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Accelerating BRPF1b hit identification with BioPhysical and 
Active Learning Screening (BioPALS)   

Sandeep Pal,#[a] Zandile Nare,#[a] Vincenzo A. Rao,[a] Brian O. Smith,[b] Ian Morrison,[a] Edward A. Fitz-
gerald,[c] Andrew Scott, [a] Matilda J. Bingham[a] and Thomas Pesnot*[a] 

Abstract: We report the development of BioPhysical and Active 

Learning Screening (BioPALS); a rapid and versatile hit identification 

protocol combining AI-powered virtual screening with a GCI-driven 

biophysical confirmation workflow. Its application to the BRPF1b 

bromodomain afforded a range of novel micromolar binders with 

favorable ADMET parameters. In addition to the excellent in silico/in 

vitro confirmation rate demonstrated with BRPF1b, binding kinetics 

are determined, and binding topologies predicted for all hits. BioPALS 

is a lean, data-rich, and standardized approach to hit identification 

applicable to wide range of biological targets.

Introduction 

Hit identification is arguably one of the most critical stages in the 

development of new drugs as it defines structural start points for 

the whole project. Screening campaigns from drug-like collections, 

fragments, DNA encoded libraries, or virtual databases represent 

some of the most common strategies employed to hunt for new 

high-quality hits.[1,2] In the classical hit identification approach, 

compound collections are screened using assay cascades 

tailored to each project and biological target. Whilst this approach 

aims to provide the most adapted screening technologies for a 

given biological target, it also requires a wide range of assay 

technologies and formats to support a drug discovery pipeline, 

thereby stretching infrastructure costs and project timelines. 

Instead, a standardized hit identification platform, using a well-

defined technology, along with a workflow applicable to most 

biological targets would provide a new paradigm in hit 

identification to overcome the aforementioned limitations.  

Since its establishment in 2003[3] over 200,000 biomolecular 

structures have been deposited on the Protein Data Bank (PDB). 

This figure is expected to continue its rapid growth thanks to the 

rise of new techniques such as cryogenic electron microscopy 

(cryo-EM)[4] artificial intelligence (AI) such as Alphafold.[5] 

Mirroring the tremendous rise in the number of PDB entries, 

commercial compound collections such as the REAL database[6] 

have grown by several orders of magnitude in recent years. As a 

result, ultra large-scale structure-enabled virtual screening (e.g., 

based on docking) is now technically achievable and provides an 

attractive alternative to classical in vitro high throughput screening. 

Unlike traditional ligand and fingerprint-based virtual screening 

technologies, brute force docking of vast compound collections 

requires supercomputers, making it unattainable for many 

research laboratories. In recent years however, multiple 
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strategies enabling the virtual screening of large virtual libraries 

combining docking and AI have been developed,[7–9] 

democratizing high scale structure-enabled virtual screening. One 

of these AI technologies, Molecular Pool-based Active Learning 

(MolPAL),[10] was recently developed by Graff and coworkers. 

MolPAL is underpinned by an Active Learning algorithm which 

predicts docking scores based on simple molecular fingerprints. 

The highest scoring compounds are then readily identified from 

large compound collections despite MolPAL only effectively 

docking a fraction (typically < 5%) of the overall collection. 

Although MolPAL has only been applied to a handful of biological 

targets to date, it provides a lean and versatile structure-based 

virtual screening technology, which can be deployed across most 

of the drug discovery landscape. 

 

 

Figure 1: Chemical structures of BRPF1b inhibitors GSK6853[11] and NI-57[12] 

as well as their reported IC50 values for BRPF1b. 

A wide range of well-established in vitro assay technologies and 

formats are available to confirm virtual hits[13–21] (e.g., affinity, 

activity, phenotypic) but only a few are widely applicable across 

biological targets. In order to select the most versatile assay 

technology, we focused on a fundamental aspect of 

pharmacology, the affinity of a small molecule to its biological 

target. Biophysical techniques such as surface plasmon 

resonance (SPR),[22,23] microscale thermophoresis (MST),[24,25] 

and affinity selection-mass spectrometry (AS-MS)[26] have 

recently emerged as attractive techniques to measure affinities. 

Grating-coupled interferometry (GCI) is another biophysical 

technology enabling fast determination of binding affinities. GCI is 

applicable to soluble[27] and membrane bound proteins,[28–31] RNA 

targets,[32] and complex multicomponent assemblies.[33] GCI also 

offers the critical advantage of high sensitivity compared to 

traditional SPR,[34,35] thus enabling the detection of weak binding 

events, which are typically associated with primary screening hits. 
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This high sensitivity is maximized by the waveRAPID® (Repeated 

Analyte Pulses of Increasing Duration) technology,[36] which 

accelerates the acquisition of binding kinetic parameters by 

screening compounds at a single concentration and varying the 

injection time on the sensor chip. This is compared to traditional 

SPR where compounds are typically screened using the same 

injection time for a concentration series. 

 

 

 

Figure 2: Virtual screening piece of the BioPALS protocol, centred on the 

MolPAL algorithm. Activities in orange are integral to the protocol, activities in 

grey can be added depending on the drug discovery strategy and data available 

on the target. Figures in bracket shows the number of compounds processed 

through each individual stage for the BRPF1b bromodomain. 

The bromodomain and PHD finger-containing protein 1b 

(BRPF1b) protein-protein interaction module contains both 

epigenetic acetyl reader and scaffolding functions and was 

recently identified as a therapeutic target to treat hepatocellular 

carcinoma[37] and acute myeloid leukemia,[38] an aggressive family 

of cancers with a 5-year survival rate below 30% for adults.[39] A 

range of BRPF1b bromodomain inhibitors have been reported, 

including GSK6853,[11] and NI-57[12] (Figure 1). BRPF1b 

inhibitors were identified through a wide range of hit identification 

technologies including high throughput fragment docking,[40] 

ligand-based screening,[41] and hit optimization guided by 

numerous X-ray ligand-protein structures.[11,40–42] Despite these 

efforts, a selective BRPF1b inhibitor has yet to enter clinical 

investigation and new chemotypes inhibiting this target are still 

highly sought after. 

Here, we report the development of the Biophysical and Active 

Learning Screening (BioPALS) hit identification protocol, and its 

application in the identification of novel BRPF1b lead compounds. 

The initial in silico stage of the protocol involves a MolPAL-driven 

virtual screen and provided a selection of 51 virtual hits from a 

commercial collection of over 24 million compounds. In vitro 

confirmation of the virtual hits (using GCI) highlighted 36 primary 

BRPF1b binders, including 20 hits with affinities < 250 µM. 

Importantly, these hits are selective for BRPF1b over its inactive 

isoform, BRPF1a.[42] Orthogonal confirmation of target 

engagement (by differential scanning fluorimetry (DSF) and 

ligand observed nuclear magnetic resonance (NMR)) and 

ADMET profiling, highlighted several attractive leads for 

subsequent development of novel BRPF1b chemotypes. In 

addition to the excellent in silico/in vitro hit confirmation rate 

exemplified in this study, BioPALS provides high-quality hits with 

fully characterized binding kinetics and predicted binding 

topologies, thus offering an accelerated and versatile path to aid 

drug discovery. 

Results  

BRPF1b is a well-established oncology target for which inhibitors 

belonging to many different chemical series have been identified. 

These ligands provide an opportunity to focus the MolPAL 

protocol on chemical matter structurally related to established 

BRPF1b inhibitors. We therefore initiated the virtual screening 

piece of the BioPALS protocol by carrying out a similarity search 

on 27 known BRPF1b inhibitors with pIC50 > 7.2 (structures 

provided in SI Figure 1) against a commercial library of over 24 

million compounds (eMolecules collection). 91,375 structures 

were identified, providing a pool of commercial compounds 

suitable for BRPF1b MolPAL screening (Figure 2, grey). In 

instances where there is no known ligand for the target of interest 

or, if an unbiased sampling of the chemical universe is preferred, 

this step can be excluded from the BioPALS protocol. 

 

Next, we submitted the 91,375 commercial analogues to the 

MolPAL docking protocol using PDB ID: 6EQK,[41] a high-

resolution crystal structure of BRPF1b. An initial benchmarking 

was carried out using a 0.1% random sampling and four rounds 

of active learning cycles (combination of random forest (RF) and 

directed message passing neural network (D-MPNN) machine 

learning models with greedy and upper confidence bound (UCB) 

acquisitions) to select compounds with the best docking scores, 

while still providing a structurally diverse set. As shown in Figure 

3A, after four MolPAL cycles 85% of the 368 compounds selected 

by the algorithm (blue) display a docking score below < -7.0, 

compared to only 50% for a random selection of the 91,375 

similarity hits (grey). In addition, the average docking score shifted 

from -7.0 for the random selection to -8.0 for the MolPAL selection, 

a significant improvement considering the random selection is 

populated with compounds already structurally similar to potent 

BRPF1b inhibitors. Hence, the MolPAL algorithm efficiently 
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selects compounds with better docking score despite only 

docking 0.4% of the overall dataset. This recapitulates the 

performance reported in seminal MolPAL studies,[10] and further 

demonstrates that the algorithm provides a lean technology for 

structure-enabled virtual screening. In addition, compounds 

selected by the in silico piece of the BioPALS protocol highlighted 

virtual BRPF1b hits (blue) complying with the Rule of 5[43] (orange) 

and displaying physicochemical profiles suitable for lead 

generation (Figure 3B). 

 

 

 

  

 

  

Figure 3: Benchmarking the MolPAL algorithm. (A) Docking of a random 

selection shows normal distribution with mean around -7.0 (red), compared to 

an average docking score of -8.0 following MolPAL selection (red). (B) 

Physicochemical properties of MolPAL hits (blue) compared to lead-like 

boundaries (orange). MW (g.mol-1) = Molecular weight, HBA = number of 

hydrogen bond acceptors, HBD = number of hydrogen bond donors, TPSA (Å2) 

= topological surface area. 

With the protocol successfully benchmarked, we proceeded to 

apply MolPAL with a 0.4% sampling over four active learning 

cycles, to increase the number of virtual hits prior to downstream 

triaging. The resulting 1462 compounds identified by the 

algorithm were triaged by docking score (≤ 7), number of aromatic 

rings (≤ 3), and quantitative estimate of druglikeness (QED ≥ 0.6). 

A final clustering step using Morgan circular fingerprints 

completes the in silico piece of the BioPALS protocol and 

afforded 51 commercially available virtual hits with BRPF1b 

binding topologies predicted by MolPAL docking. 

 

The virtual screening piece of the BioPALS protocol provides a 

lean strategy to identify new chemical matter predicted to bind the 

biological target of interest at a precisely defined site. The process 

can be run on any target for which a structure has been deposited 

or predicted, and a binding site is defined. Whilst BioPALS is 

underpinned and accelerated by the structure-enabled MolPAL 

virtual screening algorithm, additional cheminformatic tools (e.g., 

2D similarity searches, CNS-MPO filtration) can be embedded 

within the protocol if relevant to the biological target classes or 

therapeutic indications. 

 

 

 

Figure 4: BioPALS in vitro screening confirmation workflow including GCI, DSF, 

ligand observed NMR and ADMET profiling. Figures in brackets correspond to 

the number compounds taken through each step of the protocol.  

We next concentrated on the in vitro confirmation of the virtual hits, 

as well as their profiling and triaging, prior to initiating hit-to-lead 

development. Akin to the virtual screening piece of the BioPALS 

protocol, the main aims of in vitro confirmation are to identify high-

quality hits, in a lean and systematic manner applicable across 

target classes and therapeutic areas. To satisfy these criteria, we 

opted for target engagement (i.e., affinity-based) assays as they 

arguably measure the most fundamental feature driving a 

pharmacological event, whatever the biological target of interest. 

We selected three biophysical techniques (DSF, ligand observed 

NMR, and GCI) to enable the orthogonal confirmation of the 

obtained binding data. These three technologies were also 

carefully selected as they each provide complementary 

information, aiding hit prioritization and optimization for all 

subsequent steps of the discovery process. GCI accurately 

determines binding affinities, kinetics, and residence time, even 

for weak binders typically identified in the early stages of the drug 

discovery process. DSF characterizes the impact of each ligand 

on the thermal stability of the target protein. Finally, ligand 

observed NMR provides in vitro evidence of the binding 

A 
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topologies predicted by the MolPAL algorithm. Hence, by 

combining GCI, with DSF and NMR, we aim to characterize 

binding affinities, kinetics, and topologies in a single and generally 

applicable workflow (Figure 4). 

 

 

Figure 5: Two-dimensional isoaffinity kinetic plot of association (ka) and 

dissociation (kd) rate constants from a waveRAPID® screen of 51 virtual hits. 

The 36 primary hit binders are shown. Diagonal lines indicate equilibrium 

binding constants (KD) and are shown to visualize affinity distribution. Each 

circle represents a binder and is coloured according to the dissociation rate. The 

top eight hits (Table 1) and the GSK6853 positive control compound are 

highlighted in grey text. 

All 51 virtual hits (100 µM) were first tested against BRPF1b using 

the waveRAPID® GCI screening technology to eliminate non-

binders. Thirty-six primary BRPF1b binders with KD values 

ranging from 0.14 µM to 1 mM were identified (Figure 5). Hits 

were selected based on sensorgrams showing clear 

concentration dependent binding (Rmax > 2.0 pg/mm2) in the 

dedicated WAVEcontrol software (version 4.5.17; Creoptix AG, 

Switzerland) with low statistical association/dissociation rate 

errors < 60, and kinetic rate constants within the measurable limits 

(i.e., ka = 103 – 5 × 107 M/s–1; kd = 10-6 – 10 s–1). Affinity was not 

used in the hit selection criteria because the focus of this work 

was to confirm the suitability of the BioPALS workflow for 

assessing in vitro target engagement of virtual hits, rather than 

identification of high affinity binders. Moreover, the hits identified 

in this workflow may serve as good lead molecules in instances 

where there is scope to improve potency. Most waveRAPID® hits 

displayed moderate to fast binding kinetics, including fast 

dissociation rates. Two BRPF1b binders displaying KD values 

< 1 µM in the primary screen (one of which is not shown in Figure 

5 for clarity) were false positives whose binding could not 

subsequently be orthogonally confirmed due to solubility issues. 

Interestingly, the higher affinity observed for the GSK6853 

positive control over the virtual hits is primarily due to fast 

association rather than slow dissociation times. This kinetic profile 

implies that GSK6853 has a low residence time despite having 

nanomolar affinity for BRPF1b and may set more stringent 

requirements for DMPK properties, in particular the duration of 

exposure at the site of action. This result, combined with our 

kinetics driven BioPALS protocol, highlights new opportunities to 

develop novel potent BRPF1b inhibitors with enhanced target 

residence time.  

 

We confirmed and prioritized the waveRAPID® hits using a 

combination of GCI multi-cycle binding kinetics (MCK) and DSF. 

MCK experiments confirmed 29 of the 36 primary hit binders 

including 20 with KD values < 250 µM, and 10 with KD < 100 µM. 

This suggests that the medium throughput waveRAPID® 

technology is suitable to triage compounds, but MCK is required 

to ascertain binding affinities and eliminate false positives. The 

same GCI workflow was applied to BRPF1a to determine 

selectivity of the 51 virtual hits. Initial waveRAPID® data identified 

two binders (KD = 300 µM and 700 µM) with only one being 

confirmed in MCK experiments. Importantly, these two BRPF1a 

binders were deselected early in the BRPF1b workflow. Taken 

together, these data confirm that the BioPALS protocol can 

identify selective binders, in this case for BRPF1b. 

 

 

Figure 6: DSF characterization of the 36 waveRAPID® primary hits (grey). 

Known BRPF1b inhibitors (GSK6853 and NI-57) are coloured in blue, and the 

> +4 °C and < -4 °C thresholds are indicated with grey dashed lines. 

Alongside MCK, we confirmed the 36 primary BRPF1b 

waveRAPID® hits using an orthogonal DSF screen with 

compounds at 100 µM (Figure 6). The assay was first validated 

with GSK6853 and NI-57, for which thermal shifts of +20 °C and 

+17 °C were observed, respectively. Importantly, small ΔTm shifts 

(e.g., ± 1 – 2 °C) can be indicative of false positive hits or very 

weak interactions. Therefore, to limit this risk, we set higher ΔTm 

thresholds of < -4 °C and > +4 °C.13 of the 36 primary hits were 

shown to interact with BRPF1b either by stabilizing (ΔTm > +4 °C) 

or destabilizing (ΔTm decreased by over < -4 °C), including five 

compounds inducing a ΔTm over +10 °C. Although no correlation 

was observed between the KD values determined by GCI and ΔTm 

values determined by DSF, the orthogonality of the two 

biophysical technologies provides an additional means to 

eliminate potential false positives. The eight hits displaying a KD 

< 250 µM (determined by GCI MCK) and a thermal shift > +4 °C 

or < -4 °C (displayed in Table 1) were prioritized as in vitro hits. 
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These structures are all lead-like and diverse thanks to the 

parametrization of MolPAL and additional cheminformatics 

filtration embedded within the in silico piece of BioPALS. It is 

worth noting the protocol highlighted compounds 4 and 5, (Table 

1) which have scaffolds related to NI-57 and GSK6853, 

respectively. Whilst this suggests BioPALS can identify 

developable hits, it might also be associated with the initial 

similarity search of the protocol. Hence, removing the initial 

similarity search step might be favorable when identifying novel 

chemical matter is critical to the project. 

 

 

Figure 7: Sections of the 1D 1H NMR spectra illustrating peaks from compound 

7 (200 µM) in the absence (pink) and presence (orange) of the BRPF1b 

bromodomain (26 µM). The asterisk denotes a peak from a contaminant 

component of the sample. 

A structurally diverse set of five compounds (2, 3, 4, 5, and 7; 

Table 1) were further prioritized based on their overall biophysical 

profile and progressed for ligand observed NMR characterization 

and in vitro ADMET profiling. One-dimensional (1D),[44] saturation-

transfer difference (STD),[45] water-ligand observed via gradient 

spectroscopy (waterLOGSY)[46] and Carr-Purcell-Meiboom-Gill 

(CPMG)[47] NMR spectra were acquired for each ligand (200 µM) 

in the presence or absence of BRPF1b protein (26 µM). 

Significant signal differences were observed in one or more of the 

NMR experiments for compounds 2, 3, 5, and 7 (example shown 

in Figure 7), whereas compound 4 was insufficiently soluble to be 

validated using this technique. Altogether, ligand observed NMR 

provides yet further evidence that the indicated hit compounds 

identified in the BioPALS protocol are bona fide BRPF1b binders. 

In addition, for compound 5 the relative magnitude of the chemical 

shift changes observed upon addition of the protein suggest that 

the benzimidazolone methyls are most intimately involved in 

binding (data not shown), recapitulating data reported by 

Bamborough and coworkers, using X-ray crystallography.[11] For 

all other hits however, the size of the recombinant BRPF1b 

bromodomain (15 kDa) proved too restrictive to provide any 

tangible evidence of specific protons being involved in binding to 

BPRF1b.  

 

This limitation is however compensated by MolPAL which predicts 

binding topologies, hence providing modelling hypotheses which 

can readily be tested experimentally (e.g., through the profiling of 

hit analogues in targeted hit exploration studies). This is 

exemplified for BRPF1b in Figure 8 where the lowest energy 

binding topologies predicted by MolPAL (as part of the BioPALS 

protocol) are shown for the five prioritized hits 2, 3, 4, 5, and 7. All 

molecules are buried within the BRPF1b active site and interact 

with Phe714 (through face-to-face π-π interactions) as reported 

in many other BRPF1b structures such as those of GSK6853 

(PDB ID: 5G4R)[11] and NI-57 (PDB ID: 5MYG).[12] Several other 

protein-ligand interactions including H-bonding to the backbone of 

Asp651, Ile652, Glu655, and the amide side chain of Asn708 were 

highlighted, some of which have also been previously reported.[41] 

It is also worth noting that the binding topology of compound 4 

shown in Figure 8C resembles that of its structurally related 

analogue, NI-57 previously determined by X-ray crystallography 

with the (dihydo)quinolone making direct π-stacking interaction 

with Phe714. In contrast, the lowest energy docking pose of 

compound 5 predicted by the MolPAL algorithm differs from that 

of its related analogue GSK6853 (previously determined by X-ray 

crystallography). In our model, the Phe714 residue interacts with 

the nitro-phenyl moiety (absent in GSK6853), whilst it interacts 

with the dimethylbenzimidazolone in the GSK6853 X-ray 

structure. This discrepancy was highlighted in the ligand observed 

NMR assay, which suggests that compound 5 binds in a topology 

akin to the GSK6853 X-ray structure, confirming the importance 

of including ligand observed NMvR in the protocol.  

Table 1: Structures and completed biophysical profiling of the eight prioritized BRPF1b hits selected from the BioPALS protocol.  

 

Compound MW (g.mol-1) KD (µM) ka (M/s-1) kd.(s-1) ΔTm.(°C) NMR binding 

1 461 27.7* 1.7 × 104 0.5 + 8.4 ± 3.5 n.d. 

2 448 43.6 ± 2.2 4.6 × 104 2.0 + 7.2 ± 3.7 Yes 

3 431 46.5 ± 5.6 4.8 × 104 2.2 - 6.3 ± 4.7 Yes 

4 367 61.2 ± 14.9 3.5 × 104 2.0 + 7.1 ± 0.6 Insoluble 

5 369 128.1 ± 87.0 3.0 × 104 2.1 + 10.6 ± 1.3 Yes 

6 427 133.7* 5.8 × 103 0.8 + 29.3 ± 1.5 n.d. 

7 354 186.2 ± 11.1 8.4 × 103 1.6 + 4.6 ± 1.0 Yes 

8 437 204.9 ± 30.3 6.1 × 103 1.2 + 8.1 ± 4.1  n.d. 

KD, ka and kd were generated using GCI MCK, ΔTm generated by DSF, and ligand observed NMR binding determined as an overall assessment from 1D, STD, 

waterLOGSY, and CMPG experiments. * = data shown for single replicate only, n.d. = not determined. 
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Figure 8: Lowest energy docking poses predicted by MolPAL for compounds 2, 3, 4, 5 and 7 (Figures A, B, C, D and E, respectively; green sticks) within the 

BRPF1b active site (grey cartoon). Key residues are represented in grey sticks and amino acid sequence numbers highlighted with orange labels. Nitrogen, Oxygen 

and Sulfur atoms are coloured blue, red and yellow respectively. Key protein-ligand interactions are represented with dotted lines (hydrogen bonds in yellow, π-π 

interactions in cyan and π-cation interactions in green). 

The in vitro ADMET profiling of the five prioritized hits was 

performed as the final step of the BioPALS protocol to assess 

their developability as lead series. As shown in Table 2, all 

compounds, except 7, display low in vitro clearance in human 

microsomes and hepatocytes. Free fraction from plasma ranges 

from 5 to 23%, including for the carboxylic acid containing 

compound 2. Additionally, CYP450 inhibition profiling of 

compounds 2 and 3 confirms IC50 values for all five main isoforms 

(1A2, 2C9, 2C19, 2D6 or 3A4) were above 10 µM, thus de-risking 

drug-drug interaction liability for these hits. Altogether, 

compounds 2, 3, 4 and 5 stand out as promising BRPF1b hits. 

Compounds 2 and 3 are of particular interest since these are 

novel chemotypes shown to selectively bind BRPF1b over 

BRPF1a and displaying promising in vitro ADMET profiling. Their 

structure affinity relationship (SAR) optimization will not only be 

facilitated by the in-depth biophysical profiling provided by the in 

vitro piece of the BioPALS protocol, but also by the binding 

topologies predicted by the MolPAL algorithm. 

 

Table 2: In vitro ADMET profile of the five prioritized BRPF1b hits. 

Compound MPPB  

(Fu) 
MLM Clint 

(µL.min-1.mg-1) 
RLM CLINT 

(µL.min-1.mg-1) 
HLM Clint 

(µL.min-1.mg-1) 
HHeps Clint 

(µL.min-1.106 cells) 
CYP450 inhibition 

(µM) 
2 0.18 17 41 < 5 < 3 All > 50  

3 0.12 < 5 < 5 < 5 < 3 All > 10 

4 0.23 20 89 10 4 n.d. 

5 0.12 6 < 5 < 5 < 3 n.d. 

7 0.05 157 216 94 67 n.d. 

CYP450 inhibition was measured as a pooled mixture of 1A2, 2C9 2C19, 2D6 and 3A4 isoforms. MPPB = mouse plasma protein binding, MLM = mouse liver 

microsomal stability, RLM = rat liver microsomal stability, HLM = human liver microsomal stability, HHeps = human hepatocyte stability, Fu = fraction unbound, 

n.d. = not determined. 
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Discussion 

Whether the aim is to deorphanize a novel biological target, find 

a backup chemical series, or circumvent a challenging IP space, 

hit identification is a necessary step for the development of new 

drugs. In this work we present BioPALS, a workflow leveraging 

cutting-edge machine learning and biophysical technologies to 

provide a systematic hit identification solution applicable to a wide 

range of biological targets.  

 

Virtual screening is a well-established hit identification strategy, 

yet historically hindered by high CPU requirements and the 

simplistic (typically ligand-based) models used. In recent years 

however, thanks to the significant strides made in structural 

biology and AI, structures (X-ray and Cryo-EM) and models 

(Alphafold) are now available for most proteins. Moreover, high 

throughput docking against these biological targets is achievable 

even with standard computers. MolPAL is an example of 

emerging technologies crystallizing these advances, and 

potentially offering a generally applicable technique for hit 

identification. When applying MolPAL to the BRPF1b 

bromodomain (following an initial similarity-based triaging), 51 

virtual hits were selected from a library of over 24 million 

commercial compounds; the overall in silico process being 

completed in a matter of days. 

 

In the subsequent in vitro stage of the BioPALS workflow we 

combined three complementary biophysical techniques, GCI, 

DSF, and ligand observed NMR to confirm and prioritize the 

MolPAL hits. Akin to MolPAL, all three techniques focus on 

binding affinities and direct target engagement. GCI was selected 

for the initial screening process as it is a highly sensitive 

technology able to determine affinities from the picomolar to the 

millimolar range, and applicable to soluble and membrane bound 

proteins as well as complex ternary structures. In vitro screening 

of the 51 virtual hits using GCI waveRAPID® afforded 36 primary 

binders, including 20 with KD < 250 µM (confirmed by GCI MCK). 

The resulting 39% hit rate suggests the virtual screening step of 

the BioPALS workflow can efficiently select binders from large 

virtual collections. A parallel counter-screen of the 51 virtual hits 

against BRPF1a (inactive isoform of BRPF1b) did not yield any 

hits with KD < 250 µM, suggesting that all hits are selective for the 

BPRF1b Isoform. Although not discussed for BRPF1b, GCI was 

also selected for its high sensitivity in determining binding kinetics, 

one of the key parameters monitored to drive the hit optimization 

process. While further hit validation in cell-based assays would be 

the logical next step for future studies, we did not deem it critical 

to demonstrate the utility of BioPALS in this work because target 

engagement was confirmed using biophysical methods.  

 

Biophysical technologies can suffer from high false positive rates 

and confirming binders using orthogonal techniques is best 

practice. We selected DSF as the orthogonal confirmation screen. 

This technique measures the effect of ligands on the thermal 

stability of the biological target of interest, thus not only providing 

an orthogonal confirmation of target engagement but also 

complementary data to binding kinetics generated by GCI. We 

confirmed that 13 of the 36 primary GCI hits cause a significant 

shift in the thermal stability of BRPF1b (> +4 °C or < -4 °C). 

Combining both DSF and GCI led to the identification of eight 

validated hits, giving a 16% orthogonally confirmed hit rate. 

 

Ligand observed NMR was selected as the third and final 

orthogonal technique to further confirm target engagement and 

provide in vitro evidence of the binding topologies predicted by 

MolPAL without the need to acquire new ligand-protein structures. 

Five out of the eight confirmed hits were tested in 1D, 

waterLOGSY, STD, and CPMG NMR studies. Binding was 

confirmed for all compounds sufficiently soluble at the high 

concentration required by the assay, providing yet more evidence 

of the MolPAL hits binding BPRF1b. Ligand observed NMR may 

be one of the main restrictions associated with the BioPALS 

workflow as it is only applicable to soluble proteins large enough 

to have a significantly slower tumbling rate than its cognate ligand. 

Although BRPF1b is a soluble protein, its small size (15 kDa), 

meant protons involved in ligand binding to BRPF1b could not be 

confirmed with high confidence. For these proteins and others 

unsuitable for ligand observed NMR studies, we can however use 

BioPALS predictions to drive the subsequent hit-to-lead process. 

 

Besides pharmacology (i.e., binding affinity, kinetics, and 

topology), the quality of screening hits is also defined by its 

ADMET profile. We therefore completed the BioPALS workflow 

by determining the microsomal and hepatocyte stability as well as 

other parameters deemed critical for the targeted therapeutic 

intervention, in this instance CYP450 inhibition to reduce the risk 

of drug-drug interactions for poly-medicated cancer patients. This 

led to the identification of compounds 2 and 3, both novel and 

selective BRPF1b binders, displaying promising in vitro ADMET 

parameters. 

Conclusion 

Herein, we report the development of BioPALS; an innovative hit 

identification workflow leveraging recent advances in artificial 

intelligence and biophysics to identify and characterize high-

quality hits. Its application to the BRPF1b bromodomain afforded 

several micromolar binders with excellent in vitro ADMET 

parameters. The BioPALS workflow focuses on direct target 

engagement (via docking and binding affinity), the most 

fundamental driver of pharmacology and aims to be readily 

applicable to most biological targets. Although some limitations 

are present, including the requirement for a defined binding site, 

and MolPAL’s ability to detect binders eliciting the desired 

pharmacology for highly dynamic targets (e.g., some GPCRs and 

ion channels), these can be overcome with simple additional 

steps to the workflow. These include in silico approaches such as 

molecular dynamics and active site scouting, as well as the in vitro 

determination of activity, potency, or efficacy in additional 

bioassays. Despite these limitations, BioPALS offers a 

standardized hit identification process suitable to most biological 

targets and business models. With the continuous improvements 
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in AI algorithms and biophysics for drug discovery, we expect this 

type of approach will be increasingly utilized in years to come. 

Experimental section 

Compound library preparation: A list of 27 BRPF1b active 

inhibitors with an IC50 of ≤ 1 µM were downloaded from 

ChemBL[48] (SI Figure 1). Next, 2D similarity searches on these 

active inhibitors were performed on eMolecule’s screening 

collection[49] of 24.6 million compounds using a Tanimoto[50] cut-

off of 0.5. The resulting library of hits contained 91,375 

compounds.  MolPAL was applied to this library to rapidly identify 

compounds that docked best into the BRPF1b active site. 

BRPF1b docking: A high-resolution co-crystal structure of 

human BRPF1b bromodomain protein (PDB ID: 6EKQ) was 

selected.[41] Structure preparation was carried out using the 

protein-preparation wizard in Maestro.[51] The ligand binding site 

in the crystal structure was targeted and used as the centroid of 

the grid box for docking studies. Water molecules in the active site 

were removed.[52,53] 

Virtual screening workflow: The virtual screening workflow 

used in this study is shown in Figure 2. The docking process, 

embedded within the MolPAL workflow was carried out using 

AutoDock Vina 1.1.2 and PDB ID: 6EKQ, as stated above. We 

used RF and D-MPNN machine learning models in combination 

with greedy and UCB acquisition criteria as the main MolPAL 

parameters for our studies. The method randomly chose 1% of 

the master library at the start and for all subsequent acquisition 

cycles. In four active learning cycles a total of 1462 compounds 

were highlighted. Compounds from the four screens (RF+greedy, 

RF+UCB, D-MPNN+greedy, and D-MPNN+UCB) were annotated 

and combined into one single file for further filtering. 

Physicochemical properties and druglikeness[54] of the 

compounds were calculated using RDKIT.[55] Clustering was 

performed on the compound library using Morgan circular 

fingerprints[56] with a radius of two, a bit-vector length of 2048, and 

a Tanimoto cut-off of 0.6. Unique compounds from a cluster with 

the highest druglikeness scores were selected. The resulting 

library was further restricted to 320 compounds by limiting the 

maximum number of aromatic rings to two. Finally, 51 compounds 

were selected based on cost, lead time and synthetic tractability, 

and their potential binding assessed using bio-physical methods. 

Sourcing of virtual hits: Virtual hits were sourced from 

eMolecules.[49] The structural integrity of each compound was 

confirmed by ultra-high performance liquid chromatography-mass 

spectrometry (UPLCMS) analysis prior to in vitro testing. 

Compounds 2, 3, 4, 5 and 7 were determined to be > 95% pure 

by LCMS analysis, (SI Figure 3-7). 

Recombinant protein production and purification:  A 

truncated version of the BRPF1b gene (UniProt: P55201), 

comprising solely of the bromodomain (residues 622 – 738) was 

codon optimized for optimal expression in Escherichia coli and 

synthesized (GenScript). The resulting insert was sub-cloned into 

NdeI and XhoI cleaved pET28(+)_TEV vector (GenScript) for 

protein production. The resulting plasmid, 

BRPF1b_pET28(+)_TEV, encodes an N-terminal hexa-histidine 

tag followed by a Tobacco Etch Virus (TEV) protease recognition 

site. Protein expression in E. coli BL21 (DE3) cells, and 

purification were performed by the Edinburgh Protein Production 

Facility (EPPF) according to published methods.[11] A yield of 

~6 mg L-1 of culture was achieved and BRPF1b purity > 85% was 

determined by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). BRPF1b was eluted from the size 

exclusion column using 50 mM HEPES pH 7.4, 300 mM NaCl, 

0.1 mM DTT before concentrating to 2 mg mL-1 using an Amicon 

Ultra-15 Centrifugal Filter Unit (Millipore). BRPF1b was 

subsequently aliquoted, flash frozen and stored at -80 °C for 

further use. Recombinant BRPF1a (ab196416) was purchased 

from Abcam (Cambridge, UK). 

DSF: DSF[57] was performed using the Protein Thermal Shift™ 

Dye Kit (Thermo Fisher Scientific) to determine the effect of virtual 

hits and control compounds (GSK6853 and NI-57) on thermal 

stability of recombinant BRPF1b. Solutions of BRPF1b in 50 mM 

HEPES pH 7.4, 300 mM NaCl, 0.1 mM DTT were prepared in 

Protein Thermal Shift™ Buffer and 1 × Thermal Shift™ Dye. Final 

concentrations of BRPF1b and compounds were 7.5 μM and 

100 μM (1% (v/v) DMSO), respectively. Reactions (20 μL) were 

prepared in triplicate on ice in a 384-well thin-wall PCR plate 

(Thermo Fisher Scientific) and immediately sealed with an 

adhesive PCR seal (Bio-Rad). Following centrifugation (2 mins, 

200 × g, 4 °C) fluorescence was monitored in a QuantStudio5 

qPCR machine (Thermo Fisher Scientific) from 10 °C to 95 °C at 

a rate of 1 °C min-1. Changes in fluorescence were monitored at 

excitation and emission wavelengths of 580 ± 10 nm and 623 

± 14 nm, respectively. The melting temperatures (i.e., 

temperature at which 50% of the protein is unfolded; Tm) of each 

reaction were determined in the Protein Thermal Shift™ Software 

v1.4 (Thermo Fisher Scientific). Tm values were calculated for 

each reaction and compared to the reference Tm values (i.e., 

solutions consisting of BRPF1b, 1% DMSO, and dye) to obtain 

ΔTm values for each compound. To rule out any potential effects 

caused by the presence of DMSO, an additional control consisting 

of BRPF1b (no DMSO), and dye was included. 

BRPF1b immobilization: Binding affinity (KD) and kinetics (ka 

and kd) were assessed by GCI on the WAVEdelta system 

(Creoptix AG, Switzerland). A combined His-tag capture/amine 

coupling approach was used to generate a stable sensor surface. 

All flow rates were maintained at 133.3 μL/min, unless otherwise 

stated, and dissociation times were maintained at 60 sec 

throughout. Briefly, a PCH-NTA WAVEchip (Creoptix AG, 

Switzerland) was conditioned with a 180 sec injection of 0.1 M 

Borate (pH 9), 1 M NaCl followed by two 180 sec injections of 

0.35 M EDTA (pH 8). Excess EDTA was removed following a 60 

sec injection with running buffer (10 mM HEPES pH 7.4, 150 mM 

NaCl and 0.05% (v/v) Surfactant P20) at a flow rate of 33.3 μL/min. 

The nitrilotriacetic acid (NTA) on the surface of the WAVEchip 

was charged with a 420 sec injection of 0.5 M NiCl2 (Cytiva, 
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Sweden) and excess NiCl2 was removed by two 60 sec injections 

of running buffer. To increase capture stability on the WAVEchip, 

BRPF1b was amine coupled to the NTA-Ni2+ surface. The 

charged NTA-Ni2+ groups were activated with 0.2 M 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and 50 mM N-

hydroxysuccinimide (NHS) (Cytiva, Sweden). Next, 1.2 μM 

BRPF1b, diluted in buffer, was injected for 420 sec and captured 

via coordination of the His-tag and NTA-Ni2+ groups. Any 

remaining active succinimide esters were quenched by a single 

420 sec injection of 1 M ethanolamine hydrochloride-NaOH 

(pH 8.5) (Cytiva, Sweden) at 15 μL/min. Following another 60 sec 

wash with running buffer, excess Ni2+ ions as well as any 

remaining BRPF1b that had not been amine coupled were 

removed with a 420 sec injection of 0.35 M EDTA (pH 8). The 

reference channel was prepared in the same way, but without 

injection of BRPF1b. All capture and immobilization steps were 

carried out at 25°C. 

WaveRAPID® GCI screen: The WAVEdelta system allows for 

kinetic interaction analysis based on a pulsed injection scheme 

(waveRAPID®) using a single analyte concentration.[36] This 

approach allows for fast screening of a large number of samples 

using six repeated pulse durations ranging from 0.031 sec – 0.5 

sec. WaveRAPID® was initially used to confirm that immobilized 

BRPF1b was able to bind GSK6853 and NI-57 and later to screen 

the virtual hits. All 51 virtual hit compounds were screened using 

the weak waveRAPID® preset at 100 μM diluted in running buffer 

(10 mM HEPES pH 7.4, 150 mM NaCl and 0.05% (v/v) Surfactant 

P20) with a final DMSO concentration of 1% (v/v). Binding was 

assessed at 15 °C using running buffer supplemented with 1% 

(v/v) DMSO. WaveRAPID® hits were selected based on the 

following criteria: association error < 60, dissociation error < 60, 

Rmax > 2.0. 

MCK GCI screen: For more accurate determination of affinity and 

kinetics, MCK experiments were performed in duplicate for the 36 

compounds selected from waveRAPID® using a 2-fold serial 

dilution series (100 μM – 1.56 μM). The DMSO concentration of 

the compound dilutions were maintained at 1% (v/v) and 

experiments were performed with running buffer supplemented 

with 1% (v/v) DMSO. WaveRAPID® GCI parameters were 

maintained for MCK experiments to allow for direct comparison of 

both sets of results. 

Ligand observed NMR: Samples were prepared from a 260 mM 

protein stock solution in NMR buffer (20 mM NaPi pH 7.5, 150 mM 

NaCl) and nominally 20 mM compound stock solutions in DMSO-

d6 (Cambridge Isotope Laboratories) to produce final 

concentrations of 26 µM protein and 200 µM or 400 µM compound 

diluted in NMR buffer with 5% (v/v) D2O, 0.00025% (w/v) TSP. To 

limit protein consumption, some compounds were screened in 

pairs with design of the mixtures aided by the AnalysisScreen[58] 

from the CCPNMR software suite.[59] Spectra were recorded at 

599.73 MHz on a Bruker AVANCE IIIHD spectrometer equipped 

with a 5 mm TCI cryoprobe. 

Supporting information 

SI Figure 1: Chemical structure and biological data of the 27 
known BRPF1b inhibitors used for the similarity search. 
SI Figure 2: Representative waveRAPID® sensorgram. 

SI Figure 3: LCMS of Compound 2 
SI Figure 4: LCMS of Compound 3 
SI Figure 5: LCMS of Compound 4 
SI Figure 6: LCMS of Compound 5 
SI Figure 7: LCMS of Compound 7 
SI Table 1: Comparison of GSK6853 and NI-57 binding to 
BRPF1a and BPRF1b. 
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Traditional hit identification requires tailoring to each biological target and is reliant on multiple target-specific assay 

technologies. Combining Molecular Pool-based Active Learning (MolPAL) with a suite of in vitro biophysical methods, 

BiolPAL shifts this paradigm by providing a standardized and data-rich hit identification platform applicable to most 

biological targets. The application to BRPF1b afforded a range of high-quality starting points. 
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