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Designer quantum reflection from a micropore
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We expand the theoretical toolbox for controllable quantum reflection by departing from a simple planar
reflector. We introduce a circular hole (a micropore) of variable size, for which the electrostatic image potential
can be exactly calculated. We combine this with two-dimensional simulations of wave-packet propagation at
arbitrary angles of incidence to show that the quantum reflection probability can be tuned over a wide range of
values.

DOI: 10.1103/PhysRevA.109.032812

I. INTRODUCTION

Quantum reflection is a counterintuitive effect in which an
attractive surface-atom potential exhibits a repulsive behavior
towards an incoming matter wave, i.e., the reflection occurs
despite the absence of a classical turning point [1]. In other
words, an atom that is accelerated towards a surface has
a nonzero chance of reflection before coming into contact
with it. This quintessentially wave behavior is familiar from
classical theories, i.e., describing wave propagation in inho-
mogeneous media [2], but it is its quantum realization that has
been the focus of research in recent decades.

Quantum reflection has been a widely studied phenomenon
since the inception of quantum mechanics and was first placed
into the realm of atom-surface interactions by Lennard-Jones
and Devonshire [3]. In this context, the effect translates to
an interference of probability waves; the unexpected outcome
is that the reflection occurs at a threshold distance away
from the surface. This effect was neatly demonstrated in
a recent work [4], where a helium dimer was nondestruc-
tively reflected before it could reach the surface at which
the potential would have been strong enough to dissociate its
weak bond.

A wealth of literature exists on the theoretical treatment
of quantum reflection [5–9], some recent publications have
been concerned with reflection of atoms from rough surfaces
[10,11] and some with antimatter (antihydrogen) reflecting
off nanoporous materials [12] and liquid helium [13], while
others have probed ultracold molecular collisions [14] and the
effect of reflection in a cold Rydberg atomic gas with the use
of single photons [15] and solitons [16]. Since the seminal
paper by Shimizu [17], experimental realizations of quantum
reflection from a solid surface have become abundant [18,19].
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Some of the recent works include using quantum reflection to
trap atoms in optical potentials [20], the reflection of Bose-
Einstein condensates [21,22], metrological applications via
observation of diffraction orders [23], and tests of quantum
vacuum [24]. The diverse range of phenomena that can be
probed via quantum reflection makes it an exciting and ver-
satile tool in atomic physics.

The electromagnetic forces playing the key role in many
realizations of quantum reflection belong to the class of phe-
nomena collectively known as dispersion forces [25]. They
arise as a result of the field fluctuations between two objects
that do not possess a permanent electric or magnetic dipole
moment. Amongst them are interatomic van der Waals forces,
initially proposed by Eisenschitz and London [26], and inter-
actions between larger bodies, introduced by Casimir [27] and
Lifshitz [28]. A third, mixed, case describes the force between
an atom or a molecule and a macroscopic object. It was
first developed in the electrostatic regime by Lennard-Jones
[29] and then extended to the retarded distances by Casimir
and Polder (CP) [30]. Different naming conventions for the
specific dispersion forces exist in the literature, but all are
on a fundamental level expressions of the fluctuations of the
vacuum, as described by quantum electrodynamics. We follow
the convention adopted in Ref. [25] and refer to atom-body
interactions—which are of central importance in this work—
as CP forces.1 Moreover, different distance regimes impose
limits on the applicability of different theoretical descriptions
of dispersion forces. Due to the finite speed of light, the
information exchanged on scales much larger than the tran-
sition wavelength of an atom will suffer a phase delay, thus
experiencing retardation effects. In this paper, we consider the
short, nonretarded regime—this is the domain of applicability
of the electrostatic potential we will use.

Control of dispersion forces therefore allows control of
quantum reflection. Research so far in this direction has

1Some authors refer to any far-field dispersion interaction involving
at least one atom as Casimir-Polder, while others use the convention
employed here where Casimir-Polder refers to the interaction (at any
distance) between an atom and the macroscopic body.
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mainly been centered around investigating the versatility of
graphene as a material, enabling the control of the atom-
surface potential. The work in Refs. [31–33] explores the
use of a magnetic field to alter the properties of a sheet of
graphene, effectively changing the CP interaction potential.
Some other investigations in the graphene-based systems in-
clude carrier doping [34], the application of mechanical strain
[35], and plane stacking arrangements [36]. Moreover, various
experimental applications have already been realized [37–39],
paving the way for future uses in nanotechnology. Other ma-
terials in the graphene family have also been probed in the
context of quantum reflection and its connection with topo-
logical phase transitions, stimulated by electric fields [40].
The application of electric fields has equally been success-
ful in controlling quantum reflection in silicon gratings—
outside of the realm of graphene—as experimentally shown
in Ref. [41].

In this work we choose to investigate the paradigmatic case
of a perfectly reflecting plate, but with a twist. We introduce a
circular hole (a micropore) to our metallic plate. By changing
the diameter of the hole, we are able to reduce the potential
gradient in its immediate neighborhood and in turn, gain con-
trol of the strength of reflection of, for example, a matter wave
passing through. Despite the presence of the micropore, which
one might expect to allow full transmission of a highly colli-
mated matter wave, the atom continues to reverse its motion
at the threshold. For the majority of the cases considered, the
rate of reflectivity is reduced compared to the case of no hole.
This apparent “antitunneling” event, where in the region of
absence of a material surface one would expect the atom to
propagate through, renders a curious addition to an already
counterintuitive quantum phenomenon. After incorporating
the variable hole diameter, we extend the space of control
parameters by including the angle of incidence and test their
impact on the reflectivity. Due to the nonseparability of the po-
tential, we numerically solve the time-dependent Schrödinger
equation (TDSE), for 3He and Na, both modeled as a Gaussian
pulse propagating towards a plate with a hole.

This paper is organized as follows. We first discuss the
conditions for the quantum reflection, considering a single
degree of freedom. Second, in Sec. II we present the exact,
two-dimensional, nonseparable potential for a perfectly re-
flecting plate with a hole from Ref. [42]. We then modify its
domain to enable numerical simulations of quantum reflection
by solving the TDSE using a spectral, split-step method. We
then proceed to present the results in Sec. III, showcasing
the dependence of the reflectivity upon the hole diameter and
angle of incidence. In the Appendix we validate our algorithm
for the case of normal incidence and examine the influence of
the grid size on convergence.

II. PROCEDURE

A. Quantum reflection in one dimension and two dimensions

Quantum reflection has been studied overwhelmingly as a
one-dimensional problem. The atom-surface forces between
matter and a regular macroscopic object depend on the normal
distance between them, resulting in the consideration of only
a single degree of freedom. The conditions for the quantum

reflection in one dimension (1D) are determined by the prop-
erties of the traveling matter wave. If V (x) is an arbitrary
potential varying in the x direction, m is the particle’s mass,
and k0 is its k vector at x → ∞ (V → 0), the local wave vector
of the particle k,

k =
√

k2
0 − 2mV (x)/h̄2, (1)

is required to change abruptly on the scale of its de Broglie
wavelength λdB for quantum reflection to occur [17]. This
significant change can be mediated by an interaction potential,
V , that grows rapidly as the atom approaches the surface. CP
forces with their 1/r3 or 1/r4 dependence are therefore ideal
for inducing quantum reflection. The majority of theoretical
investigations into quantum reflection elude fully analytical
treatment and rely on semiclassical approaches such as WKB
approximation [43,44]; however, these are not applicable in
higher dimensions for nonseparable potentials [45]. Only
until recently [45], all efforts have been confined to the one-
dimensional case, in which a time-independent Schrödinger
equation is solved for a given potential, and the reflectivity
is obtained as a ratio of amplitudes of counterpropagating
waves. Quite understandably, a reliable method of solving a
two-dimensional quantum reflection problem is a recent oc-
currence due to the computationally expensive nature of such
a setup. Inspired by the aforementioned work by Galiffi et al.
[45], we apply a time-dependent approach to solve a pulse
propagation problem in the vicinity of a perfectly reflecting
plate with a hole.

B. Potential function

The geometry we have chosen is a smooth metal plate with
a hole in its center, as shown in Fig. 1. The exact electrostatic
potential for this situation was calculated by Eberlein and
Zietal [42] by the means of a Kelvin transform [46]. Defined
in cylindrical coordinates, V (ρ, φ, z), and for a hole diameter,
d , their result can be written as

V (ρ, z; d ) = − 1

16π2ε0

(
�ρ

〈
μ2

ρ

〉 + �φ〈μ2
φ〉 + �z

〈
μ2

z

〉)
. (2)

The 〈μ2
i 〉 terms are the expectation values of the ith cylindrical

component of the dipole moment operator, and the coefficients
�i are

�ρ = dρ2
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]
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FIG. 1. A schematic illustration of the setup. A pulse travels
towards the plate at the incidence angle θ , being influenced by the
attractive potential U (ρ, z; d ). The potential was originally derived
in the cylindrical coordinates but we discard the φ-dependent com-
ponent due to the uniaxial invariance and treat ρ and z as Cartesian
coordinates. The hole is characterized by a diameter of length d .

where we used the following shorthand notations:

P = ρ2 + z2 − d2

4
, (6)

Q± = ρ2 ± z2 ± d2

4
, (7)

R± =
[(

ρ ± d

2

)2

+ z2

]1/2

. (8)

For the hole diameter d approaching zero, V (ρ, z; d ) reduces
to the form ∝ z−3—a potential varying only in one direc-
tion, thus assuming the form familiar from 1D. Equation (2)
describes the energy shift of an atom with an arbitrarily ori-
ented dipole; in our case, we choose the dipole to always be
pointing in the direction of the atom’s motion. We therefore
parametrize the dipole moment as

μρ = (μx cos φ + μy sin φ)ρ̂, (9)

μφ = (−μx sin φ + μy cos φ)φ̂, (10)

μz = μzẑ, (11)

where ρ̂, φ̂, and ẑ are the usual cylindrical unit vectors and
μ = (μx, μy, μz ) is the dipole moment vector in Cartesian
coordinates. By choosing a plane of motion where μy = 0 and
μx > 0, we notice that φ = arctan(y/x) = 0. Now, by defin-
ing the angle θ = arctan(x/z), we can write the remaining
dipole components as μx = |μ| sin θ and μz = |μ| cos θ . This

allows us to write the energy shift V (ρ, z; θ, d ) as

V (ρ, z; θ, d ) = − 1

16π2ε0
(�ρ〈|μ|2〉 sin2 θ + �z〈|μ|2〉 cos2 θ )

= −C3

π
(�ρ sin2 θ + �z cos2 θ ), (12)

where C3 = 〈|μ|2〉/16πε0, with 〈|μ|2〉 being the square of
the expectation value of the dipole moment, and following
Refs. [45,47], we set C3 = 4.0 × 10−50 J, which describes
the interaction between 3He and a Au plate. By fixing the
plane of propagation, ρ and z effectively become Cartesian
coordinates, but for the sake of clarity and continuity we retain
the cylindrical labels. The fixed, relative relationship between
�z and �ρ components, such that the atom’s dipole always
points in the direction of motion, is described by the angle of
incidence θ and is schematically shown in Fig. 1.

C. Extended potential

Any experiment aiming to measure quantum reflection
needs to come up with a way of isolating it from the clas-
sical reflections induced by the short-range repulsion very
close to the surface (for example, using the bond dissociation
technique in Ref. [4]). In our numerics we do this by sim-
ply not including the short-range repulsion (which would be
implemented by letting V → ∞ at the plate) and considering
only the effects of the potential V (ρ, z; θ, d ) as shown. This
means that any reflections that occur are necessarily quantum
in nature. To implement this, we split our computational do-
main into two halves, with the plate envisaged as being in
the middle at z = 0. On the right-hand side, the potential is
V (ρ, z; θ, d ), while on the left, we artificially continue the po-
tential to the edge of the domain in the way we explain shortly.
Since the potential V (ρ, z; θ, d ) experiences an unphysical
singularity at z = 0, we choose a small enough distance ε as a
cutoff point (as was implemented, for example, in Ref. [48]).
This length needs to be sufficiently small so the resulting po-
tential still reaches close enough to the surface to be relevant
to electrostatic interactions—varying ε impacts the reflectivity
and this is discussed in the Appendix where we test different
lengths ε. We now proceed to define a new piecewise potential
function VC as

VC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (ρ, z; θ, d ), z > ε,

− 3V0
2ε2 z2 + 5V0

2 , 0 � z � ε and |ρ| < d
2 ,

5V0
2 , z < 0 and |ρ| < d

2 ,

V<, otherwise ,

(13)

where V0 ≡ V (0, ε; θ, 0) and V< ≡ V (0, ε; θ, d ). The ex-
tended potential in the region 0 � z � ε is essentially a
function of z only. The change of the potential’s landscape
in the ρ direction induced by the introduction of the hole is
symmetrical, and significant only at z near ε. We thus create
a gap in the continued part of the potential in the positive and
negative ρ directions, at z = ε, to account for the vanishing
potential gradient at the hole’s center. For z < ε and beyond
the gap, VC is invariant in ρ; for a wave packet traveling in
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FIG. 2. (a) Potential V for an atom of 3He, continued beyond the z = ε distance through to the negative z values where it reaches a constant
value. (b) The behavior of the original potential V from the cutoff point at z = ε. The unit h̄2/mL2 = 138.5 neV.

the ρ direction, such an abrupt change along the ρ axis will
have an effect on its motion. However, this is inconsequential
for our purposes as this occurs in the continued part of the
potential and does not influence the reflection in the normal
direction. The original potential along with its extension is
shown in Fig. 2. We plot the regularized potential at a ρ = 0
slice for different diameters d in Fig. 3.

D. Evolution of the system

We aim to solve a dimensionless time-dependent
Schrödinger equation (TDSE):

− 1
2∇2
(r, t ) + V (r)
(r, t ) = i∂t
(r, t ). (14)

We solve Eq. (14) by taking advantage of an open source li-
brary [49]—a solver utilizing the split-step Fourier technique,
also known as the beam propagation method (BPM) [50].
Determined by the natural units and the choice of length scale
L = 1 µm, the energy unit in which the system in Eq. (14)
is solved is h̄2/mL2, where m is the actual mass of the atom
in SI units. We adapt the source code of Ref. [49] to include
our extended potential function VC , and we solve the TDSE
for a range of chosen angles of incidence θ and diameters

FIG. 3. The extended potential VC at ρ = 0 for three different
hole diameters d . The red dashed line shows the cutoff point ε. The
larger the hole diameter is, the flatter the potential gradient becomes
near the center.

d . In Table I, we specify the simulation-specific parameters
for 3He and Na, to which we refer throughout the text. At
t = 0, we define 
(r0, 0) to be a Gaussian with the spread
(standard deviation) in z and ρ, respectively, σz = σρ = 10
nm (1 µm), for 3He (Na). The initial location is situated at
r0 = {r cos θ, r sin θ}, where θ is the angle of incidence and
r is chosen to be 40 nm (4 µm). We impart on the pulse mo-
mentum p0 = √

2mE0, where m is the mass of 3He = 3.016
amu (Na = 22.99 amu) and E0 is the kinetic energy. The com-
putational domain is surrounded by an absorbing boundary,
where the solver makes V imaginary. Additionally, periodic
boundary conditions are enforced and any pulse that “leaks”
through the absorbing medium reappears at the starting point.
We can stop that from happening if we choose a “sensible”
stopping point, an appropriate duration of propagation turns
out to be t f = 0.12 (0.21). The resulting 
(r, t f ) contains
the information about the spread of the pulse at time t f . To
extract the information about the reflected part of the pulse,
we simply integrate the normalized squared amplitude of the
wave function along the ρ axis and the positive z direction.
This way, we find the proportion of the pulse traveling in the
positive z direction at t f , which we call reflectivity R(t f ),

R(t f ) =
∫ ∞

−∞
dρ

∫ ∞

0
dz |
(r, t f )|2. (15)

An alternative, very similar treatment is to Fourier trans-
form 
(r, t f ) and integrate along the momentum in the ρ

direction and the positive momentum in the z direction; the

TABLE I. Parameters in natural units (SI units) used in the
simulations.

Atom 3He Na

Array dims. 15 × 15 (150 × 150 nm2) 25 × 25 (25 × 25 µm2)
Energy E0 1.13 × 103 (156 µeV) 665.70 (1.21 neV)
Time t f 0.12 (0.51 ps) 0.21 (0.115 µs)
Cutoff ε 0.1 (1 nm) 0.1 (100 nm)
C3 1.8 (4.0 × 10−50 J) 4.21 (1.2 × 10−48 J)
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FIG. 4. The distance zR at which a quantum reflection occurs as a function of incident velocity, for various atoms. zR has been calculated
as a location of the maximum of a Badlands function. The plot in panel (a) shows the regime of applicability of the 3He atom, with the dashed
line marking its velocity (v = 100 m s−1); the same in panel (b) but for the Na atom (v = 0.1 m s−1).

reader can see Refs. [45,48] for further details. We found
this technique to produce almost identical results with the
exception of cases where a pulse travels at grazing angles
of incidence, causing the positive momentum to be poorly
defined.

We notice that the addition of the hole significantly flattens
the gradient of the potential in the region corresponding to its
diameter across the whole domain, as seen in Fig. 2(a). This
serves as basis for expecting suppressed reflectivity across
those regions.

III. RESULTS AND ANALYSIS

Since we have based our investigations on using an elec-
trostatic potential, we need to confirm that the reflection is
happening at distances appropriate to the short-range, non-
retarded CP interaction. The electrostatic regime is usually
accessible through high kinetic energies, where in the case of
helium, the particle’s speed v ≈ 300 m s−1, as shown exper-
imentally in, for example Ref. [19]. In this work, we wish to
look at the reflection of 3He at nonretarded distances, traveling
at a velocity of v ≈ 100 m s−1, ensuring that the reflection
location falls inside the reach of the electrostatic interaction.
We note that if we were to consider an arbitrary atom, the
short-distance regime of the reflection could be achieved by
tuning into an appropriate energy range, along with choosing
a surface whose effects are encoded by the C3 coefficient.

We can confirm the suitability of our setup to an electro-
static regime by reducing our problem to a single dimension
(normal incidence at ρ = d = 0) and examining the location
of quantum reflection. A well-known estimation of the order
of magnitude of this distance (in one dimension) can be in-
ferred from the so-called Badlands function [44,51]—which
we denote Q(z)—as demonstrated, for example, in Refs. [52]
and [12]. The significance of Q(z) to the problem at hand
lies in its relation to the modified Schrödinger equation (here
E is the kinetic energy, m is the atomic mass, and V (z) is
an arbitrary potential function depending on the atom plate
separation z)

ψ ′′
WKB(z) + 2m

h̄
[E − V (z) + Q(z)]ψWKB(z), (16)

for which the WKB approximation ψWKB is an exact solution.
The dimensionless form of the Badlands function Q(z) can be

written as

Q(z) = 4[V (z) − E ]V ′′(z) − 5[V ′(z)]2

32[E − V (z)]3
, (17)

where V (z) ≡ V (0, z; 0, 0) is the one-dimensional potential
function, E is the kinetic energy, and primes denote differ-
entiation with respect to z. The peaks of Q(z) coincide with
regions where the WKB approximation breaks down (dis-
tances at which the wave vector experiences drastic changes),
revealing the approximate position at which the quantum re-
flection occurs. Thus, by finding the location of a maximum
of the Badlands function for a given configuration (choice of
an atom and its velocity), we can check the applicability of
a given regime. We have found the peaks of the Badlands
function for the case of a perfect reflector for 3He along with
Na, K, Rb, and Cs, using the C3 coefficients for the alkali
metals from Ref. [53]. The results are shown in Figs. 4(a) and
4(b). For all elements in Fig. 4(a), we notice a linear rela-
tionship between the velocity v and the approximate distance
of reflection zR; across the range of velocities, the difference
between atoms’ reflection distances for a given v is less than
a nanometer. The regime of validity of the electrostatic inter-
action is determined by the dominating transition frequency
(wavelength λ) of an atom, such that zR � λ (in the case of
3He, λ = 9.3 nm [48]). We are thus considering a reflection
distance which is approximately ten times smaller than the
wavelength λ, motivating us to discard any contribution that
might be arising over the scale of retarded distances (z 
 λ).
We believe this to be a justifiable assumption for 3He, fol-
lowing the work in Ref. [45], whose use of the electrostatic
potential influences our own method. Additionally, the lowest
limit for the cutoff point ε producing convergent results for
all angles θ was found to be ε = 1 nm. This situates it within
the approximate region where the Badlands function predicts
the reflection to occur, yet it still allows for the full interaction
to play out—the pulse starts reversing its motion before the
cutoff point. For the case of the alkali-metal atoms (K, Rb,
Cs) along with Na as shown in Fig. 4(b), the distance at which
the quantum reflection occurs also falls in the nonretarded
regime. In the case of Na, the distance zR is approximately
five times smaller than its transition wavelength, λ ≈ 590 nm.
Our model is built on the condition of a perfectly reflecting
sheet where the electric field disappears on the surface. If
however, one wanted to relax this assumption and consider
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FIG. 5. Explicit dependence of normalized reflectivity R on the
diameter of the hole, d , for a selection of angles θ for an atom of 3He
traveling at v = 100 m s−1.

penetration depth for real metals, proportional to the recipro-
cal of the square root of frequency [54], the skin-depth would
be approximately on the order of magnitude of the predicted
quantum reflection distance for 3He and an order of magnitude
smaller for Na. Thus, for 3He the physical condition that
the reflection distance is much greater than the penetration
depth is not necessarily satisfied, so our results for 3He should
be taken as indicative only to aid comparison with previous
theoretical works.

Having confirmed the validity of the one-dimensional
electrostatic model for several atoms, we carry out two-
dimensional simulations for an atom of 3He and Na; in both
cases we vary the incidence angle θ and the hole diameter
d . The normalized—with respect to the case of d = 0 (no
hole)—results for 3He (Na) are plotted in Fig. 5 (Fig. 7),
showcasing the relationship between the hole diameter d and
the reflectivity R. In the case of 3He, we notice an initial

FIG. 6. Reflectivity R as a function of the diameter of the hole,
d , and the angle of incidence θ for an atom of 3He traveling at
v = 100 m s−1.

FIG. 7. Explicit dependence of reflectivity R on the diameter d
for an atom of Na traveling at v = 0.1 m s−1.

increase in reflectivity compared to the case of no hole for
all angles of incidence, suggesting a resonancelike interaction
between the pulse and the opening. For an atom traveling
at a small incidence angle (θ < 0.3π ), the effects of this
behavior diminish with the increasing diameter of the hole.
The bigger the overlap between the hole’s cross section and
the arc that angle θ subtends is, the larger portion of the pulse
experiences reduced strength of the potential gradient. For
larger angles of incidence (θ � 0.3π ), the increasing trend
is sustained throughout all diameters d . The density plot of
the reflectivity for the parameter space for 3He is shown in
Fig. 6. In the case of the Na atom (Fig. 7), the effect of the
resonance is smaller—we observe a slight increase in reflec-
tivity for the angle θ = 0.4π . Moreover, at θ close to 0.5π ,
the approximately constant reflectivity experiences a slight
enhancement across the range of the d values. In this case, the
atom traverses parallel to the plate and its direction of motion
is unaffected by the presence of the hole; however, its spread
in the perpendicular direction is modulated by the opening.
As shown in Fig. 8, we notice the diminishing influence of the
hole on pulses that travel at the grazing angle of incidence.

Additionally, independent of the hole diameter d , in the
case of each atom we observe a periodic behavior along the
θ axis. The ratio of the reflected wave to the incoming one is
modulated by the coupling between the potential’s respective
dependencies on ρ and z. Interestingly, when the diameter of
the hole approaches zero—which nullifies nonperpendicular
dependence—we still observe the periodic behavior. Since
this occurs for both atoms, we have examined the animations
of the respective simulations and have found them to be de-
scribing the correct values of the reflectivity—we expand on
this point in the Appendix. We suggest that the reason behind
this phenomenon lies in the self-interference of the wave
packet. As it strikes the potential barrier, it disperses in all di-
rections, ultimately affecting the reflectivity in a quasiperiodic
fashion.

IV. CONCLUSIONS AND SUMMARY

We have presented a proof-of-principle method of control-
ling the magnitude of quantum reflection of a 3He atom from a
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FIG. 8. Reflectivity R as a function of the diameter of the hole,
d , and the angle of incidence θ for an atom of Na traveling
at v = 0.1 m s−1.

perfectly reflecting plate by adding a circular hole of varying
diameter at its center. The addition of the hole significantly
modifies the potential experienced by the atom and directly
influences the probability of quantum reflection. We extended
the parameter space familiar from standard quantum reflection
approaches by allowing our matter wave to travel at arbitrary
incidence angles with respect to the surface. This introduces
complications as the lack of a chosen single trajectory impacts
the choice of boundary conditions in the time-independent ap-
proach, rendering defining a suitable-for-all simulation space
computationally infeasible. We thus have modeled the prob-
lem as a 2D pulse propagation in the presence of an attractive
potential and solved a TDSE using a split-step method, utiliz-
ing an open source solver [49].

Our results confirm the intuitions insofar as the increase in
the hole diameter reduces the probability of the reflection—
this is additionally influenced by the coupling between the
direction of propagation and the strength of the potential gra-
dient. The ability to study the reflection from the perspective
of different directions of propagation reveals varied and inter-
esting behaviors for the same atom. In the Appendix we show
how the finer grid density leads to convergence for the case of
a normal incidence, and this will naturally apply to arbitrary
direction of propagation.

The length scale at which we tested quantum reflection is
ideally suited to the regime of nanotechnology, opening up
possibilities for designing tunable quantum reflection devices,
such as velocity selectors able to filter out neutral atoms [55].
As well as the range of possibilities in technological appli-
cations, the plate with the hole offers an interesting scheme
for investigating the quantum nature of matter waves. In this
paper, we have discussed the behavior of a single atom inci-
dent on the perfectly reflecting surface, but the same method
(perhaps at lower energies and thus considering retarded dis-
tances) can be applied to studying the quantum reflection of a
Bose-Einstein condensate, with the specific emphasis on the
two-dimensional profiles, which will be explored in a future
work. Alternative avenues exist to extend and interpolate the

plate with the hole potential to a nonelectrostatic regime in the
form of a heuristic argument as it is often done in dispersion
force calculations [17] or numerical simulations. Both remain
to be respectively tested to expand the reach of possible quan-
tum reflection experiments.
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APPENDIX

1. Convergence

As already pointed out by Galiffi et al. [45], the conver-
gence of a solution to the 2D pulse propagation problem
depends on the density of points along the axis of the particle’s
propagation. They report using different grids for x and y
values—the pulse is traveling only along the x axis (normal
incidence). In our case of arbitrary incidence, shortening the
grid in the y direction leads to spurious results, i.e., the di-
rection of the pulse acquiring a phase of −2θ , where θ is
the angle of incidence. As there is no preferred direction of
motion, we thus use grids that have equal density across z
and ρ. We have inspected the animations of our simulations
to establish a lower bound on the number of grid points N ,
for which the pulse follows a correct trajectory, and we have
found it to be 211. Furthermore, we tested more dense grid
configurations of the form n × n and were limited by memory
to the case of N = 213. Thus, we performed the numerical
simulations—results of which are shown in Figs. 5–8—using
the z grid of Nz = 212, balancing accuracy and performance.
Moreover, the algorithm of the split-step numerical method
converges for small values of t [49]—in our case the time step
was chosen to be dt = 0.005.

It is worth noting that introducing the regularization of the
potential in the form of a cutoff length ε has an influence
on overall results. With decreasing ε, the potential gradient
a particle is experiencing becomes larger, and a denser grid
is needed for more accurate sampling. We tested this rela-
tionship using our algorithm for the case of normal incidence
for different hole diameters, as shown in Fig. 9. The number
of points on the ρ axis was fixed to Nρ = 27, and we varied
the density in the z direction between Nz = 211 and Nz = 215.
The values of the cutoff length ε are bound by the reflection
distance zR and were chosen between 1 and 5 nm—shown as
separate panels in Fig. 9. In each case, we observe that the
amplitude of fluctuations around a mean value (dashed line)
decreases as the number of points is increased. For increasing
diameter d , the oscillations also decrease; the presence of the
hole weakens the magnitude of the gradient in the normal
direction. Thus, even a smaller resolution is able to capture
the behavior adequately. For our choice of the range of ε,
the oscillations decrease in a similar manner until ε = 10 nm,
where they become more smoothed out for Nz > 214.

All numerical computations were performed on a PC
with an eight-core 11th Gen Intel(R) Core(TM) i7-11700 at
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FIG. 9. Relationship between reflectivity R and grid density in the z direction for normal incidence for the 3He atom. The number of points
on the ρ axis is kept constant, Nρ = 27. Different colored lines (also appearing on the plots in a sequential order of increasing d) correspond
to different diameters of the hole—which when increased reduce reflectivity as well as the magnitude of the fluctuations.

FIG. 10. Different stages (t = 0.04, 0.1, and 0.2) of the wave-packet propagation and scattering for the Na atom at a plate without a hole.
The top row shows low reflectivity—resultant from propagation at angle θ = 0.2π , whereas the bottom row depicts high reflectivity—angle
θ = 0.3π . The standard deviations σρ and σz have been increased to 2 for ease of distinguishing the wave-packet features.
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2.50 GHz, 16 GB of RAM, and a Rocky Linux operating
system.

2. Periodic behavior

We have examined the animations produced by the
simulations and found the visual representation to agree
with the calculated values of reflectivity. The plots can be
seen in Fig. 10; there, we have included snapshots from the
simulations of the Na atom where angles of incidence were
respectively θ = 0.2π and θ = 0.3π . The respective resultant

reflectivities R(t f ) were 0.221 and 0.353, which agree with
the main results, leading us to assume that the reflectivity cal-
culations are correct for all θ . The influence of θ on periodic
behavior seen in Figs. 6 and 8 cannot be explained through the
action of simple functions such as sin θ (cos θ ) since they are
strictly increasing (decreasing) on the interval (0, π

2 ). Thus,
a more complicated response must be at play, being born out
of the scattering of the wave packet across different angles of
incidence. Given the strong nonseparability of Eq. (14), we
are unable to investigate this behavior analytically.
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