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Abstract A specialised hybrid controller is applied to the control of a motorised space6

tether spin-up space coupled with an axial and a torsional oscillation phenomenon. A seven-7

degree-of-freedom (7-DOF) dynamic model of a motorised momentum exchange tether is8

used as the basis for interplanetary payload exchange in the context of control. The tether9

comprises a symmetrical double payload configuration, with an outrigger counter inertia10

and massive central facility. It is shown that including axial and torsional elasticity per-11

mits an enhanced level of performance prediction accuracy and a useful departure from12

the usual rigid body representations, particularly for accurate payload positioning at strate-13

gic points. A simulation with given initial condition data has been devised in a connecting14

programme between control code written in MATLAB and dynamics simulation code con-15

structed within MATHEMATICA. It is shown that there is an enhanced level of spin-up16

control for the 7-DOF motorised momentum exchange tether system using the specialised17

hybrid controller.18

Keywords fuzzy control · sliding mode control · skyhook damper · fuzzy sliding mode19

control · space tether20

1 Introduction21

Space tethers can be used for orbit raising, lowering, and maintenance, and in principle can22

also be used for interplanetary propulsion of appropriate payloads. The dynamics and con-23

trol research on the space tether have received considerable attention by several researchers24

in the last few years. Alternate control laws based on the linear regulator problem were25

developed by Bainum et al. in 1980 [1]. A linear tension control law was provided by Ku-26

mar and Pradeep in 1998 [2]. In 1999, Pradhan, Modi and Misra [3] presented a paper which27
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studied several applications of the offset scheme in controlling the tethered systems. The ad-28

vantages of combining a crisp algorithmic controller and a soft knowledge-based controller29

were introduced by Goulet et al. in 2001 [4]. In 2003 and 2005, Barkow et al. published30

some papers on various methods of controlling the deployment of tethered satellites [5] [6]31

[7]. In 2005, Modi et al. presented their study on the development and implementation of32

an intelligent hierarchical controller for the vibration control of a deployable manipulator33

[8]. An adaptive neural control concept for the deployment of a tethered re-entry capsule34

was presented by Glabel et al. in 2004 [9]. A strategy for the control of the librations of a35

tethered satellite system in elliptic orbits using tether length control, which drives the sys-36

tem to controlled periodic libration trajectories was suggested by Williams in 2006 [10] [11]37

[12]. In 2007 and 2008, Chung, Slotine and Miller [13] [14] [15] proposed a series of pa-38

pers to describe a fully decentralized linear and nonlinear control law for spinning tethered39

formation flight, based on exploiting geometric symmetries to reduce the original nonlinear40

dynamics into simpler stable dynamics.41

Fig. 1 Conceptual schematic of the motorised momentum exchange tether with axial and torsional elasticity

The concept of the motorised momentum exchange tether (MMET) was first proposed42

by Cartmell [16], and its modelling and conceptual design were developed further, in partic-43

ular modelling of the MMET as a rigid body by Ziegler and Cartmell [17], and modelling of44

the MMET with axial elasticity by Chen and Cartmell [18]. A conceptual schematic of the45

MMET system with axial and torsional elasticity included is shown in Figure 1. The sys-46

tem is composed of the following parts: a pair of braided propulsion tether tube sub-spans,47

a corresponding pair of braided outrigger tether tube sub-spans, the launcher motor mass48

within the rotor, and the launcher motor mass within stator, the outrigger masses, and the49

two payload masses. The MMET is excited by means of a motor, and the model uses angu-50

lar generalised coordinates to represent spin and tilt, together with an angular coordinate for51

circular orbital motion. Another angular coordinate defines backspin of the propulsion mo-52
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tor’s stator components. The payload masses are fitted to each end of the tether sub-spans,53

and the system orbits a source of gravity in space, in this case, the Earth. The use of a tether54

means that all constituent parts of the system have the same angular velocity as the overall55

centre of mass (COM). As implied in Figure 2, the generalised coordinates of the MMET56

system with axial and torsional elasticity modelling are defined on orbit. The symmetrical57

double-ended motorised spinning tether can be applied as an orbital transfer system, in or-58

der to exploit momentum exchange for propelling and transferring payloads in space. An59

MMET modelling with axial and torsional elastic effects will be introduced based on the60

previous axial elastic MMET modelling [18] [19] [20].61

Fig. 2 Generalised coordinates of the motorised momentum exchange tether with axial and torsional elastic-
ity, defined on orbit

It has been well recognized that fuzzy logic control (FLC) is an effective and potentially62

robust control method for various diverse applications The FLC rule-base is generally based63

on practical human experience, however, the intrinsic linguistic format expression required64

to construct the FLC rule base makes it difficult to guarantee the stability and robustness of65

the control system [21]. Variable structure control (VSC) with sliding mode control was in-66

troduced in the early 1950s by Emelyanov and subsequently published in the 1960s [22], and67

then further developed by several other researchers [23][24]. Sliding mode control (SMC)68

is recognised as a robust and efficient control method for complex, high order, nonlinear69

dynamical systems. The major advantage of sliding mode control is its low sensitivity to a70

system’s parameter changes under various uncertainty conditions. Another advantage is that71

it can decouple system motion into independent partial components of lower dimension,72

which reduces the complexity of the system control and feedback design. However, a major73
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drawback of traditional SMC is the property of chattering, which is generally disadvanta-74

geous within control systems.75

In recent years, a lot of literature has been generated in the area of fuzzy sliding mode76

control (FSMC) [25] [26] [27] [28] [29] and has covered the chattering phenomenon of77

traditional SMC designs. A hybrid fuzzy skyhook surface sliding mode controller (FαSMC)78

[19] [20] was introduced to combine fuzzy logic control (FLC) [30] with skyhook sliding79

mode control (SkyhookSMC) [31] to deal with the chattering phenomenon, in which FLC80

is involved in designing an FαSMC-based controller. This can be harnessed to reduce the81

chattering problem, this feature has been applied to the design of the FαSMC controller with82

proper parameter selection, which can provide smooth control action and can be helpful in83

overcoming the disadvantages of chattering. This is why it can be useful to merge FLC84

with SMC to create the FSMC hybrid [29][32][33][34][35]. The hybrid fuzzy sliding mode85

control defined as FαSMC [19], with a skyhook surface (SkyhookSMC) is applied here to86

control the tether sub-span length for spin-up of the MMET system with axial and torsional87

elasticity.88

Fig. 3 Discretisation for the motorised momentum exchange tether [18]

2 Discretised MMET Model with Axial and Torsional Elasticity89

A seven-degree-of-freedom (7-DOF) non-planar tether model, which includes axial and tor-90

sional elasticity coordinates, is proposed as an interim model of moderate accuracy for the91

MMET system. The assumptions for the elasticity modelling process are listed below:92

– The tether is made of homogeneous, isotropic, elastic material–linear elastic material;93

– The MMET system’s dissipation function is assumed to be based on Rayleigh damping;94
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– The MMET is in a friction-free environment;95

– Every axial ‘spring-damper’ group is connected to another, in series;96

– Every torsional ‘spring-damper’ group is connected to another, in series;97

– The axial, torsional and lateral elastic behaviours of the MMET tether are assumed to98

be independent of each other;99

– There is no significant mass moment of inertia in the discretised mass points-Iymi
, so100

this can be ignored in this modelling context;101

– The axial and torsional ‘spring-damper’ groups can be expressed by equivalent stiffness102

and damping coefficients;103

– The axial and torsional ‘spring-damper’ groups have no masses and mass moments of104

inertia;105

Fig. 4 Reference plane definition for MMET torsional elasticity by torsional ‘spring-damper’ groups

This discretised MMET system comprises a symmetrical and cylindrical double payload106

configuration, a cylindrical motor facility, and two axially flexible and essentially tubular107

tether sub-spans, as shown in Figure 3. The elasticity of the tether system is considered108

to be distributed symmetrically along each tether sub-span. The tether and the motor are109

connected by series ‘spring-damper’ groups. When the tether moves out of the orbital plane,110

the motor drive axis remains orthogonal to the spin plane, meanwhile, the motor torque will111

act about the principal axis through its centre of mass.112

In the discretised non-planar tether model, environmental effects such as solar radiation,113

residual aerodynamic drag in low Earth orbit and electrodynamic forces, that may also in-114

fluence the modelling, are reasonably assumed to be negligible in this context. The motor115

consists of a central rotor, which is attached to the propulsion tethers, and a stator which116

locates the rotor by means of a suitable bearing. The power supplies, control systems, and117

communication equipment are assumed to be fitted within the surrounding stator assembly118

in a practical installation. The stator also provides the necessary reaction that is required for119

the rotor to spin-up in a friction-free environment. The motor torque acts about the motor120

drive axis, and it is assumed here that the motor drive axis will stay normal to the spin plane121

of the propulsive tethers and payloads.122

In order to describe the torsional elasticity clearly, three reference planes are defined123

in Figure 4. There are three orthogonal reference planes: x0 − O − y0, x0 − O − z0 and124

z0 − O − y0, which are located at the MMET’s COM. The modelling for the torsional125

elasticity is referenced onto the plane x0 −O − z0.126

As shown in Figure 5, the tether length of the discretised MMET is from payload MP127

to COM, where the time variant length L (t) of the tether is the sum of L0 and Lx (t), the128

static length and the variable elastic length of the discretised tether, respectively. The axial129
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elasticity behaviour is defined by the generalised coordinate Lx, and the axial elasticity130

modelling was given in [18] [19] [20].131

Fig. 5 Local absolute coordinate and local relative coordinate definitions for MMET axial elasticity

For the torsional elasticity modelling, as shown in Figure 6, the torsional elasticity is132

defined by a string of torsional ‘spring-damper’ groups (kti, cti), which connect the mass133

points of mi in series with kt0 = kt1 = . . . = kt(N+1) , ct0 = ct1 = . . . = ct(N+1), where i =134

1, 2, . . . , N +1, the kt0 and ct0 are the default stiffness and damping coefficient values when135

in calculation, and N is the number of discretised mass points. All the torsional ‘spring-136

damper’ groups are defined on the plane x0 − O − z0 as shown in Figure 7. The t in the137

subscript means the torsional elastic parameter, and the generalised coordinate γx defines138

the equivalent torsional elasticity as shown in Figure 6, which is in addition to the solid139

body rolling generalised coordinate γ. The subscript ‘x’ means the generalised coordinate140

with elasticity.141

There are seven generalised coordinates in this model [20], in the form of five rotational142

coordinates (ψ, θ, α, γ, γx) and two translational coordinates (Lx, R). Coordinate ψ defines143

the spin-up performance of the MMET system and is the ‘in-plane pitch angle’. This denotes144

the angle from the x0 axis in Figure 2 to the projection of the tether onto the orbit plane. θ is145

the circular orbit angular position, effectively the true anomaly. α is an out-of-plane angle,146

from the projection of the tether onto the orbit plane to the tether, and is always within147

a plane normal to the orbit plane. Generalised coordinate γ defines the solid body rolling148

angle, γx defines the torsional elastic effect, and lies between the torque plane and the tether149

spin plane. R is the distance from the Earth to the MMET COM, and Lx is the axial elastic150

length. The Lagrange equation is used to obtain the dynamical equations of motion based151

on the seven generalised coordinates.152
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Fig. 6 Local absolute coordinate and local relative coordinate definitions for MMET torsional elasticity -
reference onto the plane x0−O − z0

Fig. 7 Reference on the plane x0 −O − z0 for MMET torsional elasticity

Qi are the generalised forces for the selected generalised coordinates qi, ψ, γx and Lx,153

which are given in equations (1) - (3). As also shown in Table 1, the MMET system’s kinetic154

energy is T , the potential energy is U .155

Table 1 Axial and torsional elastic discretised MMET generalised coordinates and generalised forces

i qi Qi T U Equations of Motion
1 ψ (1) (4) (5) (8)
2 γx (2) (9)
3 Lx (3) (10)
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Qψ = FL cos γ cos α = τ cos γ cos α (1)

Qγx = −cteqmiγ̇x (2)

QLx
= −ceqmiL̇x (3)

Based on the assumptions, the mass moment of inertia of each discretised mass point156

can be ignored, and then the discretised mass point mi’s kinetic energy, which relates to the157

ignored mass moments of inertia Iymi
= 0, can also be ignored. Thus, the MMET system’s158

kinetic energy equation can be simplified as equation (4).159

T =
1

2
MP1

(
ẋ2

P1 + ẏ2
P1 + ż2

P1

)
+

1

2
MP2

(
ẋ2

P2 + ẏ2
P2 + ż2

P2

)
+

1

2
MM

(
ẋ2

M + ẏ2
M + ż2

M

)
+

[
1

2
(MP1 + MP2) L̇x

2
+ m0

N∑

i=1

ẋi
2

]
+

1

2
(IyP1 + IyP2) γ̇x

2+

1

2
AρL

(
ẋ2

T1 + ẏ2
T1 + ż2

T1

)
+

1

2
AρL

(
ẋ2

T2 + ẏ2
T2 + ż2

T2

)
+

[
1

2
IzP1 +

1

2
IzP2 + IzT +

1

2
IzM

] (
ψ̇ + θ̇

)2
+

[
1

2
IxP1 +

1

2
IxP2 + IxT +

1

2
IxM

]
α̇2+

[
1

2
IyP1 +

1

2
IyP2 + IyT +

1

2
IyM

]
γ̇2

(4)
This MMET system’s potential energy is given in equation (5), where µ is the product160

of the universal gravitational constant G with the Earth’s mass.161

U = − µMP1√
L2 + R2 + 2LRcosαcosψ

− µMP2√
L2 + R2 − 2LRcosαcosψ

− µMM

R

−
N∑

i=1

µρAL

N

√
R2 +

(
(2i− 1)L

2N

)2

+
(2i− 1)RLcosαcosψ

N

−
N∑

i=1

µρAL

N

√
R2 +

(
(2i− 1)L

2N

)2

− (2i− 1)RLcosαcosψ

N

+ 2SE

(5)

where
SE = SE|axial + SE|torsional (6)

CE = CE|axial + CE|torsional (7)
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In this discretised model, the potential energy is stored as the strain energy in the as-162

sumed spring elements. The strain energy SE is defined in equation (6) for each tether163

sub-span, which includes the SE|axial term for axial elasticity , and the SE|torsional term164

for torsional elasticity. For the symmetrical double-ended MMET system, the total strain165

energy is 2SE in equation (5).166

The CE term is an assumed dissipation function based on Rayleigh damping for each167

tether sub-span, which involves the CE|axial term and CE|torsional term for axial dissipa-168

tion and torsional dissipation, respectively.169

By following the Lagrangian procedure, the following governing equations for the se-170

lected generalised coordinates qi are listed in equations (8) to (9), for q1 = ψ, q2 = γx, and171

q3 = Lx as given in Table 1, in which the generalised forces are given in equations (1) to172

(3) for q1 to q3.173
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


µMP2 (L0 + Lx) cos α

(
sin(θ + ψ) (R cos θ − cos α cos(θ + ψ) (L0 + Lx))−
cos(θ + ψ) (R sin θ − cos α sin(θ + ψ) (L0 + Lx))

)

(
(cos θR− cos α cos(θ + ψ) (L0 + Lx))2 +

(− sin α (L0 + Lx))2 + (R sin θ − cos α sin(θ + ψ) (L0 + Lx))2

)3/2
+

cos αµMP1 (L0 + Lx)

(
cos(θ + ψ) (R sin θ + cos α sin(θ + ψ) (L0 + Lx))−
sin(θ + ψ ) (R cos θ + cos α cos(θ + ψ) (L0 + Lx))

)

(
(R cos θ + cos α cos(θ + ψ) (L0 + Lx))2 + (sin α (L0 + Lx))2 +

(R sin θ + cos α sin(θ + ψ) (L0 + Lx))2

)3/2




−

(MP1 −MP2)




(L0 + Lx)




sin αα̇
(
sin ψṘ− cos ψRθ̇

)
−

cos α
(
cos ψṘ + R sin ψθ̇

) (
θ̇ + ψ̇

)

 +

cos α
(
cos ψRθ̇ − sin ψṘ

)
L̇x




+

1

2




−2 cos α (MP1 + MP2)
(

2 sin αα̇
(
θ̇ + ψ̇

)
− cos α

(
θ̈ + ψ̈

))
L2

0

+2




sin ψ (MP1 −MP2)
(
sin αṘα̇− cos α

(
Rθ̇ψ̇ + R̈

))
+

cos ψ (MP1 −MP2)




cos αṘ
(
θ̇ − ψ̇

)
+

R
(
cos αθ̈ − sin αα̇θ̇

)



−2 cos α (MP1 + MP2)




2Lx sin αα̇
(
θ̇ + ψ̇

)
−

Lx cos α
(
θ̈ + ψ̈

)
−

L̇x cos α
(
θ̇ + ψ̇

)







L0

+2 sin α (MP1 −MP2) Lxα̇
(
sin ψṘ− cos ψRθ̇

)
−

2 sin 2α (MP1 + MP2) L2
xα̇

(
θ̇ + ψ̇

)
+

2 cos α (MP1 −MP2)




(
cos ψRθ̇ − sin ψṘ

)
L̇x+

Lx




cos ψ
(
Ṙ

(
θ̇ − ψ̇

)
+ Rθ̈

)
−

sin ψ
(
Rθ̇ψ̇ + R̈

)






+MM r2
M

(
θ̈ + ψ̈

)
+

cos 2α (MP1 + MP2) Lx

(
2

(
θ̇ + ψ̇

)
L̇x + Lx

(
θ̈ + ψ̈

))
+

(MP1 + MP2)
((

θ̈ + ψ̈
)

r2
P + 2Lx

(
θ̇ + ψ̇

)
L̇x + L2

x

(
θ̈ + ψ̈

))




= Qψ

(8)

2kteqmiγx +
1

12
(MP1 + MP2)

(
h2

P + 3r2
P

)
γ̈x = Qγx (9)
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


2keqmiLx+

µMP2



−2 cos α cos(θ + ψ) (cos θR− cos α cos(θ + ψ) (L0 + Lx))

−2 sin α (− sin α (L0 + Lx))

−2 cos α sin(θ + ψ) (R sin θ − cos α sin(θ + ψ) (L0 + Lx))




2

(
(cos θR− cos α cos(θ + ψ) (L0 + Lx))2 + (− sin α (L0 + Lx))2

+(R sin θ − cos α sin(θ + ψ) (L0 + Lx))2

)3/2

+

µMP1




2 cos α cos(θ + ψ) (cos θR + cos α cos(θ + ψ) (L0 + Lx))

+2 sin α (sin α (L0 + Lx))

+2 cos α sin(θ + ψ) (R sin θ + cos α sin(θ + ψ) (L0 + Lx))




2




(cos θR + cos α cos(θ + ψ) (L0 + Lx))2

+(sin α (L0 + Lx))2

+(R sin θ + cos α sin(θ + ψ) (L0 + Lx))2




3/2




−




1

2
cos 2α (MP1 + MP2) (L0 + Lx)

(
θ̇ + ψ̇

)2

+cos α (MP2 −MP1)
(
sin ψṘ− cos ψRθ̇

) (
θ̇ + ψ̇

)

+sin α (MP2 −MP1) α̇
(
cos ψṘ + R sin ψθ̇

)

+
1

2
(MP1 + MP2) (L0 + Lx)

(
2α̇2 +

(
θ̇ + ψ̇

)2
+ 2

(
α̇x

2 + ϕ̇x
2
))




+




− sin α (MP1 −MP2) α̇
(
cos ψṘ + R sin ψθ̇

)

+cos α (MP1 −MP2)
(
sin ψṘ

(
θ̇ − ψ̇

)
+ cos ψ

(
Rθ̇ψ̇ + R̈

)
+ R sin ψθ̈

)

+2 (MP1 + MP2) L̈x


 = QLx

(10)

3 Hybrid Fuzzy Sliding Mode Control Strategy174

To make the necessary enhancement required to obtain the FαSMC method, a hybrid control175

law is introduced. This combines the fuzzy logic control with sliding mode control in which176

a sliding hyperplane surface is generated by use of a skyhook damping law. Meanwhile,177

because the chattering phenomenon is an acknowledged drawback of sliding mode control178

and is usually caused by unmodelled system dynamics, a special boundary layer is also179

proposed around the sliding surface to solve the chattering problem [36].180

A flow diagram for the FαSMC, applying the SkyhookSMC approach, is given in Figure181

8. The hybrid control effects of the FLC and the SkyhookSMC are combined by equation182

(11). In equation (11), α is a switching factor which balances the weight of the fuzzy logic183

control to that of the skyhook surface sliding mode control. Clearly, α = 0 represents Sky-184

hookSMC, and α = 1 represents FLC, α ∈ [0,1].185

u|FαSMC = αuFLC + (1− α) uSkyhookSMC (11)
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Fig. 8 FαSMC control flow diagram

3.1 Fuzzy Logic Controller186

Fuzzy control is a practical alternative for a variety of challenging control applications since187

it provides a convenient method for constructing nonlinear controllers via the use of heuristic188

information. This may come from an operator who acts as a human-in-the-loop controller189

and from whom experiential data is obtained. The structure of the FLC for the MMET190

system is shown in Figure 9. An ‘If-Then’ rule base is then applied to describe the ex-191

pert knowledge. The FLC rule base is characterised by a set of linguistic description rules192

based on conceptual expertise which arises from typical human situational experience. Ta-193

ble 2 is the 2-in-1-out FLC rule-base table which can drive the FLC inference mechanism,194

and this came from previous experience gained from examining dynamic simulations for195

tether length changes during angular velocity control. Briefly, the main linguistic control196

rules are as follows. (1) when the angular velocity(e) decreases, the tether length increases,197

conversely, when the angular velocity increases,the tether length decreases. (2) When the198

angular acceleration(ec) increases, the tether length increases can reduce the error between199

the velocity and the reference velocity, otherwise, when the angular acceleration decreases,200

the tether length decreases as well. A membership function (MF) is a curve that defines how201

each point in the input space is mapped to a membership value between 0 and 1. The MF202

for the MMET 7-DOF system is a Gaussian combination membership function. The inputs203

e and ec are the two input signals, and when interpreted from this fuzzy set, the full rule204

base is given in Table 2, which defines the relationship between the two fuzzified inputs of205

Error (E) and Change in Error (EC), with one output of the Fuzzified Length (FL), and the206

appropriate degree of membership as well [19].207
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Fig. 9 FLC control flow diagram

Table 2 2-in-1-out FLC rule table for MMET 7-DOF

U EC

NB NM NS NZS ZE PZS PS PM PB
NB NB NM NS NZS PZS PZS PS PM PB
NM NM NM NZS NZS PZS PZS PZS PM PM
NS NS NS NZS NZS PZS PZS PZS PS PS

NZS NZS NZS NZS NZS ZE PZS PZS PZS PZS
E ZE PZS PZS PZS ZE ZE ZE PZS PZS PZS

PZS PZS PZS PZS PZS ZE NZS NZS NZS NZS
PS PS PS PZS PZS PZS NZS NZS NS NS
PM PM PM PS PZS PZS NZS NS NM NM
PB PB PM PS PZS PZS NZS NS NM NB

3.2 Sliding Mode Control with Skyhook Surface208

The objective of the SkyhookSMC controller is to consider the nonlinear MMET system as209

the controlled plant, and therefore defined by the general state space in equation (12):210

ẋ = f (x, u, t) (12)

Fig. 10 Sliding surface definition
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where x ∈ Rn is the state vector, n is the order of the nonlinear system, u ∈ Rm is the211

input vector, and m is the number of inputs. In the MMET system, we have x = {ψ, ψ̇},212

u = {L}. s(e, t) is the sliding surface of the hyperplane, which is given in equation (13)213

and shown in Figure 10, where λ is a positive constant that defines the slope of the sliding214

surface.215

s (e, t) =

(
d

dt
+ λ

)n−1

e (13)

The MMET system is a second-order system. Then, let n = 2 mean that it is a second-216

order system, in which s defines the position error (e) and velocity error (ė) in equation (14),217

e = {ψ̇ − ψ̇Ref}, where ψ̇Ref = 0 is the reference signal of angular velocity as shown in218

Figure 9.219

s = ė + λe = ψ̈ + λψ̇ (14)

From equations (13) and (14), the second-order tracking problem is now being replaced220

by a first-order stabilisation problem in which the scalar s is kept at zero by means of a gov-221

erning condition. Obtained from the use of the Lyapunov stability theorem, the governing222

condition is given in equation (15), and it states that the origin is a globally asymptotically223

stable equilibrium point for the control system. Equation (16) is the negative definition, and224

it shows that the MMET’s stable behaviour must be satisfied by the negative condition.225

V (x, t) =
1

2
s2 (15)

V̇ (s) = sṡ = λ2eė + λ
(
ė2 + eë

)
+ ėë < 0 (16)

The skyhook control strategy was introduced in 1974 by Karnopp et al. [37]. In Figure226

11 the basic idea is to link a vehicle body’s sprung mass to the ‘stationary sky’ by a con-227

trollable ‘skyhook’ damper, which can then reduce vertical vibrations due to all kinds of228

road disturbances. Skyhook control can reduce the resonant peak of the sprung mass quite229

significantly and thus can achieve a good ride quality in the car problem. By borrowing this230

idea to reduce the sliding chattering phenomenon, in Figure 12, a soft switching control law231

is introduced for the major sliding surface switching activity in equation (17), in order to232

reduce the chattering and to achieve good switch quality for the FαSMC combined with233

SkyhookSMC.234

uSkyhookSMC =

{
−c0 tanh

(s

δ

)
sṡ > 0

0 sṡ ≤ 0
(17)

where c0 is an assumed positive damping ratio for the switching control law. This law235

needs to be chosen in such a way that the existence and the reachability of the sliding mode236

are both guaranteed. Note that δ is an assumed positive constant which defines the thickness237

of the sliding mode boundary layer [36].238
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Fig. 11 Ideal skyhook damper

Fig. 12 Sliding skyhook surface definition

4 Simulations239

Numerical results are obtained using a specially devised co-simulation toolkit of MATLAB240

and MATHEMATICA functions in an integrated programme to provide a new toolbox,241

known henceforth here as SMATLINK [38]. This integrates the control in MATLAB242

and the MMET modelling in MATHEMATICA. The difference between velocity and243

acceleration of ψ with the reference velocity and acceleration of ψ are selected as error244

and change-in-error feedback signals for the MMET system’s spin-up control. Unless stated245

otherwise, all the results are generated using the parameters for the MMET system and246

controller in Table 3.247

5 Conclusions248

It is easy to switch the controller between the SkyhookSMC and the FLC modes when a249

proper value of α is selected (0 < α < 1), and the hybrid fuzzy sliding mode controller250

is generated combining FLC with a soft continuous switching SkyhookSMC law based on251
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Table 3 MMET 7-DOF system parameters

N number of mass points 20
µ (m3s−2) gravitational constant 3.98× 1014

MP (Kg) propulsion tether payload mass 1000
MM (Kg) mass of motor facility 5000
rTinner (m) radius of tether inner tube 0.08
rTouter (m) radius of tether outer tube 0.1
rM (m) radius of motor facility 0.5
rP (m) radius of payload 0.5
rper(m) periapsis distance 6.89× 106

rapo (m) apoapsis distance 1.034× 107

L0 (m) static length tether sub-span 50000
A (m2) undeformed tether tube cross-sectional area 1.1× 10−2

ρ (kg/m3) tether density 970
e circular orbit with eccentricity 0.2
ψ (rad) initial angular 0.0

ψ̇ (rad/s) initial angular velocity 0.0

ψ̇ref (rad/s) reference angular velocity 0.0
τ (Nm) motor torque 2.5× 106

ci (Ns/m) tether sub-span axial damping coefficient 2× 106

ki (N/m) tether sub-span axial stiffness 2× 109

cti (Ns/m) tether sub-span torsional damping coefficient 2× 106

kti (N/m) tether sub-span torsional stiffness 2× 109

Ke FLC scaling gains for e 1
Kec FLC scaling gains for ec 1
Ku FLC scaling gains for u 21000
α FαSMC switching factor {0, 0.5, 1}
c0 SkyhookSMC damping coefficient −3000
δ thickness of the sliding mode boundary layer 0.8
λ slope of the sliding surface 0.0014

equation (17). All the control methods have an effect on the spin-up of the MMET 7-DOF252

system from the given initial conditions. The FαSMC hybrid fuzzy sliding mode control253

system parameters require a judicious choice of the FLC scaling gains of {Ke, Kec} for254

fuzzification, Ku is the defuzzification gain factor which is used to map the control force255

to the range that actuators can generate practically. Similarly, the SkyhookSMC damping256

coefficient c0 is required to expand the normalised controller output force into a practical257

range. The thickness of the sliding mode boundary layer is given by δ, and the slope of258

the sliding surface by λ. Both data came from the previous MMET 7-DOF system spin-up259

simulation results without control, which are given in Table 3. In this simulation the FαSMC260

is used, with α = 0.5 to balance the control weight between the FLC and the SkyhookSMC261

modes.262

Different values of α = {0.0, 0.5, 1.0} can be used for {SkyhookSMC, FαSMC,263

FLC} control, respectively, of the MMET 7-DOF system. Figure 13 gives the time re-264

sponses for the spin-up velocity ψ̇, with different values of α. These results show that all the265

control methods have an effect on the spin-up of the MMET system from the given initial266

conditions.267

Figures 14 and 15 give the axial and torsional elastic behaviour of the MMET in the268

simulation with the appearance of stable axial and torsional oscillation coupled with each269

other.270

The phase plane plots with different values of α are shown in Figure 16 as limit cycles271

whose behaviour for the spin-up coordinate ψ clearly corroborates interpretations of steady272

state.273
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Fig. 14 MMET axial elastic behaviour

In Figure 17, the MMET spin-up error phase plane plots with different α are given, and274

they show that all the control methods offer limit cycles. The FLC caused generally faster275

response behaviour than the other two control methods for the spin-up coordinate ψ.276

Figures 18 and 19 show the plots for the Lyapunov function and its derivative, showing277

the effect of FαSMC control for different values of α. SkyhookSMC has higher energy278
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Fig. 16 MMET spin-up phase plane plots with different values of α

activities than the other two control methods, and FLC has the lowest associated energy279

around V ′ = 0, with FαSMC’s energy in the middle of the three. FαSMC can balance280

the control effects of FLC and SkyhookSMC for stable MMET 7-DOF spin-up outputs and281

associated energy activities.282
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Fig. 18 Lyapunov function for spin-up control methods with different α

6 Future work283

The work in this paper has shown that by including the switching factor α, the FαSMC284

hybrid controller can switch and combine control from FLC to the SkyhookSMC rapidly,285

according to design requirements. This can balance the weight of the FLC and SkyhookSMC286

to override spin-up enhancement for the MMET 7-DOF system. The parameter settings for287

the FαSMC need further consideration, because the current simulation results come from288

manual parameter tests. In order to enhance the parameter selection process and validation,289

some computational intelligence (CI) optimisation tools, such as genetic algorithms (GAs)290

and artificial neural networks (ANNs), could be applied for parameter selection for the FLC,291
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SMC, and FαSMC. This would give some useful reference sets for parameter settings. A GA292

has already been used as an optimisation tool for parameter selection of the MMET system293

when applied to payload transfer from low Earth orbit (LEO) to geostationary Earth orbit294

(GEO), and the GA’s optimisation ability has, in that case, been reasonably demonstrated295

[39].296
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9. H. Gläβel, F. Zimmermann, S. Brückner, U. M. Schöttle, S. Rudolph, (2004), “Adaptive Neural Con-315

trol of the Deployment Procedure for Tether-Assisted Re-Entry”, Aerospace Science and Technology,316

Volume 8, Issue 1, Page 73-81.317

10. P. Williams, D. Sgarioto, P. Trivailo, (2006), “Optimal Control of an Aircraft-Towed Flexible Cable318

System”, Journal of Guidance, Control, and Dynamics, Volume 29, Number 2, Page 401-410.319

11. P. Williams, (2006), “Optimal Deployment/Retrieval of a Tethered Formation Spinning in the Orbital320

Plane”, Journal of Spacecraft and Rockets, Volume 43, Number 3, Page 638-650.321

12. P. Williams, (2006), “Libration control of tethered satellites in elliptical orbits”, Journal of Spacecraft322

and Rockets, Volume 43, Number 2, Page 476-479.323



21

13. S. Chung, J. E. Slotine, D. W. Miller, (2007). “Nonlinear model reduction and decentralized control of324

tethered formation flight by oscillation synchronization”, Journal of Guidance, Control, and Dynamics,325

Volume 30, Number 2, Page 390-400.326

14. S. Chung, D. W. Miller, (2008), “Propellant-Free Control of Tethered Formation Flight, Part 1: Linear327

Control and Experimentation”, Journal of Guidance, Control, and Dynamics, Volume 31, Number 3,328

Page 571-584.329

15. S. Chung, J. E. Slotine, D. W. Miller, (2008), “Propellant-free control of tethered formation flight, part330

2: Nonlinear underactuated control”, Journal of Guidance, Control, and Dynamics, Volume 31, Number331

5, Page 1437-1446.332

16. M. P. Cartmell, (1998), “Generating Velocity Increments by Means of a Spinning Motorised Tether”,333

34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland Conference Center,334

Cleveland, Ohio, USA, AIAA-98-3739.335

17. S.W. Ziegler, M. P. Cartmell, (2001), “Using Motorised Tethers for Payload Orbital Transfer”, Journal336

of Spacecraft and Rockets, Volume 38, Number 6, Pages 904-913.337

18. Y. Chen, M.P. Cartmell, (2007), “Dynamical Modelling of the Motorised Momentum Exchange Tether338

Incorporating Axial Elastic Effects”, Advanced Problems in Mechanics, 20-28 June, Russian Academy339

of Sciences, St Petersburg, Russia.340

19. Y. Chen, M.P. Cartmell, (2009), “Hybrid Fuzzy and Sliding-Mode Control for Motorised Tether Spin-Up341

When Coupled with Axial Vibration”, 7th International Conference on Modern Practice in Stress and342

Vibration Analysis, 8-10 September 2009, New Hall, Cambridge, UK.343

20. Y. Chen, M.P. Cartmell, (2009), “Hybrid Sliding Mode Control for Motorised Space Tether Spin-up344

when Coupled with Axial Oscillation”, Advanced Problems in Mechanics, June 30-July 5, St Petersburg,345

Russia.346

21. K. M. Passino , S. Yurkovich, (1998), “Fuzzy Control”, Addison Wesley Longman, Menlo Park, CA.347

22. S. V. Emelyanov, (1967), “Variable Structure Control Systems (in Russian)”, Moscow: Nauka.348

23. Y. Itkis, (1976), “Control Systems of Variable Structure”, New York: Wiley349

24. V. A. Utkin, (1978), “Sliding Modes and Their Application in Variable Structure Systems”, Moscow:350

Nauka (in Russian) (also Moscow: Mir, 1978, in English).351

25. A. Ishigame, T. Furukawa, S. Kawamoto, T. Taniguchi, (1991), “Sliding Mode Controller Design Based352

on Fuzzy Inference for Non-Linear System”, International Conference on Industrial Electronics, Control353

and Instrumentation, Kobe, Japan, 28 October-1 November, Volume 3, Pages 2096-2101.354

26. A. Ishigame, T. Furukawa, S. Kawamoto, T. Taniguchi, (1993), “ Sliding mode controller design based355

on fuzzy inference for nonlinear systems”, IEEE Trans. Industrial Electronics, 40(1), 64-70.356

27. C. Kung, W. Kao, (1998) “GA-based grey fuzzy dynamic sliding mode controller design”, The 1998357

IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational358

Intelligence, Anchorage, AK, USA, Volume 1, Pages 583-588.359

28. P. C. Chen, C. W. Chen, W. L. Chiang, (2009) “GA-Based Fuzzy Sliding Mode Controller for Nonlinear360

Systems”, Expert Systems with Applications: An International Journal, Volume 36, Issue 3, Pages 5872-361

5879.362

29. K. C. Ng, Y. Li, D. J. Murray-Smith, K. C. Sharman, (1995), “Genetic Algorithm Applied to Fuzzy363

Sliding Mode Controller Design”, First International Conference on Genetic Algorithms in Engineering364

Systems: Innovations and Applications, Galesia, 12-14 Sepetember, Page 220-225.365

30. L. A. Zadeh, (1965) “Fuzzy Sets”, Information and Control, Volume 8, Number 3, Pages 338-353.366

31. Y. Chen, (2009), “Skyhook Surface Sliding Mode Control on Semi-active Vehicle Suspension Systems367

for Ride Comfort Enhancement”, Engineering, Scientific Research Publishing, Volume 1, Number 1, pp.368

23-32.369

32. J.J.E. Slotine, W. P. Li, (1991), “Applied Nonlinear Control”, Prentice-Hall International.370

33. B. O’Dell, (1997), “Fuzzy Sliding Mode Control: A Critical Review”, Oklahoma State University, Ad-371

vanced Control Laboratory, Technical Report ACL-97-001.372

34. S. G. Tzafestas ,G. G. Rigatos, (1999), “A Simple Robust Sliding-Mode Fuzzy-Logic Controller of the373

Diagonal Type”, Journal of Intelligent and Robotic Systems, Volume 26, Numbers 3-4 , Page 353-388.374

35. E. H. Mamdani, (1977), ”Applications of fuzzy logic to approximate reasoning using linguistic synthe-375

sis”, IEEE Transactions on Computers, Volume 26, Number 12, Page 1182-1191.376

36. J. E. Slotine, (1982), “Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application377

to Robot Manipulations”, PhD Dissertation, Laboratory for Information and Decision Systems, Mas-378

sachusetts Institute of Technology.379

37. D. C. Karnopp, M. J. Crosby , R. A. Harwood, (1974), “Vibration Control Using Semi-Active Force380

Generators”, Journals of Engineering for Industry, Transactions of the ASME, 94:619-626.381

38. Y. Chen, (2009), “Simple MATLAB and MATHEMATICA Link Laboratory Toolbox”,382

http://www.mathworks.com/matlabcentral/fileexchange/20573.383

39. Y. Chen, M. P. Cartmell, (2007), “Multi-objective Optimisation on Motorised Momentum Exchange384

Tether for Payload Orbital Transfer”, IEEE Congress on Evolutionary Computation, 25-28 September,385

Page 987-993.386



22

List of Figures387

1 Conceptual schematic of the motorised momentum exchange tether with axial and torsional elasticity 2388

2 Generalised coordinates of the motorised momentum exchange tether with axial and torsional elasticity, defined on orbit 3389

3 Discretisation for the motorised momentum exchange tether [18] . . . . . . 4390

4 Reference plane definition for MMET torsional elasticity by torsional ‘spring-damper’ groups 5391

5 Local absolute coordinate and local relative coordinate definitions for MMET axial elasticity 6392

6 Local absolute coordinate and local relative coordinate definitions for MMET torsional elasticity - reference onto the plane x0−O − z0 7393

7 Reference on the plane x0 −O − z0 for MMET torsional elasticity . . . . . 7394

8 FαSMC control flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . 12395

9 FLC control flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 13396

10 Sliding surface definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13397

11 Ideal skyhook damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15398

12 Sliding skyhook surface definition . . . . . . . . . . . . . . . . . . . . . . . 15399

13 Spin-up velocity with different values of α . . . . . . . . . . . . . . . . . . 17400

14 MMET axial elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 17401

15 MMET torsional elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . 18402

16 MMET spin-up phase plane plots with different values of α . . . . . . . . . 18403

17 MMET spin-up errors phase plane plots with different values of α . . . . . 19404

18 Lyapunov function for spin-up control methods with different α . . . . . . . 19405

19 time derivative of lyapunov function for spin-up control methods with different α 20406

List of Tables407

1 The axial and torsional elastic discretised MMET generalised coordinates . 7408

2 2-in-1-out FLC rule table for MMET 7-DOF . . . . . . . . . . . . . . . . . 13409

3 MMET 7-DOF system parameters . . . . . . . . . . . . . . . . . . . . . . . 16410


	citation_temp.pdf
	http://eprints.gla.ac.uk/32194/


