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Abstract—This article introduces a new method to improve the
dependability of millimeter-wave (mmWave) and terahertz (THz)
network services in dynamic outdoor environments. In these
settings, line-of-sight (LoS) connections are easily interrupted
by moving obstacles like humans and vehicles. The proposed
approach, coined as Radar-aided Dynamic blockage Recognition
(RaDaR), leverages radar measurements and federated learning
(FL) to train a dual-output neural network (NN) model capable of
simultaneously predicting blockage status and time. This enables
determining the optimal point for proactive handover (PHO)
or beam switching, thereby reducing the latency introduced
by 5G new radio procedures and ensuring high quality of
experience (QoE). The framework employs radar sensors to
monitor and track object movement, generating range-angle
and range-velocity maps that are useful for scene analysis
and predictions. Moreover, FL provides additional benefits such
as privacy protection, scalability, and knowledge sharing. The
framework is assessed using an extensive real-world dataset
comprising mmWave channel information and radar data. The
evaluation results show that RaDaR substantially enhances
network reliability, achieving an average success rate of 94%
for PHO compared to existing reactive HO procedures that lack
proactive blockage prediction. Additionally, RaDaR maintains a
superior QoE by ensuring sustained high throughput levels and
minimising PHO latency.

Index Terms—Radar, blockage prediction, federated learning,
mmWave, 6G, QoE.

I. INTRODUCTION

Millimetre-wave (mmWave) and terahertz (THz) tech-
nologies are anticipated to revolutionise wireless commu-
nication systems due to their large available bandwidths
that can offer multi-Gbit/s data rates [1]. However, high-
frequency bands suffer significant challenges stemming from
their electromagnetic properties, including propagation loss,
atmospheric attenuation, and susceptibility to blockages.
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Therefore, massive multiple-input multiple-output (MIMO)
and beamforming techniques are becoming indispensable
enablers in next-generation wireless networks. MIMO can
compensate for the propagation and attenuation losses using
large antenna arrays to generate narrow line-of-sight (LoS)
beams, which improve the quality of the received signal.
Nevertheless, LoS links experience rapid and temporary
fluctuations in the received signal strength (RSS) when
obstructed by obstacles, especially in dynamic environments
like urban areas. This may lead to frequent handovers (HOs),
which negatively impact the network latency and reliability.
Thus, it is crucial to comprehensively address these challenges
to fully exploit the potentials of mmWave and THz bands and
develop reliable wireless communication systems.

Recently, several mechanisms and methods have been
proposed in the literature to alleviate the impact of beam
blockage. The traditional approach entails implementing a
multi-connectivity mechanism [2], wherein user equipment
(UE) is connected to multiple base stations (BSs) simultan-
eously. As a result, in the event of a blockage, the UE can
still be served by other intact links, increasing the likelihood
of maintaining service continuity. Other techniques leverage
dual-band operation, i.e., sub-6GHz and super-6GHz (24-
86GHz), to identify blockages [3]. These methods capitalise
on the fluctuations in lower-frequency signals caused by
signal diffraction and employ them as an early warning
of potential link blockages at higher frequencies. Instead
of complicating the communication system, recent studies
suggested monitoring the behaviour of non-LoS components
of the mmWave links to predict whether the primary LoS
component will experience a blockage [4]. However, these
methods are typically reactive in their response to blockage
events. This is due to their inadequate ability to predict beam
blockages with a sufficient prediction interval that allows the
network to implement preemptive measures. Hence, service
interruption occurs with each blockage event.

One promising solution for addressing LoS link discon-
nection issues is to proactively predict blockages before they
happen, enabling the network to make timely decisions, such
as beam switching or handover. To accomplish this, one
possible solution is to leverage the advancements in machine
learning (ML) and utilize relevant information about the
environment surrounding the LoS links to anticipate future
obstacles, thereby acquiring proactive capabilities. Sensing
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modalities, including vision, light detection and ranging
(LiDAR), and radar sensors, are used to increase the network’s
awareness of the surrounding environment. Recent studies
explored the use of network-side information gathered from
these sensors to address challenging problems associated
with mmWave networks, such as user positioning, beam
selection, and blockage prediction. Early works in [5] have
shown promising results when leveraging camera imagery
information and deep learning (DL) models [6] to anticipate
blockage events before they happen. However, deploying
vision sensors may not always be feasible due to regulatory
and privacy concerns. Moreover, image quality may be
affected by low-light and adverse weather conditions. Another
line of work considers LiDAR sensors to aid the operation of
mmWave networks by utilising point clouds captured from
the served environment [7]. Similarly, such approaches are
affected by weather conditions, and their practicality is limited
to specific scenarios.

The aforementioned limitations have spurred a new research
direction that involves the adoption of radar technology for
predicting link blockages. This is achieved by detecting
obstacles through radar fingerprints. The reasons for this shift
to radar-based solutions are due to their low cost, ability
to capture useful object features like range, velocity, and
direction. In addition, radar technology offers lower privacy
risk and, most importantly, enables low-latency transmissions
as it operates at high-frequency bands. To date, few studies
have considered the use of radars to address beam blockages
problem in high-frequency networks [8], [9]. However, these
studies are preliminary and restricted to specific scenarios.
Furthermore, they did not adequately consider the dimensions
of obstacles, which are crucial factors in determining the
potential blockage of an LoS link. Additionally, existing
studies overlooked the significance of the height of both the
BS and the UE, which significantly influence the status of the
mmWave channel. Consequently, further research is required
to fully explore the potential of using radars to proactively
predict blockages and achieve promising reliability and latency
gains for the practical realisation of next-generation networks,
which is the focus of this paper.

Specifically, in this work, we introduce a novel framework
named radar-aided dynamic blockages recognition (RaDaR)
that handles the challenge of frequent beam blockages in
high-frequency outdoor networks. RaDaR employs radar
sensors to enhance the network’s situational awareness by
monitoring and tracking the movement of objects to generate
range-angle and range-velocity maps. These maps are useful
for analysing the scene and making accurate blockage
predictions. Unlike previous related works, RaDaR leverages
radar information to predict the height of objects, a critical
factor in determining whether an object will obstruct the
LoS link or not. Additionally, the framework’s end-to-end
execution time is measured to provide the network with a
proactiveness merit in predicting blockages and performing
HO, to avoid link interruption and ensure high QoE. In
addition, RaDaR incorporates the FL training mechanism,
which brings three important benefits: scalability, knowledge
sharing, and resource efficiency. As a result, RaDaR supports

network expansion to new development areas and consolidates
knowledge from multiple SBSs by performing distributed
learning rather than centralised learning. This consequently
reduces the overhead on the network’s transmission resources.
Benefiting from the real-world DeepSense dataset [10], a set of
non-independent and identically distributed (non-IID) features
is extracted to collaboratively train a dual-output NN model
offline using a group of SBSs. The trained model is then used
online at each SBS to predict the occurrence of a blockage
event and the remaining time before the obstacle obstructs the
link. With this information, RaDaR can preemptively decide
the optimal instant to switch the beam or initiate proactive
HO (PHO) to maintain the users’ QoE as high as possible.
Our contributions can be summarised as follows.

• We present a novel framework, called RaDaR, which aims
to improve the reliability of federated mmWave networks
by integrating radars for the anticipation of LoS link
blockages while considering latency and QoE metrics.

• We utilise the FL algorithm to perform collaborative
model training at each SBS by using information acquired
from radar placed at the top of the SBS. FL provides
the framework with vital features, including scalability,
knowledge sharing, and conserving network resources.

• We employ the large-scale real-world DeepSense dataset
to evaluate the effectiveness of our proposed framework.
Specifically, we augment scenario 30 and create diverse
environments that reflect practical scenarios.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III presents the system,
channel, and blockage models. Section IV provides a formal
description of the beam blockage and PHO problem that is
addressed in this paper. The proposed framework is discussed
in detail in Section V. Section VI introduces the experimental
and simulation setup, along with the main results of that
evaluation. Finally, Section VII gives concluding remarks.

II. RELATED WORK

In this section, we review the state-of-the-art studies
that have proposed solutions to mitigate the issue of beam
blockage in high-frequency communication systems. These
works can be categorised into two main strategies in terms
of data acquisition for training the ML models: (i) wireless
information-based approaches [3], [11]–[13] and (ii) sensing
information-based approaches [5], [7], [14]–[16]. Table I
briefly outlines the key techniques, including their advantages
and limitations.

1) Wireless information-based approaches: Those studies
are further classified into three distinct groups based on the
targeted environment: indoor, outdoor, or both. For example,
the work in [11] proposed utilising a long short-term memory
(LSTM) network to predict the fluctuations in received power
for one or more links in the next time instant. Others relied
on the recurrent neural network (RNN) and meta-learning
concept to predict blockages in indoor industrial environments
[12]. Considering outdoor methodologies, the study in [3]
focused on controlling the mmWave propagation channel
by adopting intelligent reflective surfaces (IRSs) to avoid



3

Table I: Existing research about the challenge of beam blockage in mmWave networks.

Ref. Date Algorithm Indoor or
Outdoor? Advantages Limitations

[8] Oct. 2016 Radar-based mmWave medium access (RadMAC). Indoor RadMAC can significantly enhance throughput
and link stability.

No consideration for the effect of the BS/UE/object
heights.

[11] June 2020 Multi-directional links quality prediction using an
LSTM model. Indoor Predcting the quality of several links within a

single or multiple cells.
Insufficient time for optimising resources to mitigate
potential link failures.

[3] Oct. 2020 DL-based blockage avoidance in IRS-assisted
mmWave networks. Outdoor High efficient beam management with reduced

frequent handover. Increased network design and operation complexity.

[5] June 2021 CNN and RNN models trained using visual and
wireless information. Outdoor CV is employed to foster an awareness of the

surrounding environment.
Privacy concerns, challenges in low-light and bad
weather conditions, no target user identification.

[12] Dec. 2021 Meta-learning based RNN for blockage prediction. Indoor Less data is required to train ML models. Risk of overfitting, challenge for generalisation to
unseen data.

[9] May 2022 CNN and LSTM blockage prediction based on
radar data. Outdoor Predicting link disruption up to one second

ahead.
The study is limited to a very specific scenario, not
considering the effect of the BS/UE/vehicle heights.

[13] June 2022 LSTM-based blockage prediction using signal
diffraction characterestics. Both Generalisation from outdoor to indoor

scenarios. An increase in both system complexity and cost.

[17] June 2022 DNN model trained on beam measurement
reports. Indoor Rely exclusively on the mmWave channel

measurements. Evaluations based on limited obstacles speed

[15] Oct. 2022 Latency-aware vision-aided proactive blockage
prediction. Outdoor Reduced network latency and high QoE. Privacy concerns, limitations in low-light and bad

weather conditions.

[14] Jan. 2023 Channel-oriented semantic communications. Outdoor Enhanced mmWave system reliability. Challenges in low-light and bad weather conditions,
no target user identification.

[7] Jan. 2023 3DCNN and GBRT models trained using
LiDAR information. Indoor Anticipate attenuation in link quality up to

1000 ms ahead.
Limited coverage area, less effective in bad weather
conditions.

[16] Mar. 2023 FL-based latency-aware dynamic blockage
prediction. Outdoor FL algorithm is employed, and latency aware

proactive HO triggering. Challenges in low-light and bad weather conditions.

blockages. In contrast, the authors in [13] employed the
diffraction characteristics of the signals in sub-6GHz uplinks
to predict mmWave blockages by training an LSTM model.

2) Sensing information-based approaches: Similarly, while
some of the sensing-aided works are tailored for indoor
networks [7], the majority of them are designed for outdoor
systems [5], [14]–[16]. The work in [7] relied on LiDAR point
cloud and ML to perform proactive predictions about mmWave
channel received power. On the other hand, the concept of
semantic communication was utilised in [14] to anticipate
blockages and aid the operation of the network. Recently,
a new paradigm called vision-aided wireless communication
has emerged with the aim of leveraging vision sensors to
develop an awareness of the surrounding environment and
facilitate the operations of mmWave networks. This approach
has been investigated in several previous works, including [5],
[15], [16]. In [5], a fusion of RGB images and beamforming
vectors was employed to train DL models and predict LoS
link blockages before they occur. In addition, the authors in
[15], [16] proposed frameworks that employ computer vision
(CV) and multi-output NN models to proactively predict the
blockages and estimate the time until the user gets blocked.

Radar-based blockage prediction is a nascent research
direction inspired by the advantageous features of radar
technology. To date, only a limited number of studies
have explored the effectiveness of this approach [8], [9].
For instance, the work in [8] is utilising radar sensors
to enhance the reliability of mmWave systems in indoor
environments. The study proposed a concept called radar-
based medium-access (RadMAC), which leverages reflected
radar signals to enable intelligent beam-steering decisions
based on blockage prediction and avoidance. Likewise, in
[9], it was demonstrated that mmWave BSs can be integrated
with frequency-modulated continuous-wave (FMCW) radars
to obtain valuable information such as range and velocity
that aid in predicting network obstacles. Nevertheless, these
studies adopted a generalised blocking assumption that does

User

FMCW

radar

Potential

blockage
SBS

Figure 1: The proposed system model of the RaDaR framework.

not account for the dimensions of the detected objects, as
well as the height of SBSs, UEs, or objects. As a result,
such assumptions may provide inaccurate information about
the disruption of the wireless link.

III. SYSTEM MODEL

The considered system comprises several SBSs and
stationary1 users in a vehicular environment, as shown in
Fig. 1. The SBSs and users are equipped with a global
positioning system (GPS) that is supported by a real-time
kinematic network. This enables accurate three-dimensional
geolocation with sub-centimetre precision [18]. Moreover, the
SBS is equipped with two primary components: (i) a phased
array antenna that produces LoS beams to serve users and (ii)
an FMCW radar mounted at the SBS to detect and track mobile
objects in the operating vicinity. In the following subsections,
we explain the signalling models for the network and radar
components.

1The term ‘stationary’ is used to indicate that any user will remain within
the effective coverage range of the beam.
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A. Channel and Blockage Models

The considered system operates at 60 GHz using orthogonal
frequency division multiplexing (OFDM) with K subcarriers
and a cyclic prefix of length Q. Each SBS is equipped with a
uniform linear array (ULA) consisting of M antenna elements.
These elements are utilised to produce narrow directive beams
that maximise the receive beamforming gain at single-antenna
UEs. Moreover, we assume that each SBS has a predefined
beamforming codebook F = {fi}Bi=1, fi ∈ CM×1, where
B denotes the total number of beams in the codebook. Any
beamforming vector can be represented as:

fi =
1√
M

[
1 ej

2π
λ d sin(ψi) . . . ej

2π
λ (M−1)d sin(ψi)

]T
, (1)

where 1√
M

represents the normalisation factor, d denotes
the distance between adjacent antenna elements, λ is the
wavelength of the carrier frequency, ψi ∈ { 2πi

B }B−1
i=0 is the

steering angle, and T indicates the transpose notation.
The objective of the network is to determine the optimal

beam f⋆ that yields the highest RSS at the UE. To accomplish
this, the SBS acquires a pilot message from the UE and uses
it to train all the beams in the codebook to identify the best
beam. Once selected, the received signal at the UE side on the
kth subcarrier can be represented as:

yk =
√
EkhHk f⋆sk + nk, (2)

where
√
E is the transmitter gain, h ∈ CM×K indicates the

narrow band channel between the SBS and the UE, (·)H
denotes the Hermitian transpose, s is the transmitted data
symbol, and n ∼ CN

(
0, σ2

)
is the additive white Gaussian

noise with zero mean and σ2 variance.
Assuming that the multi-path components of the signal

arrive at the receiver through P distinct paths. The shortest
path is the LoS path, which is the path of interest in our study
and is denoted by p⋆, and the other paths represent the NLoS
components. Hence, the channel between the transmitter and
the receiver can be mathematically expressed as:

hk = hLoS
k + hNLoS

k , (3)

where the LoS and NLoS channels are given respectively as
follows [19]:

hLoS
k =

Q−1∑
q=0

αp⋆e
−j 2πk

K qℓ (qTs − τp⋆)a (θp⋆ , ϕp⋆) , (4)

hNLoS
k =

Q−1∑
q=0

P\{p⋆}∑
p=1

αpe
−j 2πk

K qℓ (qTs − τp)a (θp, ϕp) , (5)

where αp, τp, θp, ϕp are the gain, delay, azimuth, and elevation
angles of the arrival of path p, respectively. Ts is used to denote
the sampling time, and a is the ULA steering vector [19].

This study employs a blockage fading channel model to
include the impact of blockages on the communication system.
Let b denote the LoS blockage status and is defined as:

b[t] =

{
1, LoS path is blocked

0, LoS path is not blocked.
(6)

Therefore, the mmWave channel for any subcarrier k at the
time instant t ∈ Z+ can be updated as follows:

hk[t] = (1− b[t]) hLoS
k [t] + hNLoS

k [t]. (7)

It is noteworthy that, in practical scenarios, NLoS signals
exhibit a relatively negligible impact on high-frequency
communication systems due to their considerably lower
signal-to-interference-plus-noise ratio (SINR), rendering them
less desirable for robust and reliable communications [20],
[21]. Furthermore, these systems naturally have few NLoS
links with significantly inferior channel gains compared to
LoS counterparts, even in the presence of blockages [22].
Thus, it is reasonable to assume that wireless networks in
mmWave and THz bands predominantly hinge on LoS beam
communications for the delivery of reliable and highly efficient
data transmission.

B. Radar Model

In our system, an FMCW radar is installed in each SBS
to obtain measurements of the surrounding environment and
leverage them to develop a proactive mechanism for predicting
potential network blockages. In each measurement, the radar
transmits a frame of L frequency-modulated chirps that
represent continuous waves of radio signals separated by
pause time τp. Each chirp (a.k.a. ramp) has a linearly varying
frequency that starts from fc and ends with fc+mt, given as:

Xchirp(t) = At exp
(
j
(
2πfct+ πmt2

))
, 0 ≤ t ≤ τc (8)

where At denotes the transmitter gain, m = B/τc is the slope
of the chirp signal, which has bandwidth B and duration
τc. Upon transmitting all chirps, the radar system remains
inactive until the initiation of a new frame. However, during
the frame time, the radar receives the signals that are reflected
by the target objects. The received signals are subsequently
directed to a quadrature mixer, which combines the transmitted
and reflected chirps to generate in-phase and quadrature
components. The mixed signals are then processed by a low
pass filter to produce intermediate frequency (IF) signals. The
IF signal captures the variations in frequency (a.k.a. beat
frequency) and the phase between the transmitted and reflected
signals. The IF signal can be mathematically represented as
[23]:

Y (t) = AtAr exp (j (2πfcτrt + 2πmτrtt)) , 0 ≤ t ≤ τc (9)

where Ar is the receiver gain, τrt = 2r/c is the round-trip
delay of the radar signal reflected from the object, which
depends on the distance r between the object and the radar,
as well as the speed of light c.

The IF signal then undergoes analog-to-digital conversion
(ADC) and is subsequently sampled at a rate of fs, producing
S samples per chirp. Assuming the radar is fitted with Mr

receive antennas, the number of samples per measurement will
be Mr ·S ·L. These samples are represented as R ∈ CMr×S×L,
and they constitute the fundamental information used to infer
object-related information in RaDaR.

Range and velocity calculation: Suppose an object has a
time-varying distance r(t) = r0 + x(t), where x(t) = vt is a
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Figure 2: (a) Radar is used to gather situational information, (b) this
information is used to generate the localisation vector of the object.

function denotes the distance variation of an object moving at
v velocity. Thus, the round-trip time can be written as:

τrt =
2r0 + 2vt

c
. (10)

After substituting (10) in (9) and performing some mathemat-
ical manipulations, the IF signal can be written as follows:

Y (t) = AtAr exp

(
j
4π

c

(
mvt2 +mr0t+

v

λR
t+

r0
λR

))
, (11)

where λR denotes the wavelength that corresponds to the
operating frequency of the radar. Note that the first and last
terms of the exponent have limited usefulness in extracting
range and velocity information. The first term is very small,
and the last term remains constant. In contrast, the second
term provides valuable range information, while the third term
enables the extraction of velocity information.

After sampling the IF signal with the ADC converter, a fast
Fourier transform (FFT) is applied along the time samples
direction, referred to as Range-FFT, to determine the range
of the object2. The peak of the power spectral density output
reveals the range information of the target object. Additionally,
performing a second FFT on the chirp samples, known as
Velocity-FFT, helps determining the target object’s velocity
by observing the peak of the output spectrum.

Angle and direction estimation: The utilisation of MIMO
antennas in radar systems enables the estimation of the
angle of arrival (AoA). By implementing an additional FFT
in the direction of the receive antenna samples, referred
to as Angle-FFT, the angular information can be extracted.
Specifically, the variation in distance between the object and
each receiving antenna causes a phase shift in the FFT peak,
which corresponds to angular information. On the other hand,
the object movement direction can be easily identified by
observing changes in the AoA, or alternatively by checking
which of the in-phase or quadrature components of the
complex beat signal is leading in phase. Finally, performing
range, velocity, and angle FFTs would result in radar cube,
which can be viewed as the stack of range-angle maps of each
velocity value.

IV. PROBLEM DESCRIPTION AND FORMULATION

Our main objective is to utilise radar measurements R
for detecting objects and predicting forthcoming LoS beam

2Multiple ranges can result for an object. However, we consider the shortest
one, which is usually produced by the nearest upper edge.

blockages. This decision is facilitated by knowing the location
information of the users and the potential obstacles. Once a
stationary user u is connected to the network, the SBS activates
the radar sensor to monitor the surrounding area. Assuming
that a number of objects denoted as O are detected in the
ith measurement Ri. Each object o ∈ O will be continuously
monitored until it exits the radar’s field of view (FoV). During
this monitoring process, the object’s situational parameters,
which include its range ρ, velocity υ, AoA φ, and direction
⋎ described in Fig. 2(a) are extracted. Based on the height
of the radar H and the height of the object ho, which will be
discussed in Section V-A, we utilise the situational information
to construct a six-dimensional localisation vector L for the
object, given by Lo = [ro, xo, yo, θo, vo, no], where:

ro =
√
(ρ2 − (H − ho)2)

xo = ro sin(φ)

yo = ro cos(φ)

θo = tan−1 yo/xo

vo = υ, no = ⋎.

(12)

These features are derived by placing the SBS at the Cartesian
origin and considering the x-y plane. Specifically, we define
ro as the distance from the SBS to the object, and xo and yo as
the object’s x and y coordinates, respectively. Additionally, we
use θo to represent the angle between the positive x-axis and
the line passing through (xo,yo) and the origin. The object’s
speed is denoted by vo, and no signifies the direction of its
movement, which can be either “left” or “right.” Please refer
to Fig. 2(b) for further illustration.

Given a set of stationary users U , we assign to each user
u ∈ U a four-dimensional localisation vector denoted as
Lu = [ru, xu, yu, θu]. These features are similar in their
definition to those related to the detected object and are
obtained by converting the user’s GPS information to Cartesian
using the universal transverse Mercator tool [24]. Then, for
each user u, we generate Su,o = {Lu,Lo}, with the objective
of classifying whether this data sample results in a future
blockage b ∈ {0, 1}. 0,1 denote beam non-blockage or
blockage, respectively. Moreover, we estimate the remaining
time until the obstacle obstructs the LoS connection, denoted
as Tb and is defined as:

Tb =

{
ξ , b = 1, ∀ξ ∈ R+

−1, b = 0,
(13)

where −1 indicates that the value is not applicable due to the
absence of potential blockage. Therefore, su,o = {bu,o, Tbu,0}
is defined as the labels associated with each data sample Su,o.

The user-object localisation information could be leveraged
to intelligently handle channel disruptions and enhance
network reliability. To formulate that, our objective is to design
an ML model, denoted as ΨΘ(S), that can simultaneously
perform classification and regression. This model takes in
user-object data samples S and generates prediction ŝ. These
predictions are governed by a set of parameters Θ adapted
based on a labeled dataset D = {Su,o, su,o}. The model
aims to maximise the probability of accurately predicting



6

link disconnections while minimising the error associated with
predicting the blockage remaining time, as given below:

max
ΨΘ(S)

U∏
u=1

P
(
b̂u,o = bu,o | Su,o

)
, ∀u ∈ U, ∀o ∈ O (14)

min
ΨΘ(S)

U∑
u=1

(|T̂bu,o − Tbu,o |), ∀u ∈ U, ∀o ∈ O (15)

V. THE PROPOSED RADAR FRAMEWORK

In this section, we present RaDaR, an ML-based approach
for predicting beam blockages in beyond fifth-generation
(B5G) and sixth-generation (6G) networks using radar
data. RaDaR utilises a dual-output NN model trained on
bundles of radar measurements to provide the system with
real-time blockage handling intelligence, thereby improving
the performance of next-generation networks. In the next
subsections, we provide an in-depth explanation of the
proposed solution.

A. Overview and Schematic Diagram

This study focuses on practical communication systems,
particularly in the context of ultra-dense networks (UDNs).
UDNs densify SBSs and LoS links per unit area. However,
downscaling communication systems has complicated the
challenge of mobility, particularly in dynamic areas like smart
cities. SBSs use narrow directive beams to connect users to
the network, making the UE’s position relative to the SBS
critical for service continuity. However, the presence of mobile
objects can obstruct LoS links, leading to fluctuations in data
rates. Conventional wireless networks can only detect the
presence of blockages when the user’s throughput fluctuates
or when the link is disconnected. This concludes that the
network is reactive to blockage events, resulting in poor
performance. To overcome this challenge, wireless networks
must shift from reactiveness to proactiveness by having a sense
of their surroundings. Proactiveness must be integrated as a
key dimension using existing sensing modalities to improve
wireless networks. Therefore, we adopt radar sensors where
each SBS is equipped with an FMCW radar to monitor the
coverage area. The information obtained from radars is vital in
dealing with link blockages and controlling the communication
system. Fig. 3 illustrates the proposed framework’s schematic
diagram, which consists of three main phases: obstacles
detection phase, training and inferencing phase, and PHO
decision phase.

1) The obstacles detection phase: Not every object detected
by the radar will necessarily act as a blockage disrupting the
communication channel. The occurrence of a blockage event
in our system model is highly dependent on the position of
the antenna array, the UE, and nearby objects, the direction of
object movement, and the dimensions of the objects, especially
their height. Therefore, it is imperative to accurately identify
actual obstacles to prevent unnecessary HOs. To achieve this,
when a stationary user is connected to the network, the serving
SBS uses the three-dimensional (3D) location information
of the user (xu, yu, zu) and the antenna array (xA, yA, zA)
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Figure 3: Schematic diagram of the proposed framework.

to determine the formula of a 3D line crossing them. This
equation can be expressed as a vector equation in mathematical
terms as follows:

< x, y, z >=< xA, yA, zA > +η < ι, ς, κ >

(ι, ς, κ) = (xu − xA, yu − yA, zu − zA)
(16)

where η is a parameter describing a particular point on the
line, and < ι, ς, κ > is the direction vector. At the same
time, the SBS activates the radar. The radar collects and
forwards the reflected signals to a processing unit, where
the FFT process is executed to generate a radar cube. Upon
detecting an object, the framework utilises the radar cube
information to determine the object’s range, velocity, AoA,
and movement direction. Subsequently, the framework must
establish the object’s localisation vector. However, the object’s
height remains unknown, a key parameter for constructing the
object’s localisation vector, as highlighted in (12).

To determine the height of a detected object, we employ
one of the several studies available in the literature that
tackled this issue through radar technology [25], [26]. The
most appropriate technique involves using radar fingerprints
and residual networks (ResNets) to classify objects in real-
time. Then, this technique determines the objects’ heights by
referencing a predefined table that includes the dimensions of
each classified object [26]. This study is primarily concerned
with predicting the timing of LoS link blockage, a task that
can be accomplished by knowing the range and height of
an object. While comprehensive object dimensions, such as
length and width, are of lesser importance for this purpose,
they will become crucial for estimating the duration of link
blockages [27]. Investigating these full object dimensions
represents a potential area of research expansion in the future,
building upon this work. We assume that our framework adopts
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Figure 4: Obstacle detection analysis: (a) the use of 3D line equation and y = yo plane to determine the point of intersection. Assuming
object’s height is ho, then (b) ho > zI , means a blockage, (c) ho = zI , means a blockage (d) ho < zI , means no blockage.

the aforementioned approach to determine the height of the
detected object, which, in turn, is used to generate the object’s
localisation vector. Subsequently, the framework generates the
plane y = yo and calculates the point of intersection between
the 3D line equation and the plane, denoted as (xI , yI , zI)
as illustrated in Fig. 4(a). If the direction of the object’s
movement is toward the 3D line, the framework compares zI
with the ho to assess the potential for obstructing the LoS link.
When ho is greater than or equal to zI , this means the object
will block the connection, as demonstrated in Fig. 4(b) and
4(c). Conversely, if ho is less than zI , this means the object
most likely will not block the connection, as shown in Fig.
4(d).

2) Training and inferencing phase: The next phase involves
sampling the surrounding environment and collecting the
necessary data samples for supervised model training. The
framework acquires the requisite dataset to train the NN model
for predicting the status and time of blockages by localising
users and objects. The training process is performed offline
using the FL algorithm, in which each SBS contributes its
collected datasets to collaborate on model training. Afterward,
the trained model is deployed online to perform inferencing.

3) PHO decision phase: If a blocking event is anticipated,
the primary objective of the framework is to prevent
users shadowing and maintain the connection by proactively
deciding to perform a HO. This decision is supported by
predicting the remaining time until the obstacle blocks the
LoS links T̂b. Knowing this time enables better planning for
the optimal time to perform HO and maintain the QoE at its
highest possible level. However, it is important to measure the
total time required by the proposed framework, denoted as TF ,
which comprises three main sub-time parameters as follows:

TF = TR + TInf + THO, (17)

where TR is the time duration that begins when the radar is
activated and continues until the radar cube information for a
single measurement is processed, including the classification
of the detected objects. TInf represents the model inferencing
time, and THO indicates the time required to switch a user to
another stable connection. Moreover, picking the optimal time
instant for initiating proactive HO is facilitated by introducing
a new time parameter called the delay time (TD). This
parameter represents the idle time between the completion of

Table II: Radar system parameters [10].

Parameter Value
No. of transmitters 1
No. of receivers 4
No. of chirps 128
Start frequency (fc) 77 GHz
Chirp slope (m) 15015 GHz/s
Chirp duration (τc) 60 µs
Chirps pause time (τp) 5 µs
No. of samples per chirp 256
Sampling rate 5 MHz
Max range 100 m

inferencing and the triggering of HO, and is defined as follows:

TD ≤ T̂b − TF . (18)

B. Radar Measurements Processing

The TR parameter entails several sub-processes that the
framework executes to prepare for the next stage of generating
the data samples. Table II presents the typical radar system
parameters considered in this study [10]. Initially, we measure
the duration of each measurement, denoted as Tm, which
involves transmitting 128 chirps, each lasting for 60 µs,
requiring a total of 8.3 ms. Next, we calculate the maximum
time a radar signal can remain in the air, given that the
maximum radar range is set to 100 meters. This time is
expressed in microseconds; however, it can be disregarded
since the framework’s timescale is in the millisecond range.
Then, we measure the sampling time Ts required to perform
ADC and sampling of the received reflected signals. Ts is
calculated by dividing the number of samples per measurement
by the sampling rate and is found to be 26.2 ms.

After acquiring the radar measurements in the form of
samples, the next step is to measure the time taken to perform
FFT and generate the radar cube, represented as TFFT .
Assuming an FFT process has a complexity of O(n log n),
and a single token n requires one nanosecond to execute,
we estimate that generating a radar cube per measurement
requires performing three FFTs, resulting in a processing time
of 6 ms [28]. Furthermore, we identify the time required to
classify the detected object, denoted as Tc, in the adopted
work. To ensure real-time object classification, we refer to a
previous study [29] that demonstrates the ResNet-50 model’s
inference time to be 26 ms, which is considered near real-time.
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Figure 5: Diagram of time parameters and descriptions.

Therefore, we assume that the adopted work requires a similar
time to classify the detected object. In summary, the following
equation defines the sub-processes times covered under TR:

TR = Tm + Ts + TFFT + Tc. (19)

Based on the above assumptions and discussion, TR is
calculated to be around 66.5 ms for our illustrative realistic
scenario. Fig. 5 provides a summary of the defined time
parameters in the RaDaR framework and their respective roles.

C. Federated Learning Design for Model Training

This study aims to select a model that meets various re-
quirements, including high prediction accuracy, low inference
latency, collaborative training capability, and simultaneous
classification and regression ability. Through careful investig-
ation, we design a three-hidden layer NN model that processes
user-object data samples and produces dual predictions of
blockage status and time, as depicted in Fig. 6. Furthermore,
our study aligns with the current research trend of using the
FL approach instead of the centralised learning mechanism
to provide several benefits, such as safeguarding data privacy,
improving bandwidth efficiency, and promoting scalability and
knowledge sharing. This approach enables the framework to
be generalised by learning from different scenarios, facilitating
its deployment in new development areas.

1) Offline learning phase: The proposed dual-output NN
model is trained offline using the FL mechanism. The model
comprises an input layer that receives ten features of user-
object data samples Su,o, followed by three hidden layers with
128, 64, 32 neurons, respectively. The model has two output
layers: a classification layer with two neurons activated by the
softmax function and a regression layer with a single neuron
activated by the linear function. The model’s architecture is
depicted in Fig. 6. The loss functions used are mean absolute
error (MAE) and sparse categorical crossentropy. Additionally,
the model’s optimiser, learning rate, batch size, and epochs
are set to Nadam, 0.001, 100, 10, respectively. The training
process involves SBSs acting as clients participating in model
training. In this study, we use five clients, but the framework
is scalable and can accommodate more clients. Each SBS
utilises its user-object data samples to iteratively train the

… … ……
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Output layers

Hidden layers

ReLU

Softmax

Linear

෠𝑇𝑏

𝑏 = 1

𝑏 = 0

𝑆𝑢,𝑜

Figure 6: The structure of the developed dual-output NN model.

NN model and reports the model updates to a central server
located, for example, in a macro-BS or the cloud. Moreover,
the server follows the federated averaging method [30] to
aggregate the shared model parameters by computing their
weighted average. The weight of each update is proportional
to the number of data points of each client. In addition, the
number of FL communication rounds is controlled using the
delta-based FL stopping technique [31] to avoid suboptimal or
unnecessary communication rounds.

Development dataset: The NN model is trained and
evaluated using a combination of realistic and synthetic
dataset that are prepared by exploiting the real-world data
from scenario 30 of the DeepSense 6G [10]. This testbed
closely resembles our system model, wherein a transmitter
and receiver located on opposite sides of a two-way city
street. The scenario offers diverse data modalities, including
radar measurements and blockage information with associated
timestamps. By computing the difference between timestamps,
we can label user-object samples and determine when the
detected object obstructs the LoS link. However, in scenario
30, every object is blocking the LoS link due to the low
height of the BS, which does not necessarily reflect practical
network deployments. In contrast, our system considers more
practical communication systems, where the detected objects
may or may not cause blockages depending on the height
of the SBS. Additionally, scenario 30 only involves a single
BS communicating with a single stationary user, whereas our
study targets wireless networks that involve multiple SBSs and
users.

To overcome these limitations, we analyse and augment
scenario 30 with the objective of generating multiple distinct
environments featuring diverse datasets that replicate the
complexity found in real-world data distributions. More
specifically, in real-world context, data collected from distinct
endpoints often exhibit substantial variations in data charac-
teristics, class distributions, and statistical properties. Non-IID
datasets offer a more accurate representation of these real-
world data distributions. Therefore, our goal is to deliberately
introduce the non-IID attribute in the developed wireless
environments by generating diverse synthetic datasets for
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Figure 7: Labeling user-object data samples: (a) blockage status of
various cases, (b) A case demonstrating the calculation of the Tb.

each SBS participating in the FL process. The augmentation
process commences with the comprehensive examination
and understanding of all parameters within Scenario 30
testbed, especially those contributing to suboptimal user
link connectivity with the BS. Subsequently, new and
distinct wireless networks are thoroughly constructed using
Python programming tools. For each augmented network,
various testbed parameters are adjusted, including users and
objects positions, objects heights, and objects speeds. These
adjustments are based on different distributions to encapsulate
the non-IID characteristic, which is further validated by
ensuring that the mean and variance of each parameter differ
across the SBSs. Other constant parameters, such as street
width, H , and yu, are also given different values across
different networks to foster environmental diversity. Using the
Python programs, a combination of realistic and synthetic user-
object datasets S is then prepared, featuring varying numbers
of data samples and blockage-to-non-blockage ratios. Table III
provides a summary of the modified parameters employed to
generate these new non-IID datasets.

Through these modifications and augmentations, we now
have a more realistic communication system with six SBSs,
each having its own user-object data samples. If ho >
zI , we use [⋎, yo, yu, θo, θu] as a set of features to judge
blockage status. The table in Fig. 7(a) shows all possible
cases, from which we can observe that only two cases
will lead to blockages. Fig. 7(a) also depicts one of the
blockage cases. Similarly, to determine the Tb, the position
information, movement direction, and speed are important.
Using trigonometry, Tb can be determined, as shown in Fig.
7(b).

Model evaluation: After preparing the data samples
with their respective labels for each SBS, 2000 samples
were allocated for model evaluation, while the remainder
were reserved for training. From the evaluation dataset, we
randomly select a small dataset to form a total of 5000 samples
used for evaluating the model’s performance at the server. Fig.

(b)

(a)

Figure 8: The classification and regression performance of the dual-
output NN model (a) without and (b) with tuning.

8(a) displays the classification and regression performance of
the dual-output NN model at the SBSs and the server after
30 communication rounds of training using FL. While the
classification accuracy was near optimal for all SBSs, there
were variations in the MAE values, which is attributed to
the non-IID properties of the training datasets, where each
dataset was obtained from a different distribution representing
a distinct environment. To further enhance the performance,
each SBS was permitted to personalise the model by utilising
500 data samples and performing a few rounds of tuning. Fig.
8(b) illustrates the final performance of the trained models,
depicting a further enhancement in the prediction accuracy of
the model for each SBS as a result of personalisation.

Knowledge transfer case study: During the augmentation
process, we have created an additional environment, named
SBS6, representing a new deployment area with few data
samples, as outlined in Table III. The purpose is to assess
the generalisation and scalability of the proposed framework
for supporting knowledge transfer and the rapid deployment of
new SBSs. SBS6 did not participate in the FL training process,
and the server pushed the latest version of the trained NN
model to this SBS to initiate its operation. The performance
of SBS6 is presented in Fig. 8, showing that the regression
accuracy is inferior to that of the first four SBSs, though it
is better than SBS5, which was part of the training process.
Notably, the classification accuracy is remarkable and can be
attributed to the transferability, generalisation, and robustness
features of the NN model. These features demonstrate the
model’s ability to capture fundamental relationships and
universally applicable patterns, enabling accurate predictions
even in new deployment areas. After tuning, the regression
performance is significantly improved by a percent of 53%.
These results demonstrate that the proposed framework is
scalable and can support the rapid deployment and operation
of new network sites.

2) Online inference phase: After training and personalising
the models, each SBS is ready to use its personalised model



10

Table III: The parameters adjusted in the testbed to reflect a practical wireless communication system. The SBS is positioned at the Cartesian
origin in the middle of the street, and [ · , · ] indicates the range from which values are chosen based on the corresponding distribution.

SBS Distribution Street width
(m) H(m) (xu, yu)(m) (xo, yo)(m) ho(m) vo(mps) No. of

samples Block: Non-block

SBS1 Uniform 40 3 ([-20, 20], 12) ([-20, 20], [1, 11]) [1, 4.5] [3, 9] 10,000 10% : 90%
SBS2 Gaussian 60 4 ([-30, 30], 13) ([-30, 30], [1, 12]) [1, 4.5] [3, 11] 15,000 25% : 75%
SBS3 Gamma 80 5 ([-40, 40], 14) ([-40, 40], [1, 13]) [1, 4.5] [3, 13] 30,000 50% : 50%
SBS4 Binomial 100 6 ([-50, 50], 15) ([-50, 50], [1, 14]) [1, 4.5] [3, 15] 25,000 75% : 25%
SBS5 Poisson 120 7 ([-60, 60], 16) ([-60, 60], [1, 15]) [1, 4.5] [3, 17] 20,000 90% : 10%
SBS6 Beta 100 5 ([-50, 50], 13) ([-50, 50], [1, 12]) [1, 4.5] [3, 9] 2,000 50%: 50%

to predict the occurrence of blockages and, hence, the stability
of the LoS beams. When a stationary user is connected to the
network, the SBS creates samples of user-objects data samples
and feeds them to the model for inference. The model then
predicts the status of the blockages and the time until the object
blocks the link. Given that the dual-output NN model is much
simpler than ResNet-50, the TInf should be much lower than
the 26 ms inference time of ResNet-50. We measured the TInf
using a standard personal computer and found it to be around 1
ms. Although it should be even lower, for the sake of analysis,
we assume TInf equals 1 ms.

D. Optimal HO Trigger Point

After detecting an obstacle and determining the blockage
time, the framework must notify the network to perform a HO
and ensure users connectivity. The crucial question is, what
is the best time instant or distance point to trigger the HO
process and switch a user to alternative stable links? Defining
the TD parameter in equation (18) should help in finding such
instant/point by introducing the following formula:

Λ ≤ v × TD (20)

where Λ represents the points at which the network can trigger
PHO and maintain stable connections for the user each time
an obstacle crosses that points. Since our framework is QoE-
aware, it aims to delay the HO process until reaching the
optimal point (Λopt), which corresponds to the maximum
tolerable TD and is given by:

Λopt = v × TmaxD . (21)

By adopting this approach, our framework ensures a seamless
users’ experience while avoiding obstacles’ disruption.

E. PHO Procedure and Latency Minimisation

In conventional wireless networks, when there is a
degradation in the signal quality of a user’s connection, a HO
mechanism is initiated based on predetermined events detected
through measurement reports [32]. If beamforming technology
is being utilised and the LoS beam is disconnected, then
several steps must be taken to re-establish a stable connection.
The steps are beam failure detection, beam failure recovery,
cell search, and contention-based or free random access. Each
of these steps requires execution time that combined would
result in high latency ∼ 312.2 ms, affecting the reliability of
the communication system.

This study introduces a new HO event, called a block event,
which is defined by the detection of an obstacle that could
potentially block the LoS user connection. If a block event
is detected, the network should take preemptive measures
to prevent channel interruption. Our proposed framework is
proactive in nature, eliminating the first two steps of the
HO process and performing the cell search step in advance
while the users are still connected. Therefore, the HO latency
boils down to the latency associated with experiencing either
contention-based or free random access. This framework
considers the worst-case of contention-based random access
that requires about 80 ms [16]. As a result, the last parameter
of equation (17), i.e., THO equals to 80 ms. Now that we
have determined all the values of the parameters in equation
(17), which total of 147.5 ms represents the execution time of
our proposed framework. Finally, it is important to note that
the performance of RaDaR framework depends heavily on the
hardware specifications of the radar, server, and network. As
hardware specifications improve, the framework’s execution
time will reduce, resulting in a further enhanced framework.

VI. PERFORMANCE EVALUATION AND RESULTS

This section examines the efficacy of the proposed RaDaR
framework in improving the operation of high-frequency
communication systems, such as UDNs, by effectively and
preemptively predicting the occurrence of beam blockages and
implementing appropriate measures to guarantee uninterrupted
connectivity for users while preserving high levels of QoE.

A. Dual-Output Model Development

After training the dual-output NN model in an FL
environment and performing personalisation, the resulting
models are now ready to be tested in practical scenarios.
To further evaluate the models, we define a new parameter
called the PHO success rate (SPHO), which represents the
percentage of successfully detecting beam blockages and
performing PHO. SPHO is calculated by dividing the number
of samples successfully performing PHO by the total number
of samples. Using the same evaluation dataset of the SBSs,
the SPHO results for each SBS are presented in the 0%
column of Table IV. The figures reveal variations in the
results, where the SPHO of some SBSs is unsatisfactory, while
others exhibit better performance. After careful investigation,
we discovered that the inconsistent behaviour is due to the
inaccurate prediction of the blockage time T̂b. Occasionally,
the proposed model predicts the value of T̂b greater than
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Table IV: Study of SPHO [%] versus PShift for different SBSs.

SBS
PShift 0 % 2 % 4 % 6 % 8 % 10 %

SBS1 55.4 69.6 80.1 87.2 91.4 93
SBS2 36.9 66.5 81.5 87.4 89.8 90.6
SBS3 70 82.4 85.6 86.7 87.7 88.2
SBS4 96.9 99.1 99.1 99.1 99.3 99.3
SBS5 41.1 87.9 96.6 98.2 98.8 98.8
SBS6 30.5 62.3 85.3 93.2 95.7 97.3

the actual blockage time. Considering the QoE-aware nature
of the RaDaR framework, it waits for the maximum T̂maxD

(T̂maxD = T̂b − TF ) before initiating a PHO. As a result, the
value of T̂maxD may exceed the actual TmaxD , leading to a
scenario where the user encounters a blockage by a vehicle
before completing the PHO process.

To address this issue, we have introduced a new parameter
named “percent shift” (PShift) designed to mitigate the impact
of blockages that occur when a model predicts T̂b larger than
the actual blockage time. The utilisation of PShift involves
reducing all predicted T̂b values for all samples by a specific
percentage, determined the value of PShift. For example,
when the PShift is set to 10% and the predicted T̂b is
100ms, applying the PShift parameter will reduce the T̂b
value to 90ms. This may result in slightly reduced QoE for
the user due to performing earlier PHO. However, we believe
that maintaining a stable connection with slightly reduced
QoE is preferable to losing the connection and having to
reestablish it. Our experiments show that the introduction of
PShift has significantly improved the SPHO for all SBSs,
as shown in Table IV. Nevertheless, there exists a trade-off
between selecting the values of PShift and the perceived
QoE. It is imperative to note that higher values of PShift can
yield further improvements. However, such improvements may
necessitate even earlier PHOs, thereby potentially degrading
users’ QoE. Hence, we have selected the value of 10% for
SBS1, 2, 3, and 6 and the value of 8% for SBS4 and SBS5.

To investigate the effect of the PShift parameter, Fig. 9 plots
the cumulative distribution function (CDF) for every sample
i ∈ D results in successful PHO, with respect to time delay
offset TDO. Here, TDO is defined as:

TDOi =
TmaxDi

− T̂Di

TmaxDi

× 100%, ∀T̂Di ≤ TmaxDi
, i ∈ D (22)

where TmaxD is the maximum actual delay time before
triggering PHO, and T̂D is the predicted time delay given
as T̂D = T̂b − TF . TDO indicates how far the T̂D from
the actual one; the closer the values to zero, the better the
performance. Fig. 9 illustrates the overall performance of the
SBSs in predicting blockages and successfully executing PHO,
with only small variations in the values of the TDO. All
SBSs have more than 80% of their samples with TDO is less
than 20%, which highlights the superiority of the proposed
framework in proactively predicting blockages and performing
PHO at the time/point that maintains users’ QoE as high as
possible. Thus, the framework of each SBS is now ready for
deployment and further investigation.

Figure 9: The distribution of the TDO samples that lead to a
successful PHO for different SBSs.

B. Experimental and Simulation Setup

We employ a hybrid approach that integrates real-world and
simulated environments to assess the overall performance of
the proposed RaDaR framework. The simulated environments
are derived from scenario 30 to reflect more practical wireless
networks and generate multiple distinct environments. The
simulation experiments are implemented based on Python
installed on a Windows operating system with an Intel Xeon
CPU E5-2620 @ 2GHz and 16GB RAM. The key performance
metrics are the RSS, network latency, and throughput.

C. Performance Analysis

This section reveals the effectiveness of the proposed
RaDaR framework in comparison to a conventional wireless
network that lacks proactive blockage prediction techniques
and only responds reactively to blockage events, which
we refer to as Reactive-HO. Initially, we analyse the
effect of blockages on the RSS at users’ end in Reactive-
HO communication systems, using the diverse information
available in the DeepSense scenario 30 testbed. Fig. 10
illustrates the normalised RSS of a stationary user, blockage
events, and the best beam index at each data sample.
The results demonstrate unstable performance, as the RSS
deteriorates each time an obstacle obstructs the LoS beam
serving the user. This performance is unsuitable for time-
sensitive services and data-intensive applications, such as high-
definition video streaming, which require fast and reliable
wireless connections to guarantee an uninterrupted and
smooth user experience. Furthermore, the figure demonstrates
that in the absence of obstacles, the best-serving beam is
consistently limited to a few fixed beams. However, when
the communication channel is blocked, the best beam index
varies and can be any beam from the beamforming codebook,
determined by the beam that gives the highest received power
after reflection from the environment. These findings highlight
the importance of proactive blockage prediction techniques
in achieving reliable and stable wireless communication
performance.

Next, we examine the effectiveness of the proposed RaDaR
framework by extending the Scenario 30 testbed using
Wireless InSite ray-tracing software. In this extension, we
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Figure 10: The normalised RSS, blockage events, and best beam
index in a Reactive-HO communication system.

introduced a new SBS (SBS2) with the same specifications
as the existing SBS1, placed 80 metres apart on the opposite
side of the street. The software allowed us to obtain new
wireless information, specifically the RSS values at the user’s
location from SBS2. This data is important in demonstrating
the efficacy of the RaDaR framework in predicting blockages
and performing PHOs to ensure seamless user connectivity.
Fig. 11 depicts the normalised RSS from both SBSs and the
SBS that serves a wireless user at different time instances.
Once the user is connected, the RaDaR framework begins
to function by monitoring the surrounding area using radar
sensors. Prior to the first blockage event, the user is connected
to SBS1 since it is within the SBS’s coverage area and
receives a higher RSS from SBS1 than SBS2. When an
obstacle enters the FoV of the radar, the framework detects
the object, and the communication system becomes aware of
this potential blockage. The framework classifies the object as
a blockage and predicts the blockage time. It then determines
the optimal time to perform PHO. The figure reveals how
the RaDaR framework can detect blocking objects and switch
the user to SBS2, which offers a more stable communication
channel. It is essential to note that the QoE of the user when
served by SBS1 is better than that when connected to SBS2.
However, scarifying the perceived QoE slightly is preferable to
experiencing disconnection and engaging in undesired network
operation to resume the connection, which impacts network
latency and affects its reliability.

Finally, we examine two key performance metrics for
wireless networks, namely the network latency associated
with performing handovers and average users throughput
for Reactive-HO and radar-aided PHO networks. Our study
involves monitoring the evaluation environments over a certain
period of time and considering multi-users by treating the
stationary user as a new user whenever a new obstacle is

Figure 11: The impact of blockages on a user’s RSS and how RaDaR
is able to detect blockages and ensure seamless connectivity.

detected. Fig. 12 shows the normalised results of average
latency and throughput for both Reactive-HO and radar-
aided PHO networks, represented by SBS1-SBS6. In terms
of average latency, as discussed in Section V-E, Reactive-
HO communication systems must perform four steps that take
312.2 ms each time a link is disconnected and a user needs
to be switched to another SBS. In contrast, our framework
eliminates the first three steps, reducing PHO latency to 80
ms. Making use of SPHO, the average PHO latency per user
is measured as follows:

ζ =
{SPHO × U} × 80 + {(1− SPHO)× U} × 312.2

U
. (23)

Overall, SBSs adopting the RaDaR framework outperformed
Reactive-HO networks lacking proactiveness in detecting
blockages. Moreover, the average latency decreased with an
increase in SPHO as the probability of detecting blockages
and performing successful PHO increased. The variations in
the average latency values across SBSs are attributed to the
differences in the SPHO, which heavily depend on the serving
environment of the SBS.

Regarding average throughput, this study is performed
by monitoring the environments for a specific period of
time and recording the users’ throughput at every time
instant, irrespective of the presence of obstacles. Reactive-HO
networks experienced a significant drop in user throughput
due to LoS beam disconnection, which required users to
switch to other reflected beams with reduced throughput.
However, radar-aided PHO systems have a higher probability
of predicting obstacles in advance and switching users to an
SBS, offering a stable connection, thereby maintaining high
throughput levels.

VII. CONCLUSIONS

In this paper, we proposed a radar-aided dynamic blockage
recognition framework called RaDaR. The main objective
is to increase high-frequency networks’ awareness of their
surrounding environment and improve network reliability.
We utilised radar measurements for training a dual-output
NN model using FL to predict forthcoming link blockages
and determine the optimal time to perform PHO, thereby
avoiding link disruption. To compare the effectiveness of
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Figure 12: Latency and throughput study.

RaDaR, we considered a conventional wireless network
lacking proactive blockage prediction mechanisms, named
Reactive-HO. We proceeded to assess the performance of
the suggested framework by utilizing co-existing modalities
derived from both real-world and simulated environments. The
experimental and simulation results confirmed that RaDaR,
with its blockage-aware approach, enhances the QoE for users
who require low latency and operate in extremely dynamic
environments. Compared to Reactive-HO networks, evaluation
results indicated that our framework significantly improves
the operation of next-generation wireless networks by offering
high RSS, maintaining high throughput levels, and reducing
network latency, enabling future latency-sensitive applications.
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