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Abstract 

Many initiatives to improve reproducibility incentivise replication and encourage greater 
transparency without directly addressing the underlying skills needed for transparent and 
reproducible data preparation and analysis. In this paper, we argue that training in data 
processing and transformation should be embedded in field-specific research methods 
curricula. Promoting reproducibility and open science requires not only teaching relevant 
values and practices, but also providing the skills needed for reproducible data analysis. 
Improving students’ data skills will also enhance their employability within and beyond the 
academic context. To demonstrate the necessity of these skills, we walk through the 
analysis of realistic data from a classic paradigm in experimental psychology that is often 
used in teaching: the Stroop Interference Task. When starting from realistic raw data, 
nearly 80% of the data analytic effort for this task involves skills not commonly taught—
namely, importing, manipulating, and transforming tabular data. Data processing and 
transformation is a large and inescapable part of data analysis, and so education should 
strive to make the work associated with it as efficient, transparent, and reproducible as 
possible. We conclude by considering the challenges of embedding computational data 
skills training in undergraduate programmes and offer some solutions. 
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Embedding Data Skills in Research Methods Education:  
Preparing Students for Reproducible Research 

Modern  research faces major challenges from two sides: one technological, the other, 
epistemological. On the technological side, advances in information technology have made 
it easier than ever to collect, store, and manipulate data, resulting in datasets whose 
volume and complexity pose challenges to traditional analysis workflows. On the 
epistemological side, researchers face rising concerns about the reproducibility of 
published research. According to an online survey, about half of all researchers perceive a 
crisis of reproducibility in science (Baker, 2016). Across many fields including psychology 
(Hardwicke et al., 2018), political science (Eubank, 2016) and economics (Chang & Li, 
2017), researchers frequently report difficulties computationally reproducing published 
findings from underlying data.  Attempts to replicate published findings in new samples 
also suggest widespread problems in research practice: for example, in a large replication 
study by the (Open Science Collaboration, 2015), nearly two-thirds of experiments 
published within the same year in three of psychology's top journals failed to replicate. In 
what follows, we argue that success in addressing this twin set of challenges will be limited 
until they are addressed at the root; namely, by a curriculum change to research methods 
training. 

The traditional data analysis workflows that students are typically taught within their 
academic fields have not kept pace with the increasing volume and complexity of datasets. 
The skills students need for working with real data are often only taught in specialised 
“Data Science” programmes, a discipline which has recently emerged out of ideas that long 
existed at the margins of traditional statistics (Donoho, 2017). Data scientists have 
developed powerful tools and guidelines for structuring and transforming data. 
Recognizing the value of these skills, undergraduate programmes may require students to 
learn coding and data science skills by taking classes offered by such programmes, outwith 
their specific field of study. In contrast, we argue that these skills should be directly 
embedded in field-specific research methods training, not only because such skills are 
fundamental to all modern empirical research, but also because fields differ in what aspects 
of these skills should be emphasized, depending on whether students will be expected to 
run online surveys, analyse genomic samples, wrangle gigabytes-worth of brain imaging 
data, or extract insights from large text corpora or laboratory experiments. Moreover, 
students are likely to learn better when given data that is relevant to their field of study 
(van Gog et al., 2019). 

Embedding training in data skills within field-specific undergraduate research methods 
education also seems like a sensible strategy for improving long-term reproducibility. To 
date, however, initiatives to improve reproducibility tend to focus on restructuring 
incentives and practices for practicing researchers (Munafò et al., 2017; Nosek et al., 2012), 
and less emphasis has been placed on reforming the knowledge and skills acquired by 
students starting out on their career paths (but see Azevedo et al., 2019; Button et al., 
2020). Researchers have been encouraged to adopt higher standards for transparency 
when publishing and reviewing papers (Simmons et al., 2016), pre-register study protocols 
and hypotheses (Wagenmakers et al., 2012), publicly deposit the data and code that 
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underlie published findings (Rouder, 2016; Wicherts & Bakker, 2012), and pool resources 
across labs by forming large research consortia (Moshontz et al., 2018). But until the skills 
that are needed to analyze data in a fully reproducible way become fully embedded from 
the beginning of students’ careers, these initiatives, while laudable, may yield research 
artefacts that only superficially comply with open science guidelines. For instance, we may 
end up with published articles containing more detailed descriptions of methods that are 
neither more accurate nor more verifiable than previously, pre-registration protocols that 
cannot be fully audited because data processing actions were not logged, raw data without 
any computational roadmap for generating the findings reported in the paper, and research 
consortia datasets so large that few researchers are equipped to validate analyses 
performed on them. 

The solution we propose involves moving away from the manual “point-and-click" 
workflows that have been popular in psychology and other academic fields. Such 
workflows are likely to impair reproducibility and transparency for the sake of perceived 
convenience. The plethora of point-and-click actions undertaken to perform a given 
analysis are often left unrecorded, leaving no clear record of how to derive the findings 
from the raw data. While many statistical software packages such as SPSS offer options to 
save the commands underlying specific analysis, it is often the case that the data input to 
SPSS has already been prepared using spreadsheet software such as Microsoft Excel. It is 
rare for researchers to manually log each transformation with enough detail for complete 
computational reproducibility (e.g., “step 273 of 521: filled down from cell G2 to G27 in 
ExperimentData.xlsx”). Moreover, the common use of multiple distinct software packages 
for different stages of analysis—Excel for pre-processing and visualisation, SPSS for 
analysis, Word for writing the report—can increase the risks of outputs becoming out of 
sync, such as when a researcher corrects an error in pre-processing but then analyses the 
old version of the dataset in SPSS. The prevalence of point-and-click workflows means that 
the descriptions of data analysis procedures in most published papers are largely post-hoc 
verbal reconstructions from memory. As such, they are likely to contain omissions, 
ambiguities, and biases (Schacter, 1999). 

Researchers need data analysis workflows that are simultaneously reproducible, 
transparent, and efficient. We believe that the best approach to ensuring future researchers 
produce reproducible research is for undergraduate students to be taught and trained in 
data skills, through writing analysis scripts using code and through field specific research 
methods programmes infused with ideas from Data Science. Unlike point-and-click 
analyses, scripted analyses are self-documenting. Writing each data processing step down 
as a function call in a script removes the additional burden to separately log each 
processing step: the script contains the logic for the complete analysis. Furthermore, it is 
necessary to train students in skills related to “data wrangling,” as this best prepares them 
for the challenges of real data. Currently, it is uncommon to find emphasis on these topics 
in undergraduate research methods classes (Zečević et al., 2021), although there are 
exceptions (e.g., Auker & Barthelmess, 2020; Baumer et al., 2014; PsyTeachR Team, 2022; 
Toelch & Ostwald, 2018). For convenience we will refer to this missing set of scripting, 
visualisation and data wrangling skills as “computational data skills.” We acknowledge that 
coding, visualisation and data wrangling are not the only computational data skills, 
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however, learning these three computational skills acts as an extensive introduction to 
teaching reproducible analysis. Graduates may not just need these computational data 
skills to work competently in their fields, but they need them to succeed in an economic 
marketplace where data science skills are increasingly in demand (Bradford, 2018). There 
are also societal benefits to having a technologically informed and critically empowered 
citizenry. In the United States, science authorities recommend that institutes should 
prepare all their students for the new data-driven era with appropriate data science skills 
and data acumen, an umbrella term stretching from data management and curation to 
ethics, as well as data wrangling, modelling and reproducibility (National Academies of 
Sciences, Engineering, and Medicine Committee on Envisioning the Data Science Discipline, 
2018). In the United Kingdom, the president of the Royal Society has recently likened a 
society lacking in data literacy to the mass illiteracy of the past, emphasizing how the 
digital era has changed the nature of work (Smith, 2022), requiring educational reform to 
address the skills gap (see also a report from the National Foundation for Educational 
Research, Taylor et al., 2022). Research methods curricula are a good place to address 
these needs by introducing changes that help develop problem solving, numerical literacy, 
and critical thinking, as these are all skills that students need to independently carry out a 
piece of empirical research. 

When evaluating a curriculum, a useful exercise is to step back and ask, What is something 
observable that you think students in your field ought to be able to do when they graduate, 
and are you adequately preparing them to do this? (Nolan & Temple Lang, 2010; Peck and 
Chance, 2007). As academic psychologists in the United Kingdom, we adhere to the Quality 
Assurance Agency for Higher Education's Benchmark Statement (2019), according to which 
all final year students must be able to “carry out an extensive piece of empirical research 
that requires them individually to demonstrate a range of research skills, including 
planning, considering and resolving ethical issues, analysis and dissemination of findings” 
(p. 6).  These benchmark statements inform the British Psychological Society Standards for 
Accreditation (2019) which all accredited undergraduate psychology programmes in the 
UK must adhere to. In many programmes, it is only in the course of conducting this final 
research project that students have their first contact with realistic datasets, typically from 
online surveys or laboratory experiments, as often idealised data is employed in classroom 
exercises. In this paper, we show how one of the simplest and most well-known 
experiments in our field of psychology generates data processing challenges for which 
students who receive the traditional point-and-click training are likely to be unprepared at 
dissertation point or post graduation. We then discuss how we can redesign curricula to 
meet these challenges. We start by presenting the data in an idealised way, which is how 
students will often receive data for analysis in class. Idealised data omits all initial data 
processing steps and presents data in a format that is convenient for statistical analysis, but 
that bears little resemblance to raw data coming straight from a study or experiment. We 
then provide a full, realistic walkthrough that includes all data processing steps from data 
collection to final analysis. We suggest that it is only through repeated practice with 
realistic data that students can fully develop their computational data skills. To show the 
applicability of these skills beyond experimental data, in the supplementary materials, we 
consider a scenario where the goal is just to calculate a score from survey data, and there is 
no sample-to-population inferential analysis. 
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Task analysis: Analysing Stroop data 

One of the oldest and best-known paradigms in experimental psychology is the Stroop task 
(Stroop, 1935). In a standard version of the task, participants are given a list of words and 
must name aloud the colour in which each word is displayed. What makes this task 
psychologically interesting is that the words themselves can be colour words (RED, BLUE, 
GREEN, etc.) whose meanings may match or mismatch the display colour. For example, the 
word RED printed in red would require the response “red”, while seeing the word RED 
printed in green would require a response of “green”. The case where the ink matches the 
word is the congruent condition, and the case where it mismatches is the incongruent 
condition. Participants are shown one word at a time, and the experimenter measures the 
amount of time it takes them to name the ink colour, starting from the onset of the 
presentation of the word (this quantity is known as their “response time”). Each stimulus 
word paired with the spoken response is referred to as a single trial in the experiment. A 
standard finding is that participants are slower and less accurate to name the word’s 
display colour when it mismatches the colour the word denotes (Dalrymple-Alford & 
Budayr, 1966), yielding the highly replicable “Stroop interference effect.” Because nothing 
in the task requires identifying the words or accessing their meanings, this interference 
suggests that the reading of written words may occur somewhat automatically. The 
simplicity of the Stroop experiment and the high replicability of the effect makes it a 
popular choice for use in teaching. 

Let’s imagine that students in a statistics and research methods course are given data from 
a variation on the basic task. The goal of this imaginary experiment is to test whether 
people who speak English as a second language are more or less susceptible to Stroop 
interference than those who speak English as a first language. In the following two sections, 
we will consider two very different representations of data from such a hypothetical 
experiment: an idealised version where the data have already been heavily cleaned and 
pre-processed into participant means and a realistic version that more accurately reflects 
the complex and messy nature of the raw data as it comes out of the experiment. Although 
the data in the examples below is artificial, we have simulated it to capture many of the 
properties of real data, including the need to combine different data sources and discover 
and repair inaccurate values. To simplify our presentation, we discuss the analysis steps in 
a general manner rather than including any code. The simulated data and analysis scripts in 
R and Python can be found in the project repository at https://osf.io/7fs2b/. 

Stroop Analysis: Idealised Data 

Real data rarely first appears in a format that is convenient for analysis, often requiring 
extensive transformations before statistical procedures can be applied. During statistical 
training, instructors usually omit any pre-processing stages, presenting the data in an 
idealised format tailored to the demands of statistical software, such as the data shown in 
Table 1. Let us imagine we give this dataset to students along with the instruction: 

Table 1 has participant means for response time in milliseconds (ms) in the 
congruent and incongruent conditions. Calculate a Stroop effect for each 
participant, and then analyse the data using a one-sample 𝑡-test to test the overall 

https://osf.io/7fs2b/
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Stroop effect (ignoring group), followed by an independent-samples 𝑡-test to 
compare the effect across English language groups. Perform both as two-tailed 
tests with 𝛼 = .05 and report your results in APA format. In addition to your test 
results, report means and standard deviations, measures of effect size, and 95% 
confidence intervals. 

Table 1. Idealised Stroop data, showing participant response times (ms) means for the first 
three and last three participants. 

eng_lang congruent incongruent 
first 587 710 
first 436 571 
first 601 803 
... ... ... 
second 676 903 
second 461 492 
second 467 622 

 

The data in Table 1 is in wide format—a format familiar to users of software such as Excel 
or SPSS—where each row represents data from a single participant and the observations 
across the conditions of congruent and incongruent are represented across columns. The 
dataset is readymade for analysis using conventional software; indeed, the structure of the 
data even suggests the type of analysis that is expected, making it easy to see how to 
calculate the Stroop effect for each participant by taking the difference between the values 
stored in the congruent and incongruent columns.  

Box 1 presents a sample Results section in APA format that might be prepared from the 
statistical output. Writing such a section requires calculating 23 separate data-dependent 
values (textual as well as numeric), all of which are underlined.  
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There are essentially six steps required to compute these values (code to do so in R is 
provided in the project repository): 

1. Count the number of participants overall and in each group; 

2. Calculate a Stroop effect for each individual participant; 

3. Calculate the overall mean and SD for the new Stroop effect variable; 

4. Conduct a one-sample t-test on the Stroop effect variable, with effect size and 
confidence intervals; 

5. Calculate the mean Stroop effect with SD for each language group; 

6. Conduct an independent-samples t-test to compare the Stroop effect by language 
group, with effect size and confidence intervals. 

However, these steps still comprise a small minority of the total effort that would be 
needed if students were given a more realistic starting point for their analysis: the raw 
data. 

Stroop Analysis: Realistic Data 

Transforming raw data into a format suitable for analysis typically involves many more 
processing steps and analytic decisions than would be needed for calculating descriptive 
and inferential statistics from idealised data. To see this, let us now turn to the raw data 
used to generate the participant means in Table 1. 

The data that we present below has all the components needed to calculate the participant 
means shown in Table 1, but as we will see, the data processing steps needed to do so are 
neither self-evident nor trivial, and so we will thoroughly explain each step as we progress. 
Those familiar with R or Python code can view the corresponding scripts in the project 
repository (available in the OSF repository as a plain R script, RMarkdown notebook with R 
code, or Quarto notebook Python code). 
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Table 2. Demographic data 

id age eng_lang 

1 226 first 

2 21 second 

3 21 first 

4 21 second 

5 22  

6 24 fist 

… … … 

42 23 second 

43 18 first 

44 24 second 

When participants arrived in the lab, the experimenter collected demographic information 
(participant age and whether they spoke English as a first or second language). To ensure 
anonymity, each participant was assigned a unique integer number (ID). These data were 
typed into a spreadsheet represented in Table 2. For their language background, the 
experimenter entered one of two values for the variable eng_lang, either first or second—
at least, that is what the experimenter intended to do, but they didn’t carry out their task 
flawlessly. First, there are 44 rows in Table 2, four more than in the table of participant 
means (Table 1). Data from these additional participants cannot be used because, for some 
reason, the value for eng_lang was not recorded. Additionally, for participant 6 we can see 
that the experimenter has typed fist instead of first. We would need to check for further 
typos and inconsistencies (e.g., other variations in spelling or in capitalisation) before we 
can safely use the data. Typos are also likely in manually entered numeric data. For 
instance, one of the ages has been erroneously entered as 226. To detect such anomalies, it 
is important to check data distributions for any manually entered numeric values. 

The participant means in Table 1 were averages taken over a series of individual trials in 
each condition. Specifically, in this experiment there were 50 trials for each participant, 25 
where the text and colour were congruent and 25 where they were incongruent. As is 
typically the case, stimulus presentation was controlled by computer software which 
generated a text file containing a stream of timestamped events such as those shown for 
participant 12 in Table 3. We have 44 of these files, one for each participant, which must be 
imported and combined into one larger table. 

Table 3. Timestamps for subject 12. 

trial timestamp event data 

1 175592 DISPLAY_ON GREEN-green.png 

1 176159 VOICE_KEY  

2 178485 DISPLAY_ON BROWN-brown.png 

2 179142 VOICE_KEY  
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trial timestamp event data 

3 181146 DISPLAY_ON BLUE-red.png 

3 182165 VOICE_KEY  

4 184646 DISPLAY_ON PURPLE-red.png 

4 185706 VOICE_KEY  

5 187558 DISPLAY_ON GREEN-green.png 

5 187963 VOICE_KEY  

6 190339 DISPLAY_ON GREEN-brown.png 

7 192874 DISPLAY_ON BLUE-red.png 

7 193606 VOICE_KEY  

… … … … 

48 307302 DISPLAY_ON RED-purple.png 

48 308314 VOICE_KEY  

49 310420 DISPLAY_ON PURPLE-purple.png 

49 310813 VOICE_KEY  

50 312647 DISPLAY_ON BROWN-brown.png 

50 313049 VOICE_KEY  

The output in Table 3 contains information about the trial number (1 to 50), event 
timestamps, and associated data. Importantly, it does not contain any explicit information 
about what condition (congruent or incongruent) a trial was in, nor about the response 
time for that trial. We have the information we need but converting this information into 
actual data values that we can use in an analysis will require some data processing steps.  

First, we can get information about each trial’s condition from the stimulus filename, which 
appears in the data field for DISPLAY_ON events. On each trial of the experiment, an image 
file in Portable Network Graphics (PNG) format would be displayed, centered on the 
screen. Each file contained image data of a word in a particular font colour, with the 
filename containing metadata indicating the identity of the word being displayed (in capital 
letters) and the display colour (in lowercase letters). For instance, a file named RED-
green.png would display the word RED in a green colour. Presentation of the image would 
trigger a DISPLAY_ON event, with the timing of the event on the computer’s internal 
millisecond clock stored in the timestamp field. To determine what condition the trial was 
in, it is necessary to parse out the two colour values from the filename and compare them, 
such that, for instance, GREEN-green.png would be marked as congruent and BLUE-red.png 
as incongruent. A table containing this information appears as Table 4. 

Table 4. Intermediate table showing trial conditions for Participant 12. 

trial data stimword inkcolour condition 

1 GREEN-green.png GREEN green congruent 

2 BROWN-brown.png BROWN brown congruent 
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trial data stimword inkcolour condition 

3 BLUE-red.png BLUE red incongruent 

4 PURPLE-red.png PURPLE red incongruent 

5 GREEN-green.png GREEN green congruent 

6 GREEN-brown.png GREEN brown incongruent 

… … … … … 

48 RED-purple.png RED purple incongruent 

49 PURPLE-purple.png PURPLE purple congruent 

50 BROWN-brown.png BROWN brown congruent 

Response time was measured by a ‘voice key’ algorithm that detects the onset of speech. 
After the stimulus appeared, the participant would name the display colour aloud into a 
microphone connected to the computer. The voice key algorithm triggered a VOICE_KEY 
event at the first moment when a vocal response was detected. Our dependent variable, 
response time, would be calculated as the latency between the two timestamps for each 
trial. But as can be seen for trial 6 in Table 3, the algorithm could sometimes fail, in which 
case the VOICE_KEY event would be missing, and no response time could be calculated. 

Calculating response time from these data requires restructuring it from long to wide 
format (also known as “pivoting” the data), such that each trial is represented in a single 
row, with DISPLAY_ON and VOICE_KEY now appearing as variables whose values are the 
associated timestamps for the corresponding trial (Table 5). Response time could then be 
easily calculated by subtracting the DISPLAY_ON timestamp from the VOICE_KEY timestamp 
for that row. Note that missing values now appear as NA (“Not Available”). 

Table 5. Transformed trial data with calculation of RT (VOICE_KEY - DISPLAY_ON). 

trial DISPLAY_ON VOICE_KEY rt 

1 175592 176159 567 

2 178485 179142 657 

3 181146 182165 1019 

4 184646 185706 1060 

5 187558 187963 405 

6 190339 NA NA 

… … … … 

48 307302 308314 1012 

49 310420 310813 393 

50 312647 313049 402 

We have computed the trial condition as well as the response time, but we are not yet 
ready to calculate participant means for each condition until we deal with inaccurate trials. 
We would expect that on a minority of trials, participants would accidentally name the 
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word instead of the display colour. Because the response distributions for accurate and 
inaccurate trials would differ, it would be advantageous to identify inaccurate trials and 
exclude them from the analysis. 

Determining accuracy for each trial requires identifying each participant’s vocal response 
on each trial. During the experiment, the experimenter transcribed these vocal responses 
in real time into a spreadsheet file (see Table 6). Since the vocal responses were typed 
manually and in real time into a spreadsheet as the experiment progressed, we should 
expect typos, and indeed, among the 2,200 values there are not only the five correct values 
(red, green, purple, blue, and brown) but also 80 erroneously typed variants such as “bleu”, 
“borwn”, “geren”, “pruple”, and “rde”. Typos such as these would need to be cleaned up 
before the values could be used to determine accuracy. 

Table 6. Vocal responses transcribed by the experimenter. 

id trial response 

1 1 red 

1 2 green 

1 3 red 

… … … 

44 38 purlpe 

44 39 brown 

44 40 red 

44 41 green 

44 42 blue 

44 43 blue 

44 44 purple 

44 45 blue 

44 46 red 

44 47 brown 

44 48 blue 

44 49 green 

44 50 red 

The need to compare the cleaned values in the response variable of Table 6 to the values of 
the variable inkcolour in Table 4 poses a problem: How do we perform computations that 
involve variables from separate tables? Not only do we need to solve this problem to 
compute accuracy, but also to calculate participant means, because doing so requires 
bringing together variables that are currently scattered across various tables: eng_lang in 
Table 2, condition in Table 4, and rt in Table 5. Combining information from multiple 
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distinct tables is a problem that is frequently encountered with real data. The manual 
solution of copying and pasting data is as tedious as it is error prone1. Fortunately, there is 
an easy and powerful computational solution: using a single database-style “join” function, 
where values from a pair of tables are merged based on common values in one or more 
“key” variables. 

Table 7. Trial, transcript, and demographic data combined in a single table. 

id eng_lang trial stimword inkcolour condition response is_accurate rt 

1 first 1 RED red congruent red TRUE 757 

1 first 2 GREEN red incongruent green FALSE 754 

1 first 3 RED green incongruent red FALSE 798 

… … … … … … … … … 

12 first 1 GREEN green congruent green TRUE 567 

12 first 2 BROWN brown congruent brown TRUE 657 

12 first 3 BLUE red incongruent red TRUE 1019 

12 first 4 PURPLE red incongruent red TRUE 1060 

12 first 5 GREEN green congruent green TRUE 405 

12 first 6 GREEN brown incongruent brown TRUE NA 

… … … … … … … … … 

44 second 48 BROWN blue incongruent blue TRUE 401 

44 second 49 PURPLE green incongruent green TRUE 593 

44 second 50 PURPLE red incongruent red TRUE 498 

To compare the values of response and inkcolour, we would need to join Table 6 to 
Table 4. This would require matching rows on the values of id and trial; however, Table 4 
lacks the id variable. For the trial data from which Table 4 was derived, the id value was 
given in the filename (e.g., S12.csv). During file import, we would need to parse out the 
value 12 from the filename and add this variable to the trial data. We could then easily join 
the data from these two tables, and calculate the variable is_accurate by comparing 
response to inkcolour. This join will also bring condition into the resulting table. 
Following the same logic, we then bring in the rt variable by joining the result to Table 5 
on the key variables of id and trial. Finally, we add eng_lang by joining Table 2 to the 
latter result, yielding a table that has all the variables we need to compute subject means in 
one place (Table 7). 

 

1 Excel’s VLOOKUP function is one solution to joining data from different worksheets, but 
has a number of limitations as compared to SQL-style “join” functions available in R or 
Python; see https://www.quora.com/What-are-the-limitations-of-VLOOKUP. 
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What remains is to calculate means for each participant in each condition, and then 
calculate the Stroop effect by subtracting each participant’s congruent mean from their 
incongruent mean. This requires grouping the data by the unique id values, calculating 
means, and then pivoting the table from long to wide in order to calculate the difference. 
This final series of steps would yield Table 1, the “idealised” data that served as our starting 
point in the previous section. The rest of our analysis would proceed as it did in that 
section. 

But we are not done until we have written our results up, incorporating all the statistical 
quantities that we computed. The sample Results section in Box 2 is much closer to the 
kind of results section one would find in an actual manuscript than Box 1, in that it 
describes and justifies participant and trial exclusions, in addition to reporting descriptive 
and inferential statistics. In Box 2 we underlined the 30 values (numbers or words) in this 
section that are determined by the data, seven more than were computed for the idealised 
data. All of these additional values appear in the second paragraph of the results, which 
describes exclusions that took place both at the participant level (because the 
experimenter forgot to record the participant’s English language background) or at the trial 
level (because participants erroneously named the word rather than the colour or because 
the voice key algorithm failed). The remaining paragraphs are identical to those in Box 1. 

When using point-and-click software, transcribing values into a Results section must be 
done manually, and is therefore subject to transcription errors. For instance, it is estimated 
that about half of all published papers in psychology contain at least one inconsistent 
statistical value, such as a p-value that does not correspond to the reported t-value and 
degrees of freedom (Nuijten et al., 2016). A more reliable solution that we can strive to 
include in our curriculum is to use a ‘literate programming’ (Knuth, 1984) or ‘notebook’ 
approach, where code and plain text are combined in a source document, which is then 
compiled into a report where values from the analysis are automatically updated and 
formatted appropriately. For instance, this can be accomplished by embedding the analysis 
into a document written in R Markdown (as we have done for this paper) or by using a 
Quarto or Jupyter notebook. The examples in the supplementary materials show how this 
can be done in more detail. Writing a fully dynamic manuscript that is then compiled to 
HTML or LaTeX can be a high bar for beginners, and so a more accessible but less optimal 
solution is to copy the generated values into the manuscript in one go. This is still better 
than having to transcribe or copy-paste each value independently, and indeed, there is 
evidence that students prefer this method (Baumer et al., 2014). 
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Discussion 

In research methods classes as well as in typical statistics textbooks, datasets are usually 
presented to students in an “analysis ready” format, such as the idealised data presented 
above in Table 1. While there may be short-term pedagogical advantages to doing so, the 
routine use of such idealised data is likely to deprive students of important opportunities to 
develop and refine a range of computational data skills. As we have demonstrated, pre-
processing realistic data into an “analysis ready” format involves many steps, even in the 
presumably simple case of the Stroop Interference Task. The number and complexity of 
these steps makes data pre-processing errors likely, and they will be difficult to detect if 
students are using a traditional “point-and-click” workflow. By writing each action down as 
a function call within a script, all analysis decisions are made explicit, including those 
involved in data pre-processing, increasing transparency and computational 
reproducibility. Moreover, a manual point-and-click workflow is inefficient and even 
impractical for large datasets.  To develop their competence and confidence, students 
require training in computational data skills and repeated opportunities to use them. In 
this section, we characterise these skills more precisely based on the task analysis we 
presented above. In addition, we offer suggestions  for revising research methods curricula. 

Our script to process the realistic raw data required 78 function calls, as compared to just 
14 function calls for the idealised data. If we consider a function call to be a single action, 
and we consider our Stroop analysis as representative of a typical psychology experiment, 
then it follows that students who are only trained on idealised data sets are missing out on 
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about 80% of what they need to know to work efficiently, accurately, and reproducibly 
with data.  

Much of the analysis involved transforming data stored in tables, or tabular data. Students 
could benefit by learning principles about how to best structure tabular data to enable 
efficient processing, including guidelines for data entry and storage (Broman & Woo, 2018) 
as well as principles for organising data into a predictable “tidy” format so that a broad 
array of data processing functions can be easily chained together (Wickham, 2014). The 
raw Stroop data that we started with happened to be already structured in tidy format, but 
this is often not the case; for example, our analysis of personality questionnaire data in the 
supplementary materials starts out as “untidy” and requires transformation before analysis 
can proceed. Moving between data structures that are easy to read by humans and those 
that are useful for analysis or visualisation requires skills that only come with practice. 

Box 3 offers a more detailed analysis of the types of functions that were needed (in R) for 
processing the realistic data, grouped into four categories. This makes evident that most of 
the work involved transforming data stored in tables. Of the 78 function calls, 32 (41%) 
involved data transformations (categories 2 and 3 of the functions in Box 3), whereas only 
nine (12%) were for mathematical or statistical calculation. In contrast, for the 14 total 
function calls in the script for the idealised data, only three (21%) involved the 
transformation of tabular data (categories 2 and 3 of the functions in Box 3), while seven 
(50%) involved mathematical or statistical calculations. 



EMBEDDING DATA SKILLS IN RESEARCH METHODS TRAINING 17 
 

 
The idealised data not only hid all the transformations required to get the data into 
“analysis ready” format, but it also obscured the need to screen the data for problematic 
observations and deal with them appropriately. Checks for data quality and criteria for data 
exclusion are often part of the “hidden methodology” that can contribute to 
irreproducibility (Breznau et al., 2022). When using a manual point-and-click approach, 
exclusion operations can easily be forgotten and left undocumented, and recalled 
descriptions can differ from the actual process in ways that affect the outcome. For 
example, if you calculate the mean and standard deviation for excluding outliers before or 
after you exclude participants for failing to answer a critical demographic question, you can 
end up with different final datasets (Silberzahn et al., 2018). Starting from the raw data 
highlighted the imperfect nature of real data, and exclusion operations were self-
documented in the code so that they could be accurately reported in the writeup.  

Upskilling Staff 

To transform a curriculum to include reproducible data skills, one needs a critical mass of 
academic  staff who are proficient in the same language and analysis workflows. Staff who 
teach research methods are likely to need additional professional development to be 
comfortable teaching students how to code. There are several models for accomplishing 
this. If your department has enthusiastic and knowledgeable staff members, their 
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workloads could be adjusted to allow them to lead a series of tutorials for staff. External 
training programmes are another option, but these may be too generic for your specific 
needs. Staff from departments that have already made this transition may be willing to 
provide tutorials and financial arguments can be made that any upfront training costs will 
be offset by the eventual move away from expensive proprietary software licences to open-
source software. The open research community has also created many learning resources 
for independent study. One discipline-agnostic resource is our Applied Data Skills book 
(Nordmann & DeBruine, 2022); staff who are comfortable with the exercises at the end of 
each chapter should be well-versed in the data wrangling skills required for undergraduate 
curriculums. 
 
It is also important to recognise that training is not a one-off affair and that having a skill 
does not mean one is able to teach that skill. Upskilling should begin at least one academic 
year in advance of any curriculum change. It may also be wise to commit to yearly refresher 
training courses. Peer observation of teaching is an effective part of many teacher training 
programmes. From a workload perspective, one option to support upskilling we have 
found to be successful and sustainable is for more experienced and confident staff to offer 
peer observation with less confident staff assisting with training sessions. This enables 
trainee staff to practice helping learners with their code without having to lead the session. 

Critical to the success of any curriculum reform is recognising that some staff may be 
apprehensive about a shift to teaching data skills programmatically and building in support 
mechanisms so that people can receive assistance in a supportive and respectful way. We 
urge those who are contemplating such a move to view it as an opportunity to build a 
supportive community that values reproducible research and computational data skills but 
also provides a non-judgemental and supportive environment for staff to upskill in. For 
instance, we have found it very effective to use messaging boards (e.g., on Slack or 
Microsoft Teams) to field questions from staff or students (each with their own channels), 
to share information about new software packages, or to share their excitement (or 
sometimes, frustration) about the new way of doing things. 

Finally, upskilling requirements should factor into decision-making around which scripting 
language fits your needs. Consider the norms in your field, the skills already possessed by 
your staff, and the learning materials available. For example, R is the dominant scripting 
language in experimental and social psychology, while Matlab or Python is more common 
in psychophysics and neuroimaging. Open-source languages, such as R, Python, and Julia, 
have accessibility and cost advantages over proprietary languages, such as Matlab. Open-
source alternatives to SPSS such as Jamovi and JASP may reduce upfront upskilling costs, 
but they are focussed on statistical tests and offer limited scripting options for data 
preparation. 

Curriculum reform 

A common concern we have encountered is that modern psychology undergraduate 
degrees do not have room in the curriculum to prioritise teaching reproducible data skills.  
A curriculum review is a useful place to start addressing this concern and provide guidance 
and a framework to support this process. With the data processing tasks described in this 
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paper in mind, determine which skills, if any, are being explicitly taught and also consider 
whether time spent on higher level statistical analysis may be more fruitfully spent 
ensuring basic data skills are developed. Less emphasis on inferential statistics and more 
on data literacy and visualisation will allow students to learn valuable skills and enhance 
reproducibility and transparency without falling afoul of accreditation guidelines for 
undergraduate programmes. Moreover, by emphasising computational and problem-
solving skills that are broadly applicable to real data sets, we better serve the future 
employability of our students across a diverse range of post-graduation career paths. 

Educators must accept that data processing and transformation is a large and unavoidable 
part of real data analysis. Accepting this means that we should strive to ensure that it is 
done in the most efficient, transparent, and reproducible manner possible. Sooner or 
later—whether during a final research project, or in one of the many jobs in the workplace 
that require analysing data and generating reports—our graduates will stumble upon real 
data. It is our responsibility as educators to ensure our students can meet its analytical 
challenges with confidence and efficiency rather than with frustration, self-doubt, and 
wasted effort. Current approaches leave significant gaps in their education. Developing 
students’ data skills so that they can work more independently empowers students while 
also freeing up supervision time for higher-order discussions relating to analysis and 
interpretation. 

To give an example of an undergraduate curriculum built around a foundation of 
computational data skills, in our four-year programme at the University of Glasgow, 
students learn how to wrangle and visualize data by developing scripts in R, using the 
RStudio Integrated Development Environment as an interface. As part of their assessment 
portfolio, students receive a plain-text R Markdown file with empty code chunks, where 
they have to fill in the correct code to perform the analysis. This enables them to become 
fluent in producing dynamic reports and allows assessment and feedback not only on their 
mastery of course content, but also on whether their analyses are reproducible. Whereas 
our past curriculum had them learning how to do a t-test in their very first lab, they now do 
not learn inferential tests until the start of their second year, after they have become 
proficient in importing, transforming, visualising, and summarising data. The second year 
provides a more traditional curriculum, except that most of the assignments involve 
realistic data and therefore allow students to practice and consolidate data wrangling 
skills. In the third year, which is also the final year of obligatory statistics training, students 
receive more advanced training in linear mixed-effects modelling. Despite spending more 
time on coding and data wrangling in our new curriculum, and introducing inferential 
statistics much later, we nonetheless found that students were able to “catch up” and attain 
similar levels proficiency in inferential statistics by the end of their third year. However, we 
acknowledge that the impact of these changes on students’ statistical proficiency needs 
systematic empirical study. We also appreciate that our four-year degree programme 
allows us ample time to cover the relevant material, whereas psychology programmes are 
often run over three years. However, we have been successfully adapted shorter versions 
of our programme for one- and two-year conversion programmes, which shows the 
adaptability of the general approach. 
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A final consideration for curriculum reform is that the goal is to increase students’ ability to 
handle and reason about data, so teaching these skills requires more than just changing 
software, for example swapping R for SPSS in existing exercises. For example, across the 
degree programme, our curriculum now includes registered reports, pre-registration, the 
use of secondary data that requires cleaning and wrangling, and learning about statistical 
models through simulation.  One method of reducing the workload associated with such 
curriculum reform is to draw on existing open educational resources, such as the 
PsyTeachR series of online textbooks (https://psyteachr.github.io), which target a variety 
of audiences and skill levels. The textbooks are open-source and available under a CC-BY-
SA license, which allows others to modify and re-use them in their own courses.  

Conclusion 

We hope to have made a convincing argument for teaching field-specific computational 
data skills as part of the undergraduate research methods curriculum. Such skills address 
the challenges of reproducibility, transparency, and increasingly large datasets. These skills 
benefit students both inside and outside academia. We acknowledge the challenges of 
incorporating these new skills, such as lack of time and the need to upskill staff, and we 
provide advice and resources to help tackle these. Moving toward a curriculum that puts 
reproducible data analysis at its core can be challenging, but given its many benefits, it is 
very much a journey worth undertaking. 
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