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Abstract 

Background

This article introduces an innovative classification methodology to 
identify nanowires within scanning electron microscope images.

Methods

Our approach employs advanced image manipulation techniques in 
conjunction with machine learning-based recognition algorithms. The 
effectiveness of our proposed method is demonstrated through its 
application to the categorization of scanning electron microscopy 
images depicting nanowires arrays.

Results

The method’s capability to isolate and distinguish individual 
nanowires within an array is the primary factor in the observed 
accuracy. The foundational data set for model training comprises 
scanning electron microscopy images featuring 240 III-V nanowire 
arrays grown with metal organic chemical vapor deposition on silicon 
substrates. Each of these arrays consists of 66 nanowires. The results 
underscore the model’s proficiency in discerning distinct wire 
configurations and detecting parasitic crystals. Our approach yields an 
average F1 score of 0.91, indicating high precision and recall.

Conclusions
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Such a high level of performance and accuracy of ML methods 
demonstrate the viability of our technique not only for academic but 
also for practical commercial implementation and usage.
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Introduction
The size of current transistors is in the range of tens of  
nanometers, and such ultra-scaled dimensions pose many  
fabrication challenges1,2. One challenge is finding the best way 
to connect the transistors, as in the best interconnect material  
and mode. The current industrial standard is to fabricate the 
interconnect using many conducting layers of metals and 
their alloys (e.g. Cu and Ru)3,4. However, metal interconnects  
offer their own challenges at such small scales5.

To overcome some of these issues, there is growing interest in 
substituting metal with miniaturized active photonic compo-
nents for short-range optical interconnects5,6. Materials such  
as III-V semiconductors are known for their superior light 
adsorption and emission qualities7,8. They are currently inte-
grated on silicon (Si) substrates with pick-and-place9 or wafer 
bonding methods10. This allows manufacturers to avoid defects 
related to lattice mismatch but limits integration density and  
alignment precision11,12. Monolithic growth of III-V semicon-
ductors on Si can achieve quick, high-precision, simultaneous  
integration on large wafer scales.

Template assisted selective epitaxy (TASE) allows high 
defect control when growing III-V nano- and microstructures  
monolithically on silicon13,14. Analysis of the evolution of the  
growth front in TASE-grown heterostructured III-V nanowires 
is fundamental to ensure homogeneous heterolayer thickness15  
and composition, in the case of ternary III-V compounds16. 
Achieving high uniformity across the entire wafer surface is  
critical, as these factors affect the optical behavior of the device.

Heterostructured III-V micro- and nanostructures are usu-
ally analyzed using scanning transmission electron microscopy 
(STEM) to determine the evolution and stability of the growth  
front17,18, as well as the presence of crystalline defects19,20. 
STEM analysis has shown18 that stabilization of the growth front 
tends to occur early in the growth process. However, sample  
preparation for STEM is long and destructive21, making scan-
ning electron microscopy (SEM) preferable for yield and  
reproducibility studies.

For the samples presented in this work, we selected growth con-
ditions that stabilize a single {1 1 1} facet as a growth front 
perpendicular to the wafer surface18. From this knowledge,  
it is already possible to classify the wires as perfect from  
an SEM top-down view of the wire if the seed facet and 
the end facet are parallel along the growth direction and as  
defective otherwise.

When growing densely integrated submicrometer-sized III-V  
crystals, the current approach of manually cataloging differ-
ent growth outcomes on even a 2 cm × 2 cm chip becomes a 
very time-consuming and tedious process. One way to decrease 
the time requirements of such a study is to use machine  
learning (ML) methods. ML is a powerful tool for handling 
large amounts of data and has found application in materials  
science for various tasks. Classification22,23 and segmentation19  
of electron microscopy images can be used to deduce device  
properties, if the images contain sufficient information24. ML  
models for identifying different types of nanostructures, 
such as the difference between nanowires, nanoparticles, and  

nanoporous substrates, have been shown to have extremely high  
accuracy25. However, models that are tasked with segmentation 
often do not perform as well26.

Classifying images containing multiple objects with fine dif-
ferences is complex because the variability between nanowire 
images is of the same magnitude and quality as the target imper-
fections. Additionally, SEM images contain a high degree of 
noise that impedes the performance of traditional classification  
methods27. Due to the large number of images, this process 
can benefit from automatization28, especially when the need 
to use a less resolved and time-consuming characterization  
method arises29.

Hence, to tackle some of the abovementioned problems, we 
describe a novel ML-based approach in this paper. For the 
purpose of this work, we introduce and characterize a new 
dataset for nanowire classification. Finally, we evaluate the  
performance of our method on the aforementioned dataset and  
discuss future research areas.

This article makes the following contributions to the current  
state of the art:

1)   �To the best of our knowledge, this work shows the first  
kernel-based splitting algorithm for III-V nanowire array  
SEM images.

2)   �Our work provides a new nanowire classification dataset  
containing annotated images of III-V nanowire arrays.

3)   �In this work we demonstrate the performance of a com-
pact convolutional neural network (CNN) classifier on the  
aforementioned dataset.

Methods
To extract individual nanowires for classification from each 
SEM image, we developed a novel algorithm that finds the  
location of each nanowire and extracts it30. The following 
algorithms were written in Python 3.931, using OpenCV32,33  
as the image manipulation package. The algorithm locates 
the nanowires and is based on two kernel operations applied 
to an image. These operations minimize the effects of noise  
and enhance wire edges. The kernel manipulations used are 
similar to, but distinct from, the typical definition used in 
machine learning. In this approach, the kernel operates in situ 
and transforms an image into a filter to locate feature edges.  
Once the edges are located, we split the image into granular 
blocks and condition each image through histogram equali-
zation. This produces the final input to the ML model. The  
entire pipeline of operation is shown in Figure 1.

A. Kernel operations
As already discussed, our algorithm is based on two kernel  
operations. Both kernel operations are functions which act  
similarly. Each kernel searches for an extremum in a section  
of the image and then overwrites the whole section with the 
extremum value. Afterwards, the kernel moves along its row, 
ensuring an overlap between the previous and current window.  
At the end of a row, the kernel moves down the image and 
repeats the process without vertical overlap. This creates hard  
edges in the SEM image, removing any noise. Therefore, 
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these operations find the rolling extremum in a row and prop-
agate it forward. The two kernels find the minimum and  
maximum and are termed MinKernel and MaxKernel, respec-
tively. The effect of these kernels on a noisy image is shown  
in Figure 2. There, it can be seen that the pixel values with the 
most extreme values are applied to the entire kernel and, due  
to the overlap, are extended to the end of the image.

Algorithm
The algorithm splits up an image of an array, as in Figure 4,  
into its constituent nanowires by combining rotation, cut, 
split, and mirror operations. To simplify the nanowire isola-
tion process, we have improved the cut operation to detect 
feature edges to cut around automatically. The operation is 
performed using information derived from MinKernel and  
MaxKernel. We devised a smart image paradigm that allows 
us to map a subsection of the visual domain onto its original  
coordinates and ultimately apply the cut on the original image 
for extraction. In this way, we can freely perform modifica-
tions, and once we determine the correct boundary, we can 
map back onto the original image and extract the nanowire  
picture. MinKernel and MaxKernel are used with gradient 
methods to identify where the cut point should be placed. The  
complete cut algorithm is shown in Algorithm 1.

Algorithm 1. Cut algorithm

Require: MinKernel
Require: MaxKernel
Require: Split(image, location or number of outputs)
Require: img - input image
    �images are treated as 2D arrays following right hand 

coordinate system
    for each side do
          minImg ← MinKernel(img)
          maxImg ← MaxKernel(img)
          for each col in maxImg do
                maxV ← max(col)
          end for
          for each col in minImg do
                minV ← min(col)
          end for
          maxGrad ← ∂

∂
maxV

x

          minGrad ← ∂
∂

minV

x

          cutPoint1 ← arg maxx(maxGrad)
          cutPoint2 ← arg maxx(minGrad)
          img ← Split(img, min(cutPoint1, cutPoint2))[1]
          rotate img by 90°
    end for
    return img

The full algorithm used to isolate a nanowire is shown in 
Algorithm 2. It involves cutting and rotating the image to  
isolate the main three-column array. Afterwards, one can 
split the array symmetrically into six parts. Then, each part is  
split again into eleven equally spaced rows. The base images 
are not perfectly aligned with the horizontal axis. Regardless,  
the algorithm works effectively for small degrees of tilt. For 
larger tilts, the methodology fails; however, as the environ-
ment is heavily controlled, the tilt in the images is signifi-
cantly limited. Thus making our methodology suitable for  
use. Additionally, the rotation should not affect the classifi-
cation accuracy since a wire’s features, which determine its 
class, are rotation-independent up to some allowable limit.  
The main features are how parallel the wire fronts are and 
the presence of a parasitic crystal growing on the surface of  
the wire.

Algorithm 2. Process algorithm

Require: MinKernel
Require: MaxKernel
Require: Cut(image)
Require: Split(image, location or number of outputs)
Require: img - input image of nanowire array
    img ← Cut(img)
    imgs ← Split(img, 6 columns)
    wires ← empty list of nanowire images
    for i in imgs do
          i ← Cut(i)
          tmpWires ← Split(i, 11 rows)
          for j in tmpWires do
                tmpWire ← Cut(j)
                tmpWire ← Histogram equalization of tmpWire
                Append tmpWire to wires
          end for
    end for
    return wires

Machine learning model
The primary objective of this research paper is categorizing  
diverse visual representations depicting heterostructured 
nanowires. As previously mentioned, the pivotal impediment 
within this process pertains to the precise separation and extrac-
tion of nanowires from the base image. To demonstrate the effi-
cacy of our pre-processing methodology, we have chosen to  
employ a compact image classification architecture imple-
mented in the PyTorch framework (RRID:SCR 018536)34,35. The  
architectural configuration comprises a pair of convolutional  
layers succeeded by a trio of linear layers. The model struc-
ture is shown in Figure 3. The optimization process integrates 

Figure 1. Process flow of classification method. The raw input consists of scanning electron microscope (SEM) images divided into 
individual wires through a splitting algorithm. The wire images are conditioned and later used as the input for a convolution neural network 
(CNN) classifier in our machine learning (ML) method.
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Figure 2. Mode of operation of kernel min and kernel max. 
The application of the MinKernel is shown on the top row. The raw 
input from the left is transformed into the image on the right. The 
section with the darkest pixel value is highlighted. The application 
of the MaxKernel is shown on the bottom row. The raw input from 
the left is transformed into the image on the right. The section with 
the lightest pixel value is highlighted.

Figure 3. Diagram of the operation of the ML model used for 
nanowire classification. Each nanowire image is fed through to 
two convolutional layers followed by three linear layers producing a 
final output of six probabilities.

Figure 4. Scanning electron microscopy (SEM) images of 
two 11 × 6 nanowire arrays. a) 210nm wide wires in a template 
parallel to a ⟨1 1 1⟩ in-plane direction. The wires appear as light grey 
segments. b) image portions representing each of the classes as 
cut by Algorithm 1.

the cross-entropy loss function with the Adam algorithm.  
Training was carried out for 100 iterations until loss satura-
tion was achieved. The model uses a standard convolution 
approach, which has been used successfully to identify the  
class of images from popular datasets such as the CIFAR-1036.

Dataset
The dataset consists of 240 images containing arrays of 66  
nanowires such as that presented in Figure 4a37. The wires 
were grown using TASE13,18,38. The images were captured 
with the electron beam of a FEI Helios NanoLab 450S in SEM  
mode. The arrays are made of different nanowire widths, 
with four sizes present: 70nm, 140nm, 210nm, 280nm, and in  
orientation with respect to the in-plane ⟨1 1 1⟩ directions. As 
the Si crystal determines the seed surface and the final facet  

orientation, changing the template orientation will produce 
a tilted seed and end facet (Figure 4b, class 3). SEM images  
are used for quality control in nanofabrication, as they allow 
for high magnification and survey speeds. Traditionally, once 
an SEM image is taken, the operator determines whether  
the nanowires contained in it are defective. We have sur-
veyed the nanowire arrays and labelled them to produce the  
dataset used in this paper37.

The examples shown in Figure 4b provide an idea of 
what each class looks like. The wires were labelled using  
LabelMe39, with four classes used to capture the differences 
between the wires grown along a ⟨1 1 1⟩ direction and those  
grown tilted away from it (Table I). This produced the 
first four classes: ”Wire Parallel Perfect”, ”Wire Parallel  
Defect”, ”Wire Tilted Perfect”, and ”Wire Tilted Defect”. 
They represent 49.7%, 2.4%, 21.6%, and 1.6% of the dataset,  
respectively. Therefore, an imbalance exists between the 
number of defective and perfect wires, with the latter greatly 
outnumbering the former and an overall prevalence of the  
”Wire Parallel Perfect” class in the dataset.

A fifth class is necessary because of the presence of parasitic 
growth on the surface of some arrays. Parasitic growth occurs 
on the rare occasion when III-V material nucleates on the walls 
of the template SiO

2
. As there is no template to contain the 

growth of this parasitic crystal, it expands faster, covering a  
large number of templates.

A ”Null” class is introduced to take into account the possi-
bility that the pre-processing algorithm could have sliced the 
image incorrectly. This can be due to a number of factors, such 
as a tilt of a few degrees of the structure in the image or the 
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influence of a large parasitic growth crystal in the cutting of 
the array contours. The percentage of ”Null” class images in  
the dataset was calculated at 12.6%.

Experiment set-up
We divide the data set into training and validation sets with a 
70/30 split. We trained the model for 100 epochs. The training  
loss is shown to saturate around 100 epochs in Figure 5,  
indicating the successful training of the model. Two metrics, 
precision and recall, are used to evaluate the performance of 
a classifier when encountering new data that it was not pre-
sented with, during the training stage. Precision and recall  
refer to the ability of the model to correctly identify an item 
in the test set as belonging to a class. Precision is the ratio of 
true positives to the sum of true and false positives. Recall,  
on the other hand, is defined as the ratio of true positives to 
the sum of true positives and false negatives. Precision and  
recall can be combined into the F1 score, a metric that 
gives an overall assessment of the quality of the model. The 
F1 score of the best model was recorded on the test set at  
0.91 ± 0.04 (97% confidence).

In some circumstances, such as when an imbalanced dataset  
is employed, a single number metric such as the F1 score 
can, however, give a misleading or incomplete ”idea” of the 
model’s performance. In such a situation, per-class metrics  
provide greater insight into a model’s performance. The con-
fusion matrix in Figure 6 summarizes the per-class perform-
ance of the model. The distribution of the predictions for each 
class is shown on each row. The data is presented as percent-
ages: as such, the diagonal (top left to bottom right) also  
indicates the percentage recall of each class.

Results
The model shows outstanding performance in nanowire clas-
sification: achieving a total F1 score of 0.91 ± 0.04. This sur-
passes similar methods for nanowire classification by roughly  
0.128 while using a more compact model with lower compu-
tational costs. The model shows excellent overall perform-
ance, exemplified by the high F1 score of 0.91 ± 0.04 obtained 
from training on an original dataset of only 240 images.  
The F1 Score saturates early in the training process, after  
around 30 epochs, as is evident by the blue curve in Figure 5.

The model’s performance is different depending on the 
class it is trying to predict. The Recalls for each class are  
represented in the diagonal elements of the confusion matrix 
in Figure 6 and illustrate how the model performs when  

distinguishing between different classes. It can easily distinguish  
between non-defective parallel and tilted wires and reliably 
identify wrongly cut images containing partial III-V nanowires  
(non-defective class) or parasitic crystals. However, the model 
struggles to correctly classify defective wires in the test data 
set, with percentages of 36% and 5% of correctly identified  
parallel and tilted wires (classes 1 and 3). Conversely, defective  
wires are more likely to be classified as non-defective  
(52% and 44%). This is due to a combination of factors: there 
is a scarcity of defective wires in the data set, totaling less 
than 5% of the data, and growth failures can occur in more 
than one configuration, often with a small deviation from the 

Table I. Class encodings.

Wire Parallel Wire Tilted

Class Parasitic Defect Perfect Defect Perfect Null

Encoding 0 1 2 3 4 5

Figure 5. In blue, the evolution of the F1 score during model 
training, measured on the test set at each epoch. The blue 
shaded area corresponds to the 97% confidence interval. The 
evolution of the training loss is measured on the training set at 
each epoch and reported in red.

Figure 6. Confusion matrix for the model (from test set). The 
values are row-normalized and presented as percentages.
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desired shape creating the defect. Therefore, the preprocessing  
algorithm is not a contributing factor in this metric.

Conclusions
In this work, we have shown a novel algorithm to separate indi-
vidual nanowires from nanowire arrays to create a general  
model to classify nanowires as defective and non-defective 
and differentiate between different growth configurations. We  
achieved an F1 score of 0.91 in the test set, and the recall 
and confusion matrix have shown a high competence in the  
distinction between parallel and tilted wires and parasitic  
growth.

Expanding the initial data set with more SEM images will  
likely help overcome the difficulties in classifying defective  
wires. Furthermore, in an industrial application where the 
tilt of the sample and the contrast and brightness are more  
homogeneous than the ones in the present dataset, the preva-
lence of the Null class is expected to be reduced. A more 
complex machine learning model could achieve better per-
formance; however, our preprocessing approach has proven  
capable of creating an input dataset well suited for a lightweight 
model.

Our manual segmentation approach is particularly powerful,  
as it relies on precise image gathering, easily achievable 
with SEM instrumentation, and can be further enhanced by a  
data acquisition algorithm. The preprocessing algorithm has 
proven to be a robust way to extract single nanowire images,  
reducing the complexity of the machine learning model’s 

task. This produced a small, quick, and efficient model that  
has achieved a high degree of accuracy.
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Data availability
The Dataset used in this study is available at https://doi.org/ 
10.5281/zenodo.1020401837.

This project contains the following data:

•   �SEM Images of Arrays of III-V Nanowires with Labelled 
Data.zip (.zip folder containing all SEM images used).

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
The software created in this project is available at: https://
doi.org/10.5281/zenodo.1025565730 under the terms of the 
Creative Commons Attribution 4.0 International license  
(CC-BY 4.0).
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