eo)dEo, (B.6)

where η(ε, Eo) is the total number of photons per unit ε emitted
by an electron of energy Eo as it decays in energy. For purely
collisional losses dE/dN = −K/E with K = 2πe4Λ, e being the
electronic charge and Λ the Coulomb Logarithm. Then

η(ε, Eo) =
1
K

∫
E

E
dQ
dε

dE (B.7)

for the relevant radiation cross section dQ/dε. Note that this
assumes H to be uniformly and fully ionised along the elec-
tron path. For partially ionised H the energy loss constant K
is reduced but this situation is not relevant to our hot source
situations.

For our Kramers dQ/dε f-f and f-b expressions (3), (7)
and (9), the resulting expressions, in the case where AZeff are uni-
form along the path, Eq. (B.7) gives

ηB(ε, Eo)=
8αζB

3

r2
e mec2

K

×
[Eo

ε
− 1

]
; ε ≤ Eo (B.8)

0; ε > Eo

and

ηRZ(ε, Eo)=
32πAZeffZ

4
eff

33/2α

r2
eχ

2

Kε
×1; Eo ≥ ε + Z2

effχ

0; Eo < ε + Z2
eff . (B.9)

For a power-law injection rate spectrum of spectral index δo, viz

Fo(Eo) = (δo − 1)
Foc

Eoc

[
Eo

Eoc

]−δo
; Eo ≥ Eoc, (B.10)



518 J. C. Brown and P. C. V. Mallik: Fast electron recombination HXRs

where Foc is the total rate above low energy cut-off Eoc, the
expressions for the non-thermal emission spectra are then by
Eq. (B.6)

JBthick(ε) =
8αr2

e

3
ζBmec2Foc

(δo − 1)(δo − 2)K

×
(
ε

Ec

)−δo+1

; ε ≥ Ec

×
[
(δo − 1)

Ec

ε
− (δo − 2)

]
; ε < Ec (B.11)

and, for ion Zeff ,

JRZeff thick(ε) =
32πr2

emec2

33/2α
ζRZeff

χ2

Kε
Foc

Eoc

×
⎡⎢⎢⎢⎢⎣ ε − Z2

effχ

Eoc

⎤⎥⎥⎥⎥⎦
−δo+1

; ε ≥ Eoc + Z2
effχ

×
⎡⎢⎢⎢⎢⎣Eoc − Z2

effχ

Eoc

⎤⎥⎥⎥⎥⎦
−δo+1

; Z2
effχ < ε < Eoc + Z2

effχ

0; ε < Z2
effχ. (B.12)

For the case of a cold thick target footpoint the total ζR can be
almost as small as 1 if only hydrogen and some low ζR elements
are ionised and even zero if T < 8000 K or so (there being almost
no charged ions present). In these sources the f-b contribution is
negligible or at most a very small correction. For a collisonally
thick hot loop ζR is, however, very much higher.

The main distinction of these hot thick target spectra com-
pared to hot thin targets is that the decay of all electrons to zero
energy means that the signature of the cut off Eoc in the injec-
tion spectrum appears not as a discontinuity in J(ε) but only
in its gradient J′(ε). This gradient break is very noticeable in
Fig. B.1 at energy ε = Ec +VFe. So, even in the thick target case,
spectral diagnosis of any Eoc present is possible. The recombina-
tion edges themselves appear at the relevant ionisation energies
ε = Veff, these being from thick target electrons decelerated to
zero E. These non-thermal recombination spectral edges are then
down in the energy regime below 10 keV which is complicated
by Fe lines etc., making the interpretation of Fo there, and of the
lines, more difficult.
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