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ABSTRACT The convergence of Information Technology (IT), Operational Technology (OT), and 

Educational Technology (ET) has led to the emergence of the fourth industrial revolution. As a result, a new 

concept has emerged known as Digital Twins (DT), which is defined as "a virtual representation of various 

objects or systems that receive data from physical objects/systems to make changes and corrections”. In the 

aviation industry, numerous attempts have been made to utilize DT in the design, manufacturing, and 

condition monitoring of aircraft fleets. Among these research efforts, real-time, accurate, fast, and predictive 

condition monitoring methods play a crucial role in ensuring the safe and efficient performance of aircraft. 

Using DT for condition and fleet monitoring not only enhances the reliability and safety of aircraft but also 

reduces operational and maintenance costs. In this paper, the conducted studies on the applications of DT 

systems for condition monitoring of aircraft units and the aerospace sector are discussed and reviewed. The 

aim of this review paper is to analyse the current developments of DT systems in the aviation industry as well 

as explain the remaining challenges of DT systems. Then Finally, future trends of DT systems along with 

aircraft are presented. Among reviewed papers, most of them have used computational fluid dynamics, finite 

element methods, and artificial intelligence techniques for developing DT models for aircraft. At the same 

time, most of these analyses are dedicated to the failure and crack detection body of aircraft as well as engine 

fault detection. Life prediction is another popular application for using DT in aircraft units that could help 

the engineers predict the maintenance required for different parts of the aircraft. Finally, the application of 

DT in marine, power systems, and space programs has been also reviewed and the lessons learned from them 

have been translated to the aviation sector. 

INDEX TERMS Computational Fluid Dynamic, Deep Learning, Machine Learning, Real-time Condition 

Monitoring, Remaining Useful Life, Structural Health Management.  

I. INTRODUCTION 

About 1900 annual aviation incidents were recorded in 1st 

decade of the 21st century [1] while it was reduced in recent 

years to about 1500 incidents per year that must be reduced 

further. As reported in [2], 49% of crashes are related to 

pilot error, 23% are related to mechanical failure, and the 

remaining 28% are caused by other reasons such as weather 

conditions, sabotage, bird strike, mid-air collision caused 

by other aircraft, overloaded aircraft, ground crew error, 

etc. As a result of this, condition, and fleet monitoring 

methods (CFMM) play a significant role in reducing the 

chance of fatal crashes by managing engine failures, 

structural failures, fuel starvations, wrong take-offs and 

landings, aircraft control, navigation, etc. However, fatal 

crashes have still a high annual number and must be much 

decreased. This high number of incidents and crashes is 

because conventional CFMMs are usually based on time-

consuming and sometimes methods with low accuracy that 

require the involvement of human operators.  
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a) 

 

b) 

Figure 1. The timeline of DT, from the beginning to present day, 

adapted from [3] 

Conventionally, condition monitoring of aviation units is 

divided into two main groups, on-flight methods, and off-

flight methods. The on-flight condition monitoring 

methods usually use sensors and real-time data during the 

aircraft flight mission while human operators or Artificial 

Intelligence (AI) techniques are used for decision-making 

regarding the health management of the aircraft. The most 

common on-flight condition monitoring methods are: 

• Engine health monitoring: in this method, sensors 

are used to measure temperature, pressure, 

vibration, and other critical parameters of aircraft 

to analyse engine health, detect anomalies, and 

predict coming failures [4,5].  

• Aircraft health and usage monitoring systems: this 

is a real-time method to monitor different 

components in aircraft, including engines, 

gearbox, wheel, structure, etc. The data gained by 

this method, during the flight, could be used for 

future off-flight predictive maintenances [6,7].   

• Structural health monitoring: for crack, fatigue, 

and damage detection purposes during the flight, 

sensors are used. Distributed sensing systems, 

wireless sensor networks, fibre optic sensors, and 

strain gauge sensors are the most conventional 

types for this purpose [7,8]. 

• Oil debris monitoring: in this method, the oil 

samples are gathered online and analysed. Then, 

they are analysed for metal particles or 

contaminants which shows the potential problems 

in aircraft  [9,10]. 

On the other hand, off-flight methods are performed when 

the aircraft is in the airport or industrial maintenance site. 

Here, different techniques are used to detect cracks and 

malfunctions in the engine, structure, or electrical system 

of an aircraft. At this stage, the aircraft would be repaired 

and ready for the next flight. The most common off-flight 

condition monitoring methods are: 

• Ultrasonic testing: high energy acoustic waves are 

generated through pulser -receiver and transducer, 

with a frequency ranging from 1 to 50 MHz. The 

aim of using this method is to detect flaws, identify 

their sizes, and estimate the material properties in 

presence of these flaws [11,12].  

• Magnetic particle inspection: for surface and near-

surface flaw detection in ferromagnetic materials, 

this method is used. This method consists of 

following steps: component magnetization by 

direct current or electromagnetic induction, 

impose magnetic particles to the surface, and using 

a trained inspector for detecting the flaws [13,14].  

• Eddy current testing: To detect the flaws in 

electrically conducted materials, this method is 

used. In this method, a current is injected into the 

conductive material and the impedance is 

measured. Then, based on a correlation between 

current and the measured impedance, the type, 

location, size, and the existence of defect could be 

detected [15,16].  

• Photoelasticity testing: for visualization of stress 

distribution in different components of aircraft, 

optical effects of stress are investigated. However, 

because of its complexity, sensitivity, and 

technological advancements in other methods, 

photoelasticity tests are less common now [17,18]. 

• Coin-tap method: this is the most well-known 

vibration test method where defect detection is 

conducted based on differences between the sound  
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Table 1. Review on condition monitoring methods in aviation units 

Method Applications Advantages Disadvantages 

Ultrasonic testing 

* Structural health monitoring [19–

23] 

* Defect detection aircraft cables 
[24–27]  

* Temperature monitoring [28] 

High Sensitivity 
Depth Penetration 

Accurate Sizing and Location 

Real-time Inspection  
Non-Destructive 

Versatility 

Portability 

Skill Dependent 
Surface Preparation 

Limited Accessibility 

Material Dependency 
Cost 

Coupland Requirement 

Thickness Limitations 

Magnetic particle 
inspection 

* Structural health monitoring [29–

32] 
* Vibration control [33] 

* Engine monitoring [34]  

High Sensitivity to Surface 

Flaws 

Fast and Cost-Effective 
Portable Equipment 

Versatility 

Immediate Results 

Minimal Surface Preparation 

Detects Both Surface and 

Subsurface Defects 

Surface Accessibility 
Magnetic Properties Required 

Demagnetization Required 

Limited Sensitivity to Certain 
Defect Types 

Surface Finish Limitations 

Safety Concerns 
Training Required 

Eddy current testing 
* Structural health monitoring [35–

41] 

* Aging monitoring [42,43] 

High Sensitivity 

Rapid Inspection 

Non-Destructive 
Versatility 

Depth of Penetration Control 

Real-time Inspection 
Remote Inspection 

Material Dependency 

Surface Finish Sensitivity 

Depth Limitation 
Complexity of Data 

Interpretation 

Equipment Sensitivity 
Cost of Equipment and 

Training 

Limited Detection Capability 
for Certain Defects 

Photoelasticity testing 
* Stress analysis [44] 

* Structural analysis  [45–48] 

Visualization of Stress 

Distribution 

Qualitative Analysis 

Non-Destructive Testing 
Real-time Observation 

High Sensitivity to Stress 

Changes 
Qualitative Comparison 

Limited Quantitative Analysis 

Limited to Transparent 

Materials 

Complex Interpretation 

Limited Application in Aircraft 

Inspections 
Time and Equipment 

Requirements 

Environmental Limitations 
Incompatibility with Certain 

Materials and Loading 
Conditions 

Coin-tap method 
* Structural health monitoring [49–

51] 

Simplicity 

Low Cost 

Portability 
Rapid Screening 

Non-Destructive 

Sensitive to Delamination 

Subjectivity 

Limited Sensitivity 

Surface Damage Risk 
Limited to Surface Inspection 

Inability to Quantify Defects 

Not Applicable to All Materials 

Radiographic inspection 

* Structural health monitoring [52–

56] 
* Engine monitoring [57] 

High Sensitivity 

Versatility 

Detection of Subsurface 
Defects 

Quantitative Analysis 

Permanent Record 
Non-Destructive 

Remote Inspection 

Radiation Hazards 
Regulatory Compliance 

Equipment Complexity 

Environmental Impact 
Limited Accessibility 

Cost 

Processing Time 

Transient thermography 
* Structural health monitoring [58–

67] 

Rapid Inspection 
High Sensitivity 

Non-Contact Inspection 

Versatility 
Quantitative Analysis 

Real-Time Imaging 

Portable Equipment 

Surface Preparation 
Depth Limitations 

Complexity of Analysis 

Environmental Factors 
Cost 

Training and Certification 

Limited Accessibility 

of defected and non-defected zones. In this method, 

even the depth of the defect could be measured [68,69].   

• Radiographic inspection: This method involves 

the utilization of X-rays or gamma-rays. These 

waves penetrate the material and show the internal 

condition of the material and possible flaws. 

However, these methods are costly and time-

consuming, and there are safety concerns about 

them [70,71].  
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• Transient thermography: by feeding the energy 

heat into the test object and using thermal images 

of the test object's surface, it could be conceived 

that the defects create thermal impedance. Thus, 

this method could be used for the sake of defect 

detection in different components of aircraft 

[72,73]. 

A comprehensive literature review on the comparison of 

different condition monitoring methods of aviation units is 

presented in Table 1 of the paper.  

To find a compromise between accuracy, reliability, and 

speed of decision-making during the condition monitoring 

of aviation units, fundamental changes in conventional 

condition monitoring techniques are required. The aim of 

these changes should be optimal monitoring performance, 

reduced downtime of devices, providing continuous 

insights, and enabling predictive and prescriptive 

monitoring strategies. These requirements are what Digital 

Twins would be able to offer. Last recently and with the 

developments of Cyber-Physical Systems (CPS) [74–78], 

distributed computing [79–81], Artificial Intelligence (AI) 

methods [82–86], Internet of Things (IoT) [87–90], and 5th 

and 6th generation (5G) and (6G) Internet [91–94], in 

aircraft systems, CFMMs could be conducted faster, more 

accurate, and smarter, thus, the possibility of fatal incidents 

and crashes could be reduced. 

According to Technology Roadmap, published by National 

Aeronautics and Space Administration (NASA), DT is 

defined as [95]: “DT is a highly accurate simulation of an 

object, vehicle, or system that contains multiphysics, 

multiscale, and probabilistic models that gains the data and 

information from the sensors implemented in physical object 

and use them for control, design, condition monitoring, and 

manufacturing purposes of the physical object”. In 2014, 

Grieves introduced the concept of “Digital twins” in a white 

paper for production life cycle management [96]. After that 

NASA and the U.S. Airforce used DTs for many of their 

manufacturing processes, missions, etc. A brief history of DTs 

is shown in Figure 1, adapted from [3].  

There is another concept, related to the DT, which is Digital 

Thread (DTH), which is defined as a data-driven structure that 

make the connection between different generated and stored 

information and data through DT, and let them be flown 

continuously. The aim of DTH is to integrate different data in 

one platform which results in seamless use and easy 

accessibility of the data. DTH is a process with multistep for 

the sake of complementation of DTs, over the entire lifecycle 

of the physical entity. It contains all the information necessary 

to generate and provide updates to a DT.  

For further increase in accuracy, computational time, and 

decision-making procedures, all these concepts have been 

gathered into a new concept, known as Digital Twin (DT) 

[97,98]. The concept of DT could significantly enhance the 

performance efficiency of CFMMs and further reduce the 

possibility of crashes in the future. The DT concept has 

been studied extensively and reviewed generally in 

literature for aviation sector [99,100]. However, the lack of 

extended review on the application of DT for CFMM of 

aircraft and other aviation units is lacking.  Therefore, this 

paper aims to present an extended review on the efforts 

conducted regarding the application of DT in CFMMs for 

aircraft. To do this, before delving into this topic, in section 

2 of the paper, a brief introduction is provided on DT, 

cyber-physical systems, IoT (Internet of Things), and their 

common features. Then, sections 3 and 4 involve with 

presenting the status and challenges in the aircraft industry, 

as well as challenges related to DTs and their associated 

infrastructures. Additionally, solutions for the application 

of DTs in the aviation industry are presented. In the section 

5, future trends in the aviation industry, such as electrified 

aircraft, hydrogen-based aircraft, etc., are discussed. 

Furthermore, the future of DTs and IoT is briefly explored. 

It should be noted that the main contributions of this paper 

could be listed as follows: 

• Reviewing the condition monitoring methods for 

aviation units, with respect to advantages and 

disadvantages. 

• Introducing the concept of DT for aviation and 

reviewing the most important aspects of the DTs.  

• Presenting the most important industrial projects 

regarding the applications of DTs in aviation 

sector. 

• Reviewing more than 20 papers which present DT-

based schemes for condition and health monitoring 

of aviation units and aircraft. 

• Reviewing the papers in space, marine, and power 

system sectors that used DT for condition 

monitoring purposes. Then, tried to transmit their 

knowledge to the aviation sector. 

• Presenting the challenges of DT implementation for 

aircraft, regarding their different aspects. 

• Reviewing the future trends in electric aircraft, DT 

systems, and DT-electric-aircraft.   

Methodology of literature review 

The research conducted in this paper has been carried out 

based on a systematic literature review, based on what is 

proposed in [101]. The aim of this literature review is 

characterization of DTs for condition monitoring purposes.  

The data and information have been collected until the end 

of December 2023. For finding these information Google 

Scholar, and Google search engine have been reviewed and 

all papers, books, etc. have been stored. After gathering the 

data related to the application of DT for condition 

monitoring of aircraft and other mentioned applications, the 

following research questions have been answered to form 

this paper. 

A. What was the purpose of using DT? 
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Figure 2. The illustration of a DT for an aircraft system 

 

B. Why the related research used DT instead of 

conventional methods of condition monitoring? 

C. How DT was implemented in related research and what 

kind of modelling has been used for DT implementation, 

intelligent or conventional modelling? 

D. What was the gap of the related research? 

E. What was the lesson learned from the research. 

 

II. Digital twins: definition, history, and applications 
Although due to the variety of applications for DT, 

different definitions have been presented for them, all these 

definitions have three common characteristics, physical 

object, virtual models, and data-based connection of these 

two domains [102]. 

In an aircraft, the Digital Twin (DT) concept is illustrated 

in Figure 2, which comprises five crucial components: the 

physical domain, sensors, data processing units, virtual 

models, and data lines. Sensor units receive data, 

preprocess it by filtering out erroneous information and 

managing large datasets, and then transmit this data to the 

virtual domain/models. Within the virtual models, an 

analysis is conducted to make desired decisions or estimate 

required values. Subsequently, these decisions and 

estimations are sent back to the physical object to effect 

changes. These changes can pertain to the design or pre-

design stages of the aircraft or can be used for monitoring 

the performance of the object or system. They may also be 

utilized to send a series of commands to manufacture 

machines or assembly lines. According to [103], each DT 

must have seven characteristics that are: 

• High fidelity: High fidelity means that DT must 

have an extremely high accuracy in performance, 

appearance, and subsystems. As a matter of fact, such 

accurate DT could help the designers, engineers, and 

operators to design, monitor, manufacture, and control 

the physical system/domain with high reliability and 

minimum possibility of failures.  

 
Figure 3. Different hierarchical levels of a DT for aircraft 

• Dynamic and Self-evolving: Since the physical 

domain/object changes with respect to time, the DT 

must have also the same characteristics and must be 

adapted with respect to the changes of the physical 

object. These changes could be in structure, 

characteristics, performance, or in control systems.  

• Identifiable: Each physical asset of an object or 

system must have its own specific DT to evolve and 

change over time. For instance, in an engine, the 

geometrical models, manufacturing models, monitoring 

models, estimation models, design models, etc. must be 

different and identifiable from each other. Thus, if there 

is a need to make changes in some part, just the related 

information is changed, and the rest remains constant.    

• Multiscale and multi-physical: Each DT must be 

capable of concluding macroscopic properties such as 

shape size, tolerance, etc. and must conclude 

microscopic properties such as surface roughness or 

intermolecular forces. On the other hand, DTs ought to 

present all characteristics of physical objects such as 

thermal, electrical, mechanical, magnetic, economic, 

and their couplings. This capability is known as multi-

physical and increases the accuracy and reliability of 

results.   

• Multidisciplinary: DTs are the fusion of multiple 

disciplines such as computer science, machine science, 

electric and electronic engineering, control engineering, 

mechanical engineering, and industrial engineering. 

This means that beyond each decision for a system, 

multiple considerations related to different disciplines 

are considered. 

Hierarchical: DTs model different components of a 

whole system with different levels of priorities, concerns, 

limitations, and trade-offs. For instance, in an electric 

aircraft, there are different levels of DTs. DT of 

propulsion units, DT of engine units, DT of drive train, 

etc. Each one of these components comes with different 

priorities such as weight, safety, reliability, efficiency, 

and even temperature.  
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Figure 4. The correlation of CPS, IoT, and DT 

 

With respect to the last property of DT and according to [104], 

Figure 3 is presented as an example to show the different 

hierarchical levels of DT in an aircraft. The unit level of DT in 

an aircraft consists of materials, equipment, and components 

that together form a system such as propulsion, protection, 

drivetrain, etc. In the upper level, there are two types of 

systems, the whole system which is here an aircraft and all 

systems of an aircraft, known as the sum of subsystems. At the 

last level and the top layer, there is a DT that concerns the 

whole life cycle of an aircraft including, pre-design, design, 

manufacture, control, monitoring, prediction, health 

management, disposal, etc. such as those conducted in [105–

110]. 

DT has been used in many fields of industries such as power 

systems [111–114], oil and gas energy systems [115,116], 

healthcare sector [117–119], marine industry [120–122], 

smart cities [123–125], agriculture [126–128], environmental 

protection [129], and construction [130–132]. According to 

[133], the market of DT in the year 2020 was only about 3.1 

BN and this value is predicted to be 48.2 BN in 2026. On the 

other hand, until the end of 2022, 75% of industries will be 

using IoT as a basic platform for DT [133]. The communication 

path initiates the existence of IoT to enable fast data/command 

transmission while for integrated calculation into physical 

assets, Cyber Physical Systems (CPS) are required. Figure 4 

presents the exact relation between IoT, CPS, and DT. CPS is 

defined as multiple computers connected to each other and 

interacting with the physical world through sensors, actuators, 

and feedback loops [134]. Reactive computation is one of the 

most important features of DTs that relies on asynchronous 

utilization of computational resources for a real-time and 

extremely fast response system. Another significant 

characteristic of CPS is concurrency which means using 

multiple computation strategies and processes at the same time 

to achieve a desired goal [135]. CPSs usually contain four 

layers, as shown in Figure 5. The first layer is related to the 

physical object which could be a component, the whole 

system, or even a series of systems. This layer sends the data 

and information to computation units to decide or apply the 

changes. The second layer is responsible for fast and real-time 

data/command transmission that receives the data from the 

physical layer and commands from the computation layer. 

This layer could consist of 5G internet stations, WiFi access 

points, or some sort of industry switches. The third layer is 

responsible for performing calculations, data management, 

and decision-making that must contain computers, data 

centres, and servers. Finally, there is a terminal layer that is 

responsible for executing or starting the whole process of CPS 

[136].    

IoT is another term that must be defined that is used in the 

body of DTs to make data transmission faster and real-time. 

IoT is defined as “a dynamic global network infrastructure 

with self-configuring capabilities based on standard and 

interoperable communication protocols where physical and 

virtual 'Things' have identities, physical attributes, and virtual 

personalities and use intelligent interfaces, and are seamlessly 

integrated into the information network" [137].  

 

III. Digital twins in the aviation industry  

A. Literature Review on the Application of DT in 
Aircraft 

The first steps of using DT in aviation systems started by 

NASA when it used DT to design maintenance strategies and 

malfunctions prediction in an aircraft, to reflect the real 

condition of aircraft. The utilized DT was able to optimize the 

performance of the aircraft, estimate faults in advance, and 

help operators understand the faults better and provide 

efficient solutions. In this regard, the U.S. Airforce dedicated 

a $20 million budget to research and develop a DT for F-35 

fighters. The aim of using DT for the fighters was to improve 

manufacturing efficiency and reduce cost. An interesting point 

of this work is the utilization of a digital thread system for 

supporting the made decision, regarding unsatisfactory 

products which resulted in improvements of multiple 

engineering processes. Airbus also participated in the 

competition of DT application in aircraft, in 2011, where the 

A350XWB assembly line contained DT. This line participated 

in manufacturing many airplanes such as A330, A380, and 

A400M. 

GKN Aerospace in partnership with General Electric (GE) and 

the Centre for Modelling & Simulation (CFMS) are investing 

on the development of a DT for their manufactured aircraft 

[138]. The aim is to reduce time inefficiencies and traditional 

physical prototyping costs [139]. Airbus has a wide digital 

transformation program to design, manufacture, and support 

the next generation of aircraft produced by Airbus. Also, the 

timeline of industrial production rates, operating performance 

of aircraft, and customer satisfaction would be increased by 

using DT, in the next generation of aircraft. It is estimated that 

the implementation of DT in A321XLR aircraft would 30% 

reduce the fuel burn. Also, the Future Combat Air System 

(FCAS) is another DT-based project of Airbus that would not 

only improve the defence technology of Europe but also will 

improve the spillovers into the civilian world [140]. German 

Airlines, Lufthansa, has developed a new DT-based project, 

known as AVIATAR which is an aircraft fleet using DT. The 

aim of this project is to use previous fleet management  
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Figure 5. The layer-based structure of CPS, adapted from [135] 

 

solutions, and data related to science and engineering to 

provide a full range of integrated digital services and products 

for its airline [141]. Boing is also using the DT for the digital 

design of the T-7A Red Hawk which is the first aircraft, 

satellites, and assets which are designed completely using DT-

based methods. By using DT for this aircraft, the quality of the 

1st product 75% while 80% of assembly time was reduced and 

finally, after 36 hours aircraft experienced its first flight 

mission [142]. Boing is also using DT for other products such 

as 737 MAX, 777X, and 787 for their production quality 

increase and digital life cycle assessment [143]. KLM, Royal 

Dutch Airlines, is another aerospace industry that uses 

900,000 views of 104 DT to reduce the travel movements of 

crew, enhance the customers’ services, and reduce the carbon 

footprint [144]. There are also other real-world projects on the 

application of DT in aviation units, such as the Northrop 

Grumman industry that is developing the DT for Bombardier 

CRJ700 [145], SAFRAN [146], and Honeywell [147].  

It should be noted that conducted studies have been divided 

into two groups. The first group is related to the investigations 

and studies that used conventional modelling methods such as 

finite elements, equivalent circuits, etc. while the second 

group of studies have used artificial intelligence techniques for 

estimating and characterizing the behaviour/reaction of 

aircraft. 

 

1) Digital twins based on conventional modelling methods 

The very high speed of aircraft in landing and take-off 

conditions and the level of stress on the tire could cause a 

phenomenon called a flat spot. Flat spots could result in 

wearing out of the tire and increase the possibility of the tire 

blowing up. To perform such a process, in [148], firstly 

experimental data of tire characteristics against ideal and non-

ideal landing were acquired based on the performed tests on 

the tire in the United States Air Force 168-inch internal drum 

dynamometer (168i) and the aircraft 1 (A1). The performed  

 

Figure 6. DT for tire health management in aircraft landing gear, 

adapted from [148] 

 

experimental tests aimed to present different ranges of sink 

rate, tire profile, and yaw angles to increase the 

comprehensiveness of the tests. After that two methods 

(linear, and nonlinear) were used to calculate the touchdown 

wear response surface of the tires. Equations (1) and (2) 

express the relation between touchdowns wear response 

surface and sink rate, tire profile, and yaw angle for each linear 

and nonlinear method, respectively. 

where, 𝑆𝑅 is sink rate, 𝑇𝐶 is tire condition, 𝜃𝑌𝑎𝑤 is yaw angle, 

𝐶𝑖 is constant value, 𝑃 is pressure, 𝐹𝑥(𝑥) is drag force in x 

direction, and 𝐹𝑍(𝑥) is drag force in Z direction. Thus, by 

accessing these models for the wear mechanism of tires, the 

DT process needs to be developed and implemented for A1 

aircraft. To do this, firstly flight scenarios are considered and 

selected. After that, based on sink rate, tire condition, yaw 

angle, and touchdown speed, DT must calculate the 

touchdown wear response surface. After that probability of 

aircraft failure due to touch down is evaluated and based on 

the probability of aircraft failure and historical data the 

permission of the flight mission is published or cancelled. At 

last, after adding the field results of the mission, the DT model 

is updated according to flowchart Figure 6.  

 

𝑇𝑊𝐿𝑀 = 𝐶1𝑆𝑅 + 𝐶2𝑇𝐶 + 𝐶3𝜃𝑌𝑎𝑤 + 𝐶4 (1) 

𝑆𝑊𝑅𝑓𝑙𝑢𝑥 = 𝐴 ∫ 𝐹𝑥(𝑥)
𝑃

𝐹𝑍(𝑥)
𝑑𝑥  (2) 

DT is used in [149] to increase the estimation accuracy and to 

reduce the prediction errors conducted for condition  
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Figure 7. The updating procedure of the models used in the virtual 

domain to monitor the condition of the quadcopter during missions 

[150] 

 

monitoring of a whole quadcopter with 3D printed frame, 

Pixhawk flight controller, NTM Prop Drive 28-36 750Kv 

motor, and APC Slow Flyer 10x4.7 propellers. Different 

models were used to characterize the performance of the 

quadcopter under different flight missions. The propeller 

system was modelled by blade element momentum theory 

[150] and the equivalent circuit model was used to 

characterize the operation of the brushless DC (BLDC) motor. 

BLDC motor is used in quadcopters to receive the DC power 

from the battery and propeller to provide the required 

rotational movements of the blades. By applying these models, 

the speed of the quadcopter was determined based on the 

weight of the device during the mission. The important aspect 

of this study was the fact that the proposed models for the 

propeller and electric motor were updated after each flight by 

changing the value of calibration factors. Calibration factors 

are a set of variables that were considered in related models of 

each component to make the characteristics of the virtual twin 

more like the physical twin. The diagram of such an updating 

process is illustrated in Figure 7.  

Electrohydraulic servo-valves are usually modelled and 

simulated by means of FE-based computational fluid 

dynamics. The applications of such modelling methods for 

systems that require a fast solution are questionable [151]. To 

overcome this issue, in [152] a fast, adequately accurate, 

numerical, and semi-empirical formulation was presented to 

characterize the behaviour of the electrohydraulic actuator 

used in aircraft. The model was developed so that the real-time 

condition monitoring of the actuator system becomes 

conductible through DT. The proposed model used as a fast 

and accurate model of the actuator and valves is shown in the 

block diagram of Figure 8. In this figure, 𝑃𝑆𝑅 is the supply 

differential pressure, 𝐶𝐿𝐾 is leakage coefficient, 𝐺𝑝 is the  

 

Figure 8. The block diagram used to characterize the 

electrohydraulic behaviour of understudied actuator, adapted from 

[152] 

 

pressure gain, 𝑥𝑆𝑆 is the saturation spool displacement, 𝑥𝑆 is 

the spool displacement, 𝑄𝐽 is the working flow, and 𝐺𝑄 is the 

flow gain. Also, in this model, actual differential pressure is 

calculated based on equation (3): 

𝑃12 = 𝑥𝑆𝑡
𝑃𝑆𝑅

max(|𝑥𝑆|, 𝑥𝑆𝑆) + 𝐺𝑃𝑄𝐶𝐿𝐾𝑥𝑆𝑆
 (3) 

where, the 𝑥𝑆𝑡 is the equivalent spool displacement, and the 

𝐺𝑃𝑄 is the pressure to flow gain ratio. By applying this model, 

the root mean squared error (RMSE) of the predicted 𝑃12 was 

less than 0.1%. This means that the value of 𝑃12 was calculated 

with high accuracy and was in good agreement with the results 

of computational fluid dynamic analysis. As a result of this 

study, the proposed method was capable of being used as DT 

where a fast and real-time fluid dynamic computation was 

needed. As a further step, the ANN-based models could be 

also applied to further reduce the computation time while the 

accuracy can be maintained or even enhanced. The ANN 

models are capable of being adapted based on the 

requirements that one may have for fluid dynamic analysis. 

The ANN-based models could even adapt themselves to fit 

more to the flight conditions, based on their feedback loop.    

The Environmental Control System (ECS) is obligated to 

control the airflow through the cabin of an aircraft that consist 

of multiple complex subsystems and procedures. Any failure 

in this system results in malfunction and inappropriate 

operation of the aircraft and reduces the required time for 

maintenance, known as unscheduled maintenance. The ECS 

depends on many flight conditions such as the weight of the 

aircraft, and weather conditions during flights, and it depends 

on many other factors such as type of manufacturing, type of 

materials used in aircraft, etc. [153]. In [154], a DT model was 

proposed to perform the ECS of any aircraft based on real-

time/experimental data to avoid the consequences of ECS 

failure. The proposed method has three significant properties, 

i) the component-based library of the devices engaged in the 

ECS procedure, ii) the capability to model degradations of 

components, and iii) the inclusion of the environmental and  
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Figure 9. The ECS failure diagnosis procured by means of DTs in B737-400, Boing aircraft, adapted from [150]

weather conditions such as humidity in the ECS procedure. By 

applying such a smart ECS procedure, the impact of flight, 

manufacturing, and environmental conditions, known as 

experimental data, was considered in the ECS procedure of the 

B737-400 aircraft. Firstly, the data related to temperature, 

pressure, mass flow, valve angle, and efficiency are acquired. 

After that, the results and data are divided into two major 

groups, faulty data, and healthy ones. Then, in fault mode, the 

data are used to simulate the characteristics of different 

components to gain their degradation factor and after the fault 

detection in any of the subsystems, the used models would be 

updated. This procedure is shown for the whole ECS in Figure 

9. The results of such DT implementation in B737-400 aircraft 

were discussed in three different cabin zones, cockpit, forward 

cabin, and aft cabin and for three different temperatures, 5oC, 

18oC, and 30oC. After the simulation, the temperature and 

pressure for different components such as compressor, turbine, 

heat exchanges, air conditioner, etc. are obtained.   

The cost of fuel that is used for running the engines of aircraft 

in addition to the manufacturing, repair, and overhaul (MRO) 

cost are the main sources of direct aircraft costs. All these 

considerations together define as engine fleet management, by 

cost optimization. To avoid complexities and reduce the risk 

of failures, in [155] a DT-based diagnosis and prognosis 

method was proposed. The important part of this method was 

the provided multilevel model of the engine and its 

components and the DT was used to analyse the failures, 

predict the remaining useful life of all engine components, and 

change the engine working conditions based on the mission 

specifications. The fleet management data were updated based 

on the received information of the CFM56-5C 

commercialized engine of Airbus A340-300 aircraft. The DT 

consists of three sub-layers, at the first layer, a model for the 

engine cycle was adapted based on experimental and historical 

data. In this layer, based on the CFD method, the characteristic 

of different components of an understudied engine is 

discussed when they are under off-design conditions. The next 

and second layer of the DT model uses mean-line models to 

extend the components map beyond the areas that are difficult 

to reach and calculate by CDF. Finally, there is a third layer 

which is the library of CFD models of each component such 

as the Fan and Booster section, High Pressure Compressor 

(HPC), Combustion Chamber, and Turbine section. By 

applying such a DT-based model, parameters such as 

maximum temperature of booster versus HPC inlet 

temperature, temperature of high-pressure compressor, 

temperature distribution on blades, Mach number distribution, 

and cost of flight per engine flight hour are obtained. By 

accessing these values, the cost optimization of the engine 

could be done under realistic constraints and trade-offs. Again, 

the computation speed of the CFD method is questionable and 

due to the accessibility of data, the modelling in each layer 

could be conducted by AI techniques to reduce the 

computation time without loss of accuracy and generality. 

MRO, as one of the most crucial steps in the aviation industry, 

includes heavy and difficult manual efforts that initiate 

challenges such as non-repeatable processes and low 

productivity. The MRO process of fan-blades is not excluded 

from challenges since the current grinding process is 

conducted manually by expert workers. Manual MRO of fan 

blades is a slow, difficult, and dangerous process that includes  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371902

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

8 VOLUME XX, 2024 

   

 

Figure 10. The automated MRO process of fan-blades based on DTs and robots, adapted from [156] 

numerous grinding force parameters. To make this process 

simple and repeatable, reference [156] proposed an automated 

grinding procedure based on DT and robots for fan blades, as 

shown in Figure 10. By applying this method, the MRO could 

be conducted in a repeatable, simple, and automatic manner. 

As shown in Figure 10, the proposed method consists of four 

general steps. The very first step was the acquirement of the 

fan-blade condition during the grinding process by taking 

pictures with different methods such as hyper-spectral 

cameras, lasers, surface topography, and an RGB-D camera. 

The next step was known as the Markovian-based Surface 

Region Processor (MSRP) as an algorithm used for sensing 

the surface condition of fan-blade under grinding and to apply 

the appropriate grinding force. In the third stage, virtual 

particles for fan blades are generated based on the particle 

information resulting from the previous stage. Here, the 

physical surface of the fan blade was defined as the sum of 

particles in the Cartesian reference frame and then, the virtual 

particles were used to form a virtual surface of fan blade. Now, 

in the fourth step, the DT comes into play as the key stage of 

the automated MRO procedure. DT is used for four significant 

duties. The first duty is to consider grinding constraints and 

limitations such as surface roughness, generated heat during 

grinding, and prohibition of deteriorating the innermost 

composite layer of fan-blade. The next duty is calculating and 

presenting the grinding parameters such as the speed of the 

grinding wheel at each time step, material removal rate, wheel 

angle, and the maximum applied force to the surface. After the 

computation of grinding parameters, DT ought to model and 

characterize the fan blade in each time step to analyse the 

operability and health condition of the fan blade. At last, the 

whole control of the grinding process and the iterations that 

are needed for a completely reconditioned fan blade have been 

conducted by DT. Thus, the automated grinding process has 

been accomplished successfully and could enable a repeatable 

and simple grinding procedure. However, the performance 

and the condition of fan-blade that have gone through manual 

grinding must be compared to verify the privilege of this 

method. Also, economic considerations must be considered 

when comparing automated and manual grinding methods. 

2) Data-driven digital twins  

The structural health monitoring (SHM) could help the 

decision makers to decide whether the aircraft can make 

another flight or needs to be repaired for the next mission. Due 

to variety of aircraft-related parameters such as different 

manufacturing methods, different material properties, mission 

conditions, etc., the SHM should not be conducted similarly 

based on information and data for all aircraft. The important 

aspect of SHM is that it is performed based on real-time and 

accurate data received by sensors of aircraft. Usually, the 

SHM is conducted based on pure-mathematical-physical 

models and systems that require a massive computation time 

and advanced computation resources [157,158]. To overcome 

this issue, in [159], a dynamic Bayesian neural network 

(DBNN) was used to monitor the wing health condition of an 

aircraft. The DBNN is used for detecting crack growth on the 

leading edge of the wing as shown in Figure 11. 

To fulfil the required task, four goals were aimed to be 

achieved, i) information homogenization ii) the flight of 

virtual aircraft with the same condition of the real one, iii) 

uncertainty reduction, and iv) predictive monitoring of cracks 

on the wing. To achieve these goals, DBNN was used as a 

promising technique that can model all uncertainties, and  
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Figure 11. The area of crack growth detection proposed by [159] 

 

information inhomogeneity by using different types of random 

variables such as discrete and continuous variables belonging 

to different probabilistic distributions. Numerous uncertainties 

were modelled by DBNN such as those that exist in finite 

element (FE) methods, those related to crack growth 

characteristics, load uncertainty, and crack length data 

uncertainty. Thus, and by considering these uncertainties, the 

inputs of the DBNN are selected to be load, bolt looseness, 

anchor point position, stress range, elastic/plastic zones, crack 

length before the current time step, stress intensity factor, 

crack characteristic in current time, geometric and material 

properties, and shape factor in plastic zone. After 

implementation of such DBNN, and for 10000 time-steps with 

different loadings, the length of the crack and its rate of growth 

resulted that could help the diagnosis and prognosis of the 

health condition of the wing. This model can be used also for 

health monitoring of all structural and non-structural parts of 

the aircraft which could be the aim of future research. As the 

next step, a comparison needs to be performed for different 

aircraft with different flight conditions, different sensors, and 

different geometrical and material properties to show how 

theses parameters may change the diagnosis and prognosis 

results. Finally, one other uncertainty could be added to the 

model to increase the accuracy and efficiency of the model 

which is the probability of data loss during measurement and 

transmission. 

Another application of DTs for SHM was presented in [160] 

that uses Guided Wave Response (GWR), Finite Element (FE) 

method, and Genetic Algorithm (GA) to detect the cracks at 

the body of aircraft. FE analysis is conducted on 2024-T3 

aluminium plates to investigate their dynamic characteristics 

under different aerodynamic loads by means of 

Abaqus®/Explicit. These aluminium plates are 300 mm in 

height, 150 mm in width, and 1 mm thick while five and a half-

cycle Hanning-window excitation signal with 50 kHz 

frequency is applied to these plates to perform the frequency 

analysis. Afterwards, to avoid the model inaccuracies and 

extremely long simulation times, the maximum time-step must 

be calculated for FE analysis as expressed in equation (4): 

∆𝑡𝑚𝑎𝑥 =
1

20𝑓𝑚𝑎𝑥   
 (4) 

where, 𝑓𝑚𝑎𝑥    is the maximum frequency in which simulations 

are going to be performed.  

The next step is using the GA optimization method to 

characterize and predict the crack behaviour based on four 

variables, namely Xr and Yr which show the crack centre 

location, crack size 2ar, and θr which defines the orientation of 

crack. Firstly, based on four variables, an arbitrary location 

and size is considered for the damage or crack and an FE is 

built based on the arbitrary crack. After that, a wave 

propagation analysis (WPA) is conducted to calculate the 

response of all N sensors installed at the understudied region. 

Then, the objective error function, shown in equation (5), is 

calculated to determine the accuracy of the predicted crack 

location.  

∅ = [∑(𝐸𝑠𝑑𝑐 − 𝑆𝑠𝑑𝑐)2

𝑁

𝑖=1

]

1
2

 (5) 

 

where, Esdc is the reference response related to the real crack 

while Ssdc is the calculated response. If the objective function 

is higher than relative tolerance, a new location is dedicated 

for crack and previous iterations would repeat until the 

convergence terms are fulfilled.    

Three different case studies are defined to assess the capability 

of the proposed method for different crack locations, near 

sensors, near actuator, and between actuator and sensor. The 

results show the coordination of the crack could be estimated 

with 1% to 7% error for different case studies, while this value 

for size of the crack is about 2% to 8% and for crack 

orientation is about 3% to 9%.  

Another objective of using DT is to predict the physical 

behaviour of different components based on the historical data 

and information of the simulations. For this purpose, in 

[161,162], a data-driven model was created based on the 

values of sensors. The proposed method offers a solution to 

the problem of updating the model in the virtual domain. The 

proposed method was tested for a 12ft wingspan unmanned 

aerial vehicle. For this vehicle, the DT models of different 

components were created based on reduced-order FE analysis. 

After manufacturing the real twin of the aircraft and 

implementing the sensors, an FE-based model was created by 

Akselos Integra modelling software [163], to detect the health 

changes in the structure of the aircraft. After the simulation 

results those sensors’, data were fed into a machine-learning 

model to update the data-driven model based on flight mission 

conditions. As a result of applying such a model, the DT re-

plans the flight mission based on the received data of the 

structural damage so that the lowest aerodynamic load is 

applied to the damaged region of the aircraft. However, one 

needs to consider proposing a DT model that not only predicts 

the characteristics of the aircraft but also can consider all 

uncertainties in in-flight mission conditions, in characteristics 

of materials, in abrupt failure of engines, etc. 
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The proactive and predictive maintenance methods are now 

replacing the reactive methods, especially in aerospace 

applications. This is because these methods reduce the 

maintenance cost and downtime of aircraft while their 

lifetime, safety, and productivity are enhanced [164,165]. 

Using DTs for this purpose not only increases the prediction 

accuracy and reduces the possibility of aircraft failures but also 

could end up with a solid prediction method that is updated 

based on the information of the flight mission for a specific 

type of aircraft [166]. For this purpose, in [167], a DT concept 

based on Bayesian interference was used to predict the 

structure life of an aircraft. To do this, two important efforts 

were conducted, firstly, the Bayesian interference method was 

implemented that could integrate all heterogeneous data which 

originate in FE methods, historical data, and data received by 

sensors and use them to predict the remaining useful life of 

aircraft body. Secondly, a discussion was also added to the 

paper that illustrated the implementation procedure of the 

proposed method into a real-time DT. For this purpose, the 

followings are fed into the DT as inputs to predict the 

remaining life of the aircraft body, i) load conditions such as 

aerodynamic pressure and ground loads that could result in 

cracks and holes, ii) material properties such as Poisson ratio 

and Young’s modulus, the geometry of the aircraft to be used 

in FE method, iii) historical data of flight mission of the 

aircraft in same class, and iv) pre-defined failure threshold. 

Based on Paris law [168] and by using the flowchart of Figure 

12, crack detection and remaining useful life prediction could 

be conducted. After applying this method to two case studies, 

the results shown that the predicted/calculated results follow 

the same trend of the real data of remaining useful life, as show 

in Figure 13. Although the trend of the predicted values is in 

very good agreement with real values, the point-to-point 

accuracy could be further increased by application of artificial 

intelligence methods. These methods could replace the 

Bayesian interference system, Paris law, and FE method to 

increase the accuracy, computation speed, and adaptability of 

the prediction method. Also, Individual Aircraft Tracking 

(IAT) programs are one of the most important components of 

DT-based condition monitoring systems in aircraft. IAT 

programs aim to detect and predict the possible crack growth 

in an under-observation area of aircraft structure to avoid any 

crashes of aircraft. In [167], the IAT program for crack 

detection in F-16 aircraft is presented and compared with other 

crack detection methods to show the importance of application 

of a real-time and adaptable structural monitoring method. For 

the sake of applying an IAT program at F-16, these aircraft are 

equipped to flight-data recording systems of multiple types 

such as Flight Loads Recorder, Mechanical Strain Recorder, 

Crash Survival Flight Data Recorder, and Crash Survivable 

Memory Unit. These devices could be used in combination 

with the proposed method of [167] to increase the accuracy, 

computation time, and adaptability of the predictions. As 

discussed before, preventive maintenance is an important step 

to ensure the safe operation and performance of aircraft units.  

 
Figure 12. The crack detection and remaining useful life prediction 

procedure in structure of an aircraft, adapted from [167]  

In [169], a novel method was proposed for aero-engine 

preventive maintenance, the term “aero-engine” is defined as 

the engines of military aircraft with high thrust that offer a 

sudden climb and high “G” loads during manoeuvre, as 

defined in [170]. The proposed model is identified based on 

the historical data of aircraft operation and maintenance 

information of engines. In this regard, it should be mentioned 

that by applying such a method protective operation of aero-

engine and health management of understudied engine is 

accessible. To do this, a model consisting of four sub-models 

was proposed which are data driven model (DDM), multi-

parameter asset mapping (MPAM), model verification (MV), 

and deep learning-based model (DLM). In DDM, three 

important tasks are completed, firstly data is collected from 

sensors and after that bad data and noises are removed and 

time or frequency conversion are done. At last, parameters and 

features of data are extracted. After that the data is shared to 

MPAM phase, that is the stage in which DT is applied. In this 

stage, information of operation, maintenance, and the device 

information are used to accurately simulate the characteristic 

of aeroengine in a virtual space. After that the real results and 

the simulated ones are compared in MV phase to make sure 

that DT is performing with the highest possible accuracy. 

Lastly, a long short-term memory (LSTM) neural network is 

used to train a model with the capability of predicting any 

requirement for maintenance. The proposed model has a high 

accuracy in predicting the required maintenance in 

comparison to other methods such as K-nearest neighbors 

(KNN), deep convolutional neural networks, catBoost, and 

generative adversarial networks. The RMSE value of the 

proposed method is about 13.12 while this value for methods 

is about 20.46, 18.5, 16.91, and 15.8, respectively. The 

reduction of RMSE value shows that the predicted values for  
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Figure 13. The predicted remaining life by the Bayesian 

interference system versus the real values, adapted from [167] 

 

maintenance time are more trustable and increase the 

reliability of the aeroengine.        

Unmanned aircraft systems use UAVs as their main 

components for numerous goals such as defence, traffic 

control, security of cities, and for plant protection in 

agricultural systems. The data acquired by UAVs and during 

a flight mission are transmitted through the internet to ground 

control units and after that commands and control decisions 

are made in these ground units and again transfer to the UAVs 

through internet. Then, these commands are sent to the 

physical equipment of UAVs to make the desired change or 

perform the required tasks. The interaction of internet, control 

systems, and physical elements of UAVs offers a high 

opportunity for taking the advantages of DTs for control, 

protection, and commanding the UAVS, as proposed by [171]. 

According to [171], an airspace is divided into flight 

information area, control area, restricted area, dangerous area, 

flight restricted area, and routes. In [171], the combination of 

Convolutional Neural Network (CNN), autonomous wireless 

network, and DTs was used for safe performance of UAVs 

inside the non-restricted and non-dangerous zones. In other 

words, by doing this, no UAV can enter the safe flight zone of 

other UAVs and other aircraft and the safe flight of UAV was 

guaranteed by considering the obstacles, routes, etc. As 

illustrated in Figure 14, the safe zone of aircraft Ai is a circle 

around its current position and when another aircraft enters 

this safe zone, the Ai must have sufficient time to react to this 

and modify its path. Here, CNNs receives the flight data of an 

aircraft through the wireless communication system and based 

on pre-defined rules and historical data, modifies the route of 

the aircraft, and sends the information of the new route back 

to the aircraft. Although the proposed method was very novel 

and capable of controlling the AI so that it can fly safely and 

without any possible crashes, there are some considerations to 

make. One of them is the fact that all safety zones of aircraft 

are non-identical, and an index needs to be defined to clarify  

 

Figure 14. The conflict areal model that DTs are used to solve, 

adapted from [171] 

 

different safety zones for different aircraft. Also, the impact of 

air traffic and other airspace limitations must be considered to 

make this method applicable, especially for manned aircraft 

where any failure results in catastrophes. 

Another consideration of the fleet management process is 

exact and accurate fault/failure detection that can jeopardize 

the optimal fuel consumption. The most challenging issue of 

such a detection process is the large number of data that needs 

to be processed and the different types of engines that 

necessitate models which could be adapted based on these 

differences in engine structure. To overcome these issues, in 

[172] a DT-based diagnosis and health management system 

was proposed that consists of multiple stages. The first stage 

is dedicated to abnormality detection and failure 

quantification, the next stage is about physic-based 

simulations according to the Monte Carlo model, and the last 

stage is related to the data-driven models of engines. To 

perform the fault diagnosis stage, firstly, the engine's data are 

collected and fed into the algorithm, as shown in Figure 15, 

however, the gathered data must be corrected and normalized 

before the diagnosis process is initiated. The correction and 

normalization process are conducted based on the healthy 

condition of a specific or baseline engine. The whole process 

is discussed in detail in [173]. Afterwards, the corrected data 

are compared with the expected value of a healthy engine and 

if their differences exceed a threshold value, the 

abnormality/fault in the engine is probable and thus, the faulty 

engine is isolated. In the next stage, the fault signatures 

reproduction of engine components is conducted by using the 

DT of the engine. After that, for each signature, a correlation 

the function is dedicated and the component with the highest 

value of the correlation function is isolated. It must be noted 

that to increase the accuracy of the engine DT, 1000 different 

case studies with different efficiencies and flow capacities are 

considered based on Monte Carlo simulations. This procedure 

was applied to the engines of a fleet in two manners. In the 

first approach, the data is normalized according to a baseline 

engine and in the second one, the data is normalized based on 

the specific engine of the fleet. In the first approach, only 5% 

of faults are detected correctly while this value for the second 

approach is 98.2%. This reference has also taken advantage of  
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Table 2. A summary of the most important studies on the utilization of DT in aviation units 

Reference Type of study Modelling method 

[148] Flat spot analysis of aircraft wheel Analytical modelling 

[149] Structural condition monitoring Element momentum theory 

[150] Engine condition monitoring Circuit modelling 

[152] Servo-valves analysis  Semi-empirical method 

[154] Environmental control system Numerical modelling 

[155] Engine failure analysis Computational fluid dynamics 

[156] Manufacturing, repair, and overhaul analysis of fan blades Markovian-based surface region process 

[159] Structural health monitoring Dynamic Bayesian neural network 

[160] Structural health monitoring Finite element and genetic algorithm 

[161,162] Aircraft components characterization Reduced-order FE analysis 

[164,165] Crack detection Finite element 

[167] Proactive and predictive maintenance Bayesian interference method 

[169] preventive maintenance Long short-term memory (LSTM) neural network 

[171] UAV control Convolutional neural network 

[172] Optimal fuel consumption analysis Monte Carlo model 

ANNs to classify the faults with a surprising result in fault 

detection. If ANNs are used based on the first approach, 57.4% 

of faults are classified and detected correctly while this value 

for the second approach is 100% which means all faults and 

abnormalities are detected and classified correctly. 

Table 2 shows a summary of the most important conducted 

efforts regarding the application of DT for condition 

monitoring of aircraft and other aviation units. 

B. Lessons Learned by Other Industries  

In [174], a novel fault diagnosis method based on DT was 

proposed for rotating machinery that suffers a fault in the rotor 

side. The first part of the DT is the real-time and experimental 

data that is received by smart sensors. Then, there is an 

analytical model that is used to simulate the behaviour of 

rotating machines under different conditions. Finally, a 

particle swarm optimization method is used to minimize the 

error between the simulation data and experimental data. The 

most important feature of this method is the capability of 

modelling uncertainties and nonlinear dynamics of the rotor. 

The proposed model could be used in the same manner for 

fault diagnosis of aircraft engines. However, under such 

circumstances, there is a need for restructuring the DT model 

and the model of electrical machines to cope with the 

mechanical engines of aircraft. Another fault detection method 

based on real-time DT for a 1.8 kW and 208 V wound rotor 

induction machine is proposed in [175]. The significant aspect 

of the proposed model that can be used for aircraft and aviation 

industry, is the filtering procedure of data noises. The block 

diagram of Figure 16 is used to filter the noises of signals with 

a transfer function of equation (6). 

In Figure 16, 𝜃 is the noisy signal, 𝜃̂ is the filtered signal, and 

in equation (6) 𝐾𝑝 is the gain of the proportional (P) controller 

and 𝐾𝑖 is the gain of integral (I) controller. By applying such 

DTs, proposed by [172] formulation, the condition monitoring of 

aircraft could be conducted based on more accurate data and 

because of this the performance of the condition monitoring 

method would be improved. 

A DT-based algorithm for fault detection and identification of 

photovoltaic (PV) systems has been proposed in [176] that 

enables the protection of PV units and control of the related 

power converters. At the fault detection part, the aim is to 

reduce the error between measured outputs and estimated 

outputs of the whole system. To do this, a threshold value is 

defined to enable the model to detect the faulty condition out 

of a normal operational mode. On the other hand, the type of 

fault must be also identified by taking three important steps, 

residual analysis for fault signatures, fault signature 

calculations, and fault identification logic. As a result of these 

steps along with the previous one, the fault could be detected 

in the body of PV units and the type of fault is identified to 

make a reliable protection decision. The very same 

methodology could be used in the aircraft system for two 

purposes, fault detection in different parts of the aircraft such 

as engine, structure, electrical system, etc. and to make the 

appropriate choices for protection of the aircraft against these 

faults and abnormalities. Also, deep learning-based DTs can  
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Figure 15. Fault diagnosis and engine isolation algorithm based on  

 

Figure 16. The control loop for noise filtering of sensed signals, 

adapted from [175] 

 

 

Figure 17. SOC and SOH management algorithm 

be used as fault detectors in aircraft and other aviation systems, 

especially future electric aircraft, as one is proposed for fault 

detection of smart grids [177].  

𝐻(𝑠) =
𝐾𝑝𝑠 + 𝐾𝑖

𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

 (6) 

 

A novel condition monitoring method based on finite element 

method (FEM) and ANNs has been proposed in [178] for ship 

hull structures to locate the damaged part of the ship structure. 

To do this with FEM, firstly the strain values of the whole 

structure are acquired from the sensors and after that, a random 

guess is made on the position of the damage. After that FEM 

is used to gain the Von-Misses stress distribution and then the 

value of Von-Misses stress is fed into an error function. By 

minimization of the error function, the exact location of 

structural damage can be located, the minimization process is 

conducted in this paper by means of NSGA II. After the FEM 

is used, the outputs of FEM-based simulations train the ANNs. 

ANNs are used to detect the damaged side of the structure and 

are used to gain the damaged location. The very same 

methodology can be used also as SHM methods of aircraft to 

increase the computation speed of the damage location 

process. By implementation of the proposed method, the 

whole body of aircraft could be analysed to locate any possible 

damage on its body, in a fast, reliable, and real-time manner. 

To do this, some justifications on the properties of structural 

materials, the geometry of the problem, mission conditions 

and considerations, and the basic FEM is required. Another 

application of DTs in the marine industry has been offered by 

[179] ANNs to predict the combustion behaviour of 

propulsion engines. For this purpose, different components of 

propulsion systems such as air compressors, cylinder units, 

fuel pumps, propeller shafts, etc. are modelled through 

thermal, dynamic, and mechanical equations and the final 

output is used as the input to the ANN model. This can be also 

used in propulsion units of aircraft while just related equations 

to the aircraft dynamic must be changed, and concerns related 

to the aircraft must replace the limitations of ships. Another 

application of DTs has been presented in [180] to control the 

quality of the critical components of ships during 

manufacturing. The very same method can be also used in 

aircraft manufacturing, maintenance, and overhaul stages to 

reduce the risk of failures and crashes during flight missions.        

DT has been used in [181] for analysing and evaluating the 

State of Charge (SOC) and State of Health (SOH) of lithium-

ion batteries used in spacecraft. These battery packs are 

important components in any spacecraft and their performance 

degradation must be analysed in real-time to enable the power 

management of the spacecraft. To do this, a general algorithm 

has been used, as shown in Figure 17, for both SOC and SOH. 

The SOC is analysed by using Kalman Filter - Least Squares 

Support Vector Machine (KFLSSVM) and SOH is analysed 

through Auto Regression Model-Particle Filter (ARMPF). 

The very same algorithm could be used for the health 

management of engines in aircraft systems as a replacement 

for the SOH problem while the other method that has been 

used for SOC of the battery pack could be used as the electrical 

power manager inside the cabin. Another SOH monitoring 

method based on DTs and satellites is presented and 

introduced in [182] based on the data-driven object-oriented 

declarative modelling language Modelica. Then, these data are 

fed into a decision tree-based algorithm to diagnose faulty 

situations in satellites. 

 

IV. The challenges of using digital twins in condition 
monitoring of the aviation industry 
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A. Sensor's proper function  

Sensors are the link between the real system and the virtual 

domain that receive the data from the real domain and send 

them to the virtual model. Failures and errors in sensors may 

not be tolerated since any failure in sensors results in wrong 

information about aircraft, consequently a wrong decision, and 

thus, a catastrophic crash. So, to avoid these consequences and 

outcomes of sensor errors, there are some challenges that must 

be recognized and then addressed. The very first challenge is 

corruption and loss of data due to the imperfect operation of 

sensors, wirings, and receivers [183]. The loss or corrupted 

data results in wrong decision-making about the operation 

condition of aircraft, making false protective actions, etc. To 

avoid data loss, many methods have been proposed in 

literature such as K-nearest neighbours [184], Delaunay 

triangulation [185], multichannel singular spectrum analysis 

[186], and compressive sensing [187]. By applying these 

methods, the value of loss/corrupted data could be estimated 

and as a result, the possibility of wrong decisions is 

minimized. Another challenge of sensors is related to the 

accuracy that they offer for measuring a specific quantity. 

Consider a sensor that is used to measure the temperature 

inside the engine and send it to the virtual domain for 

protective issues. Assume that the real value of temperature is 

about 400.556 Fahrenheit and the threshold value for some 

protective actions is designed to be about 400.55. Under such 

circumstances, there is a need for a sensor unit that is capable 

of measuring temperature in up to three decimal places to 

avoid any failures in aircraft engines. The required accuracy 

up two to three decimal places necessities using some specific 

type of sensor with a specific operation condition, and a higher 

purchasing cost in comparison to the same sensor with a 

measurement capability of just two decimal places. Another 

challenge is the performance of sensors under harsh 

operational conditions such as extremely high temperatures 

for sensors inside the combustion engines, the high pressure 

and cold environment for sensors on the body of aircraft and 

outside of the cabin, etc. Under such harsh conditions, the 

appropriate performance of sensors might be decreased, and 

the measured value have a large amount of inaccuracy to avoid 

this, a specific range of sensors for such conditions is required 

that could operate with high performance and reliability 

without loss of accuracy. Finally, there is a calibration process 

for sensors that could take less than hours to more than tens of 

days. Calibration refers to a series of processes that adjust the 

sensors so that they illustrate and receive data error-free and 

with the highest possible accuracy. Numerous methods and 

procedures are defined for making sensors calibrated which 

are discussed in [188]. 

B. Data science and data protection  

data science is the common point of three fields of science, 

namely computer science, mathematical science, and business 

knowledge. The most important task of a data scientist is 

extracting useful information from received data by sensors 

and deciding, strategic planning, etc. [189]. By digitalization 

of aircraft control, design, management, maintenance, 

overhaul, etc. through DTs, data science and data scientists are 

gaining a high-valued position. In aviation units, especially in 

the CM of aircraft and due to the sensitivity CM process, data 

scientists must be capable of making the most appropriate 

choices without any risk of aircraft failure or crash. The first 

challenge that they must face is the problem of the large 

amount of data that is received and must be handled, known 

as big data. Usually, big data is defined based on 4V 

parameters which are Volume, Velocity, Variety, and 

Veracity, volume concerned with the fact that data is generated 

constantly and without any pause while velocity refers to the 

fast nature of data generation, especially for DT applications. 

Variety is related to the fact that data are generated by multiple 

sources and in different types such as voltage signals, health 

conditions, etc. and veracity concerns about the quality of data 

received by DT [190,191]. The other challenge that data 

scientists must face is related to the security and protection of 

data. Data security must protect the databases against cyber-

attackers, ransomware is a kind of malware designed to 

deteriorate data, and data theft [192]. Data security becomes 

even more sensitive when DTs are used for condition 

monitoring of aircraft and any kind of data theft, cyber-attacks, 

and malware could jeopardize the safe operation of aircraft 

and threaten the lives of passengers [193]. 

Overfitting of AI-based methods is a statistical phenomenon 

that takes place when a function with the same inputs results 

in a different output. This reduces the accuracy of the training, 

testing, and validating process and causes a high value of error 

between real data and the estimated one [194]. As mentioned 

before, due to the nature of DTs for aircraft and imperfections 

in sensor functionality, overfitting is highly possible in virtual 

domain, especially if they are modelled by AI-based 

techniques. Overlearning is another phenomenon that 

originated in imposing large amounts of data into a machine 

learning-based model and because of this model may present 

some inaccurate and non-reliable results that cause the system 

operator to make wrong decisions. 

C. Real-time decision-making and computing 
During the application of DT-based solutions to industrial 

manufacturing processes, the need for control and compliance 

with Quality of Service (QoS) specifications, e.g., in terms of 

maximum allowed latency or minimum reliability, was widely 

recognized [197]. This is of central and crucial relevance also 

in the case of DT for aircraft condition and fleet monitoring 

situations, where a fundamental requirement must be granted 

at execution time. This is to guarantee an upper bound on the 

maximum latency allowed for the operation series: in-the-field 

IoT data collection, IoT data filtering/aggregation/transfer to 

the digital twin, digital twin data processing and decision 

making, generation of a consequent control/reconfiguration 

command, and received of the command at the in-the-field 

associated actuators (full control loop).  
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Figure 18. The different software used for different purposes in aircraft systems, adapted from [195,196] 

 

The technical challenges related to guaranteeing QoS for real-

time decision-making and IoT data processing of DT are 

exacerbated by the fact that DT almost always runs on 

virtualized computation, storage, and networking resources 

that are due to the widely recognized scalability and economic 

motivations. For instance, in the EU H2020 IoTwins project, 

guaranteeing the latency for communication and also the 

processing of industrial IoT data for automation control by 

industrial DT were widely investigated [198]: controlling and 

managing latency over virtual networks and distributed 

Docker containers require advanced orchestration capabilities 

and a holistic view of network quality management, message 

queue prioritization, and microservice invocation (e.g., 

Function as a Service invocation in a serverless execution 

environment [199]); novel middleware should consider, in a 

synergic way, network acceleration techniques (e.g., RDMA, 

DPDK, XDP, and TSN-compliance whenever available in the 

deployment environment), edge cloud computing 

opportunities (see Section 4.5), message-oriented protocols 

with high-efficiency prioritized queues, and differentiated 

invocation mechanisms for local processing functions (e.g., 

based on dynamic library loading, WASM, or the more 

traditional posix_spawn API) [197].  

Some recent research work in literature has started to explore 

the technical challenges. So far, this was mainly conducted by 

considering the opportunistic usage of edge cloud resources to 

improve latency and jitter [200,201]; these potential 

advantages in terms of latency and jitter started to be 

recognized as the key factor for wide adoption of the edge 

cloud computing programming paradigm [202]. Although the 

coordination and coupling of different prioritization 

mechanisms is not a recent issue, with the recent advent of 

next-generation networking, it has gained an increased 

research interest. The need for concatenation of mechanisms 

has been considered as a primary problem that is presented at 

different levels of the stack to build a complete feedback 

control loop, e.g., when applied to industrial automation, since 

the earliest distributed systems. To tackle the issues of 

resource orchestration and partitioning while guaranteeing 

QoS levels at the edge, reference [203] proposed DRAGON: 

this reference describes some implementation insights about 

DRAGON and evaluates its performance compared with 

traditional orchestration approaches. The introduction of 

middleware for the concatenation of QoS-aware mechanisms 

is a frequent design pattern applied in the literature to reduce 

complexity [204]. In [205], the authors proposed a technique 

to couple priority and reservation based QoS management 

mechanisms, at the operating system and network layers, 

through distributed object computing middleware. In [206], 

the authors presented a middleware built on CORBA to 

provide distributed soft real-time applications with a uniform 

Application Programming Interface (API) to reserve 

heterogeneous resources with real-time scheduling 

capabilities in a distributed environment. This solution 

introduced uniform interfaces to support the reservation of 

CPU, disk, and network bandwidth on Linux systems. Even if 

Serverless computing and Function-as-a-service (FaaS) 

platforms are relatively novel, some platform improvements 

have already been proposed in the literature to achieve better 

FaaS performance and in particular latency reduction  [207–

209]. Some papers have proposed the deployment of 

serverless platforms on edge nodes to achieve better QoS 

[207]. The usage of different invocation methods to speed up 

function startup has been proposed as the exploitation of cross-

compiling to achieve faster executables. For example, in 

[208], the authors proposed Faaslets, an isolation abstraction 

that exploits WebAssembly to achieve good isolation and fast 

function startup; they have also proposed an additional 

optimization with a mechanism to restore from already 

initialized snapshots that resulted in platform improvement 

throughput and tail latency. In the proposed project Catalyser 

[209], the authors presented a serverless sandbox system to 
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enhance function startup and isolation. To provide a fast 

startup, Catalyser exploits a checkpoint mechanism to skip 

initialization and a new OS primitive to reuse the state of the 

running sandbox; this results in a relevant reduction of the 

startup time of function invocations (i.e., less than 1 

millisecond in the best cases). 

D. Modelling issues 
Modelling is the beating heart of the DTs in aircraft units that 

reflects the exact characteristics of the aircraft or its 

components in a virtual domain. Modelling could be 

performed based on three methods, White Box Model 

(WBM), Grey Box Model (GBM), and Black Box Model 

(BBM). This section is dedicated to the challenges and 

advantages of each one of these modelling methods. WBMs 

also known as conventional models are a type of modelling 

that characterize the behaviour of aircraft, engine, wings, etc. 

by means of well-known and accepted methods such as FEM, 

Equivalent Electrical and Thermal Circuit (EETC), Finite 

Difference Method (FDM), Volume Element Method (VDM), 

etc. WBMs are usually accurate and reliable while their 

computation speed is much lower than other types of 

modelling. However, with advancements in distributed 

computation and edge computation, their speed could be 

further increased [210]. Figure 18 shows the commonly used 

software packages used for aircraft modelling. 

Unlike WBM, in BBMs, outputs are estimated based on a 

previously acquired knowledge of data without any physical 

interpretable nature. BBMs are usually ultra-fast, adaptive, 

and re-trainable against new situations while their most 

significant disadvantage is their highly dependence nature on 

data. This means that any data corruption, bad data, lack of 

data, etc. could result in inaccuracy and falsely made decisions 

[211]. GBM has been proposed to overcome both issues of 

WBM and BBMs that take advantage of both models to 

correlate between inputs and outputs. This means that both 

physical logic and data science are used to characterize the 

behaviour of understudied components. These kinds of models 

are the most appropriate types of models for being used in DTs 

due to their high accuracy, adaptability, fast estimation nature, 

reliable results, etc.  

E. The 5G support for digital twins in the cloud 
continuum 

To minimize latency and improve data locality, there is an 

emerging trend in designing, implementing, and deploying 

distributed DT, capable of running in the so-called cloud 

continuum [198]. In this context, the cloud continuum is the 

set of distributed nodes, spanning from data centre cloud 

nodes and ETSI Multi-access Edge Computing (MEC) nodes 

in the 5G infrastructure to industrial gateways, fog networking 

routers, and even IoT devices. Usually, DT may be distributed 

so that they can run a first training phase for determining their 

data-driven model at traditional data centre nodes; once the 

model is trained, DT can run even on either industrial 

gateways or MEC nodes to access IoT-generated data more 

locally and efficiently, possibly by generating control and 

reconfiguration commands in the proximity of their actuators; 

in addition, distributed DT on industrial gateways or MEC 

nodes can continue the training/learning process also locally, 

via emerging machine learning techniques such as refinement 

learning [212] and federated learning [213].  

In the perspective of running DT in the cloud continuum, the 

role played by wireless technologies is essential with i) 

extremely low latency and ii) local edge computing facilities. 

On the one hand, 5G and Beyond 5G (B5G) networking offers 

a significant evolutionary step in terms of Ultra-Reliable and 

Low-Latency Communication (URLLC) with even the 

possibility to specify, to some extent, guarantee predictable 

performance [214]. In fact, 5G and B5G specifications include 

the requirement for the network infrastructure to expose its 

performance toward an end-to-end orchestrator so that the 

end-to-end service can be configured; accordingly, this end-

to-end orchestration is the same sketched above and 

envisioned by DT in the cloud continuum for holistic resource 

management. To develop 5G and B5G radio network 

solutions, the industry and standardization are pursuing two 

technology tracks that are ongoing in parallel. One builds on 

an evolution of the 4G Long-Term Evolution (LTE) radio 

interface and the other builds on a New Radio (NR) interface. 

Long-Term Evolution (LTE) has been standardized in 3GPP 

Release 8 in 2008 and has been enhanced in every new 

standard release. Starting from Release 15, LTE introduces 

URLLC and addresses the corresponding 5G requirements. 

The LTE evolution can be introduced into existing LTE 

networks and spectrum allocations: it provides 5G 

functionality in a backwards-compatible way, which means 

that new LTE-evolved devices can make use of novel 5G 

features, while old LTE devices can continue to operate within 

the same LTE system with the legacy capabilities. NR, in 

contrast, is not restricted by backward compatibility, and can 

address design opportunities for a lean design. For latency 

minimization, the primary radio design choices and 

innovations that were included in the 5G standard 

specifications relate to waveform optimization, improved 

resource access strategies/mechanisms, and optimized channel 

access. Additional details about the related mechanisms and 

protocols may be found in [214]. Note that, with those 

improvements, the guaranteed upper bound for the radio 

access network latency that can be achieved in 5G varies from 

0.25ms to 3.2ms depending on the employed URLLC 

configuration.  

On the other hand, the European Telecommunications 

Standards Institute (ETSI) MEC specification provides a 

fundamental contribution to the open and standard realization 

of the cloud continuum concept, by offering a virtualization 

platform and architecture integrated into the 5G/B5G network 

infrastructure, thus representing an essential element for 

current and future distributed DT. In fact, according to ETSI, 

MEC offers “IT service environment and cloud-computing 
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capabilities at the edge of the mobile network, within the 

Radio Access Network (RAN) and near mobile subscribers” 

[215]. Examples of MEC applications include caching of 

contents to deliver to customers, tracking of devices, and 

hosting of decentralized DT for motion control and industrial 

automation. According to ETSI [216], the general entities 

involved in the MEC architecture are structured based on three 

levels: the upper one is the MEC system level, which has a 

global visibility on the MEC architecture and therefore 

coordinates every block in the levels below. In the middle, the 

MEC host level includes MEC host and MEC host level 

management. The MEC host is an entity that includes the 

platform and the virtualization infrastructure used to run the 

MEC and provides network, processing, and storing 

virtualized resources dedicated to MEC-hosted applications 

such as DT. MEC services are provided and consumed by 

MEC applications or the MEC platform itself. Some examples 

are the Radio Network Information (RNI), which gives 

information on the radio network state, the location service, 

which gives location-related information, and the bandwidth 

manager service, which helps in prioritize and handle traffic. 

Containers or virtual machines run as well in the MEC host: 

typically distributed digital twins run on containers, e.g., to 

locally execute anomaly detection based on machine learning 

models initially trained on the cloud. At the bottom of the 

stack, various transmission entities such as the 5G 

infrastructure and local/external networks may be present 

according to the ETSI architecture.  

F. The sensitivity of CM in aircraft  
Except for CM, as mentioned before DTs could be used in the 

pre-design, design, manufacturing, maintenance, and overhaul 

stages of an aircraft. In these stages, any failure in DT could 

result in malfunctions in the structure of the aircraft before the 

flight mission that could be diagnosed while this is not the case 

for DTs that are used during flight missions and for CM 

purposes. Any failure or error in the virtual domain, decision-

making process, sensors, wirings, etc. results in malfunctions 

of aircraft during a flight mission and this could result in 

explosions, crashes, and many other tragedies. This is the most 

challenging issue for using DTs as the main component in 

decision-making, condition monitoring, protecting, and 

controlling of aircraft. Thus, for such a sensitive goal, the DT 

model must be error-free and with the highest possible 

accuracy while it must be also real-time. The real-time nature 

of DTs is the most important characteristic of the virtual 

domain that enables an ultra-fast response to any kind of 

changes, failures, faults, etc. during a flight mission so that it 

protects aircraft against any possible damages, crashes, and 

component failure.  

   

V. Future trends 

A. Future trends for electric aircraft  

During the last few years, the rate of daily flight missions has 

increased significantly initiating an extensive increase in fossil 

fuel combustion. Thus, a large amount of greenhouse gases 

was released into the Earth’s atmosphere, and this has 

intensified global warming and emissions. To overcome this 

issue along with the challenge of shortage of fossil fuels, 

scientists have proposed restructuring the aircraft systems 

[217,218]. One of the proposed structures is the electrification 

of aircraft drivetrain by using electrical devices. Under such 

circumstances, to reduce the power loss and voltage drop, the 

generated power is converted to DC voltage by using power 

electronic devices and then electrical energy is delivered to 

electrical motors, operating as the main part of propellers. In 

this region, DC power is again converted into AC by means of 

power electronic devices [219]. The expressed structure was 

the structure of a hybrid electric aircraft while there is also 

another type of aircraft, known as full electric aircraft in which 

batteries and fuel cells replace the electrical generators and 

directly feed the electrical energy to propellers [220]. There 

have been many successful prototypes manufactured for 

electric aircraft that are discussed in detail in [220] while the 

most successful and most researched is NASA N3-X 

turboelectric distributed aircraft [221,222]. Although electric 

aircraft offer a wide range of solutions to challenges of 

emission and pollution, the power density of conventional 

power devices is still lower than expected. Thus, 

superconductors have been proposed as cryogenic 

counterparts of conventional power devices with a much 

higher power density, 5x to 10x higher than conventional 

power devices [223,224]. However, the need for the cryogenic 

environment for proper and safe operation of cryo-electrified 

aircraft [225] has put doubts on using superconductors in 

aircraft drivetrain. This is because cooling systems usually 

have a high specific mass, low reliability, and high purchasing 

costs [226]. To resolve this issue, another concept has been 

also added to the re-structuring process of aircraft, known as 

cryogenic fuel aircraft, where combustion engines operate 

with fuel like Liquid Hydrogen (LH2) [228]. As reported in 

[229,230], LH2 is used as a cryogenic coolant fluid for 

superconducting devices and cryogenic power converters and 

after that the LH2 is warmed up or vaporized during heat loads, 

it is injected in combustion engines as fuel, or it is stored in 

fuel cells. This type of aircraft presents high-power density for 

electrical systems, a low specific mass for cryogenic systems, 

and low emission and pollution for aircraft as shown in Figure 

19.  

B. Future trends in DT  
Among the several envisioned trends for the DT of the future, 

for condition and fleet monitoring, three primary lines of 

evolution are identified. 

Firstly, digital twins are going to have more and more “twins” 

in a strict sense and not only digital models or digital shadows. 

According to precise technical definitions, a digital model is 

just a digital representation of a physical system, not  
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Figure 19. The overall structure of hydrogen-superconductor-based aircraft, adapted from [227] 

 

exchanging data flows with the real world (e.g., the physical 

model of a wing or the electrical model of a circuit). On the 

contrary, a digital shadow is a digital representation of a 

physical system capable of receiving data flows from the real 

world to refine, either statically or dynamically, its model in 

the cyber world (e.g., digital shadows can exploit IoT data 

flows from sensors and machine learning to define/refine their 

models). Digital twins are more than digital shadows in the 

sense that they can interact with the real world via 

bidirectional data flows, not only to refine data-driven models 

with IoT data at runtime but also to command actuation 

feedback by possibly intervening on the conditions of the 

physical world (e.g., reconfiguration of a production line in 

prescriptive maintenance or modification of fleet paths). 

The second relevant trend to highlight is the evolution of 

distributed digital twins towards being hybrid, i.e., employing 

synergically their double nature of both model-driven 

(exploiting mathematical/physical models of the physical 

object counterpart) and data-driven (exploiting machine 

learning-oriented models, fed by IoT data initially or during 

full-service provisioning). Only with this double nature of 

model-driven plus data-driven, future hybrid digital twins will 

be able to achieve the level of precision and accuracy that are 

needed in several critical vertical domains, such as aircraft 

condition and fleet monitoring. Note that hybrid digital twins 

may exploit iterative cycles to refine their combined model-

driven plus data-driven representations of physical 

counterparts, thus producing successive generations of digital 

twins evolving towards always better precision. 

Finally, the third envisioned trend is towards being more and 

more distributed, thus taking full advantage of all the 

opportunities made available by the cloud continuum concept. 

Distributed execution on edge nodes, as already mentioned, 

will be central for more efficient control of QoS parameters 

and better compliance with privacy/security requirements via 

localized exploitation of local IoT data. This stress on 

distributed execution will benefit and leverage, in turn, the 

emergent trend towards innovative distributed techniques for 

machine learning, such as federated learning. 

In future, DT would be more efficient and more reliable 

through the improvements of the machine learning and deep 

learning methods. One of the future advancements of the AI-

based techniques is Explainable AI (XAI). In this context, XAI 

is defined as the series of actions that make the decision 

making by AI techniques. This would build trust in 

community while ensuring the accountability. To develop 

XAI, there are two important phases. The first phase is related 

to understanding the model where stakeholders cross check 

the model during training. This is done to make sure that 

accuracy of the model is as high as expected. Understanding 

usually consists of debugging, bias detection, scientific 

understanding, robust model creation, and auto model 

creation. Second phase is explaining phase where AI model is 

developed and implemented for real-time application. Here, 

the decision-making process would be clarified for the end 

users trying to explain them how the decision is made [231]. 

Another upcoming trend for AI-based techniques is 

Generative AI (GAI). which is defined as systems that take the 

advantage of deep learning methods for contents like human 

generation where these contents should be a response by 

humans/machines, where ChatGPT is the best example of GAI 

[232].  

DTs are currently implemented in part of the complex systems 

or just a system without any consideration of other dependent 

systems. In future, DTs should be used for very complicated 

systems or for the whole procedure. For this purpose, they 

should have scalability, interoperability, expansibility, and 

fidelity. In this context, scalable DTs are those that based on 

the research object, the data and the contents are changed. 

Interoperability is referred to the interaction capability of 

different models in DT that are used for same/different 

purposes, such as maintenance or monitoring. The 

reconfiguration capability of DTs regarding the structural, 

physical, etc, changes in main system is also defined as 

expansibility. For the sake of creating an DT for a complex 
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system, firstly system should be divided to multiple 

subsystems. Then, subsystems should be divided to different 

tasks, models, requirements, factors, etc. After that, 

information fusion happens, where all information gathered 

from different sources and subsystems. Then, associations are 

scaled, and context coupling happens, Finally, a complex 

digital twin would be created [233].   

Another upcoming trend for DTs is the concept of Virtual 

Manufacturing. This is referred to the use of computer-based 

models and simulations for design, test, and manufacture of 

the products, without they manufactured physically. Indeed, 

VM leverages on technologies like AI, IoT, and big data 

analysis. VM reduces the manufacturing costs for all 

companies that participate in manufacturing a device, this 

includes design, test, and manufacturing companies. VM also 

increases the efficiency of the products and the manufacturing 

lines. This is done by reducing the amount of waste, increasing 

the productivity, etc. Another positive fact about VM is that 

they reduce the “time to market” index for products. It means 

that by using VM, companies can start to sale their products in 

marker, sooner, compared to physical manufacturing 

processes. This would also increase the quality and safety of 

the product s by monitoring the manufacturing lines, 

controlling the anomalies that happen during the 

manufacturing, etc [234].  

Augmented Reality (AR) is accounted as a technology that use 

digital information of a real world to improve the user's 

perception of the world. AR can be used for navigation 

applications where the related apps could show the virtual 

directions to the user to guid her/him to the destination. It can 

be also used for training and education purposes in sensitive 

applications like surgery on human body [235]. Then, there is 

Virtual Reality (VR) where it is defined as the re-creation of 

the current real world through digital items like images, 

videos, models, etc. In this manner, instead of observing the 

consequences of some act, one can experience it in digital 

world. Generally, there are three types of VR, non-immersive 

VR, immersive VR, and semi-immersive VR. Finally, there is 

Mixed Reality (MR) where the real-world scenarios are 

superimposed to the digital elements of the models through a 

real-time connection. This would allow the real-time 

connection between physical and digital connection in DTs, in 

a real-time manner [236].  

The recent advancements on IoT and DT have emerged the 

existence of a new concept as “Edge Computing (EC)”. Since 

the number of that must be analysed, in IoT and DT, is too 

much. EC is accounted as one of the most important future 

trends for DT and IoT technologies. The idea behind EC is to 

do all data processing, computations, and storage of data to the 

edge of networks, instead of clouds. As a result of this, data 

transmission time and response time are reduced as well as the 

reduction of the pressure on the shoulders of the bandwidth 

[237].   

 

C. Future of DT in electric aircraft 

One of the future trends related to the using of DTs for electric 

and cryo-electric aircraft is performance prediction of the 

electric devices. For this purpose, AI-based DTs will be used 

to replace the FEM-based methods. The DTs, in this regard, 

could be used for condition monitoring of electrical devices, 

anomaly prediction, fault location, etc. Another future 

application of DT in electric aircraft is controlling the power 

electronic devices to ensure their safety of operation. To do 

this, the cooperation of the power electronics and AI-based 

techniques could not only control the power electronic device 

but also could be used to monitor its temperature, anomalies, 

etc. DT would be used also for decision making tasks to 

control and guid the electric aircraft. Also, the decision-

making responsibilities related to energy source management 

in electric aircraft would be handled by DTs.  

Health monitoring of passengers during a flight is another 

future trend for DTs in aviation units. This is accessible by 

using the biometric sensors that could be implemented in 

aircraft seats or cabin surfaces. Then, in a real-time manner, 

data of these sensors are collected and processed through AI-

based techniques. After data analysis, the health profile of the 

passenger would be acquired. In any case that passenger’s 

health profile become anormal, the In-Flight Services would 

help the passengers, DT would be also used for training and 

testing the pilots where this can reduce the chance of crashes 

and human errors. For this purpose, DT could be used 

scenario-based flight simulations, where a wide range of 

realistic scenarios are created to help the training procedure of 

pilots. It can be also used to familiarize the pilots with the 

cockpit. 

    

VI. Conclusion 
Exact and fast monitoring of the aircraft units could reduce the 

risk of jeopardizing the passengers’ lives and decrease serious 

economic damages to aviation fleets. Recently, a novel 

concept has been applied to the monitoring process of aircraft 

units, known as Digital Twins (DT) which is a virtual domain 

that is simulated exactly as the real twin works. By applying 

DTs to the aviation units, the control, decision-making, 

condition monitoring, and management of aircraft could be 

performed faster and more reliably compared to conventional 

monitoring methods. This paper aims to review the most 

important efforts in using DT for condition and fleet 

monitoring of aviation units. For this purpose, firstly, the 

introduction section proposes the necessity of using DT in 

aircraft conditions and fleet monitoring. Then, in section two 

of the paper, the DT concept is completely established and 

defined. Afterwards, in section 3, the efforts and achievements 

related to using DT for aircraft systems have been analysed, 

and these studies have been categorized based on their virtual 

models that could be based on artificial intelligence techniques 

or conventional modelling methods. In the second stage of 

section 3, the lessons learned for DT technology from other 

industries have been reviewed and how these lessons could 
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help us in the aviation industry. Section 4 was dedicated to the 

current challenges of both aircraft and DT systems and lately, 

section 5 was presented to show the future trends in the DT 

field and aviation industry. The most important highlights of 

this review paper could be shortlisted as follows: 

• Among the published papers, approximately 10 

papers have used the conventional modelling 

methods for DT.  

• Artificial intelligence techniques have been used in 

12 papers for condition monitoring purposes of DT.  

• The DT-based condition monitoring methods, 

reviewed in this paper, are mostly dedicated to 

fault/failure diagnosis in the body of the aircraft or 

for controlling the aircraft. 

• Crack detection and Life prediction on wings are of 

the most discussed topics, regarding using DT for 

condition monitoring.  

• Marine, power systems, and space programs also 

have used the DT for condition monitoring purposes. 

• Sensors, real-time decision-making, data safety, and 

5G support seem to be current obstacles for using DT 

in condition monitoring of aircraft. 

 

It should be mentioned that in future DT-based systems will 

play a critical role in condition monitoring of aircraft, with 

respect to growing trends in electrification, and digitalization 

of aircraft. In this regard, it should be stated that the future 

trends related to electric aircraft has been discussed in “Future 

Trends” section. Also, the future trends of DT-based systems 

have been discussed in this section.  

The future of electric aircraft tends towards the cryo-

electrification of drivetrain where liquid hydrogen is used as 

fuel as well as the coolant of the superconducting devices. By 

having this combination, the hybrid electric aircraft is 

accessible. On the other hand, DT-based systems would take 

the participate more in monitoring, manufacturing, and 

maintenance of aircraft units that could reduce the risk of 

failures and crashes.  
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