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AI-Enabled Soft Sensing Array for Simultaneous Detection
of Muscle Deformation and Mechanomyography for
Metaverse Somatosensory Interaction

Jiao Suo, Yifan Liu, Jianfei Wang, Meng Chen,* Keer Wang, Xiaomeng Yang,
Kuanming Yao, Vellaisamy A. L. Roy, Xinge Yu,* Walid A. Daoud, Na Liu, Jianping Wang,
Zuobin Wang,* and Wen Jung Li*

Motion recognition (MR)-based somatosensory interaction technology, which
interprets user movements as input instructions, presents a natural approach
for promoting human-computer interaction, a critical element for advancing
metaverse applications. Herein, this work introduces a non-intrusive
muscle-sensing wearable device, that in conjunction with machine learning,
enables motion-control-based somatosensory interaction with metaverse
avatars. To facilitate MR, the proposed device simultaneously detects muscle
mechanical activities, including dynamic muscle shape changes and
vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure
sensor array (weighing ≈0.38 g). Leveraging the rich information from
multiple channels, a recognition accuracy of ≈96.06% is achieved by
classifying ten lower-limb motions executed by ten human subjects. In
addition, this work demonstrates the practical application of
muscle-sensing-based somatosensory interaction, using the proposed
wearable device, for enabling the real-time control of avatars in a virtual
space. This study provides an alternative approach to traditional rigid inertial
measurement units and electromyography-based methods for achieving
accurate human motion capture, which can further broaden the applications
of motion-interactive wearable devices for the coming metaverse age.
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1. Introduction

With the rapid development of meta-
verse and human–machine interaction
(HMI) applications, artificial intelligence
(AI)-enabled sensing technologies have
attracted considerable attention.[1–6] Simul-
taneously, the need for developing devices
and methods to detect human motion data
(a crucial input in HMI systems) has surged
in importance.[7] In contrast to traditional
vision-based methods, the focus has shifted
toward small and lightweight wearable de-
vices that can overcome the limitations of
high environmental requirements, such as
the need for surrounding lighting, precise
camera placement, and occlusion limits.[8]

Wearable devices based on inertial sensors,
including accelerometers, gyroscopes, and
inertial measurement units (IMUs), are
commonly employed in both laboratory
research[9–12] and commercial products (for
example, the Apple Watch and the Fitbit
smartwatch). The inertial sensors measure

J. Wang, Z. Wang
The Int. Research Centre for Nano Handling and Manufacturing of China
Changchun University of Science and Technology
Changchun 130022, China
E-mail: wangz@cust.edu.cn
K. Yao, X. Yu
Dept. of Biomedical Engineering
City University of Hong Kong
Hong Kong 999077, China
E-mail: xingeyu@cityu.edu.hk
V. A. L. Roy
James Watt School of Engineering
University of Glasgow
Scotland G12 8QQ, UK
N. Liu
Sch. of Mechatronic Engineering and Automation
Shanghai University
Shanghai 200444, China
J. Wang
Dept. of Computer Science
City University of Hong Kong
Hong Kong 999077, China

Adv. Sci. 2024, 11, 2305025 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2305025 (1 of 12)

http://www.advancedscience.com
mailto:menchen@cityu.edu.hk
mailto:wenjli@cityu.edu.hk
https://doi.org/10.1002/advs.202305025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:wangz@cust.edu.cn
mailto:xingeyu@cityu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202305025&domain=pdf&date_stamp=2024-02-20


www.advancedsciencenews.com www.advancedscience.com

the acceleration and angular velocity of objects in motion
across three mutually perpendicular axes. They can be placed
on each joint to capture fine movements. However, their
rigid nature makes them less user-friendly, causing inconve-
nience to the users.[13,14] Recently, wearable human-motion-
signal-capturing devices based on soft pressure/strain sensors
have captured considerable attention. Combined with machine
learning, these devices exhibit the potential to facilitate human-
computer interaction.[15–21] Notably, most research has focused
on hand gestures when detecting gestures, often involving the
use of stretchable flexible pressure/strain sensors on finger
joints[15,18,19] or the wrist.[20,21] As for lower-limb motion detec-
tion, although gait recognition has been investigated by measur-
ing the pressure distribution on the foot sole using triboelectric
nanogenerators,[16,17] this approach is considered indirect. The
detection and recognition of multiple human lower-limb mo-
tions, especially those related to complex and large muscles, us-
ing soft pressure/strain sensors, have rarely been explored.

Muscle activities, such as stiffening, relaxation, and contrac-
tion, are integral to human motion. They are achieved through
complex and highly coordinated mechanical interactions be-
tween bones, muscles, ligaments, and joints within the mus-
culoskeletal system.[22] Therefore, muscle activity measurement
is a popular approach for capturing and recognizing human
lower-limb motions without interfering with joint movement.
Presently, the standard muscle activity measurement techniques
are electromyography (EMG)[23,24] and surface EMG (sEMG) with
using noninvasive electrodes,[13,25–27] both of which measure the
electrical signals generated by muscle contraction. These two
techniques have demonstrated exceptional recognition accuracy
for several common lower-limb motions.[24,27–33] Moreover, EMG
and sEMG have also been combined with inertial sensors to ob-
tain more information.[34–37] sEMG, in particular, is more widely
used than EMG due to its noninvasiveness and ease of use. Re-
cently, in addition to traditional bipolar sEMG electrodes, mul-
tichannel sEMG devices with electrodes distributed in an array
have been developed for applications in the detection of various
human motions[6,38,39] and gesture recognition systems.[6,39] Al-
though EMG is the current standard muscle-monitoring tech-
nology, it is characterized by a high hardware requirement, such
as amplifiers to enhance weak electrical signals, and is sensitive
to sweat secretion and changes in skin temperature. Its need
for an electrical connection to the human skin and high cost
make it less portable,[40–42] limiting it applicability outside of lab-
oratory settings. Mechanomyography (MMG), also called “mus-
cle sound,” involves recording the low-frequency lateral oscilla-
tion of muscle fibers during contraction, and is considered an
alternative to EMG for muscle monitoring.[43] MMG are char-
acterized by low-frequency vibrations (typically <50 Hz) that
peak at ≈15–18 Hz, resulting in a skin surface displacement of
≈500 nm.[44] MMG signals are primarily detected using piezo-
electric contact sensors,[45,46] microphones,[47] accelerometers,[48]

and laser distance sensors.[49] Notably, MMG signals remain un-
affected by sweat-induced changes in skin impedance[50] and
do not require an amplifier,[51] making them more versatile for
various settings. They also have no specific sensor placement
requirements.[52] Furthermore, MMG signals provide valuable
insights into changes in muscle force as they reflect the mechan-
ical activities of muscles.[43,53–57] However, the broader applicabil-

ity of MMG is limited by the absence of established dedicated sen-
sors and the occurrence of vibrational/acoustic interference, of-
ten caused by environmental noise.[57] Additionally, monitoring
muscle shape changes induced by muscle contraction are valu-
able for motion monitoring.[58,59]

Muscle mechanical activities can be detected with a physical
sensor. Therefore, we propose a soft pressure-sensor-based wear-
able muscle-sensing device that simultaneously measures dy-
namic muscle deformation, that is, shape/morphology changes,
and vibrational MMG signals associated with lower-limb motion.
Contraction of the calf muscles results in deforming the calf
shape, keeping its volume almost unchanged.[60] The resulting
deformation of skin surface contours can be measured using
wearable soft sensors. Moreover, the vibrational MMG signals
induced by muscle fiber oscillations propagate to the skin sur-
face and can be measured simultaneously. The device exhibits
excellent repeatability for the same motion and exceptional
specificity for distinguishing different motions. The obtained
signals were analyzed and applied to recognize specific motions.
Furthermore, a real-time motion-recognition system was de-
veloped and applied to realize somatosensory interactions in a
virtual space. A conceptual illustration is presented in Figure 1.
This study also highlights the development of a novel soft sensor
array with a wide bandwidth (0–60 Hz) for precise vibrational
MMG measurements.

2. Results

2.1. Device Preparation

The entire device comprised a 16-channel sponge-based pres-
sure sensor array with a sensing area of ≈32 mm × 28 mm,
connected to an ESP32-based wireless signal (WIFI proto-
col) acquisition/transmission circuit board (Figure 2). The sen-
sor array consists of 4 × 4 elements with a carbon nan-
otube (CNT)/polydimethylsiloxane (PDMS) sponge structure
(Figure 2a). The detailed fabrication processes of the sponge
structure and electrode substrate design are presented in Figure
S1 and Text S1 (Supporting Information). This sensing ele-
ment exhibited high sensitivity with a wide bandwidth capabil-
ity (that is, input stimulus ranging from static pressure input
to vibration input of up to hundreds of Hertz) for skin move-
ment/vibration detection, as reported in our previous study.[61]

The sensor array is highly flexible and conformable to the human
skin due its hollow-carved design. Each element functions inde-
pendently, wherein each sensing element is decoupled from the
other elements. The sensing mechanism and signal transmis-
sion from the sponge-structured sensory elements are illustrated
in Figure 2b. Muscle movement (including muscle shape change
and vibrational MMG) induces the deformation of sponge-based
sensing elements, which function as piezoresistive pressure sen-
sors, inducing a change in the divided voltage across the sensor.
The change in the dynamic contact pressure between the skin
surface and sensing elements was detected by the sensor array.
The sensor response is measured using a simple voltage divider.
The sampling rate of each sensing element was ≈120 Hz, with a
sampling interval of ∼0.5 ms for each sensing channel. This sam-
pling rate can capture all human motions, in accordance with the
Nyquist sampling theorem, as the frequency of human activities
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Figure 1. Muscle-sensing device for lower-limb motion recognition (MR)-based human–computer interaction.

typically ranges from 0–20 Hz, with 98% of human activities fea-
turing a frequency of <10 Hz.[62] Moreover, this sampling rate ef-
fectively covers the vibrational MMG signals, whose power spec-
trum mainly ranges from 10 to 50 Hz, with a dominant frequency
below 30 Hz[63,64] and a peak at ≈15–18 Hz.[44] The response of
individual sensory elements are depicted in Figure 2c, demon-
strating that the rate of change in the output voltage increased
with applied pressure. These sensing elements reached a sensi-
tivity of ∼2.3 kPa−1 in the pressure range of 0.03–7.8 kPa, while
the sensitivity decreased to ∼0.09 kPa−1 in the pressure range
of 7.8–39 kPa. The voltage value (V) represents the output sig-
nal. The sensitivity performance (within the pressure range of
0.03–7.8 kPa) for all 16 channels in a sensor array was illustrated
in Figure S2 (Supporting Information), with an average value of
2.34 ± 0.27 kPa−1. Figure 2d showcases the ability of the sponge-
structured sensor to detect vibrations at 60 Hz. Therefore, the
dynamic muscle activity induced by human lower-limb motion
can be recorded using the sponge sensor array.

2.2. Human Motion Detection with the Muscle-Sensing Device

The constructed wearable muscle-sensing device is flexible and
portable due to the hollow-structure electrodes, soft sponge sens-

ing materials, and convenience in gathering muscle-activity sig-
nals via wireless data transmission. The device was employed
to detect 10 types of lower-limb motions: sitting motions of
(A1) heel lift, (A2) toes lift, (A3) foot inversion, (A4) forward leg
stretch, (A5) backward leg stretch, and standing motions of (A6)
standing with foot inversion, (A7) turning around, (A8) stepping,
(A9) forward walk, and (A10) backward walk. The correspond-
ing images of these motions are shown in Figure S3 (Supporting
Information). These motions include muscle training activities
(such as heel lift, toe lift, and forward leg stretch), normal/daily
walking activities (including stepping and forward walking), and
abnormal motions (for example, foot inversion) that may cause
injury. The flexible sensor array was directly attached to the skin
of the subjects around the calf muscle (Figure S3, Supporting In-
formation), with the circuit box connected to the sensing array
affixed to the leg using an elastic strap to ensure firmness dur-
ing specified actions. Figure 3 depicts the output signals of dif-
ferent lower-limb motions when testing the device on a typical
human subject. Figure 3a(i) displays the change-rate response
of the 16 channels for a repeated stepping motion (A8) for 60
s, and the corresponding fast Fourier transform (FFT) is pre-
sented in Figure 3a(ii). The FFT spectra of the signals obtained
over the entire motion time featured peaks below 1 Hz, which
mainly reflected the human-controlled frequency for lower-limb
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Figure 2. Design and working principle of the wearable muscle-sensing device: a) Fabrication of the 16-channel sponge-based soft pressure sensing array,
b) The signal generation and transmission mechanism of the soft sensing array-based device (MD: Muscle deformation; MMG: Mechanomyography), c)
Response of an individual sensory element to different applied static pressure (Inset: The pressure sensitivity derived), and d) Response of the sensory
element to vibration simulation at 60 Hz (Inset: The enlarged view).

motions. A short-time Fourier transform (STFT) spectrogram
of Channel 14 is depicted in Figure 3a(iii), which highlights
some high-frequency components of the obtained signals. The
response of channel 14 was chosen as the representative for the
STFT because it exhibited the most significant change overall;
the STFT plots of all 16 channels are displayed in Figure S4 (Sup-
porting Information). The high-frequency components (particu-
larly >10 Hz) mostly corresponded to the motion start period,
indicating that the high-frequency components were mainly in-
duced by muscle motions. During muscle contractions, mechan-
ical vibrational signals (that is, MMG) are generated at a low
cutoff frequency of 1–2 Hz.[53] Therefore, the obtained motion
signals were considered to comprise MMG signals of muscle
activity. To further investigate the MMG signals, a 5-Hz high-
pass filter was applied to the time-domain signals to remove the
lower-frequency signals because this frequency threshold (5 Hz)

was commonly used in previous research to isolate pure MMG
signals.[65,66] Figure 3a(iv) shows the filtered time-domain signals
(MMG signals) of the calf muscles for motion A8, where the sig-
nal amplitude (that is, the value of the change rate) substantially
decreased compared to the original signals. This reduction im-
plies that the large-amplitude signals were primarily caused by
muscle shape changes, which have a human-subject-controlled
motion frequency (<1 Hz).

The responses of all 16 channels to the ten motions are
provided in Figure 3b, and the corresponding FFT plot is pre-
sented in Figure S5 (Supporting Information). Each channel
responds differently to these motions. Small movements, such
as foot inversion, induce a smaller response because they involve
weaker muscle motion. Large movements, such as stepping,
generate larger responses due to the involvement of larger/more
significant muscle motions. The high resolution achieved by
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Figure 3. Response of the soft sensing array to different human lower-limb motions: a(i)) Original signals of a piece of continuous stepping motion
(A8), ii) Fast Fourier transform (FFT) of the signals. (a.u., arbitrary units) Inset: Enlarged view of the 0–5 Hz range, iii) Short-time Fourier transform
(STFT) of the signals, and iv) Signals subjected to high pass filtering at 5 Hz. b) Time response of the sensing array to multiple motions (A1–A10);
c,d) Amplitude, and frequency response of each channel to the ten motions. Investigation of high-frequency (that is, >5 Hz) MMG signals; e) Power
spectral densities (PSDs) of i) the same motions for ten cycles and ii) ten different motions of MMG signals; f) Boxplot of statistics on the mean power
frequency (MPF) of MMG signals; and g) Boxplot of statistics on the mean root mean square (RMS) of the MMG signals of the same motions and
different motions (A1: heel lift, A2: toes lift, A3: foot inversion, A4: forward leg stretch, A5: backward leg stretch, A6: standing with foot inversion, A7:
turning around, A8: stepping, A9: forward walk, A10: backward walk).

the multichannel sensor array is beneficial for distinguishing
between similar leg motions. For example, the stepping (A8),
forward walking (A9), and backward walking (A10) muscle mo-
tions are quite similar. Although the three motions caused the
greatest change in channel l4 and exhibited similar waveforms,
the different output signals in the remaining channels and

corresponding combinations of the 16 channels allowed us to
distinguish the three motions. The amplitude and frequency
responses of the signals (obtained via the STFT) collected from
each channel are shown in Figure 3c,d, respectively. The stan-
dard deviations of the output signal change rates of the stationary
and in-motion states of A1–A10 were calculated and compared
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(Figure S6, Supporting Information). The output signals expe-
rienced only slight changes in the stationary state (indicated by
black symbols) due to various environmental noises. However,
they changed substantially during motion (represented by red
symbols), indicating that each channel functioned well and
played a role during the test. MMG signals are typically linked
to muscle force, which can be used in many fields. Therefore,
further investigation was performed to prove the effectiveness of
the MMG signals acquired in this study for future applications.
The power spectral density (PSD) was calculated to display the
spectral energy distribution over the frequency, which reflected
the signal frequency feature. The PSD curves of the filtered
MMG signals of the same motion for ten cycles (Figure 3e(i))
were almost equal, whereas the PSD curves of the 10 different
motions (Figure 3e(ii)) differed significantly. Two crucial pa-
rameters of MMG related to the frequency and magnitude of
muscle contractions were also examined, namely mean power
frequency (MPF) (Equation (1)) and root mean square (RMS)
(Equation (2), respectively.[57] Figure 3f,g presents boxplots of
the MPF and RMS for signals generated during ten cycles of the
same motion and ten different motions. The MPF and RMS for
the same motion were more concentrated, while those produced
by different motions were more dispersed. In summary, these
results demonstrate that the developed muscle-sensing device
can detect both dynamic muscle shape changes and vibrational
MMG signals during human lower-limb motions. The device ex-
hibited excellent repeatability for the same motion and high level
of specificity for different motions, rendering it promising for
human-motion tracking, recognition, and related applications.

2.3. Recognition of Lower-Limb Motions and Gait Identification

The recognition of specific lower-limb motion recognition (MR)
holds considerable application potential in health monitoring, re-
habilitation, assistive robotic control, and game entertainment.
As demonstrated above, the proposed sensing device can pro-
vide rich motion information regarding the muscle mechanical
activity. The acquired signals were processed to realize MR, as
shown in Figure 4a. Ten human subjects were recruited to test
the device developed for lower-limb MR. Basic information re-
garding the age and body mass index (BMI) of all participants
is provided in Figure S7 (Supporting Information), which sug-
gests that they fall within the age range of 22–30 y and all have
underweight or healthy weight according to their BMI values.
The collected data were segmented into 4-s fixed windows, and
sliding windows with different overlaps were investigated. For
each window, five time-domain features (Equations S4∼S7, Sup-
porting Information), including the mean value, standard devia-
tion, root mean square, cumulative length, and peak number of
each channel were calculated and used as the input feature ma-
trix for the random forest (RF) algorithm. The RF method com-
bines multiple randomized decision trees and aggregates their
predictions for achieving the final classification results, show-
ing excellent performance in tasks with numerous variables.[67]

Additionally, recursive feature elimination with five-fold cross-
validation (RFECV) was used for optimal feature number se-
lection. Figure 4b illustrates the classification results of the ten
motions collected from the ten subjects using a confusion ma-

trix (fixed window). The cross-validation accuracy, with an av-
erage of ≈96.06%, is shown in Figure S8a (Supporting Infor-
mation). The optimal number of features was determined to be
59, and the model consistently generated comparable accuracies
for different validation sets. The sensor array was designed to
comprise 16 channels (4 × 4) in this study, and the effect of
the number of array channels on the MR-performance was fur-
ther investigated. As depicted in Figure S9 (Supporting Infor-
mation), the recognition accuracies of the 2 × 2 and 3 × 3 ar-
rays (extracted from the original 4 × 4 array) were compared.
The results of 87.94%, 94.15%, and 96.06% for using 2 × 2,
3 × 3, and 4 × 4 array, respectively, suggest that the MR-accuracy
increases as the channel number increases. The classification
results for the different sliding window overlaps are listed in
Table S1 (Supporting Information). These results highlight that
high-precision MR can be achieved using the developed wear-
able muscle-sensing device with the RF as the classification algo-
rithm. MR-accuracy reached ≈99.4% when an 80%overlapping
sliding window was applied. Figure S10 (Supporting Informa-
tion) demonstrates the MR results (with 4-s fixed window seg-
mentation) based on the individual datasets of the ten subjects
respectively, with the recognition accuracy of each subject exceed-
ing 94%. Figure 4c displays the recognition accuracy achieved
when using the high-pass filtered signal (> 5 Hz), low-pass fil-
tered signal (<5 Hz), and the original mixed signal for MR. The
results indicate that both low-frequency signals (macrodynamic
muscle-shape change) and high-frequency signals (vibrational
MMG) contribute to MR; thus, using the combined original sig-
nals achieves the best accuracy.

Gait is considered a personalized biological feature, similar
to fingerprints, iris patterns, face shapes, and voice acoustics.[17]

One notable advantage of gait as a biometric identifier is that it
is observable from a distance.[68] The calf muscles, which con-
tribute to the ankle plantar flexor moment and generate a knee
flexion moment during walking, play a critical role in indicat-
ing healthy and abnormal gait stance phases.[69] Therefore, the
developed wearable muscle-sensing device (attached on the calf
muscle) can be used for gait analysis and identification tasks
by measuring calf muscle mechanical activity. Ten participants
wore muscle-sensing devices and walked at self-selected natural
speeds. The results obtained from the gait data are presented in
Figure 4 d,e and Figure S8b (Supporting Information). The recog-
nition accuracy for ten subjects reached 93.79%, with an optimal
feature number of 60. A comparison of the effects of different
sliding window overlaps on gait identification (Table S2, Support-
ing Information) revealed that a larger overlap corresponded to a
higher recognition accuracy, reaching 96.83% with an 80% over-
lap sliding window. The results underscored the potential appli-
cability of the developed device for biometric (gait) identification.
Compared with MR, the classification accuracy relationship of
using the HP filter, LP filter, and mixed signals is slightly differ-
ent for gait identification. Although the original mixed signals
obtain the highest accuracy, the accuracy of using LP-filter sig-
nals is more similar to that of mixed signals and significantly
higher than that of HP-filter signals for MR, while the accuracy
of the LP-filter signals is closer to that of the HP-filter signals
and evidently lower than that of the mixed signals for gait iden-
tification (Figure S11, Supporting Information). This might be
because the time-dependent muscle deformation pattern (e.g.,
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Figure 4. Recognition of 10 lower-limb motions and gait identification of 10 human subjects: a) Data process flow. RF: random forest. Classification
results of lower-limb MR (motions A1–A10) and gait identification (subjects S1–S10). b,d) Confusion matrix of MR, and gait recognition. c,e) Recognition
accuracy comparison of using the high-pass filtered signal (>5 Hz), low-pass filtered signal (<5 Hz), and the mixed signal for MR, and gait recognition.

Figure 3b) significantly differs among different motions, while
the basic gait cycle, consisting of two phases (stance and swing
phase[70]), is similar for each subject. Therefore, the LP-filtered
muscle deformation information is much more critical for MR,
resulting in an accuracy identical to that of the original mixed sig-
nals. Although all human gaits generally comprise two phases,
the specific parameters for each individual are unique.[71] For ex-
ample, the calf muscle force (that is highly related to MMG sig-
nals), which helps people maintain stability and forward propul-
sion, is a crucial gait parameter.[72] Therefore, both LP-filtered
and HP-filtered information are important, with the mixed sig-
nals achieving the highest recognition accuracy. To further in-
vestigate the effect of walking speed on gait identification, two
subjects (S1 and S3) were asked to perform additional experi-
ments involving walking at speeds faster and slower than their
natural speed while wearing the developed device (Figure S12a,
Supporting Information). Subsequently, the gait data at different
speeds were recognized with the model trained in Figure 4d (that
is, the model trained with data of only natural walking speed).
The results showed that the recognition accuracy can decrease if

the walking speed varies (Figure S12b, Supporting Information),
However, the accuracy could be improved by adding varied walk-
ing data to the model training dataset (Figure S12c, Supporting
Information). This suggests that different walking speeds should
be considered when constructing a more general and robust gait-
identification model for practical applications.

2.4. Real-Time MR System for Somatosensory Interaction
Application

Gesture and motion control are common interaction methods
for video games with numerous advantages (e.g., physical and
emotional engagement, overweight and obesity alleviation, and
encouragement of social interaction) compared with the tradi-
tional keyboard-and-mouse approach,[73] which also plays an im-
portant role in the coming metaverse age. As the offline motion-
recognition capacity of the device was proven, the real-time
motion-recognition capacity of the device was investigated. Here,
we present a simple demonstration of controlling the motion of

Adv. Sci. 2024, 11, 2305025 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2305025 (7 of 12)
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Figure 5. A real-time MR system and MR-based human–computer interaction application with the wearable device. a) Process flow of the somatosensory
interaction with virtual space. b) Confusion matrix produced by the trained MR model for real-time classification and prediction. FW: forward. c) Different
human motions. and the corresponding output signals produced by the proposed device. d) Experimental set up. e) The avatar motions controlled by
the human motions in virtual space.

a virtual character by providing information about the tester’s
lower-limb muscles. A virtual scene was constructed using the
Unity cross-platform game engine. Human-activity signals were
sampled using a wearable muscle-sensing device. Real-time data
were transmitted to the computer and fed into the trained MR
model, and the predicted motion command was sent to Unity to
control the virtual character (Figure 5a). First, a dataset consisting
of signals of seven lower-limb motions (that is, forward walking,
turning, jumping, running, vaulting, sliding, and falling) was cre-
ated. Subsequently, a trained MR model was built based on the
dataset using an RF algorithm with RFECV, as performed for the
offline recognition of the abovementioned ten motions. However,
to reduce the online computational load, the original 16 chan-
nels were fused into eight channels before feature extraction. The
fused feature matrix consisted of 40 features (that is, 5 × 8) for
each window. The training result is shown in Figure 5b with the
accuracy of ∼99.45%. The output signals for the seven motions
are shown in Figure 5c. Finally, when the human subject per-
formed any of the seven motions, the output signals were trans-
mitted to a computer and fed into the trained model (Figure 5d).
The virtual character performs the corresponding motion ac-

cording to the predicted results (Figure 5e). The real-time mo-
tion control system is shown in the Supplementary Movie. This
demonstrates the potential applications of the developed wear-
able muscle-sensing device in somatosensory games and virtual
reality interfaces.

3. Discussions

Over the past decades, various techniques and sensing devices
have been developed for human motion capture and recogni-
tion, particularly with the emergence of smart wearable devices
such as smartwatches and smart wristbands. The advantages
and disadvantages of several commonly used human motion
sensing devices with different measurement principles are
listed in Table S3 (Supporting Information). Compared to other
devices, muscle sensors can provide information on muscle
function and illustrate dynamic motions from the perspective
of muscle activities, which is an additional advantage to the
most commonly used IMU-based wearable devices. Muscle
contraction is accompanied by muscle shape changes, which
allow the measurement of induced psychological electrical and

Adv. Sci. 2024, 11, 2305025 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2305025 (8 of 12)
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mechanical vibration signals on the skin surface.[66] Several
common methods have been developed for monitoring muscle
activity based on electrical and mechanical signals such as EMG
and MMG. Compared to EMG/sEMG, MMG is characterized by
good robustness, portability, and does not require an amplifier.
However, there is a lack of dedicated sensors for MMG mea-
surements, and condenser microphones and accelerometers are
mostly used for measurements (Table S4, Supporting Informa-
tion). Muscles can also be monitored according to morphological
changes in muscle shape during muscle contraction (that is,
muscle fibers shorten in length and increase in circumference
to maintain volume).[60] One study reported a fiber strain sensor
for estimating the muscle force through muscle circumference
measurements.[59] Researchers have also applied capacitive sen-
sors to measure muscle shape changes using the human body
as a dielectric layer.[74] However, these muscle-shape measure-
ment methods are not mature or convenient enough for wide
application. With the development of advanced materials and
fabrication techniques in recent years, flexible pressure/strain
sensors with various working mechanisms have been proposed
to be attached to the human skin surface conformably for human
body motion detection; several typical works are listed in Table
S5. Compared with other works, the muscle-monitoring device
based on the flexible sensor array developed in this work fea-
tures the simultaneous detection of muscle morphology/shape
deformation and muscle vibrational MMG signals. This rich and
reliable information helps to achieve high recognition accuracy
(that is, 96.06%) by testing on multiple (that is, 10) human sub-
jects for ten lower-limb motions and enables human–machine
interaction. The muscle sensing device developed in this work
can detect muscle sounds (that is, MMG signals) because the
sponge-structured pressure-sensing elements have been demon-
strated to have a wide frequency detection range that can cover
the acoustic sound range in our previous work.[61] Compared to
other flexible wide-bandwidth sensor,[75–80] the sponge structured
sensor can be fabricated using a convenient and cost-effective
method (that is, sacrificial sugar template), and the piezoresistive
working mechanism enables a simple circuit design. In addi-
tion, the design of the multichannel array would increase the
information quantity and reliability, which is beneficial for MR
applications (Figure S9, Supporting Information). This has also
been reported in previous research on multichannel sEMG with
array-distributed electrodes for MR applications.[39] Because
recent studies on flexible pressure/strain sensors are rarely used
for human lower-limb MR, a comparison of the lower-limb
motion-recognition performance of some reported EMG/sEMG-
based devices and the proposed device is shown in Figure S13
(Supporting Information). The studies shown in Figure S13
(Supporting Information) mainly used bipolar sEMG electrodes;
therefore, usually more than one sensors are applied for MR.
Array-distributed multichannel sEMG electrodes have been
developed for human motion detection with one piece of array
covering a portion of the skin surface in recent years, but only
gesture recognition systems based on them have been reported
for now as far known as the authors[6,39] so this type of sEMG
was not considered in Figure S13 (Supporting Information).

As both muscle shape changes and MMG signals are related
to muscle strength, the signals obtained from the proposed wear-
able device can be used for muscle strength estimation. The out-

put signals of the leg lift motion under different leg weights
(Figure S14, Supporting Information) and forearm muscle static
contractions (Figure S15, Supporting Information) can be used
to roughly map the output signals with muscle strength. How-
ever, muscle force estimation is a complex process, and the the-
oretical discussion is presented in Text S2 (Supporting Informa-
tion). Further experiments can be conducted to investigate the
more detailed relationships between the output signals and mus-
cle strength. Nevertheless, as different muscle forces can cause
different output signals, the effect of muscle strength during MR
was investigated by asking the human subject to perform the
same motions while wearing a weight on the ankle. As shown
in Figure S16a (Supporting Information), the accuracy of recog-
nizing ten different weight-free motions of S1 (that is, no weight-
bearing) was ≈99.29%. Subject S1 was then asked to perform the
same ten motions while wearing a 2 kg sandbag weight on the
ankle. The weight-bearing motion signals were then recognized
with the same model (that is, the model trained with weight-
free motion data), and the accuracy was ≈87.29% (Figure S16b,
Supporting Information). Similarly, gait identification accuracy
(natural walking speed) may also decrease when the subjects
walk while wearing a weight on the ankle (Figure S16c,d, Sup-
porting Information). A potential solution to this issue is to im-
prove the universality of the recognition model by increasing the
training dataset with motion data under different conditions, as
shown in Figure S16e,f (Supporting Information), which uses
improved models by adding weight-bearing motion/gait signals
to the model training dataset. In addition, although the ten par-
ticipants in the experiments all have a underweight or healthy
weight according to BMI values, the effect of body fat, including
intramuscular[81] and subcutaneous[82] fat, on mechanical mus-
cle activity detection is discussed in Text S3 (Supporting Informa-
tion). Body fat affects muscle bulging and attenuates mechanical
waves; therefore, the sensing performance of the sensor would
be degraded in overweight people, similar to sEMG.[83] There-
fore, further improvements may be necessary when applying the
developed device to overweight or obese individuals.

In MMG applications, motion artifacts are image disturbances
with a human-subject-controlled frequency induced by the sub-
ject’s body movements.[66] Motion artifact signals are usually in-
troduced when accelerometers are used; therefore, filtering is
necessary to obtain the “real” MMG signals. The frequencies of
the limb/body motions may overlap with the MMG signal fre-
quencies. Condenser microphones are optimal sensors for mea-
suring MMG signals in muscle contraction experiments because
they are not sensitive to motion artifacts. However, motion arti-
fact signals also contain useful information about human motion
and play an important role in kinematic-related applications. For
example, MMG sensors have been used with an IMU to inves-
tigate muscle activity during limb motion.[57,84,85] Although the
muscle length and the tissue thickness between the muscle and
the MMG sensor can affect MMG signals, there is convincing
evidence that the MMG signals can provide valid information
on muscle functions for dynamic muscle actions.[86] The flexi-
ble sensor array developed in this study detected both subject-
controlled motion signals and muscle fiber vibration-controlled
MMG signals. Although relatively clean MMG signals can be
obtained using a low-pass filter owing to the very low subject-
controlled motion frequency (that is, mostly <1 Hz), filtering is

Adv. Sci. 2024, 11, 2305025 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2305025 (9 of 12)
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not necessary for the MR application discussed in this study, and
so-called motion artifacts are desired in this investigation. There-
fore, a low-pass filter was not applied during data processing for
motion classification and human–machine interaction.

4. Conclusion

In conclusion, a wearable AI-enabled muscle-sensing device was
developed for human lower-limb motion monitoring. Real-time
multi-MR and the application of HMI were demonstrated. A soft
sensor array can measure dynamic muscle shape/morphology
changes and vibrational MMG signals during muscle contrac-
tions. The multichannel design offers high spatial resolution
and rich information. The 16-channel sensor array was designed
with suspended and decoupled mechanical sensing elements,
each of which was fabricated with an ultrathin CNT/ PDMS
nanocomposite-based sponge and exhibited a wide detection
bandwidth. With fixed window segmentation, ten lower-limb
motions were recognized, with an offline classification accuracy
of ≈96.06% using an RF algorithm. The gait data were further
applied as biometric parameters for 10-subject motion identifica-
tion with an accuracy of ∼93.79%. Finally, the developed device
enabled somatosensory virtual reality interactions for real-time
control of a metaverse avatar performing seven motions. The
proposed wearable muscle-sensing device and corresponding
real-time MR system have prospective applications in smart
wearables.

5. Experimental Section
Device Preparation: The sensing elements of the sensor array were

fabricated using a CNT/PDMS nanocomposite material synthesized us-
ing isopropyl alcohol (IPA) as the solvent, as described in Text S1 and
Figure S1a,b (Supporting Information). After the ultrathin sponge struc-
ture was obtained, individual round sensory elements with a size of𝜑4 mm
× 400 μm were then punched out. The flexible substrate with a thickness of
∼150 μm was fabricated with polyimide as the structural material, which
covered a thin gold layer as the electrical connector at the electrode po-
sitions. The detailed design of the electrode substrate is shown in Figure
S1c (Supporting Information), which was then processed by a professional
company (Shenzhen Phaeton Xin Electronics Co., LTD, China) using flexi-
ble polyimide copper-clad laminates. Individual sponge sensory elements
were attached to each electrical connector of the flexible substrate using
silver ink. Finally, a 30-nm thick Parylene-C layer was coated on the surface
of the entire sensor array. The coating process was applied under 17 mil-
litorr, the pyrolysis temperature was 690 °C, the vaporization temperature
was 175 °C, and the deposition temperature was room temperature. The
resulting thickness was ≈30 nm when 0.1 g Parylene-C was applied. A sim-
ple voltage divider circuit was designed using a feature-rich MCU ESP32
board. The output voltage signal of the 16-channel sensor array was ac-
quired using a 16-channel multiplexer. The acquired data were transmitted
to a computer via a WIFI protocol at a sampling rate of ≈120 Hz for the
whole 16 channels. The entire device was powered by a chargeable Li-ion
polymer battery, and a low-dropout regulator chip, MCP1725T, was used
to provide a stable 3.3-V voltage.

Experiments on Human Subjects: Ten human subjects wearing the
prepared wearable muscle-sensing device were recruited to perform ten
lower-limb motions. The ten motions included five sitting motions (foot
inversion, heel lift, toe lift, forward leg stretch, and backward leg stretch)
and five standing motions (standing with foot inversion, foot inversion,
turning around, stepping, forward walking, and backward walking). The
sponge-based sensor array was attached to the calf (mainly covering the
gastrocnemius) and the upper edge of the sensor array is ≈3 cm away from

the knee using a 3M Tegaderm HP Transparent Film Dressings with the
size 10 cm × 12 cm. The sensor was placed in the middle of the 3 m film,
which was kept flat without stretching when it adhered to the skin surface.
The average circumference of the calf (measured at 3 cm below the knee)
of the participating human subjects is 33.78 ± 2.41 cm. The data acquisi-
tion and transmission boards were fixed to the legs using elastic straps.
The subjects performed each motion repeatedly at a frequency of ≈0.5 Hz
and for 90 s each time. Each subject performed four sets of each motion,
with a minute of rest between sets. For forward and backward walking, the
subjects walked along a ∼10 m straight indoor passage at a self-selected
speed 15 times back and forth. The experiments were conducted indoors
with stable Wi-Fi coverage and the data were obtained using a laptop. The
experiments were approved by the Human Subjects Ethics Sub-Committee
of the City University of Hong Kong (Reference NO. 2-2022-62-F), and writ-
ten informed consent was obtained from all participants.

Data Processing and Offline Classification: The change rate (i.e., X =
(V − V0)/V0 × 100%) of the output voltage signal was first calculated for
baseline adjustment. The MPF was calculated from the PSD according to
Equation (1):

MPF =
∑N

i = 1 fi∗Pi∑N
i = 1 Pi

(1)

where fi is the frequency, Pi is the PSD value at frequency fi, and N is the
data number. The variance was calculated using Equation (2):

Root mean square : RMS =

√√√√ 1
N

N∑
i = 1

X2
i (2)

For offline motion recognition and gait identification, the data were then
segmented into 4-s sliding windows. The total sample sizes for the motion
and gait identification are 8304 and 379, respectively. The time-domain
average, root mean square, standard deviation, and cumulative length of
the signal of each channel for each window were calculated as a part of
the feature matrix using Equation (2) and Equations S5–S7 (Supporting
Information). Another feature, the peak number of each channel for each
window, was also extracted as a feature. Therefore, the feature matrix con-
tained 5 × 16 features for each segmented window. The optimal number of
features was determined via REFCV, and then, a random forest algorithm
was used for classification. Five-fold cross-validation was applied to better
utilize the data. The metric recall was used to evaluate the classification
performance for each class, and accuracy was used to evaluate the overall
performance. The recall of each class and the accuracy of all classes were
calculated using Equations S8 and S9 (Supporting Information), as shown
in Supporting Information.

Real-Time Motion Recognition and Somatosensory Interaction with Virtual
Space: For the real-time somatosensory interaction system, the virtual
character and its animations were built using Unity software. The predic-
tion model was a previously trained random forest classifier. The data used
for model training were acquired from the subjects when they performed
the motions every 3 s, and a fixed window of 3 s was used for the extraction
of features (i.e., the average, root mean square, standard deviation, cumu-
lative length, and peak number). To relieve the online computational load,
the original 16 channels were fused to eight channels before feature extrac-
tion. REFCV was also used to determine the optimal feature number for
the classification model. During the real-time somatosensory interaction
process, the motion data containing one complete motion were transmit-
ted to the computer every 3 s. The received data for each time were fed
into the prediction model built by random forest, and then, the predicted
motion was sent to Unity to control the virtual character to perform the
corresponding action.

Statistical Analysis: All data shown were representative of the samples.
The processing procedure of the data is provided in the subsection “Data
processing and offline classification.” The sample size for the human test
is provided in the subsection “Experiments on human subjects.” The con-
fusion matrices shown in Figures 4 and 5 were normalized by the rows of
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true labels, with numbers rounded to two decimal places. Data in Figure 2c
was shown as mean ± standard deviation. Statistical data were plotted
using OriginLab, MATLAB, and Python. More detailed information is pro-
vided in the figure captions below.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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