
Citation: Leow, L.J.H.; Azam, A.B.;

Tan, H.Q.; Nei, W.L.; Cao, Q.; Huang,

L.; Xie, Y.; Cai, Y. A Convolutional

Neural Network-Based Auto-

Segmentation Pipeline for Breast

Cancer Imaging. Mathematics 2024, 12,

616. https://doi.org/10.3390/

math12040616

Academic Editor: Shiaofen Fang

Received: 30 December 2023

Revised: 7 February 2024

Accepted: 13 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Convolutional Neural Network-Based Auto-Segmentation
Pipeline for Breast Cancer Imaging
Lucas Jian Hoong Leow 1, Abu Bakr Azam 1, Hong Qi Tan 2, Wen Long Nei 2 , Qi Cao 3 , Lihui Huang 1 ,
Yuan Xie 1 and Yiyu Cai 1,*

1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798,
Singapore; jleow009@e.ntu.edu.sg (L.J.H.L.); abubakr002@e.ntu.edu.sg (A.B.A.); lhhuang@ntu.edu.sg (L.H.);
xiey@ntu.edu.sg (Y.X.)

2 National Cancer Center, Singapore 168583, Singapore; tan.hong.qi@nccs.com.sg (H.Q.T.);
nei.wen.long@singhealth.com.sg (W.L.N.)

3 School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; qi.cao@glasgow.ac.uk
* Correspondence: myycai@ntu.edu.sg

Abstract: Medical imaging is crucial for the detection and diagnosis of breast cancer. Artificial
intelligence and computer vision have rapidly become popular in medical image analyses thanks
to technological advancements. To improve the effectiveness and efficiency of medical diagnosis
and treatment, significant efforts have been made in the literature on medical image processing,
segmentation, volumetric analysis, and prediction. This paper is interested in the development
of a prediction pipeline for breast cancer studies based on 3D computed tomography (CT) scans.
Several algorithms were designed and integrated to classify the suitability of the CT slices. The
selected slices from patients were then further processed in the pipeline. This was followed by data
generalization and volume segmentation to reduce the computation complexity. The selected input
data were fed into a 3D U-Net architecture in the pipeline for analysis and volumetric predictions of
cancer tumors. Three types of U-Net models were designed and compared. The experimental results
show that Model 1 of U-Net obtained the highest accuracy at 91.44% with the highest memory usage;
Model 2 had the lowest memory usage with the lowest accuracy at 85.18%; and Model 3 achieved a
balanced performance in accuracy and memory usage, which is a more suitable configuration for the
developed pipeline.

Keywords: convolutional neural network; 3D computed tomography scan; breast cancer; 3D U-Net
architecture; 3D volumetric prediction pipeline

MSC: 37Mxx; 37-04

1. Introduction

In recent years, a convergence of multiple factors has led to an exacerbating global
shortage of radiologists. Examples of such factors include the rising demand for medical
imaging, the coronavirus disease pandemic, and global aging. Over the past decade,
artificial intelligence (AI) has been rapidly adopted in different industrial sectors. Similar
to the ways humans carry out complex problem solving and decision making, AI is now
able to perform learning from relevant datasets for various applications [1,2].

In the healthcare industry, radiology was one of the first medical disciplines to utilize
computer vision (CV) for its medical applications [3]. As a subfield of AI, CV has a rich
history spanning decades of research work to enable computers to meaningfully interpret
visual stimuli. The development of CV has recently been accelerated due to three main
factors: (1) the massive improvement in computer processing capability; (2) the rise of
big data with the amassment and storage of a large amount of data; and (3) the increased
contributions from machine learning algorithm research. CV systems can be used to

Mathematics 2024, 12, 616. https://doi.org/10.3390/math12040616 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040616
https://doi.org/10.3390/math12040616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6027-1652
https://orcid.org/0000-0003-3243-5693
https://orcid.org/0000-0002-9589-6393
https://orcid.org/0000-0002-8406-9536
https://doi.org/10.3390/math12040616
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040616?type=check_update&version=2

Mathematics 2024, 12, 616 2 of 27

analyze medical images such as CT scans, X-rays, and magnetic resonance images (MRIs).
Convolutional neural networks (CNNs) are one of the mainstream methods in the field of
medical imaging segmentation due to their performance [4–7]. Breast cancer is a type of
common cancer in females in the world. An MRI segmentation model with a CNN was
developed for the volumetric measurement of breast cancer [4]. Pre-trained CNN models
were used for feature extraction in the task of detecting breast cancer in mammography
images [5]. A dual-modal CNN was introduced to analyze both ultrasound (US) images and
shear-wave elastography for the prediction of breast cancer [8]. A Regional Convolutional
Neural Network (R-CNN) was utilized for MRI analysis to detect breast tumors [9]. Another
R-CNN-based framework was reported for the MRI analysis and detection of breast cancer
pathological lesions [10]. A deep learning-based tumoral radiomics model for CT images
was introduced to predict the pathological complete response [11]. A CNN model was
used for the delineation of the clinical target volumes (CTVs) in CT images of breast cancers
in radiotherapy [6]. It was observed that the performance of CNN-based segmentation
of CTVs in CT images of breast cancer was better than that of the manual process [12]. A
CNN was depicted for the classification and detection of tumor cancers in CT scans [13].
These systems may be able to detect cancerous tumors with certain precision for small
patches of anomalous tumor segments. Radiologists can fail in their process of cancer
identification [14,15] due to the levels of their expert knowledge and experience. CV
systems are complementary tools that can be used to support the work of radiologists and
reduce diagnostic times.

Carrying out volumetric predictions of breast cancers in 3D CT scans is a challenging
task depending on the experience of the radiologist. It would be beneficial to have an
automatic framework using AI models for accurate volumetric predictions of tumors.

In this research, a CNN-based prediction pipeline is proposed for the volumetric
prediction of breast cancers in 3D CT scans. The prediction pipeline consists of a suitable
and accurate 3D CNN model, which is trained on CT scan datasets. As a type of CNN
model, the U-Net architecture is capable of obtaining good precision with little training
data. The CT scans of a total of 347 patients were provided by the National Cancer Centre,
Singapore (NCCS) for the pipeline’s development. It is necessary to note that not all data are
suitable for model training. The proposed pipeline is able to perform data pre-processing
and manipulation to automatically select the proper data. The architecture of the U-Net
in the pipeline was crafted and configured. Experiments were conducted to evaluate the
performance of the pipeline outputs.

The main contributions of this paper are as follows:

(1) A prediction pipeline is proposed, utilizing a 3D U-Net architecture for image segmen-
tations in 3D CT scan images. The developed pipeline consists of a series of algorithms
for data pre-processing to generalize and normalize the CT scan data. A 3D U-Net
architecture is customized to cater to the requirements of accurate segmentations
and volumetric predictions of breast tumors. The designed pipeline can become
a complementary supporting tool for radiologists to increase the productivity and
efficiency of their jobs.

(2) For the U-Net architecture in the developed pipeline, a hybrid Tversky–cross-entropy
loss function is utilized, which combines the advantages of the binary cross-entropy
(BCE) loss function and the Tversky focal loss. A Nesterov-accelerated adaptive
moment estimation (Nadam) optimization algorithm is leveraged to achieve better
optimization performance.

(3) Three types of 3D U-net architecture models are designed and compared in this
research. Their performance is evaluated based on the Dice coefficient metric [16].

The organization of the remaining parts of the paper is as follows. Section 2 introduces
the relevant background knowledge. Section 3 presents our methodology and design.
Section 4 discusses the experiment results. Section 5 concludes the research.

Mathematics 2024, 12, 616 3 of 27

2. Background Knowledge
2.1. CNN and U-Net

CNN is a variant of deep learning artificial neural networks. It is good for pattern
recognition and image analysis in CV. The architecture of CNN consists of convolution
layers [17,18]. These layers help identify patterns in images through a set of filters to detect
edges and lines from previous layers. It then identifies the whole shapes and objects at
later layers. Apart from the convolution layer, the activation layers, pooling layers, and
fully connected layers are also important for a CNN [19]. Over the years, various types of
CNN architectures were reported to cater to different applications. Some of the commonly
seen architectures are shown in Table 1.

Table 1. Various CNN architectures in the literature.

Type Properties

LeNet [20,21]
• First CNN architecture reported in 1998.
• Used for handwritten digit recognition.
• Suffered from vanishing gradient problem.

AlexNet [22,23]

• Deeper, bigger, and stacked convolutional layers compared to
LeNet.

• Used on large-scale image datasets.
• Rectified Linear Unit is used as an activation function, with batch

size of 128.

ZFNet [24,25]
• Reduced filter size in the first convolutional layer.
• Fewer parameters than AlexNet but with better performance.
• Hyperparameters are different from AlexNet.

GoogLeNet [25,26]

• CNN proposed by Google.
• Deeper architecture due to 1 × 1 convolution and global

average pooling.
• Computationally expensive.

VGGNet [25,27]
• 16-layer CNN for VGG16 architecture, with 13 convolutional

layers and 3 fully connected layers.
• Can take large input image of 224 × 224-pixel size.

ResNet [25,28]

• Utilized skip connections technique to address the vanishing
gradient problem.

• Can be used for tasks of natural language processing.
• Computationally efficient to match the computation power of

Graphics Processing Units (GPUs).

MobileNets [29]

• Used depth-wise convolutions to apply a single filter into each
channel.

• Introduced two hyperparameters: width multiplier and resolution
multiplier.

• Can work on mobile devices for mobile and embedded vision
applications, such as object detection, face recognition, etc.

U-Net [30,31]

• Used for semantic segmentation to address the challenge of
limited medical data with annotations.

• Consisted of a contracting path and an expansive path (i.e.,
encoder and decoder).

• Designed to work with fewer training images but yield favorable
precision and computational efficiency.

U-Net is a type of deep CNN architecture suitable for biomedical image analysis [7,30].
U-Net-based architectures are one of the widely used structures in the field of medical
image segmentation, such as breast tumor image segmentation, as it can work with small

Mathematics 2024, 12, 616 4 of 27

training data yet produce accurate results of image segmentation [32,33]. The U-Net
architecture derives its U-shape due to the sequentially arranged encoder and decoder
modules [30,31,34]. The encoder consists of convolutional layers, batch normalization (BN)
function, activation layers, and max pooling layers to realize the unique features in a given
image. The decoder combines the encoded spatial and feature information through up-
convolutions and concatenations to produce a high-resolution image. This image provides
the localized information needed for semantic segmentation.

The configurations of the original U-Net architecture can be fine-tuned with the
different arrangements of the layers in the architecture. While designing a U-Net from
scratch is possible, minor improvements to the existing architecture could be a quicker
alternative, as observed in similar works [32].

2.2. Image Segmentation

Image segmentation is an image processing technique used to identify specific objects
in an image [11,35,36]. Images can be divided into various partitions known as segments.
Each segment is analyzed and assigned with some values. There are three common
categories for segmentation tasks: binary segmentation, active contour segmentation, and
semantic segmentation. The binary segmentation utilizes the threshold method, where
a histogram of unique pixel values is extracted. This is followed by choosing a suitable
threshold value, to derive the resultant output as a binary segmented image [33]. For the
active contour segmentation, a boundary is first initialized around the object of interest,
and it will automatically move towards the object. It is marked via the difference in pixel
values, using a check iteration algorithm. The final boundary is the segmented image [37].

When dealing with more complicated images, semantic segmentation can be used,
which involves labelling each pixel of an image corresponding to a specific class [38]. For
example, if there are three unique classes namely Human, Bicycle, and Background, every
object of the same class is labelled with the same pixel values. There is no distinction
between different humans in the same class.

3. Methodology
3.1. Proposed Structure of the Volumetric Prediction Pipeline

There are three axes, i.e., x, y, and z, for the 3D CT scans for each patient. The breast
cancer CT scan images contain a stack of images, depending on the spatial locations. The
number of slices in the coronal plane and sagittal plane for each patient is the same, while
the number of slices of each patient is unequal in the axial plane (i.e., z-axis). For example,
scans of every patient have dimensions of 512 × 512 × n, where n varies for every patient,
as shown in Figure 1. This is due to the nature of CT scanning machines. However,
this can affect the U-Net model training, as typically it requires training data with equal
spatial dimensions. It is, thus, necessary to derive suitable data by performing some data
pre-processing on the CT slices, before feeding them into the proposed prediction pipeline.

Mathematics 2024, 12, 616 4 of 28

medical image segmentation, such as breast tumor image segmentation, as it can work
with small training data yet produce accurate results of image segmentation [32,33]. The
U-Net architecture derives its U-shape due to the sequentially arranged encoder and de-
coder modules [30,31,34]. The encoder consists of convolutional layers, batch normaliza-
tion (BN) function, activation layers, and max pooling layers to realize the unique features
in a given image. The decoder combines the encoded spatial and feature information
through up-convolutions and concatenations to produce a high-resolution image. This
image provides the localized information needed for semantic segmentation.

The configurations of the original U-Net architecture can be fine-tuned with the dif-
ferent arrangements of the layers in the architecture. While designing a U-Net from
scratch is possible, minor improvements to the existing architecture could be a quicker
alternative, as observed in similar works [32].

2.2. Image Segmentation
Image segmentation is an image processing technique used to identify specific objects

in an image [11,35,36]. Images can be divided into various partitions known as segments.
Each segment is analyzed and assigned with some values. There are three common cate-
gories for segmentation tasks: binary segmentation, active contour segmentation, and se-
mantic segmentation. The binary segmentation utilizes the threshold method, where a
histogram of unique pixel values is extracted. This is followed by choosing a suitable
threshold value, to derive the resultant output as a binary segmented image [33]. For the
active contour segmentation, a boundary is first initialized around the object of interest,
and it will automatically move towards the object. It is marked via the difference in pixel
values, using a check iteration algorithm. The final boundary is the segmented image [37].

When dealing with more complicated images, semantic segmentation can be used,
which involves labelling each pixel of an image corresponding to a specific class [38]. For
example, if there are three unique classes namely Human, Bicycle, and Background, every
object of the same class is labelled with the same pixel values. There is no distinction be-
tween different humans in the same class.

3. Methodology
3.1. Proposed Structure of the Volumetric Prediction Pipeline

There are three axes, i.e., x, y, and z, for the 3D CT scans for each patient. The breast can-
cer CT scan images contain a stack of images, depending on the spatial locations. The
number of slices in the coronal plane and sagittal plane for each patient is the same,
while the number of slices of each patient is unequal in the axial plane (i.e., z-axis). For
example, scans of every patient have dimensions of 512 × 512 × n, where n varies for
every patient, as shown in Figure 1. This is due to the nature of CT scanning machines.
However, this can affect the U-Net model training, as typically it requires training data
with equal spatial dimensions. It is, thus, necessary to derive suitable data by perform-
ing some data pre-processing on the CT slices, before feeding them into the proposed
prediction pipeline.

Figure 1. Anisotropic CT scans of patients.

The structure of the volumetric prediction pipeline is shown in Figure 2. It consists of
a series of algorithms to filter CT scan slices step by step, which is from the input data to
the 2D and 3D prediction visualization outputs.

Mathematics 2024, 12, 616 5 of 27

(1) An algorithm is developed to extract the number of slices in the axial plane for
each patient.

(2) The model training in the pipeline requires tumor labels, i.e., masks to be assigned
to each slice. The slices without masks are filtered out from the training. Another
algorithm is designed to identify which slices of each patient have associated masks.
The indexes of such slices with masks are sorted out for each patient.

(3) To ensure consistent training and better prediction performance, the pipeline requires
the same ranges of slice spatial locations in the z-axis for all patients. The patients are
classified into three categories based on the threshold value of the slice indexes at the
z-axis. Only the slices from the patient category whose slice indexes are all smaller
than or equal to the threshold value are selected for further processing.

(4) The selected patient category is further classified into two groups based on the CT
scan thickness.

(5) The values of CT scan image matrices are normalized into the range of 0 to 1.
(6) The 3D volumes with large dimensions require a large amount of GPU resources

in the model training. They are divided by an algorithm into a set of cuboids with
smaller dimensions to reduce computation complexity.

(7) A 3D U-Net architecture is customized and trained for the image segmentation tasks
with a hybrid loss function and a hybrid optimizer.

(8) The results of 2D and 3D prediction results are visualized.

Mathematics 2024, 12, 616 5 of 28

Figure 1. Anisotropic CT scans of patients.

The structure of the volumetric prediction pipeline is shown in Figure 2. It consists
of a series of algorithms to filter CT scan slices step by step, which is from the input data
to the 2D and 3D prediction visualization outputs.
(1) An algorithm is developed to extract the number of slices in the axial plane for each

patient.
(2) The model training in the pipeline requires tumor labels, i.e., masks to be assigned to

each slice. The slices without masks are filtered out from the training. Another algo-
rithm is designed to identify which slices of each patient have associated masks. The
indexes of such slices with masks are sorted out for each patient.

(3) To ensure consistent training and better prediction performance, the pipeline re-
quires the same ranges of slice spatial locations in the z-axis for all patients. The pa-
tients are classified into three categories based on the threshold value of the slice in-
dexes at the z-axis. Only the slices from the patient category whose slice indexes are
all smaller than or equal to the threshold value are selected for further processing.

(4) The selected patient category is further classified into two groups based on the CT
scan thickness.

(5) The values of CT scan image matrices are normalized into the range of 0 to 1.
(6) The 3D volumes with large dimensions require a large amount of GPU resources in

the model training. They are divided by an algorithm into a set of cuboids with
smaller dimensions to reduce computation complexity.

(7) A 3D U-Net architecture is customized and trained for the image segmentation tasks
with a hybrid loss function and a hybrid optimizer.

(8) The results of 2D and 3D prediction results are visualized.

Figure 2. Structure of the proposed prediction pipeline.

3.2. Detailed Data Pre-processing Steps
The Python programming language is utilized in this research. Python libraries such

as Tensorflow and Keras are used to assist in building of the U-Net architecture. The com-
puter used in the experiment includes an Intel Xeon W-2265 12 core processor, 264 GB
RAM, and 4 Nvidia Quadro RTX 5000 each with 16 GB GDDR6 memory for model train-
ing.

The CT scans obtained from 347 patients are provided by NCCS in the format of
nearly raw raster data (.nrrd). The data are split into training, validation, and testing sets
in the ratio of 60:20:20, corresponding to 210, 60, and 77 patients, respectively. The “pyn-
rrd” Python library and “matplotlib” library are utilized in processing the CT scans and
visualizing the data. The CT scans for each patient form a 3D volume. The CT scans are
typically anisotropic. In order to gain a better understanding of the number of slices per
patient in the axial plane, an algorithm is designed to extract the number of slices in the

Figure 2. Structure of the proposed prediction pipeline.

3.2. Detailed Data Pre-Processing Steps

The Python programming language is utilized in this research. Python libraries such
as Tensorflow and Keras are used to assist in building of the U-Net architecture. The
computer used in the experiment includes an Intel Xeon W-2265 12 core processor, 264 GB
RAM, and 4 Nvidia Quadro RTX 5000 each with 16 GB GDDR6 memory for model training.

The CT scans obtained from 347 patients are provided by NCCS in the format of
nearly raw raster data (.nrrd). The data are split into training, validation, and testing
sets in the ratio of 60:20:20, corresponding to 210, 60, and 77 patients, respectively. The
“pynrrd” Python library and “matplotlib” library are utilized in processing the CT scans
and visualizing the data. The CT scans for each patient form a 3D volume. The CT scans
are typically anisotropic. In order to gain a better understanding of the number of slices
per patient in the axial plane, an algorithm is designed to extract the number of slices in
the axial plane (Figure 3). It inspects all the data and counts iteratively the slices in the
z-axis under the same patient. The final count of the slices in the z-axis per patient is the
number of slices in the axial plane. The output of the extracted number of slices per patient
is shown in Figure 4.

Mathematics 2024, 12, 616 6 of 27

Mathematics 2024, 12, 616 6 of 28

axial plane (Figure 3). It inspects all the data and counts iteratively the slices in the z-axis
under the same patient. The final count of the slices in the z-axis per patient is the number
of slices in the axial plane. The output of the extracted number of slices per patient is
shown in Figure 4.

Figure 3. Flow chart to extract number of slices per patient in the axial plane.

Figure 4. Output of extracted number of slices per patient.

The training, validation, and testing of the U-Net model require the CT scan images
with their respective masks. But the dataset of the CT scan images from 347 patients has
masks for some of the slices. Therefore, an algorithm is developed to iteratively record the
slice indexes consisting of corresponding masks for each patient, with the flow chart
shown in Figure 5. The slice indexes are appended to the mask list under each patient.

Figure 3. Flow chart to extract number of slices per patient in the axial plane.

Mathematics 2024, 12, 616 6 of 28

axial plane (Figure 3). It inspects all the data and counts iteratively the slices in the z-axis
under the same patient. The final count of the slices in the z-axis per patient is the number
of slices in the axial plane. The output of the extracted number of slices per patient is
shown in Figure 4.

Figure 3. Flow chart to extract number of slices per patient in the axial plane.

Figure 4. Output of extracted number of slices per patient.

The training, validation, and testing of the U-Net model require the CT scan images
with their respective masks. But the dataset of the CT scan images from 347 patients has
masks for some of the slices. Therefore, an algorithm is developed to iteratively record the
slice indexes consisting of corresponding masks for each patient, with the flow chart
shown in Figure 5. The slice indexes are appended to the mask list under each patient.

Figure 4. Output of extracted number of slices per patient.

The training, validation, and testing of the U-Net model require the CT scan images
with their respective masks. But the dataset of the CT scan images from 347 patients has
masks for some of the slices. Therefore, an algorithm is developed to iteratively record the
slice indexes consisting of corresponding masks for each patient, with the flow chart shown
in Figure 5. The slice indexes are appended to the mask list under each patient.

Some sample outputs derived by the algorithm are shown in Figure 6. For example,
there are a total of 122 slices for patient 1, but only six slices contain the masks with the
slice indexes 85–90. We also note that a single patient out of 347 patients has no slices with
masks. As such, only the slices of 346 patients are used in the proposed pipeline.

Mathematics 2024, 12, 616 7 of 27Mathematics 2024, 12, 616 7 of 28

Figure 5. Flow chart to record the slice indexes with the presence of masks.

Some sample outputs derived by the algorithm are shown in Figure 6. For example,
there are a total of 122 slices for patient 1, but only six slices contain the masks with the
slice indexes 85–90. We also note that a single patient out of 347 patients has no slices with
masks. As such, only the slices of 346 patients are used in the proposed pipeline.

Figure 6. Sample outputs indicate the patient slices with the presence of masks.

Figure 5. Flow chart to record the slice indexes with the presence of masks.

Mathematics 2024, 12, 616 7 of 28

Figure 5. Flow chart to record the slice indexes with the presence of masks.

Some sample outputs derived by the algorithm are shown in Figure 6. For example,
there are a total of 122 slices for patient 1, but only six slices contain the masks with the
slice indexes 85–90. We also note that a single patient out of 347 patients has no slices with
masks. As such, only the slices of 346 patients are used in the proposed pipeline.

Figure 6. Sample outputs indicate the patient slices with the presence of masks. Figure 6. Sample outputs indicate the patient slices with the presence of masks.

It is observed from the output of the slices with masks under each patient that there
are different numbers of slices with masks in the axial plane. To resolve this issue of
the unequal number of slices with masks in the axial plane, an algorithm is developed
to classify the patients based on a threshold value of the slice indexes in the z-axis. The
threshold value in the z-axis is set to 96, and a fixed spatial size of 512 × 512 × 96 is utilized
in the proposed pipeline. This is in order to have the same ranges of spatial locations at the
z-axis for CT scan slices, with data consistency for all patients. This means that the slices

Mathematics 2024, 12, 616 8 of 27

with masks in the range of the 1st–96th indexes for the patients will be used in the model
training, validation, and testing.

As such, the 346 patients will be classified into three categories using another algorithm,
shown in Figure 7, according to the indexes of slices with masks:

(1) The List with all indexes ≤ 96: All indexes of the slices with masks are lesser than or
equal to 96. As shown in Figure 6, most patients, e.g., patients 1, 2, 4, 5, and 7, satisfy
this condition.

(2) The List with all indexes > 96: All indexes of the slices with 96 masks or more. As
shown in Figure 6, patient 6 and patient 8 are some examples.

(3) The overlap list: Indexes of the slices with masks across all 96 indexes, where some
indexes are lesser than or equal to 96, and the others are more than 96. As shown in
Figure 6, patient 3 is the only patient that satisfies this condition.

Mathematics 2024, 12, 616 8 of 28

It is observed from the output of the slices with masks under each patient that there
are different numbers of slices with masks in the axial plane. To resolve this issue of the
unequal number of slices with masks in the axial plane, an algorithm is developed to clas-
sify the patients based on a threshold value of the slice indexes in the z-axis. The threshold
value in the z-axis is set to 96, and a fixed spatial size of 512 × 512 × 96 is utilized in the
proposed pipeline. This is in order to have the same ranges of spatial locations at the z-
axis for CT scan slices, with data consistency for all patients. This means that the slices
with masks in the range of the 1st–96th indexes for the patients will be used in the model
training, validation, and testing.

As such, the 346 patients will be classified into three categories using another algo-
rithm, shown in Figure 7, according to the indexes of slices with masks:
(1) The List with all indexes ≤ 96: All indexes of the slices with masks are lesser than or

equal to 96. As shown in Figure 6, most patients, e.g., patients 1, 2, 4, 5, and 7, satisfy
this condition.

(2) The List with all indexes > 96: All indexes of the slices with 96 masks or more. As
shown in Figure 6, patient 6 and patient 8 are some examples.

(3) The overlap list: Indexes of the slices with masks across all 96 indexes, where some
indexes are lesser than or equal to 96, and the others are more than 96. As shown in
Figure 6, patient 3 is the only patient that satisfies this condition.

Figure 7. Flow chart to classify patients according to the indexes of mask slice presence.

With this algorithm, the CT scans of the 346 patients are classified into three catego-
ries, as shown in Table 2. In the pipeline, only the patients whose indexes of the slices with
masks are all ≤ 96 are utilized. Thus, only 191 patients are available for the model training,
validation, and testing.

Figure 7. Flow chart to classify patients according to the indexes of mask slice presence.

With this algorithm, the CT scans of the 346 patients are classified into three categories,
as shown in Table 2. In the pipeline, only the patients whose indexes of the slices with
masks are all ≤96 are utilized. Thus, only 191 patients are available for the model training,
validation, and testing.

Table 2. Obtained distributions of three categories of patients.

Mask Slice Presence No. of Patients Train Patients Valid Patients Test Patients

Index ≤ 96 191 109 43 39

Index > 96 91 58 9 24

The overlap 64 42 8 14

Total 346 210 60 77

Mathematics 2024, 12, 616 9 of 27

Besides the indexes of the slices with masks for each patient, another important
parameter is the thickness of CT scans. In general, there are two thicknesses, namely 3 mm
and 5 mm. The distributions of the thickness of the 191 patient scans are shown in Table 3,
where the CT scans of 127 patients have a scan thickness of 3 mm. Since there are more
patients with 3 mm scan thickness, they are used for the initial model training. The patient
indexes of these 127 patients are shown in Table 4.

Table 3. Distribution of patient scan thickness.

CT Scan Thickness Train Patients Valid Patients Test Patients Total Patients

3 mm 74 26 27 127

5 mm 35 17 12 64

Total 109 43 39 191

Table 4. The 127 patients with 3 mm CT scan thickness.

Patient Category Patient Index

Patients for Training

4, 5, 9, 10, 15, 16, 18, 19, 20, 21, 22, 23, 28, 29, 33, 34, 35, 37, 44, 51, 52,
58, 64, 68, 69, 72, 73, 76, 77, 79, 82, 83, 90, 91, 92, 93, 94, 95, 97, 103,

104, 116, 123, 126, 129, 131, 134, 136, 139, 142, 149, 151, 155, 157, 159,
162, 163, 164, 169, 170, 171, 179, 180, 186, 188, 191, 192, 198, 200, 201,

206, 207, 208, 209

Patients for Valid 213, 214, 215, 217, 219, 220, 221, 224, 226, 227, 228, 231, 237, 238, 240,
243, 248, 249, 250, 254, 255, 256, 257, 264, 266, 270

Patients for Test 271, 272, 274, 277, 280, 283, 286, 287, 288, 293, 294, 296, 297, 298, 300,
303, 305, 306, 314, 315, 317, 320, 322, 340, 342, 345, 347

3.3. Data Normalization

For every patient, there are two sets of 512 × 512 × 96-pixel matrices, one for the CT
scan images and the other for the mask labels, as shown in Figure 8. The values in the
matrix of the CT scan images vary from −1000 to 5000, while the values in the mask label
matrix vary between 0 and 1. Thus, the values in the CT scan image matrices need to be
normalized to the range of 0 to 1.

Mathematics 2024, 12, 616 9 of 28

Table 2. Obtained distributions of three categories of patients.

Mask Slice Presence No. of Patients Train Patients Valid Patients Test Patients
Index ≤ 96 191 109 43 39
Index > 96 91 58 9 24

The overlap 64 42 8 14
Total 346 210 60 77

Besides the indexes of the slices with masks for each patient, another important pa-
rameter is the thickness of CT scans. In general, there are two thicknesses, namely 3 mm
and 5 mm. The distributions of the thickness of the 191 patient scans are shown in Table
3, where the CT scans of 127 patients have a scan thickness of 3 mm. Since there are more
patients with 3 mm scan thickness, they are used for the initial model training. The patient
indexes of these 127 patients are shown in Table 4.

Table 3. Distribution of patient scan thickness.

CT Scan Thickness Train Patients Valid Patients Test Patients Total Patients
3 mm 74 26 27 127
5 mm 35 17 12 64
Total 109 43 39 191

Table 4. The 127 patients with 3 mm CT scan thickness.

Patient Category Patient Index

Patients for Training

4, 5, 9, 10, 15, 16, 18, 19, 20, 21, 22, 23, 28, 29, 33, 34, 35, 37, 44, 51,
52, 58, 64, 68, 69, 72, 73, 76, 77, 79, 82, 83, 90, 91, 92, 93, 94, 95, 97,
103, 104, 116, 123, 126, 129, 131, 134, 136, 139, 142, 149, 151, 155,
157, 159, 162, 163, 164, 169, 170, 171, 179, 180, 186, 188, 191, 192,

198, 200, 201, 206, 207, 208, 209

Patients for Valid 213, 214, 215, 217, 219, 220, 221, 224, 226, 227, 228, 231, 237, 238,
240, 243, 248, 249, 250, 254, 255, 256, 257, 264, 266, 270

Patients for Test
271, 272, 274, 277, 280, 283, 286, 287, 288, 293, 294, 296, 297, 298,

300, 303, 305, 306, 314, 315, 317, 320, 322, 340, 342, 345, 347

3.3. Data Normalization
For every patient, there are two sets of 512 × 512 × 96-pixel matrices, one for the CT

scan images and the other for the mask labels, as shown in Figure 8. The values in the
matrix of the CT scan images vary from −1000 to 5000, while the values in the mask label
matrix vary between 0 and 1. Thus, the values in the CT scan image matrices need to be
normalized to the range of 0 to 1.

Figure 8. Patient pixel matrix illustration. Figure 8. Patient pixel matrix illustration.

The CT scans quantize medical images using Hounsfield Units (HUs) for the pixel
value. By convention, the HU of air is −1000 and the HU of water is 0. By normalizing
the CT scans to a certain range of HU, different organs or tissues can be contrasted for
analysis [39]. In this research, the values of the CT scan image are normalized, as shown in
Equation (1).

Mathematics 2024, 12, 616 10 of 27

Specify minimum = −1000Specify maximum = 5000

pixel value = f (x) =

{
minimum, x < −1000

maximum, x ≥ 5000

Normalized value = f (x)−minimum
maximum−minimum

(1)

Utilizing the 3D volumes in the model training requires a large amount of GPU
resources. Heavy computations are needed to process a CT scan image with the dimensions
of 512 × 512 × 96. Double computation memory is required if the label matrix is included.
To resolve this issue, the “Patchify” library is utilized, which essentially divides a big 3D
volume into smaller partitions for training, as shown in Figure 9. A total of 225 cuboids for
one patient with the dimensions 64 × 64 × 96 are segmented from the original 3D volume.
The computation complexity can thus be reduced significantly, and the model training
becomes more manageable. However, two issues arise from the above processing:

(1) Not all patients have 96 slices. For example, the scan dimensions of a few patients are
512 × 512 × 87.

(2) There are many empty cuboids without masks (i.e., tumor labels). If empty cuboids
are fed into the training model, the loss function will become erratic, resulting in
inaccurate model predictions.

Mathematics 2024, 12, 616 10 of 28

The CT scans quantize medical images using Hounsfield Units (HUs) for the pixel
value. By convention, the HU of air is −1000 and the HU of water is 0. By normalizing the
CT scans to a certain range of HU, different organs or tissues can be contrasted for analysis
[39]. In this research, the values of the CT scan image are normalized, as shown in Equa-
tion (1). Specify 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = −1000Specify 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 5000 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = 𝑓 𝑥 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝑥 < −1000𝑚𝑎𝑥𝑖𝑚𝑢𝑚, 𝑥 ≥ 5000 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =

(1)

Utilizing the 3D volumes in the model training requires a large amount of GPU re-
sources. Heavy computations are needed to process a CT scan image with the dimensions
of 512 × 512 × 96. Double computation memory is required if the label matrix is included.
To resolve this issue, the “Patchify” library is utilized, which essentially divides a big 3D
volume into smaller partitions for training, as shown in Figure 9. A total of 225 cuboids
for one patient with the dimensions 64 × 64 × 96 are segmented from the original 3D vol-
ume. The computation complexity can thus be reduced significantly, and the model train-
ing becomes more manageable. However, two issues arise from the above processing:

(1) Not all patients have 96 slices. For example, the scan dimensions of a few patients are
512 × 512 × 87.

(2) There are many empty cuboids without masks (i.e., tumor labels). If empty cuboids
are fed into the training model, the loss function will become erratic, resulting in in-
accurate model predictions.

Figure 9. Segmented 3D volume using Patchify library. The segmented cuboids are shown in red
boxes.

To resolve issue (1), only patients having 96 slices in the axial plane are chosen. For
issue (2), an algorithm is developed to only select and process the cuboids where the
masks are present. The flow chart to voxelize the training data is shown in Figure 10. It
ensures that only the cuboids with tumor labels presented are fed into the training model.

Figure 9. Segmented 3D volume using Patchify library. The segmented cuboids are shown in
red boxes.

To resolve issue (1), only patients having 96 slices in the axial plane are chosen. For
issue (2), an algorithm is developed to only select and process the cuboids where the masks
are present. The flow chart to voxelize the training data is shown in Figure 10. It ensures
that only the cuboids with tumor labels presented are fed into the training model.

The Python TensorFlow library is utilized for model building and training. The
model.fit method takes in several formats of data, such as NumPy arrays, TensorFlow
tensors, dictionary mappings, or tf.data dataset objects. In this study, the NumPy arrays
used for the input pipeline are used as inputs for the model training. For the CT scans,
with 225 cuboids per patient, there are 450 NumPy arrays generated and stored in the
computer memory (i.e., 225 for the CT scan image matrix, and 225 for the mask label
matrix). Following such a method, the 3D volumes of all patients are converted into
smaller cuboids. It is followed by selecting the cuboids where the mask labels exist. The
generated NumPy arrays are saved as hdf5 files to avoid repeated processing of every
new session.

Mathematics 2024, 12, 616 11 of 27Mathematics 2024, 12, 616 11 of 28

Figure 10. Flow chart to voxelize training data.

The Python TensorFlow library is utilized for model building and training. The
model.fit method takes in several formats of data, such as NumPy arrays, TensorFlow
tensors, dictionary mappings, or tf.data dataset objects. In this study, the NumPy arrays
used for the input pipeline are used as inputs for the model training. For the CT scans,
with 225 cuboids per patient, there are 450 NumPy arrays generated and stored in the
computer memory (i.e., 225 for the CT scan image matrix, and 225 for the mask label ma-
trix). Following such a method, the 3D volumes of all patients are converted into smaller
cuboids. It is followed by selecting the cuboids where the mask labels exist. The generated
NumPy arrays are saved as hdf5 files to avoid repeated processing of every new session.

3.4. Set-up of 3D U-Net Architecture in the Pipeline
The 3D U-Net architecture is chosen in the proposed pipeline due to its favorable

results with a small number of training samples. The proposed configuration of the 3D U-
Net architecture is shown in Figure 11. The input images with dimensions of 64 × 64 × 96
are fed into the 3D U-Net model. In the encoder, each layer has convolutions with filters
of 3 × 3 × 3 kernel sizes, followed by a BN function and the activation function. Finally,
there is a max pooling operation with a 2 × 2 × 2 kernel size with a stride of 2 in each
dimension. The activation function is either a sigmoid or softmax function. The number
of filters in the first layer is set to 32 in the encoder. The number of filters doubles in the
next layer until reaching the bottommost layer.

Figure 10. Flow chart to voxelize training data.

3.4. Set-Up of 3D U-Net Architecture in the Pipeline

The 3D U-Net architecture is chosen in the proposed pipeline due to its favorable
results with a small number of training samples. The proposed configuration of the 3D U-
Net architecture is shown in Figure 11. The input images with dimensions of 64 × 64 × 96
are fed into the 3D U-Net model. In the encoder, each layer has convolutions with filters of
3 × 3 × 3 kernel sizes, followed by a BN function and the activation function. Finally, there
is a max pooling operation with a 2 × 2 × 2 kernel size with a stride of 2 in each dimension.
The activation function is either a sigmoid or softmax function. The number of filters in the
first layer is set to 32 in the encoder. The number of filters doubles in the next layer until
reaching the bottommost layer.

In the decoder, each layer first combines the spatial and feature information through
up-sampling with a 2 × 2 × 2 kernel size and concatenations of the segmentation feature
maps from the corresponding layer in the encoder. The value of stride is set as 2. Next, it
conducts the convolutions with a 3 × 3 × 3 kernel size, followed by a BN function and the
activation function in each layer. In the decoder, the number of filters is reduced by half in
the next layer, until reaching the topmost layer, where the last convolution is conducted
with a 1 × 1 × 1 kernel size.

The Python Keras library is utilized to implement the 3D U-Net architecture in the
pipeline. There are three primary building blocks for the U-Net architecture, namely the
convolution block, encoder block, and decoder block. Within these building blocks, various
parameters can be fine-tuned to improve the model fitting in accordance with the data after
the pre-processing. This is known as hyper-parameter tuning. The code implementation of
the 3D U-Net model is shown in Figure 12.

Mathematics 2024, 12, 616 12 of 27Mathematics 2024, 12, 616 12 of 28

Figure 11. Three-dimensional U-Net architecture developed in the proposed pipeline.

In the decoder, each layer first combines the spatial and feature information through
up-sampling with a 2 × 2 × 2 kernel size and concatenations of the segmentation feature
maps from the corresponding layer in the encoder. The value of stride is set as 2. Next, it
conducts the convolutions with a 3 × 3 × 3 kernel size, followed by a BN function and the
activation function in each layer. In the decoder, the number of filters is reduced by half
in the next layer, until reaching the topmost layer, where the last convolution is conducted
with a 1 × 1 × 1 kernel size.

The Python Keras library is utilized to implement the 3D U-Net architecture in the
pipeline. There are three primary building blocks for the U-Net architecture, namely the
convolution block, encoder block, and decoder block. Within these building blocks, vari-
ous parameters can be fine-tuned to improve the model fitting in accordance with the data
after the pre-processing. This is known as hyper-parameter tuning. The code implemen-
tation of the 3D U-Net model is shown in Figure 12.

Figure 11. Three-dimensional U-Net architecture developed in the proposed pipeline.
Mathematics 2024, 12, 616 13 of 28

Figure 12. The code implementation of the 3D U-Net in the pipeline.

3.5. U-Net Performance Metrics
The Dice coefficient (i.e., F1-Score) is the weighted average of the precision and recall

values, which is a commonly used performance metric in machine learning applications.
It compares the pixel similarities between the prediction and the ground truth. The calcu-
lation is shown in Equation (2): 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ||𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| + |𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ| = 2 × 𝑇𝑃2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (2)

where TP is for true positive, FP for false positive, and FN for false negative.

3.6. Hybrid U-Net Loss Function
Loss functions in machine learning help a model find an optimal solution. It takes the

goal of minimizing the difference between the predictions and the ground truth. Typical
types of loss functions in image segmentations include Jaccard loss, Dice loss, Binary
Cross-Entropy (BCE) loss, and Binary Focal loss.

BCE loss is effective in measuring the difference between the actual and predicted
image regions. However, the BCE loss depends on approximately equal data distribution.
The effectiveness of BCE loss may become inadequate when a severe class imbalance ex-
ists, for example, the detection of small tumors in medical images.

Tversky focal loss can tackle the issue of class imbalance within the dataset [40]. As
such, a customized loss function is designed in the proposed pipeline, that is, a hybrid
Tversky–cross-entropy loss. It leverages the benefits of the BCE loss for strong conver-
gence capability and the Tversky focal loss to handle the class imbalance. The implemen-
tation of the hybrid Tversky–cross-entropy loss function is shown in Figure 13.

Figure 12. The code implementation of the 3D U-Net in the pipeline.

3.5. U-Net Performance Metrics

The Dice coefficient (i.e., F1-Score) is the weighted average of the precision and recall
values, which is a commonly used performance metric in machine learning applications. It
compares the pixel similarities between the prediction and the ground truth. The calculation
is shown in Equation (2):

Dice Coe f f icient =
2|Prediction ∩ Ground Truth|
|Prediction|+ |Ground Truth| =

2 × TP
2 × TP + FP + FN

(2)

Mathematics 2024, 12, 616 13 of 27

where TP is for true positive, FP for false positive, and FN for false negative.

3.6. Hybrid U-Net Loss Function

Loss functions in machine learning help a model find an optimal solution. It takes the
goal of minimizing the difference between the predictions and the ground truth. Typical
types of loss functions in image segmentations include Jaccard loss, Dice loss, Binary
Cross-Entropy (BCE) loss, and Binary Focal loss.

BCE loss is effective in measuring the difference between the actual and predicted
image regions. However, the BCE loss depends on approximately equal data distribution.
The effectiveness of BCE loss may become inadequate when a severe class imbalance exists,
for example, the detection of small tumors in medical images.

Tversky focal loss can tackle the issue of class imbalance within the dataset [40]. As
such, a customized loss function is designed in the proposed pipeline, that is, a hybrid
Tversky–cross-entropy loss. It leverages the benefits of the BCE loss for strong convergence
capability and the Tversky focal loss to handle the class imbalance. The implementation of
the hybrid Tversky–cross-entropy loss function is shown in Figure 13.

Mathematics 2024, 12, 616 14 of 28

Figure 13. Implementation of the hybrid Tversky–cross-entropy loss function.

3.7. Hybrid Optimizer for the U-Net in the Pipeline
Selecting a suitable optimizer (i.e., optimization algorithm) is crucial for effective

backpropagation of the weight update in neural networks. The gradient descent optimizer
utilizes a single-step movement (i.e., learning rate) for all neural nodes during the back-
propagation, while the Adaptive Movement Estimation (Adam) optimizer uses different
step sizes for different neural nodes, resulting in a quicker convergence. But the quick
convergence can be hindered when the gradient becomes flat, resulting in convergence at
local minima. In this case, the momentum can be incorporated to add inertia to the gradi-
ent descent process, which is known as Nesterov momentum. Thus, the Nadam optimi-
zation algorithm is able to achieve better optimization performance [41]. The Nadam op-
timizer is leveraged for the 3D U-Net in the proposed pipeline.

4. Experiment Results and Discussions
In the experiments, three different models of the 3D U-Net architecture in the pipe-

line are compared. The experiment results of each model are evaluated. The configura-
tions of these three models are presented one by one.

4.1. Model 1 Configuration and Experiment Results
The 3D volume of each slice is divided into 225 cuboids. For Model 1, all cuboids per

slice were used in the model training. Due to memory constraints, only the data from a
small number of patients could be included in the model training. Model 1 is trained using
the data of thirty-five patients and validated using the data of six patients. The configura-
tions of the pipeline Model 1 are shown in Table 5.

Table 5. Configurations of the pipeline Model 1.

Parameter Value
Training Data 9450
Validation Data 1575
Train Array Size 7875 × 64 × 64 × 96 × 1

Figure 13. Implementation of the hybrid Tversky–cross-entropy loss function.

3.7. Hybrid Optimizer for the U-Net in the Pipeline

Selecting a suitable optimizer (i.e., optimization algorithm) is crucial for effective
backpropagation of the weight update in neural networks. The gradient descent optimizer
utilizes a single-step movement (i.e., learning rate) for all neural nodes during the back-
propagation, while the Adaptive Movement Estimation (Adam) optimizer uses different
step sizes for different neural nodes, resulting in a quicker convergence. But the quick
convergence can be hindered when the gradient becomes flat, resulting in convergence at
local minima. In this case, the momentum can be incorporated to add inertia to the gradient
descent process, which is known as Nesterov momentum. Thus, the Nadam optimization
algorithm is able to achieve better optimization performance [41]. The Nadam optimizer is
leveraged for the 3D U-Net in the proposed pipeline.

4. Experiment Results and Discussions

In the experiments, three different models of the 3D U-Net architecture in the pipeline
are compared. The experiment results of each model are evaluated. The configurations of
these three models are presented one by one.

Mathematics 2024, 12, 616 14 of 27

4.1. Model 1 Configuration and Experiment Results

The 3D volume of each slice is divided into 225 cuboids. For Model 1, all cuboids
per slice were used in the model training. Due to memory constraints, only the data from
a small number of patients could be included in the model training. Model 1 is trained
using the data of thirty-five patients and validated using the data of six patients. The
configurations of the pipeline Model 1 are shown in Table 5.

Table 5. Configurations of the pipeline Model 1.

Parameter Value

Training Data 9450

Validation Data 1575

Train Array Size 7875 × 64 × 64 × 96 × 1

Validation Array Size 1350 × 64 × 64 × 96 × 1

Approximated Memory Usage 62.7 GB

Learning Rate at the Start 0.001

Optimizer Nadam

Performance Metric Dice coefficient

Activation Function Sigmoid

Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau Factor: 0.1
Patience: 10

Batch Size 5

Epochs 300

Time used per epoch 1st Epoch: 265 s
Subsequent Epochs: 250 s

The results of the Dice coefficient of Model 1 and its validation results are shown in
Figure 14a, along with 300 epochs on the x-axis. The results of the loss metric of Model 1
are shown in Figure 14b.

Mathematics 2024, 12, 616 15 of 28

Validation Array Size 1350 × 64 × 64 × 96 × 1
Approximated Memory Usage 62.7 GB
Learning Rate at the Start 0.001
Optimizer Nadam
Performance Metric Dice coefficient
Activation Function Sigmoid
Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau
Factor: 0.1
Patience: 10

Batch Size 5
Epochs 300

Time used per epoch
1st Epoch: 265 s
Subsequent Epochs: 250 s

The results of the Dice coefficient of Model 1 and its validation results are shown in
Figure 14a, along with 300 epochs on the x-axis. The results of the loss metric of Model 1
are shown in Figure 14b.

(a) (b)

Figure 14. Performance and loss function results of Model 1. (a) The Dice coefficients in the training
(blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (orange).

For Model 1, the 2D prediction visualizations for the CT scans of two sample patients,
patient 15 and patient 16, are displayed in Figures 15 and 16, respectively. It can be seen
that the prediction results are close to the ground truth masks.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

Dice Metric

dice_coef val_dice_coef

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Loss Metric

loss val_loss

Figure 14. Performance and loss function results of Model 1. (a) The Dice coefficients in the training
(blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (orange).

Mathematics 2024, 12, 616 15 of 27

For Model 1, the 2D prediction visualizations for the CT scans of two sample patients,
patient 15 and patient 16, are displayed in Figures 15 and 16, respectively. It can be seen
that the prediction results are close to the ground truth masks.

Mathematics 2024, 12, 616 16 of 28

Figure 15. Two-dimensional prediction result for patient 15 in Model 1. From left to right: scans,
masks, and predictions, respectively.

Figure 16. Two-dimensional prediction result for patient 16 in Model 1. From left to right: scans,
masks, and predictions, respectively.

For Model 1, the 3D volumetric prediction results for the scans of patients 15 and 16
are displayed in Figures 17 and 18, respectively. High similarity can be observed between
the masks and the prediction results, which demonstrates the good prediction perfor-
mance of Model 1.

Figure 15. Two-dimensional prediction result for patient 15 in Model 1. From left to right: scans,
masks, and predictions, respectively.

Mathematics 2024, 12, 616 16 of 28

Figure 15. Two-dimensional prediction result for patient 15 in Model 1. From left to right: scans,
masks, and predictions, respectively.

Figure 16. Two-dimensional prediction result for patient 16 in Model 1. From left to right: scans,
masks, and predictions, respectively.

For Model 1, the 3D volumetric prediction results for the scans of patients 15 and 16
are displayed in Figures 17 and 18, respectively. High similarity can be observed between
the masks and the prediction results, which demonstrates the good prediction perfor-
mance of Model 1.

Figure 16. Two-dimensional prediction result for patient 16 in Model 1. From left to right: scans,
masks, and predictions, respectively.

For Model 1, the 3D volumetric prediction results for the scans of patients 15 and 16
are displayed in Figures 17 and 18, respectively. High similarity can be observed between
the masks and the prediction results, which demonstrates the good prediction performance
of Model 1.

Mathematics 2024, 12, 616 16 of 28

Figure 15. Two-dimensional prediction result for patient 15 in Model 1. From left to right: scans,
masks, and predictions, respectively.

Figure 16. Two-dimensional prediction result for patient 16 in Model 1. From left to right: scans,
masks, and predictions, respectively.

For Model 1, the 3D volumetric prediction results for the scans of patients 15 and 16
are displayed in Figures 17 and 18, respectively. High similarity can be observed between
the masks and the prediction results, which demonstrates the good prediction perfor-
mance of Model 1.

Figure 17. Cont.

Mathematics 2024, 12, 616 16 of 27Mathematics 2024, 12, 616 17 of 28

Figure 17. Three-dimensional volumetric predictions for patient 15 in Model 1.

Figure 18. Three-dimensional volumetric predictions for patient 16 in Model 1.

4.2. Model 2 Configuration and Experiment Results
In Model 2, only cuboids containing the mask label information were included in the

training, while the background cuboids were removed. The total number of cuboids is
significantly reduced in training, allowing for more patient data to fit into this model.
Model 2 is trained using the data of 49 patients and validated using the data of 14 patients.
The configurations of Model 2 are shown in Table 6.

Figure 17. Three-dimensional volumetric predictions for patient 15 in Model 1.

Mathematics 2024, 12, 616 17 of 28

Figure 17. Three-dimensional volumetric predictions for patient 15 in Model 1.

Figure 18. Three-dimensional volumetric predictions for patient 16 in Model 1.

4.2. Model 2 Configuration and Experiment Results
In Model 2, only cuboids containing the mask label information were included in the

training, while the background cuboids were removed. The total number of cuboids is
significantly reduced in training, allowing for more patient data to fit into this model.
Model 2 is trained using the data of 49 patients and validated using the data of 14 patients.
The configurations of Model 2 are shown in Table 6.

Figure 18. Three-dimensional volumetric predictions for patient 16 in Model 1.

4.2. Model 2 Configuration and Experiment Results

In Model 2, only cuboids containing the mask label information were included in
the training, while the background cuboids were removed. The total number of cuboids
is significantly reduced in training, allowing for more patient data to fit into this model.
Model 2 is trained using the data of 49 patients and validated using the data of 14 patients.
The configurations of Model 2 are shown in Table 6.

Mathematics 2024, 12, 616 17 of 27

Table 6. Configurations of Model 2 in the experiment.

Parameter Value

Training Data 1112

Validation Data 225

Train Array Size 1112 × 64 × 64 × 96 × 1

Validation Array Size 225 × 64 × 64 × 96 × 1

Approximated Memory Usage 25.5 GB

Learning Rate at the Start 0.0001

Optimizer Nadam

Metric Dice coefficient

Activation Function Sigmoid

Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau Factor: 0.2
Patience: 7

Batch Size 4

Epochs 300

Time used per epoch 1st Epoch: 42 s
Subsequent Epochs: 31 s

The results of the Dice coefficient of Model 2 and its validation results are shown in
Figure 19a, along with 300 epochs of the x-axis. The results of the loss metric of Model 2 are
shown in Figure 19b.

Mathematics 2024, 12, 616 18 of 28

Table 6. Configurations of Model 2 in the experiment.

Parameter Value
Training Data 1112
Validation Data 225
Train Array Size 1112 × 64 × 64 × 96 × 1
Validation Array Size 225 × 64 × 64 × 96 × 1
Approximated Memory Usage 25.5 GB
Learning Rate at the Start 0.0001
Optimizer Nadam
Metric Dice coefficient
Activation Function Sigmoid
Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau
Factor: 0.2
Patience: 7

Batch Size 4
Epochs 300

Time used per epoch 1st Epoch: 42 s
Subsequent Epochs: 31 s

The results of the Dice coefficient of Model 2 and its validation results are shown in
Figure 19a, along with 300 epochs of the x-axis. The results of the loss metric of Model 2
are shown in Figure 19b.

(a) (b)

Figure 19. Performance and loss function results of Model 2. (a) The Dice coefficients in the train-
ing (blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (or-
ange).

For Model 2, the 2D prediction visualizations for the CT scans of another two sample
patients, patient 271 and patient 272, are displayed in Figures 20 and 21, respectively. It is
observed that the predicted results are close to the ground truth masks. But there are sev-
eral false predictions in the results.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Dice Metric

dice_coef val_dice_coef

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

Loss Metric

loss val_loss

Figure 19. Performance and loss function results of Model 2. (a) The Dice coefficients in the training
(blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (orange).

For Model 2, the 2D prediction visualizations for the CT scans of another two sample
patients, patient 271 and patient 272, are displayed in Figures 20 and 21, respectively. It
is observed that the predicted results are close to the ground truth masks. But there are
several false predictions in the results.

Mathematics 2024, 12, 616 18 of 27Mathematics 2024, 12, 616 19 of 28

Figure 20. Prediction results for patient 271 of Model 2. From left to right: scans, masks, and pre-
diction results.

Figure 21. Prediction results for patient 272 of Model 2. From left to right: scans, masks, and pre-
diction results.

For Model 2, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 22 and 23, respectively. A large number of false predictions are
observed in the results. It could be caused by the total removal of the background cuboids
in the model training.

Figure 20. Prediction results for patient 271 of Model 2. From left to right: scans, masks, and
prediction results.

Mathematics 2024, 12, 616 19 of 28

Figure 20. Prediction results for patient 271 of Model 2. From left to right: scans, masks, and pre-
diction results.

Figure 21. Prediction results for patient 272 of Model 2. From left to right: scans, masks, and pre-
diction results.

For Model 2, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 22 and 23, respectively. A large number of false predictions are
observed in the results. It could be caused by the total removal of the background cuboids
in the model training.

Figure 21. Prediction results for patient 272 of Model 2. From left to right: scans, masks, and
prediction results.

For Model 2, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 22 and 23, respectively. A large number of false predictions are
observed in the results. It could be caused by the total removal of the background cuboids
in the model training.

Mathematics 2024, 12, 616 19 of 28

Figure 20. Prediction results for patient 271 of Model 2. From left to right: scans, masks, and pre-
diction results.

Figure 21. Prediction results for patient 272 of Model 2. From left to right: scans, masks, and pre-
diction results.

For Model 2, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 22 and 23, respectively. A large number of false predictions are
observed in the results. It could be caused by the total removal of the background cuboids
in the model training.

Figure 22. Cont.

Mathematics 2024, 12, 616 19 of 27Mathematics 2024, 12, 616 20 of 28

Figure 22. Three-dimensional volumetric predictions for patient 271 in Model 2.

Figure 23. Three-dimensional volumetric predictions for patient 272 in Model 2.

4.3. Model 3 Configuration and Experiment Results
Model 3 was trained with a similar concept to Model 2. However, for every mask

cuboid, an additional four (two front, two back) background cuboids were added to pro-
vide relevant context information for the model. Model 3 serves as a hybrid between

Figure 22. Three-dimensional volumetric predictions for patient 271 in Model 2.

Mathematics 2024, 12, 616 20 of 28

Figure 22. Three-dimensional volumetric predictions for patient 271 in Model 2.

Figure 23. Three-dimensional volumetric predictions for patient 272 in Model 2.

4.3. Model 3 Configuration and Experiment Results
Model 3 was trained with a similar concept to Model 2. However, for every mask

cuboid, an additional four (two front, two back) background cuboids were added to pro-
vide relevant context information for the model. Model 3 serves as a hybrid between

Figure 23. Three-dimensional volumetric predictions for patient 272 in Model 2.

4.3. Model 3 Configuration and Experiment Results

Model 3 was trained with a similar concept to Model 2. However, for every mask
cuboid, an additional four (two front, two back) background cuboids were added to provide
relevant context information for the model. Model 3 serves as a hybrid between Model 1
and Model 2. It utilizes less cuboids than Model 1, but more cuboids than Model 2. The
configurations of Model 3 are shown in Table 7.

Mathematics 2024, 12, 616 20 of 27

Table 7. Configurations of Model 3 in the experiment.

Parameter Value

Training Data 5560

Validation Data 1125

Train Array Size 5560 × 64 × 64 × 96 × 1

Validation Array Size 1125 × 64 × 64 × 96 × 1

Approximated Memory Usage 53.9 GB

Learning Rate at the Start 0.001

Optimizer Nadam

Metric Dice coefficient

Activation Function Sigmoid

Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau Factor: 0.5
Patience: 8

Batch Size 5

Epochs 300

Time used per epoch 1st Epoch: 194 s
Subsequent Epochs: 178 s

The results of the Dice coefficients of Model 3 and its validation results are shown in
Figure 24a, along with 300 epochs on the x-axis. The results of the loss metric of Model 3
are shown in Figure 24b.

Mathematics 2024, 12, 616 21 of 28

Model 1 and Model 2. It utilizes less cuboids than Model 1, but more cuboids than Model
2. The configurations of Model 3 are shown in Table 7.

Table 7. Configurations of Model 3 in the experiment.

Parameter Value
Training Data 5560
Validation Data 1125
Train Array Size 5560 × 64 × 64 × 96 × 1
Validation Array Size 1125 × 64 × 64 × 96 × 1
Approximated Memory Usage 53.9 GB
Learning Rate at the Start 0.001
Optimizer Nadam
Metric Dice coefficient
Activation Function Sigmoid
Loss Function hybrid Tversky-Cross Entropy loss

ReduceLROnPlateau
Factor: 0.5
Patience: 8

Batch Size 5
Epochs 300

Time used per epoch 1st Epoch: 194 s
Subsequent Epochs: 178 s

The results of the Dice coefficients of Model 3 and its validation results are shown in
Figure 24a, along with 300 epochs on the x-axis. The results of the loss metric of Model 3
are shown in Figure 24b.

(a) (b)

Figure 24. Performance and loss function results of Model 3. (a) The Dice coefficients in the train-
ing (blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (or-
ange).

For Model 3, the 2D prediction visualizations for the CT scans of two sample patients,
patient 271 and patient 272, are displayed in Figures 25 and 26, respectively. A high simi-
larity between the masks and predicted results is observed. There are no false predictions.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 5 9 1317212529333741454953576165697377

Dice Metric

dice_coef val_dice_coef

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Loss Metric

loss val_loss

Figure 24. Performance and loss function results of Model 3. (a) The Dice coefficients in the training
(blue) and validation (orange). (b) The loss metrics in the training (blue) and validation (orange).

For Model 3, the 2D prediction visualizations for the CT scans of two sample patients,
patient 271 and patient 272, are displayed in Figures 25 and 26, respectively. A high similar-
ity between the masks and predicted results is observed. There are no false predictions.

Mathematics 2024, 12, 616 21 of 27Mathematics 2024, 12, 616 22 of 28

Figure 25. Prediction results for patient 271 of Model 3. From left to right: scans, masks, and pre-
diction results.

Figure 26. Prediction results for patient 272 of Model 3. From left to right: scans, masks, and pre-
diction results.

For Model 3, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 27 and 28, respectively. While some false prediction results can
be observed, it is an improvement from the results of Model 2.

Figure 25. Prediction results for patient 271 of Model 3. From left to right: scans, masks, and
prediction results.

Mathematics 2024, 12, 616 22 of 28

Figure 25. Prediction results for patient 271 of Model 3. From left to right: scans, masks, and pre-
diction results.

Figure 26. Prediction results for patient 272 of Model 3. From left to right: scans, masks, and pre-
diction results.

For Model 3, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 27 and 28, respectively. While some false prediction results can
be observed, it is an improvement from the results of Model 2.

Figure 26. Prediction results for patient 272 of Model 3. From left to right: scans, masks, and
prediction results.

For Model 3, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 27 and 28, respectively. While some false prediction results can be
observed, it is an improvement from the results of Model 2.

Mathematics 2024, 12, 616 22 of 28

Figure 25. Prediction results for patient 271 of Model 3. From left to right: scans, masks, and pre-
diction results.

Figure 26. Prediction results for patient 272 of Model 3. From left to right: scans, masks, and pre-
diction results.

For Model 3, the 3D volumetric predictions for the CT scans of patients 271 and 272
are displayed in Figures 27 and 28, respectively. While some false prediction results can
be observed, it is an improvement from the results of Model 2.

Figure 27. Cont.

Mathematics 2024, 12, 616 22 of 27Mathematics 2024, 12, 616 23 of 28

Figure 27. Three-dimensional volumetric predictions for patient 271 in Model 3.

Figure 28. Three-dimensional volumetric predictions for patient 272 in Model 3.

4.4. Discussions and Comparisons of Three Models
For these three models presented in Sections 4.1.–4.3., comparisons of the experiment

results are shown in Table 8.

Figure 27. Three-dimensional volumetric predictions for patient 271 in Model 3.

Mathematics 2024, 12, 616 23 of 28

Figure 27. Three-dimensional volumetric predictions for patient 271 in Model 3.

Figure 28. Three-dimensional volumetric predictions for patient 272 in Model 3.

4.4. Discussions and Comparisons of Three Models
For these three models presented in Sections 4.1.–4.3., comparisons of the experiment

results are shown in Table 8.

Figure 28. Three-dimensional volumetric predictions for patient 272 in Model 3.

4.4. Discussions and Comparisons of Three Models

For these three models presented in Sections 4.1–4.3, comparisons of the experiment
results are shown in Table 8.

As seen from Table 8, even though Model 1 produces the highest Dice score at 91.44%,
it utilizes the highest amount of memory and longest time compared to others.

Model 2 uses the least memory. The Dice score is at 85.18%, with many false predictions
due to the removal of all background cuboids in the training data.

Mathematics 2024, 12, 616 23 of 27

Table 8. Brief comparisons of three models in the experiment.

Parameter Model 1 Model 2 Model 3

Training Data 9450 1112 5560

Approximated Memory Usage 62.7 GB 25.5 GB 53.9 GB

Learning Rate at the Start 0.001 0.0001 0.001

ReduceLROnPlateau Factor: 0.1
Patience: 10

Factor: 0.2
Patience: 7

Factor: 0.5
Patience: 8

Batch Size 5 4 5

Epochs 300 300 300

Time used for the 1st epoch (second) 265 42 194

Time used for subsequent epoch (second) 250 31 178

Dice Score on test data 91.44% 85.18% 89.84%

Model 3 provides a better balance between favorable predictions and memory usage.
Model 3 is trained with cubes containing true masks and additional surrounding back-
ground cubes. This provides more background information to the model while preventing
high memory usage compared to Model 1.

The prediction accuracies of Model 1–Model 3 in the pipeline are compared with
three pre-trained models. The Segmentation Models (SMs) included in a high-level Python
library with neural networks are available for image segmentation, where three pre-trained
models, namely InceptionV3 [42], SM MobileNetV2 [43], and InceptionResNetV2 [44], were
explored. The prediction accuracies of these models are shown in Table 9. It is observed
that Model 1 in the pipeline performs better than the three pre-trained models.

Table 9. Comparisons of three models in the experiment with three pre-trained models and nine
models reported in the literature.

Model Dice Scores Test Data Used for Experiments

Model 1 91.44% Test data from this paper

Model 2 85.18% Test data from this paper

Model 3 89.84% Test data from this paper

InceptionV3 model [42] 91.20% Pretrained model using test data from this paper

SM MobileNetV2 [43] 90.30% Pretrained model using test data from this paper

InceptionResNetV2 [44] 88.10% Pretrained model using test data from this paper

UCTransNet [32,45]
91.74% SegPC 2021 cell segmentation dataset

78.23% Synapse multi-organ CT segmentation dataset

Attention U-Net [32,46] 91.58% SegPC 2021 cell segmentation dataset

Multi Res-Unet [32,47] 86.94% ISIC 2018 skin lesion segmentation dataset

TransUNet [32,48] 84.99% ISIC 2018 skin lesion segmentation dataset

MISSFormer [32,49]
86.57% ISIC 2018 skin lesion segmentation dataset

81.96% Synapse multi-organ CT segmentation dataset

Res-Unet [4,33] 89.4% MRI dataset for breast cancer

U-Net [33,50] 80.2% MRI dataset for breast cancer

Pipelined U-Net [33,51] 70.37% MRI dataset for breast cancer

DenseNet [13] 94% 10-fold cross-validation for CT scan images

Mathematics 2024, 12, 616 24 of 27

Eight U-Net-based models [4,13,45–48] and one transformer-based model [49] reported
in the literature were also compared with the proposed models in this paper. The Dice
scores of these nine models are reported based on their own dataset, shown in Table 9. The
Dice score is up to 91.74% for the SegPC 2021 cell segmentation dataset [45]. With the ISIC
2018 skin lesion segmentation dataset, the Dice score is up to 86.94% [47]. The Dice score
is up to 81.96% for the Synapse multi-organ CT segmentation dataset [49]. Using an MRI
dataset for breast cancer, the Dice score is up to 89.4% [4]. The Dice score is about 94%,
obtained for CT scan images using a 10-fold cross-validation method, which is higher than
that of the proposed Model 1 at 91.44%. The reason is that the 10-fold cross-validation
approach is able to derive better accuracy of the segmentation.

5. Conclusions

An automatic tool for a volumetric prediction pipeline is developed for 3D CT scans
on breast cancer in this paper. Various data pre-processing techniques are utilized to derive
high-quality data to be fed into the model. Due to the nature of CT scans, not all data can be
used directly without pre-processing. The developed pipeline consists of several algorithms
to select suitable CT scan slices for the model training and test. The pipeline divides the 3D
volumes into smaller segments to reduce the memory usage in the computation. It then
conducts the normalization of 3D volumes and analyzes the depths of 3D CT scan slices.

Next, the data are fed into the 3D U-Net architecture in the pipeline. The 3D U-Net is
designed to cater to the requirements of 3D image segmentation and volumetric prediction.
Additional efforts are taken to perform optimization on memory usage and computation
loads by reducing the number of training cuboids, and fine-tuning parameters in the U-Net
model. A hybrid Tversky–cross-entropy loss function is employed in the pipeline. A
Nadam optimization algorithm is utilized to derive favorable optimizer performance.

Three U-Net models with different configurations are implemented in this study. The
performances of each model are discussed, with a few samples of prediction visualiza-
tion illustrated. Among these three models, Model 3, which includes partial contextual
information around the masked areas, obtains the most balanced performance on accuracy
and memory usage for the CT scan image segmentation tasks. The experiment results are
also compared with three pre-trained models, and nine models reported in the literature.
Comparable Dice scores are achieved by the proposed pipeline in this paper.

Limitations and Future Works

There are two limitations for the model training performed in the current work. (1) CT
scan slices with a thickness of 3 mm are utilized, and (2) only patient data with all masks
in the range of the 1st–96th slices are utilized. With these two limitations, the amount of
training data is reduced from 347 patients to approximately 50 patients. The essence of the
machine learning model is that more training provides better generalization, which leads
to better prediction on unseen data.

As future works, to tackle the first limitation, sampling can be performed on the data
with CT scans of thicknesses of both 3 mm and 5 mm to increase the number of suitable
input data. For the second limitation, a two-stage algorithm can be explored, where the
volume segmentations on large cuboid dimensions will be conducted first, followed by
breaking down a large cuboid into a certain number of cuboids in smaller dimensions. The
volume segmentation can then be conducted on the small cuboids. Other types of loss
functions and performance metrics can be explored as well. The k-fold cross-validation
between models can be developed to further improve the accuracy of the model.

Author Contributions: Conceptualization, H.Q.T., W.L.N. and Y.C.; methodology, H.Q.T. and W.L.N.;
software, L.J.H.L. and A.B.A.; validation, H.Q.T. and W.L.N.; formal analysis, H.Q.T. and W.L.N.;
investigation, L.J.H.L.; resources, L.H. and Y.C.; data curation, H.Q.T. and W.L.N.; writing—original
draft preparation, L.J.H.L.; writing—review and editing, Y.C., Y.X. and Q.C.; visualization, L.J.H.L.;
supervision, Y.C.; project administration, A.B.A.; funding acquisition, Y.C. All authors have read and
agreed to the published version of the manuscript.

Mathematics 2024, 12, 616 25 of 27

Funding: This project is supported by Duke-NUS Oncology Academic Program Goh Foundation
Proton Research Program (08/FY2021/EX/12-A42), and the National Medical Research Council
Fellowship (NMRC/MOH-000166-00).

Data Availability Statement: Data available upon request from the corresponding author due
to restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Anyoha, R. The History of Artificial Intelligence. 2017. Available online: https://sitn.hms.harvard.edu/flash/2017/history-

artificial-intelligence/ (accessed on 10 November 2023).
2. Joksimovic, S.; Ifenthaler, D.; Marrone, R.; Laat, M.D.; Siemens, G. Opportunities of artificial intelligence for supporting complex

problem-solving: Findings from a scoping review. Comput. Educ. Artif. Intell. 2023, 4, 100138. [CrossRef]
3. Zakaryan, V. How ML Will Disrupt the Future of Clinical Radiology. 2021. Available online: https://postindustria.com/computer-

vision-in-radiology-how-ml-will-disrupt-the-future-of-clinical-radiology-healthcare/ (accessed on 10 November 2023).
4. Yue, W.; Zhang, H.; Zhou, J.; Li, G.; Tang, Z.; Sun, Z.; Cai, J.; Tian, N.; Gao, S.; Dong, J.; et al. Deep learning-based automatic

segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front. Oncol. 2022, 12,
984626. [CrossRef] [PubMed]

5. Jafari, Z.; Karami, E. Breast Cancer Detection in Mammography Images: A CNN-Based Approach with Feature Selection.
Information 2023, 14, 410. [CrossRef]

6. Liu, Z.; Liu, F.; Chen, W.; Liu, X.; Hou, X.; Shen, J.; Guan, H.; Zhen, H.; Wang, S.; Chen, Q.; et al. Automatic Segmentation of
Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks. Front.
Oncol. 2021, 10, 581347. [CrossRef]

7. Gaudez, S.; Slama, M.B.H.; Kaestner, A.; Upadhyay, M.V. 3D deep convolutional neural network segmentation model for
precipitate and porosity identification in synchrotron X-ray tomograms. J. Synchrotron Radiat. 2022, 29, 1232–1240. [CrossRef]

8. Xie, L.; Liu, Z.; Pei, C.; Liu, X.; Cui, Y.-Y.; He, N.-A.; Hu, L. Convolutional neural network based on automatic segmentation of
peritumoral shear-wave elastography images for predicting breast cancer. Front. Oncol. 2023, 13, 1099650. [CrossRef]

9. Zhang, Y.; Chan, S.; Park, V.Y.; Chang, K.-T.; Mehta, S.; Kim, M.J.; Combs, F.J.; Chang, P.; Chow, D.; Parajuli, R.; et al. Automatic
Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non–Fat-Sat Images and Tested on Fat-Sat
Images. Acad. Radiol. 2020, 29, S135–S144. [CrossRef]

10. Raimundo, J.N.C.; Fontes, J.P.P.; Magalhães, L.G.M.; Lopez, M.A.G. An Innovative Faster R-CNN-Based Framework for Breast
Cancer Detection in MRI. J. Imaging 2023, 9, 169. [CrossRef] [PubMed]

11. Qi, T.H.; Hian, O.H.; Kumaran, A.M.; Tan, T.J.; Cong, T.R.Y.; Su-Xin, G.L.; Lim, E.H.; Ng, R.; Yeo, M.C.R.; Tching, F.L.L.W.
Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in
breast cancer. Breast Cancer Res. Treat. 2022, 193, 121–138. [CrossRef]

12. Buelens, P.; Willems, S.; Vandewinckele, L.; Crijns, W.; Maes, F.; Weltens, C. Clinical evaluation of a deep learning model for
segmentation of target volumes in breast cancer radiotherapy. Radiother. Oncol. 2022, 171, 84–90. [CrossRef]

13. Sreenivasu, S.V.N.; Gomathi, S.; Kumar, M.J.; Prathap, L.; Madduri, A.; Almutairi, K.M.A.; Alonazi, W.B.; Kali, D.; Jayadhas, S.A.
Dense Convolutional Neural Network for Detection of Cancer from CT Images. BioMed Res. Int. 2022, 2022, 1293548. [CrossRef]

14. Shehmir, J. Computer Vision in Radiology: Benefits & Challenges. 19 July 2022. Available online: https://research.aimultiple.
com/computer-vision-radiology (accessed on 11 November 2023).

15. Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled
medical computer vision. NPJ Digit. Med. 2021, 4, 5. [CrossRef] [PubMed]

16. Costa, M.G.F.; Campos, J.P.M.; Aquino, G.d.A.e.; Pereira, W.C.d.A.; Filho, C.F.F.C. Evaluating the performance of convolutional
neural networks with direct acyclic graph architectures in automatic segmentation of breast lesion in US images. BMC Med.
Imaging 2019, 19, 85. [CrossRef]

17. Al Bataineh, A.; Kaur, D.; Al-Khassaweneh, M.; Al-Sharoa, E. Automated CNN Architectural Design: A Simple and Efficient
Methodology for Computer Vision Tasks. Mathematics 2023, 11, 1141. [CrossRef]

18. Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future
Directions. Computation 2023, 11, 52. [CrossRef]

19. Soffer, S.; Ben-Cohen, A.; Shimon, O.; Amitai, M.M.; Greenspan, H.; Klang, E. Convolutional Neural Networks for Radiologic
Images: A Radiologist’s Guide. Radiology 2019, 290, 590–606. [CrossRef]

20. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

21. Rosebrock, A. LeNet: Recognizing Handwritten Digits. 22 May 2021. Available online: https://pyimagesearch.com/2021/05/22
/lenet-recognizing-handwritten-digits/ (accessed on 8 November 2023).

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://doi.org/10.1016/j.caeai.2023.100138
https://postindustria.com/computer-vision-in-radiology-how-ml-will-disrupt-the-future-of-clinical-radiology-healthcare/
https://postindustria.com/computer-vision-in-radiology-how-ml-will-disrupt-the-future-of-clinical-radiology-healthcare/
https://doi.org/10.3389/fonc.2022.984626
https://www.ncbi.nlm.nih.gov/pubmed/36033453
https://doi.org/10.3390/info14070410
https://doi.org/10.3389/fonc.2020.581347
https://doi.org/10.1107/S1600577522006816
https://doi.org/10.3389/fonc.2023.1099650
https://doi.org/10.1016/j.acra.2020.12.001
https://doi.org/10.3390/jimaging9090169
https://www.ncbi.nlm.nih.gov/pubmed/37754933
https://doi.org/10.1007/s10549-022-06521-7
https://doi.org/10.1016/j.radonc.2022.04.015
https://doi.org/10.1155/2022/1293548
https://research.aimultiple.com/computer-vision-radiology
https://research.aimultiple.com/computer-vision-radiology
https://doi.org/10.1038/s41746-020-00376-2
https://www.ncbi.nlm.nih.gov/pubmed/33420381
https://doi.org/10.1186/s12880-019-0389-2
https://doi.org/10.3390/math11051141
https://doi.org/10.3390/computation11030052
https://doi.org/10.1148/radiol.2018180547
https://doi.org/10.1109/5.726791
https://pyimagesearch.com/2021/05/22/lenet-recognizing-handwritten-digits/
https://pyimagesearch.com/2021/05/22/lenet-recognizing-handwritten-digits/
https://doi.org/10.1145/3065386

Mathematics 2024, 12, 616 26 of 27

23. Han, X.; Zhong, Y.; Cao, L.; Zhang, L. Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial
Resolution Remote Sensing Image Scene Classification. Remote Sens. 2017, 9, 848. [CrossRef]

24. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014. ECCV 2014;
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014;
Volume 8689. [CrossRef]

25. Abdelhafiz, D.; Yang, C.; Ammar, R.; Nabavi, S. Deep convolutional neural networks for mammography: Advances, challenges
and applications. BMC Bioinform. 2019, 20, 281. [CrossRef]

26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015,
Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

27. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
29. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]
30. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention—MICCAI 2015. MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351. [CrossRef]

31. Zhang, J. Unet—Line by Line Explanation. 18 October 2019. Available online: https://towardsdatascience.com/unet-line-by-
line-explanation-9b191c76baf5 (accessed on 10 November 2023).

32. Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D.
Medical Image Segmentation Review: The Success of U-net. arXiv 2022, arXiv:2211.14830. [CrossRef]

33. Luo, L.; Wang, X.; Lin, Y.; Ma, X.; Tan, A.; Chan, R.; Vardhanabhuti, V.; Chu, W.C.; Cheng, K.-T.; Chen, H. Deep Learning in Breast
Cancer Imaging: A Decade of Progress and Future Directions. arXiv 2024, arXiv:2304.06662. [CrossRef] [PubMed]

34. Kodipalli, A.; Fernandes, S.L.; Gururaj, V.; Rameshbabu, S.V.; Dasar, S. Performance Analysis of Segmentation and Classification
of CT-Scanned Ovarian Tumours Using U-Net and Deep Convolutional Neural Networks. Diagnostics 2023, 13, 2282. [CrossRef]
[PubMed]

35. Sakshi; Kukreja, V. Image Segmentation Techniques: Statistical, Comprehensive, Semi-Automated Analysis and an Application
Perspective Analysis of Mathematical Expressions. Arch. Comput. Methods Eng. 2022, 30, 457–495. [CrossRef]

36. Barrowclough, O.J.; Muntingh, G.; Nainamalai, V.; Stangeby, I. Binary segmentation of medical images using implicit spline
representations and deep learning. Comput. Aided Geom. Des. 2021, 85, 101972. [CrossRef]

37. Qian, Q.; Cheng, K.; Qian, W.; Deng, Q.; Wang, Y. Image Segmentation Using Active Contours with Hessian-Based Gradient
Vector Flow External Force. Sensors 2022, 22, 4956. [CrossRef] [PubMed]

38. Yu, Y.; Wang, C.; Fu, Q.; Kou, R.; Huang, F.; Yang, B.; Yang, T.; Gao, M. Techniques and Challenges of Image Segmentation: A
Review. Electronics 2023, 12, 1199. [CrossRef]

39. Huo, Y.; Tang, Y.; Chen, Y.; Gao, D.; Han, S.; Bao, S.; De, S.; Terry, J.G.; Carr, J.J.; Abramson, R.G.; et al. Stochastic tissue window
normalization of deep learning on computed tomography. J. Med. Imaging 2019, 6, 044005. [CrossRef]

40. Abraham, N.; Khan, N.M. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. In
Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019;
pp. 683–687. [CrossRef]

41. Haji, S.H.; Abdulazeez, A.M. Comparison of optimization techniques based on gradient descent algorithm: A review. Palarch’s J.
Archaeol. Egypt/Egyptol. 2021, 18, 2715–2743.

42. TensorFlow. tf.keras.applications.inception_v3.InceptionV3. Available online: https://www.tensorflow.org/api_docs/python/
tf/keras/applications/inception_v3/InceptionV3 (accessed on 15 January 2024).

43. Keras. MobileNet, MobileNetV2, and MobileNetV3. Available online: https://keras.io/api/applications/mobilenet/ (accessed
on 25 January 2024).

44. TensorFlow. tf.keras.applications.inception_resnet_v2.InceptionResNetV2. Available online: https://www.tensorflow.org/api_
docs/python/tf/keras/applications/inception_resnet_v2/InceptionResNetV2 (accessed on 25 January 2024).

45. Wang, H.; Cao, P.; Wang, J.; Zaiane, O.R. UCTransNet: Rethinking the skip connections in u-net from a channel-wise perspective
with transformer. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2441–2449. [CrossRef]

46. Oktay, O.; Schlemper, J.; Le Folgoc, L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.
Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999.

47. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation.
Neural Netw. 2020, 121, 74–87. [CrossRef] [PubMed]

48. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders
for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306.

49. Huang, X.; Deng, Z.; Li, D.; Yuan, X. Missformer: An Effective Medical Image Segmentation Transformer. arXiv 2021,
arXiv:2109.07162. [CrossRef]

https://doi.org/10.3390/rs9080848
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1186/s12859-019-2823-4
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1007/978-3-319-24574-4_28
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
https://doi.org/10.48550/arXiv.2211.14830
https://doi.org/10.1109/RBME.2024.3357877
https://www.ncbi.nlm.nih.gov/pubmed/38265911
https://doi.org/10.3390/diagnostics13132282
https://www.ncbi.nlm.nih.gov/pubmed/37443676
https://doi.org/10.1007/s11831-022-09805-9
https://doi.org/10.1016/j.cagd.2021.101972
https://doi.org/10.3390/s22134956
https://www.ncbi.nlm.nih.gov/pubmed/35808448
https://doi.org/10.3390/electronics12051199
https://doi.org/10.1117/1.JMI.6.4.044005
https://doi.org/10.1109/ISBI.2019.8759329
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/InceptionV3
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/InceptionV3
https://keras.io/api/applications/mobilenet/
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_resnet_v2/InceptionResNetV2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_resnet_v2/InceptionResNetV2
https://doi.org/10.1609/aaai.v36i3.20144
https://doi.org/10.1016/j.neunet.2019.08.025
https://www.ncbi.nlm.nih.gov/pubmed/31536901
https://doi.org/10.1109/TMI.2022.3230943

Mathematics 2024, 12, 616 27 of 27

50. Khaled, R.; Vidal, J.; Vilanova, J.C.; Martí, R. A U-Net Ensemble for breast lesion segmentation in DCE MRI. Comput. Biol. Med.
2021, 140, 105093. [CrossRef]

51. Galli, A.; Marrone, S.; Piantadosi, G.; Sansone, M.; Sansone, C. A Pipelined Tracer-Aware Approach for Lesion Segmentation in
Breast DCE-MRI. J. Imaging 2021, 7, 276. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compbiomed.2021.105093
https://doi.org/10.3390/jimaging7120276

	Introduction
	Background Knowledge
	CNN and U-Net
	Image Segmentation

	Methodology
	Proposed Structure of the Volumetric Prediction Pipeline
	Detailed Data Pre-Processing Steps
	Data Normalization
	Set-Up of 3D U-Net Architecture in the Pipeline
	U-Net Performance Metrics
	Hybrid U-Net Loss Function
	Hybrid Optimizer for the U-Net in the Pipeline

	Experiment Results and Discussions
	Model 1 Configuration and Experiment Results
	Model 2 Configuration and Experiment Results
	Model 3 Configuration and Experiment Results
	Discussions and Comparisons of Three Models

	Conclusions
	References

