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A B S T R A C T

Accurate short-term solar irradiance (SI) forecasting is crucial for renewable energy integration to ensure unit
commitment and economic load dispatch. However, hourly SI prediction is very challenging due to atmospheric
conditions and weather fluctuations. This study proposes a hybrid approach using weather classification and
boosting algorithms for short-term global horizontal irradiance (GHI) forecasting. In data pre-processing steps,
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Bidirectional long short-term memory
(BiLSTM)
Random forest (RF)

we employ random forest for feature selection and K-means clustering for weather classification. The weather-
based clustered data is used for the model training using categorical boosting (CatBoost). The proposed
weather-classified categorical boosting (WC-CB) scheme is compared with benchmarks in literature like
adaptive boosting (AdaBoost), bi-directional long short-term memory (BiLSTM) and gated recurrent unit (GRU)
using datasets from two distinct geographical locations obtained from the National Solar Radiation Database
(NSRDB). The results show that the proposed WC-CB hybrid approach has lower forecast errors compared to
conventional CatBoost modelling. The error reduction of 16% and 39% in root mean square error and 6%
and 9% in mean absolute error is recorded for the two datasets, respectively. These findings demonstrate the
importance of weather classification in improving forecasting accuracy with potential implications for broader
renewable energy applications.
1. Introduction

The global energy landscape is changing significantly due to rising
energy demand and environmental concerns. According to the Interna-
tional Energy Agency (IEA) report, energy consumption is expected to
rise between 15000–21000 Million Tons of Oil Equivalent (MTOE) by
2040 due to a projected 25% population growth [1]. Fossil fuels con-
tinue to be the primary energy source, which is approximately 63.1% of
the world’s energy mix [2]. However, owing to the widespread usage of
fossil fuels, these resources are depleting rapidly [3]. Another drawback
of the extensive use of fossil fuels is environmental repercussions,
particularly global warming, underscore the urgency to shift towards
sustainable energy sources [4].

Renewable energy resources (RERs), particularly solar energy,
emerge as a promising alternative to fossil fuels due to their abundant,
clean, and green attributes. However, the widespread adoption of solar
energy is hindered by its inherent intermittent nature, making the
planning, management, and maintenance of photovoltaic (PVs) systems
challenging. The performance of PV systems is notably susceptible to
variable atmospheric conditions, emphasizing the need for accurate
and robust solar energy forecasting for the reliable operation of power
systems integrated with PVs [5]. PV system forecasting has different
applications with different forecasting horizons. Various forecasting
applications are shown in Fig. 1, along with their time scales and
horizons.

Usually, short-term forecasting solves unit commitment and eco-
nomic load dispatch problems [6,7]. Unit commitment is one of the
basic issues in an electrical power system. It focuses on the key choices
to schedule the power production units so that the energy demand
is fulfilled at the lowest possible cost [8]. The study of the eco-
nomic load dispatch problem enables the power system to be oper-
ated cost-effectively and efficiently, ensuring an uninterrupted power
supply [9].

An essential component of a PV power system is solar irradiance
(SI), which is the amount of electromagnetic radiation received from
the sun by a particular area of the land, which is expressed in watts
per meter square. In the literature, numerous techniques have been
proposed for SI forecasting. Numerical weather prediction (NWP) is a
physical model based on complex mathematical equations to predict
SI. However, the performance of the NWP model becomes vulnerable
to severe fluctuations in weather conditions [10]. In recent years,
machine learning (ML) models have been developed that forecast the SI
with better accuracy. With their ability to learn complex patterns and
relationships from historical data, ML models have shown promise in
enhancing SI forecasting accuracy. These models, ranging from support
vector machines (SVM) to neural networks (NN), have been pivotal
in addressing the non-linearities and uncertainties inherent in SI data.
Leveraging the data-driven ML technique, the research community
has shifted more towards hybrid models, aiming to capitalize on the
strengths and mitigate the weaknesses of individual approaches.

For instance, the long short-term memory (LSTM) model with K-
mean clustering has been proposed in [11] for forecasting hour-ahead
and one-day-ahead SI. The dataset is classified into sunny days and
2

completely and partially cloudy days using the K-mean clustering al-
gorithm. Findings indicate that LSTM performs better than recurrent
neural networks (RNN) for hour-ahead SI forecasting. In the case of
day-ahead forecasting, RNN draws less error than the LSTM model.
In [12], a hybrid model of LSTM with sky image data is used for very
short-term forecasting of SI with a time interval of five and ten minutes.
For a short-term solar power forecast, a hybrid Mycielski–Markov
approach is proposed in [13]. With the combination of stochastic and
deterministic techniques, the coefficient of determination (𝑅2) of the
forecasting model is found to be 0.8749.

Accurate solar energy forecasting is of utmost importance in the
context of the global push towards sustainable energy sources. The
objective is not only to harness solar energy but also to do it in a
predictable, reliable, and efficient way. Although existing forecasting
methods have made significant progress, they often struggle with rapid
weather changes, computational efficiency, and overfitting on com-
plex datasets. Therefore, the balance between the performance and
computational efficiency of the forecasting approach is very crucial,
particularly given the critical role of solar energy in modern power
systems. Therefore, keeping these challenges in mind, this study intro-
duces the weather-classified categorical boosting (WC-CB) algorithm,
a novel hybrid approach that seamlessly integrates the strengths of
multiple techniques. Unlike traditional LSTM and RNN hybrid models,
WC-CB is designed to handle rapid weather fluctuations efficiently
and effectively captures both sequential and non-sequential patterns in
historical data, ensuring robustness against overfitting and enhanced
computational efficiency. This holistic approach streamlines the fore-
casting process by focusing on salient features using random forest
(RF) and weather-specific data clusters using K-mean clustering. The
weather classification aids in reducing the inherent variability and un-
predictability associated with solar energy. Finally, categorical boosting
(CatBoost) is used for model training using clustered data. Our hybrid
model combines feature selection, data clustering, and gradient boost-
ing to provide an accurate and robust forecast for SI forecasting. The
main contributions of this paper are listed as follows:

1. This study introduces the hybrid approach WC-CB for short-term
GHI forecasting. The proposed scheme combines RF for feature
selection, K-mean clustering for weather categorization, and the
CatBoost algorithm for model training.

2. The robustness and efficiency of the WC-CB methodology are
evaluated utilizing two distinct datasets sourced from the Na-
tional Solar Radiation Database (NSRDB). The performance is
benchmarked against adaptive boosting (AdaBoost), bidirec-
tional (Bi-LSTM), and gated recurrent unit (GRU). Addition-
ally, the research compares the performance of WC-CB and a
traditional CatBoost model without clustering.

3. A comprehensive analysis of clustering techniques, comparing
one-dimensional and two-dimensional K-means clustering for
classifying GHI data, is conducted. The findings showed that
single-parameter clustering outperforms two-parameter cluster-
ing in terms of predictive performance, making it more appro-
priate for forecasting purposes.
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Fig. 1. Forecasting horizons with their time scale and applications.
he remaining portion of the paper is organized as follows. Section 2
resents a literature review, the proposed hybrid WC-CB methodology
s in Section 3. Section 4 covers the data processing and model configu-
ations, followed by results and discussion in Section 5. The conclusions
re presented in Section 6.

. Literature review

Different models have been proposed in the literature for fore-
asting SI, which can be broadly classified into two types: physical
nd data-driven [14]. NWP is a type of physical model that uses
ifferential equations to describe the changes in the atmosphere for
rediction. The forecasting performance of the NWP model depends on
he amount of available data and the complexity of weather conditions.
f the forecasting period is longer, the performance of the NWP model
orsens. This is because the model might need to interpolate more
ata and variability of weather conditions [15]. On the other hand,
ata-driven models harness historical data, sometimes enriched with
xternal weather parameters like temperature, relative humidity, wind
peed, and pressure, to make predictions. This literature review will
xplore statistical models, ML-based techniques, boosting algorithms,
nd hybrid approaches in SI forecasting, aiming to provide a com-
rehensive overview of the diverse methodologies, emphasizing their
erits, constraints, and performance outcomes.

.1. Statistical models for SI forecasting

Statistical models, particularly autoregressive (AR) and Markov
hain (MC), have been prominently utilized for SI forecasting. These
odels, grounded in statistical theories, offer insights into the tem-
oral patterns of SI data. For instance, the study in [16] proposed
utoregressive moving-average (ARMA) for hour-ahead SI forecasting
nd compared it with the smart persistence (SP) model. The results
emonstrate the effectiveness of ARMA over the SP model. Hour-
head SI forecasting using autoregressive integrated moving average
ARIMA) is proposed in [17]. The datasets used in this study were
ollected from the weather stations in Miami and Orlando. Different
ombinations of input variables are provided to the ARIMA model. In
he first combination, GHI data is the only input parameter used for
our-ahead forecasting. Secondly, direct normal irradiance (DNI) and
3

irect horizontal irradiance (DHI) are forecasted individually, and their
results are combined to predict GHI. Finally, the cloud cover effect is
also considered an input combination that outperforms the other two
approaches.

In [18], the ARIMA model predicts hour-ahead GHI. The perfor-
mance of the model is evaluated through the root mean square error
(RMSE) and 𝑅2 score. The RMSE and 𝑅2 values were found to be
72.88 Wm−2 and 88.63%, respectively. In [19], a second-order MC
model is presented that forecasts day-ahead SI for the cities of Bhadla,
Jodhpur, and Rajasthan. The method uses a similarity algorithm to
segment the data into similar groups. The proposed model formulates
an ordered transition matrix of size 81 × 9, calculated using the data’s
mean and standard deviation. This matrix is then used to forecast the
SI. In [20], a comparison of the MC model with ARIMA, artificial
neural networks (ANN), and support vector machines (SVM) for day-
ahead SI forecasting is presented. The performances of the models are
evaluated using RMSE, mean absolute error (MAE), and mean absolute
percentage error (MAPE). Results demonstrate that the second-order
MC model outperforms other techniques. Short-term SI forecasting
using ARIMA and ANN models is presented in [21]. In the proposed
work, datasets from five different geographical areas are used for model
training, and normalized root mean square error NRMSE, normalized
mean absolute deviation (NMAD), and normalized mean bias error
(NMBE) are used as performance indicators. Results demonstrate that
the ARIMA model performs better than the ANN model. Findings also
indicate that the performances of ARIMA and ANN models are better
for continental sites than island sites. In [22], an experimental model
is carried out for improving the power generation capacity of the PV
panels. The thermoelectric system is integrated with the PV panel and
uses the temperature difference between the panel and the environment
to enhance the power generation capacity. Results demonstrate that
the combined system generates 4.2% more power than the conven-
tional PV system. In [23], the authors highlight the importance of
multi-cycle production development planning strategies for increas-
ing the share of RERs in sustainable power systems. Four different
multi-cycle production development planning strategies, hierarchical
production planning, multi-criteria decision support, generation expan-
sion planning and multi-energy complementary systems, are discussed
for maximizing the share of RERs. The Weather Research and Fore-
casting (WRF) model is presented for day-ahead SI forecasting for the
dataset of Singapore in [24]. The comparison of the WRF model with

persistence, exponential smoothing (ES) and seasonal autoregressive
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integrated moving average (SARIMA) models is also studied. The WRF
approach shows better performance than other models. Moreover, the
findings also depict that if the WRF and ES forecasting outputs are
combined, the error can be reduced to 49%.

2.2. Machine learning models for SI forecasting

The artificial intelligence (AI)-based models, particularly ML, fore-
cast SI with better accuracy because of their tendency to learn the
non-linear relationship between inputs and output of the prediction
task. RNN, feed-forward neural networks (FFNN), SVM, LSTM and
adaptative fuzzy neural networks (AFNN) are ML models that are
mostly used in forecasting SI. A comparative study of SVM with face-
book propet (FBP) is performed in [25], in which the datasets contain
parameters of three locations: Boston, Denver and Seattle. Results
indicate that for one and two-hours-ahead forecasting, SVM performs
better than the FBP model. However, for 3 hours-ahead forecasting, the
performance of SVM degrades. In [26], FFNN is used for day-ahead SI
forecasting. The dataset of 19 years is collected from the meteorological
station of Ajaccio, France. The performance of FFNN is compared with
ARIMA, MC Bayesian Interference and k-nearest neighbor (KNN). FFNN
beats other models with NRMSE found to be 21%. For hour-ahead GHI
forecasting, a comparative study of FFNN, LSTM and SVR is presented
in [27]. The dataset is obtained from a radiometric station at the
University of Pretoria. Results indicate that FFNN draws less error than
other models. Moreover, the results of ML models are combined using
Quantile Regression Average (QRA). Findings demonstrate that QRA
shows better performance than ML models with best-recorded RMSE
and MAE, which are 34.87 and 20.039 Wm−2, respectively. The ANN-
based model is presented in [28] to forecast day-ahead GHI and DNI,
for which the dataset is collected from the US National Weather Service
(NWS) database. The gamma test (GT) and genetic algorithm (GA) are
used for the selection of relevant input parameters in the proposed
model. The ANN with GT and GA as feature extraction techniques
is compared with conventional ANN. Results show an improvement
of 10%–15% in the RMSE of ANN, which is trained by the relevant
parameters as compared to the conventional ANN model. Short-term SI
forecasting using deep recurrent neural network (DRNN) is performed
in [29], and K-mean clustering is used to separate night and day hours
data. The night hours data, where SI becomes zero, are removed from
the dataset. DRNN is compared with SVM and FFNN using RMSE, MSE
and main bias error (MBE). DRNN shows better performance with MBE
of 0.003 Wm−2.

Deep learning (DL), the branch of AI, has attracted the attention
of many researchers in recent years. Deep learning networks (DLNs)
have the feature of multiple hidden layers that enable them to learn
the data pattern accurately. DLNs find applications in classification,
computer vision, forecasting and natural language processing [30]. Dif-
ferent DLNs are used for forecasting SI in literature. For the short-term
forecasting of Florida’s PV power plant, the LSTM model is used in [31].
In the proposed study, the pearson correlation coefficient (PCC) is used
for dimensionality reduction and sky-type classification of SI data is
performed by K-mean clustering. Findings indicate that LSTM performs
better than generalized recurrent neural network (GRNN) and extreme
learning machine (ELM). A comparative analysis of LSTM with SVM on
the dataset of Johannesburg is performed in [10], in which NRMSE is
used for the performance evaluation of the models. Results demonstrate
the superiority of LSTM over SVM. A comparison of the LSTM model
with FFNN, SVM and persistence model for day-ahead SI forecasting
is presented in [14]. K-mean clustering is used to divide the data into
sunny and cloudy days, and PCC is used for extracting suitable features.
The datasets contain meteorological parameters of three locations.
LSTM performs better than other models for each location. In [11],
hour-ahead and day-ahead SI forecasting is performed using LSTM.
The dataset is classified into sunny days and completely and partially
4

cloudy days using the K-mean clustering algorithm. The LSTM model
is compared with ARIMA, SVM, RNN, convolutional neural networks
(CNN) and back-propagation neural networks (BPNN) using RMSE, 𝑅2

and MAE. Findings indicate that for hour-ahead SI forecasting, LSTM
draws less error than other models. In the case of day-ahead forecasting,
RNN performs better than the LSTM model. A comparative study of
LSTM, linear least square regression and multilayered FFNN with back-
propagation for hour-ahead SI forecasting is presented in [32]. The
11 years of historical SI data of Santiago, Cape Verde, is used in the
study. Results indicate that the RMSE for the LSTM model is improved
by 42.9% compared to FFNN with back-propagation.

2.3. Boosting algorithms in SI forecasting

In the literature, some boosting algorithms are also proposed for
forecasting applications. Boosting algorithms aim to enhance the fore-
casting power by training the weak models, each of which addresses
the shortcomings of the precursor. It is contrary to the ML algorithms,
which have a single model to concentrate on for accurate forecast-
ing [33]. In SI forecasting, boosting algorithms are very popular, and
various studies are presented to show the effectiveness of these algo-
rithms. For instance, the AdaBoost regressor model is presented in [34]
for day-ahead SI forecasting. The dataset consisting of four months is
collected from the HI-SEAS meteorological station. AdaBoost regressor
performance is compared with RF regressor and linear regressor model
using RMSE, MAE and MSE. The RMSE is found to be 135.77, 164.76
and 195.4 Wm−2 for AdaBoost, RF and linear regressor respectively.
A hybrid model of a gradient boosting (GB) algorithm with NWP for
short-term SI forecasting is performed on the dataset of San Diego
city in [35]. The effectiveness of the hybrid approach is evaluated by
RMSE, MAE, MSE and MAPE. The forecasting interval is of 30 minutes,
and RMSE for three different seasons, winter, summer and spring,
is found to be 6.6, 6.2 and 6.3 Wm−2 respectively. A comparative
analysis of RF, ANN and SP models for GHI, DHI and beam normal
irradiance (BNI) forecasting is presented in [36]. Historical SI data from
Odeillo, France, is used in the proposed study. Models’ performances
are evaluated through RMSE, MAE, NRMSE and NMAE. Results indicate
that the RF model outperforms other techniques. The RMSE of 88.62,
189.50 and 48.53 are recorded for hour-ahead forecasting of GHI, BNI
and DHI, respectively. In [37], a hybrid model of extreme gradient
boosting forest (XGBF) with deep neural network (XGBF-DNN) is pro-
posed for hour-ahead GHI forecasting. The meteorological parameters
of three different locations of India, New Delhi, Jaipur, and Gangtok,
are included in the datasets. The XGBF-DNN model performance is
compared with SP, support vector regressor (SVR), extreme gradient
boost (XGBoost), RF and DNN. Results indicate the effectiveness of the
hybrid XGBF-DNN technique over other models. A comparative study
of SVM and with XGBoost for hour-ahead GHI forecasting is performed
in [38]. Findings demonstrate that the forecasting accuracy XGBoost
model is better than the SVM model. Moreover, the computational
speed of the XGBoost model is found to be 3.07 s as compared to 31.61 s
of SVM.

2.4. Hybrid models for SI forecasting

Hybrid models are a combination of different methodologies that
aim to utilize the advantages of each technique while minimizing
their limitations. In the domain of SI forecasting, hybrid models have
gained popularity due to their promising potential for providing better
accuracy and resilience. For instance, a hybrid model of MC with the
‘persistence approach’ and ‘neighbor inference approach’ is compared
with the ‘persistence’ model in [39] on the datasets containing input
parameters of four locations: Athens, Bucharest, Berlin and Helsinki.
The hybrid model performs better than the persistence model on each
dataset. In the case of Berlin city, an average improvement of 2.5 Wm−2

in the MAE for each month is achieved over the persistence model. A

hybrid LSTM model with meta-heuristics bio-inspired algorithm cuckoo
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search (CS) for day-ahead SI forecasting is presented in [40]. The PCC
is used for feature extraction, and hyper-parameters of the LSTM model
are optimized using CS and improved cuckoo search (ICS) algorithms.
For comparison between ICS-LSTM and CS-LSTM models, RMSE and
MAE are used as performance indicators. Findings depict that ICS-
LSTM produces better results than the CS-LSTM model. For 5- and
10-minute intervals forecast, the hybrid model of LSTM with sky image
data is performed in [12]. Findings show that for a 5-minute interval
forecast, LSTM with sky image data produces better results. While
the performance of the model without a sky image is better for a
10-minute interval forecast. A hybrid approach consisting seasonal
clustering forecasting technique (SCFT) with an LSTM model for hour-
ahead SI forecasting is performed in [41]. The datasets of 19 years
of six different locations are collected from NSRDB. The dataset is
first clustered into 4 types using a seasonality clustering algorithm.
In the next stage, further classification of data into sunny, cloudy
and rainy hours is performed by the K-mean clustering algorithm.
3D-LSTM model is then trained on these clusters of data. The best
recorded RMSE is 13.48 Wm−2, which is for the dataset of Tripoli,
Libya. A hybrid model of deep LSTM with the aggregation function
based on the choquet integral is presented in [42]. The dataset contains
parameters of six different locations in Finland. The proposed model’s
performance for hour-ahead SI forecasting is evaluated using RMSE,
which is found to be 26.71, 30.33, 29.88, 20.77, 30.32 and 19.72 Wm−2

for six different sites. A hybrid technique of the CNN-LSTM model for
hour-ahead GHI forecasting for the dataset of Texas, USA, is studied
in [43]. CNN network is used to extract the spatial features then the
LSTM model is applied with spatiotemporal correlation for hour-ahead
prediction. The proposed technique is compared with CNN and LSTM
models. Results demonstrate the superiority of the hybrid CNN-LSTM
approach over the CNN and LSTM models.

Various techniques for SI forecasting have been explored in the
literature, including statistical models, ML algorithms and hybrid ap-
proaches. While these methods have merits, some key limitations create
scope for improving accuracy and robustness. For instance, the pri-
mary advantage of statistical techniques lies in their ability to capture
linear relationships and patterns in time series data, making them
suitable for short-term forecasts. However, their performance can be
limited when dealing with non-linearities or when external factors like
weather conditions influence the SI. On the other hand, ML models
such as SVM, ANN and LSTM offer enhanced performance compared
to statistical techniques. The DL models often require huge amounts of
data for model training, and their black-box nature makes them less
interpretable. Despite these challenges, their ability to adapt and learn
from non-linear data makes them a promising avenue for SI predictions.
However, complex DL architectures like LSTM and RNN are prone to
overfitting and have high computational costs.

Ensemble learning techniques, such as boosting algorithms, have
become popular in SI forecasting due to their ability to adapt and
handle complex patterns in data. Though boosting algorithms have
advantages such as flexibility and reduced overfitting, they can be com-
putationally demanding and sensitive to hyper-parameter tuning. They
may have interpretability issues, which require careful consideration
before deployment. To overcome these challenges, hybrid approaches
have been proposed to combine the strengths of different techniques
while mitigating their weaknesses. However, the success of these mod-
els depends on a well-designed methodology. In particular, weather
conditions significantly impact the performance of SI forecasting mod-
els. Thus, data must be categorized based on weather conditions.
Additionally, as the complexity of data increases, there is a higher
risk of overfitting and computational challenges. Therefore, feature
engineering is crucial in selecting the most relevant features for the
model, reducing computational demands, and minimizing overfitting.
As a solution, this study proposes a WC-CB algorithm that combines
RF and K-means clustering for feature selection and weather catego-
rization. Finally, CatBoost is used for prediction, ensuring a balance
5

between performance and computational efficiency.
3. Proposed methodology

The complete methodology of the proposed WC-CB approach con-
sists of many steps, as shown in Fig. 2. The first step is the data
collection and data pre-processing, followed by K-mean clustering. In
the third step, model training is done using the clustered data and
performance evaluation is done in the fourth step. The details of each
step of our proposed scheme are discussed as follows:

1. The SI data of two distant geographical locations is collected
from NSRDB [44]. This data is enriched with a plethora of
weather parameters, including DHI, DNI, temperature, pressure,
wind speed, wind direction, and cloud type. In the first step, data
preprocessing is done, which includes data normalization and
dimensionality reduction.

2. K-mean clustering algorithm is executed based on clear sky DHI
for the weather classification of data into cloudy and sunny
hours. Moreover, to access the effect of clustering based on mul-
tiple parameters, the classification of data with two parameters
based on clear sky DHI and cloud type is performed.

3. In the third step, the CatBoost model is trained, and results are
compared with models like AdaBoost, BiLSTM and GRU using
weather-classified data for a fair comparison.

4. Finally, the models’ performances are evaluated using different
error measurement techniques and results are documented.

The details of each step are further elaborated in the subsequent
section.

3.1. Data preprocessing

Data preprocessing is one of the crucial steps, ensuring high-quality
structured data as input to improve the predictive performance. In this
study, the preprocessing phase includes data normalization and feature
engineering. Data normalization is an important process when dealing
with raw data that comes from diverse sources or sensors. This type of
data can have discrepancies in scale and range, which can negatively
impact the performance of ML models. Normalization solves this issue
by transforming all numeric columns to a standard scale, thus ensuring
that no particular feature has an unfair influence on the model due
to its range. In this work, we use the Min–Max scaler, which rescales
every feature to the interval [0, 1]. This means that the smallest value
in the dataset becomes 0, the largest becomes 1, and all other values
are adjusted proportionally [45]. Using this scaling method retains the
original distribution of the data, ensuring that relationships between
values remain intact.

When dealing with complex datasets, the amount of data can be
enormous. However, not all features contribute equally to the pre-
dictive power of a model. Some may be redundant or even cause
noise, which can lead to sub-optimal performance. Therefore, it is
important to perform feature selection. In this study, RF is used due
to its effectiveness in feature selection. The RF is a supervised learning
algorithm that constructs multiple decision trees during training and
provides the mean prediction for regression. One of its major strengths
is the ability to calculate a feature importance score that indicates the
contribution of each feature to the prediction [46]. The RF’s built-in
estimator function gauges the significance of each feature concerning
the target variable [47].

3.2. K-mean clustering algorithm

Clustering algorithms are broadly classified into two types: parti-
tional and hierarchical. A non-overlapping group of data is formed in
partitional clustering, while in hierarchical clustering, a set of hierar-
chical clusters is created by a distance matrix [48]. K-mean clustering

is a partitional clustering method first introduced by Stuart Lloyd [49].
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Fig. 2. The flow diagram of proposed WC-CB.
The number of centroids in which data is divided is predetermined.
The data points are clustered into different groups by evaluating the
mean distance between them. The mechanism is repeated over time
to give accurate classification [14]. By iteration, the algorithm tries to
minimize the square error function to link data points and centroids.
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is the distance between data points 𝑥𝑖𝑗 and cluster

point 𝑚𝑖. There are many ways to determine the number of clusters into
which dataset is divided. In the present study, we use the elbow method
to determine the optimal number of clusters into which the dataset
is divided [50]. Weather data is complex, with multiple variables,
including temperature, humidity, wind speed, and others, that interact
in intricate ways. Clustering, particularly K-means, provides a means of
identifying unique patterns within this complexity, which is essential
for SI forecasting. In essence, by segmenting the data into meaningful
clusters, models can be tailored to specific weather patterns, leading to
improved performance and more nuanced insights.

3.3. Categorical boosting (CatBoost)

CatBoost is a GB on decision trees algorithm developed by Yandex
researchers and engineers. CatBoost algorithm finds its application
in recommendation systems, personal assistance, self-driving cars and
forecasting tasks [51]. CatBoost has two distinct features over other
GB algorithms, and that is ordered boosting and efficient dealing with
categorical features [52]. In this algorithm, a complex ensemble learn-
ing technique is used in which decision trees are created sequentially.
During training, the decision trees are created in such a way that
each subsequent tree learns from its forerunner to minimize the loss
function [53]. Unlike other GB algorithms, CatBoost work on oblivious
trees. In oblivious trees, only one feature is selected on a specific level
of a tree. The decision rules about splitting criteria are made according
to that specific feature. In other boosting algorithms, the weak learners
are enhanced during each iteration which causes the over-fitting of a
final learner. Because of the oblivious trees chance of over-fitting is
6

low, and the execution speed of the CatBoost model also improves [54].
In the ordered boosting of the CatBoost 𝑁 different supporting model
say (𝑁1, 𝑁2,… , 𝑁𝑛) are created. Each new model is trained on the
residual training set unseen by the previous model. At the first stage
𝑎 + 1, independent random permutation {𝜎1, 𝜎2,… , 𝜎𝑠} for the training
set are generated. The leaf values from the obtained tree are selected
using permutation 𝜎0. Let us consider we have 𝑁𝑟𝑗 model and 𝑁𝑟𝑗 (𝑖)
is the prediction of the model at the 𝑖th example with permutation 𝜎𝑟.
During model execution, the permutation from the set {𝜎1, 𝜎2,… , 𝜎𝑠}
is sampled for the construction of the tree 𝑇𝑡. The gradient for the
corresponding prediction 𝑁𝑟𝑗 (𝑖) is calculated as

𝑔𝑟𝑎𝑑𝑟𝑗 = (𝜕𝐿(𝑏𝑖, 𝑎))∕𝜕𝑎, 𝑎 = 𝑁𝑟,𝑗 (𝑖) (2)

Where 𝑏 represents the target variable [55]. The CatBoost algorithm is
mostly used for classification tasks. In the proposed study, we imple-
ment CatBoost model for time series forecasting in hybridization with
the K-mean clustering algorithm.

3.4. Adaptive boosting (AdaBoost)

Freund and Schapire first introduced AdaBoost algorithm, which
is widely used in different sectors with different applications [56].
AdaBoost is a learning algorithm in which more attention is paid to
weak classifiers of the base learner. The AdaBoost algorithm also works
sequentially. At first, a base learner is divided into a weak and strong
classifiers. At each iteration, weak classifiers are enhanced by adding
sample weight to improve the model’s performance. The next base
learner is trained by these added samples [57]. AdaBoost overcomes the
two main problems with the other boosting algorithms: the adjustment
of a weak classifier with a training dataset and the combination of
a trained weak classifiers to create a strong classifier. The AdaBoost
algorithm was first introduced for classification purposes. However, in
recent years it also finds its application in different regression problems
e.g., for day-ahead SI forecasting [34].

3.5. Bidirectional long short-term memory network (BiLSTM)

The RNN model has two shortcomings. First is the carrying and
retrieval of information over a long period. Second, the vanishing
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Fig. 3. Bidirectional LSTM structure.
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gradient is because of backpropagation. To overcome the associated
problems of RNN, the LSTM model is developed as one of the variants
[58]. LSTM has a gated structure consisting of input, output and forget
gates. Sigmoid activation and ‘tanh’ activation functions, in conjunction
with the gating logic, at layers architecture, carry the information over
a long period and overcome the vanishing gradient problem [31]. In
this paper, for comparative analysis, we use the BiLSTM model for
the prediction of hour-ahead GHI. Both forward and backward time
series are used by the BiLSTM model to extract more information about
past and future timestamps. This bidirectionality feature provides more
information to the network [59]. This is contrary to the conventional
LSTM model in which the flow of input is either in a forward or
backward direction. This bidirectionality feature improves the models’
forecasting accuracy. The basic structure of BiLSTM is shown in Fig. 3.
The input layer data 𝑋𝑡−1 together with the outputs of forward and
backward layers gives the output 𝑌𝑡−1 at the output layer. The BiLSTM
works under the following equations [60].

𝑓 (𝜏) = 𝜎[𝑊𝑓𝑥 (𝜏) + 𝑈𝑓ℎ (𝜏 − 1) + 𝑏𝑓 ] (3)

𝑖 (𝜏) = 𝜎
[

𝑊𝑖𝑥 (𝜏) + 𝑈𝑖ℎ (𝜏 − 1) + 𝑏𝑖
]

(4)

𝑐𝑜 (𝜏) = 𝜑[𝑊𝑐𝑥 (𝜏) + 𝑈𝑐ℎ (𝜏 − 1) + 𝑏𝑐 ] (5)

𝑜 (𝜏) = 𝜎
[

𝑊𝑜𝑥 (𝜏) + 𝑈𝑜ℎ (𝜏 − 1) + 𝑏𝑜
]

(6)

𝑐 (𝜏) = 𝑓 (𝜏)
⨀

𝑐 (𝜏 − 1) + 𝑖 (𝜏)
⨀

𝑐𝑜 (𝜏) (7)

ℎ (𝜏) = 𝑜 (𝜏)
⨀

𝜑[𝑐 (𝜏)] (8)

Where (𝑊𝑓 , 𝑊𝑖, 𝑊𝑜, 𝑊𝑐 , 𝑈𝑓 , 𝑈𝑖, 𝑈𝑜, 𝑈𝑐) and (𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐) are
the weights and biases, respectively, which are independent of time.
Moreover, 𝑓 (𝜏), 𝑖 (𝜏) and 𝑜(𝜏) denote forget, input and output gates,
respectively. Whereas 𝑐 (𝜏) and ℎ(𝜏) are cell and hidden states, re-
spectively. The symbols: 𝜑, 𝜎 and ⨀ represent ‘tanh’, sigmoid and
element-wise multiplication functions, correspondingly.

3.6. Gated recurrent unit (GRU)

GRU is one of the types of neural networks (NNs) first introduced
by Kyunghyun Cho in 2015 [61]. The goal of GRU network is to solve
the vanishing gradient problem of the conventional RNN model. Like
LSTM, GRU also has gated architecture. It consists of two gates: an
update gate and a reset gate. The retention of information is determined
by the update gate. The reset gate governs which information is not
7

worthy, and it helps the model to get rid of it. This gated architecture
helps the model to overcome the vanishing gradient problem [62].
GRU network is different from the LSTM network in one aspect it does
not have memory cells [63]. The following equations summarize the
working of GRU [64].

ℎ𝑡 = (1 − 𝑧𝑡 ) ℎ𝑡−1 + 𝑧𝑡 ℎ
′
𝑡 (9)

𝑧𝑡 = 𝜎(𝑊𝑧 𝑥𝑡 + 𝑈𝑧 (ℎ𝑡−1)) (10)

′
𝑡 = tanh(𝑊ℎ 𝑥𝑡 + 𝑈 (𝑟𝑡

⨀

ℎ𝑡−1)) (11)

𝑡 = 𝜎(𝑊𝑟 𝑥𝑡 + 𝑈𝑟 ℎ𝑡−1) (12)

Where ℎ𝑡 and ℎ𝑡′ denote output and candidate output, respectively.
he update and reset gates are denoted by 𝑧𝑡 and 𝑟𝑡. 𝑊𝑧, 𝑊𝑟, 𝑊ℎ, 𝑈𝑧
nd 𝑈𝑟 represent metrics in GRU. The element-wise multiplication is
epresented by ⨀.

.7. Performance evaluation

The performances of predictive models can be evaluated by using
ifferent error measurement techniques. In the proposed study, four er-
or measurement techniques: RMSE (Wm−2), NRMSE (%), MAE (Wm−2)
nd MSE (Wm−2) are used for performance evaluation. These error
easurement techniques are defined by the following equations [65].

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝐼=1
(𝑋𝐼 − 𝑌𝐼 )2 (13)

𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
max(𝑌𝐼 ) − min(𝑌𝐼 )

∗ 100 (14)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝐼=1
|𝑋𝐼 − 𝑌𝐼 | (15)

𝑆𝐸 = 1
𝑁

𝑁
∑

𝐼=1
(𝑋𝐼 − 𝑌𝐼 )

2 (16)

Where 𝑋𝐼 , 𝑌𝐼 are measured and predicted values, respectively, and 𝑁
represents the total number of values.

4. Data processing and model configuration

This section presents the dataset description, the process of feature
engineering and hyper-parameter tuning for model training. The details

are further discussed in the subsequent section.
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Fig. 4. Feature Importance identification with strong influence on target variable using RF for the dataset of two cities: (a) Golden and (b) Johannesburg.
Table 1
Dataset description.

Location Latitude Longitude Data size (Years)

Golden, Colorado, USA 39.75700◦ −105.22058◦ 2 (2019–2020)
Johannesburg, SA −26.195246◦ 28.034088◦ 1 (2019)

4.1. Dataset description and division

The datasets used in this study were gathered from two different
locations, Golden, Colorado, USA, and Johannesburg, South Africa.
The selection of distinct locations was intentional as we aimed to
test the robustness and adaptability of our proposed model to diverse
8

climatic conditions and SI patterns. This diversity ensures the model’s
applicability across varied terrains and weather conditions, avoiding
over-reliance on specific geographic or climatic contexts. These two
datasets are sourced from the NSRDB and are detailed in Table 1. The
data from Golden spans two years, from January 1, 2019, to December
31, 2020, while the Johannesburg dataset covers the entirety of 2019.

These datasets encompass a rich array of meteorological features,
including DHI (Wm−2), DNI (Wm−2), clear sky DHI (Wm−2), clear
sky DNI (Wm−2), clear sky GHI (Wm−2), temperature (◦C), relative
humidity (%), pressure (mbr), wind speed (ms−1), wind direction (◦),
surface albedo, dew point (◦C), solar zenith angle (◦), perceptible
water, and cloud type. Such comprehensive data offers a holistic view
of the weather conditions, which is crucial for accurate GHI predictions.
In the proposed study, we adopt an 80–20 split, where 80% of the data
is used for the training and 20% for the testing.
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Fig. 5. Weather classification using K-mean clustering algorithm (a) Golden (b) Johannesburg.
Table 2
Search space for RF hyper-parameters.

Hyper-parameters Search space

N-estimators {20, 60, 100, 120, 150, 200}
Min-samples-split {2, 5}
Min-samples-leaf {1, 2}
Max-samples {0.5, 0.6, 0.7, 0.75}
Max-features {0.2, 0.6, 1.0}
Max-depth {2, 8, None}
Bootstrap {True, False}

4.2. Feature selection

The datasets of both locations contain 15 features. In the first stage,
RF is used for feature selection, and with extensive analysis, the top
10 features given in Fig. 4 are chosen for model training. Specifically,
RF identified the top 10 features that have the maximum influence on
hourly GHI forecasting. The results show that parameters like DHI, DNI,
clear sky DHI, clear sky DNI, temperature, humidity, solar zenith angle,
wind speed, and cloud type emerged as the most important features
influencing the performance of the model. The search space for RF
hyper-parameters is given in Table 2.

Once feature selection is done, the K-mean clustering is used to
categorize the data in cloudy and sunny hours. The results in Fig. 5
show the weather classification of the SI data, which has been catego-
rized into sunny and cloudy hours based on the DHI single parameter
clustering. This weather classification is significant because it separates
sunny conditions with high clear sky DHI from cloudy conditions with
low DHI reducing the variability and uncertainty associated with SI
forecasting. The separation of data into distinct clusters allows the
9

Table 3
Search space for the CatBoost model’s hyper-parameters.

Hyperparameters Search space

Iteration {200, 300, 400}
Learning rate {0.1, 0.01, 0.03}
Depth {2, 4, 6,8}
L2 leaf regularization {0.2, 0.5, 1, 3}

model to capture distinct relationships and trends within each weather
category, improving the effectiveness of the training process.

4.3. Hyper-parameter tuning

After selecting the best subset of features with weather-categorized
data, the next step is training the model. This requires extensive hyper-
parameter tuning to ensure a robust ML model. Appropriate tuning of
the parameters not only influences the model’s predicting accuracy but
the computational speed and memory requirements are also affected.
Different algorithms are introduced in the literature for tuning parame-
ters. In this proposed study, parameters are tuned for cloudy and sunny
hours cluster data individually. For the proposed CatBoost model, the
number of iterations, learning rate, depth and L2 leaf regularization are
the hyper-parameters that are tuned by grid search. The search space
used for the parameters’ tuning for the CatBoost model is presented in
Table 3.

Three different optimization solvers: adaptive movement estimation
(ADAM), stochastic gradient descent (SGD) and root mean squared
propagation (RMSprop) are tested for the BiLSTM model. ADAM was
found to be the best solver. Moreover, the hyper-parameters opti-
mized for BiLSTM are also used for GRU. The search space used for
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Fig. 6. Bar chart representation of RMSE for hybrid and conventional CatBoost models.
Table 4
Search space for the BiLSTM model’s hyper-parameters.

Hyperparameters Search space

Input shape 3D
No. of hidden layer {2, 3, 4, 5}
No. of units in each hidden layer {32, 64, 96, 128}
Learning rate {0.1, 0.05, 0.001, 0.0001}
Optimizers {ADAM, SGD, RMSprop}
Batch size {16, 32}
No. of epochs {50, 100, 150, 200}

hyper-parameters tuning of BiLSTM model is given in Table 4. The
AdaBoost parameters: the maximum number of estimators and learning
rate are also optimized for all types of weather-classified data. The
learning rate of 0.1 and 100 estimators are found to be the best for
all weather-classified data by the grid search algorithm.

5. Results and discussion

This section explains the results obtained from our WC-CB model,
emphasizing their implications and broader significance. The results
of the proposed WC-CB are compared with the established models,
BiLSTM, GRU, and AdaBoost, specifically for hour-ahead GHI forecast-
ing. Our analysis leverages two distinct real-world datasets to ensure
a robust evaluation of the proposed model. Furthermore, a thorough
comparative analysis is presented, including graphical representations
that compare the forecasted and measured GHI. Moreover, detailed
insights into the model’s performance under various clustering param-
eters are also discussed. In addition, a comparison of the proposed
WC-CB model with traditional techniques is given in the literature to
place our findings in the broader research context.

5.1. Hybrid vs. conventional CatBoosting

Initially, the proposed WC-CB approach is compared with the con-
ventional CatBoost model, which is trained on non-weather classified
data. In Table 5, the results of the comparative analysis of hybrid
and conventional CatBoost models are presented. The improvement of
16.23% and 9.5% on the dataset of Golden City, while 39.08% and
6.8% for Johannesburg is achieved in RMSE and MAE, respectively,
compared to the conventional model. Tailoring the modelling to dis-
tinct sunny and cloudy conditions through weather-based clustering
can significantly reduce forecast errors. This is because creating data
subsets corresponding to different irradiance patterns enables more
10
Table 5
Performance evaluation of hybrid and conventional CatBoost models.

Location Model RMSE MSE MAE NRMSE
(Wm−2) (Wm−2) (Wm−2) (%)

Golden WC-CB 2.27 7.19 1.32 0.48
Conventional 2.71 7.37 1.46 0.38

Johannesburg WC-CB 2.4 6.96 1.5 0.49
Conventional 3.94 15.57 1.61 0.46

specialized learning of the unique relationships and trends. The WC-CB
approach, therefore, provides improved modelling and higher accuracy
than global modelling on the full dataset without weather context.
In Fig. 6, the RMSE of WC-CB and conventional CatBoost models is
presented as a bar chart. Like the hybrid approach, the large dataset
size also improves the performance of the traditional CatBoost model,
as all four performance indicators give better results on the dataset of
Golden than Johannesburg city.

5.2. Single parameter clustering

The data is categorized based solely on the clear sky DHI parameter
in single-parameter clustering. Using the K-means clustering algorithm,
the classification outcomes for two distinct locations, Golden, Colorado,
and Johannesburg, South Africa, are presented in Fig. 5. The data is
divided into two clusters systematically, representing sunny and cloudy
conditions. This strategic classification facilitates the identification of
distinct irradiance patterns corresponding to varying weather condi-
tions, helping the ML model to learn specific relationships inherent
to each weather type. This nuanced approach significantly improves
the forecasting accuracy of the models. We employ four metrics to
evaluate the model’s performance: RMSE, MSE, MAE, and NRMSE. The
corresponding results are presented in Table 6.

Upon analysis, it is evident that the proposed WC-CB model per-
forms much better when compared to other models, namely AdaBoost,
BiLSTM, and GRU, across both datasets. Specifically, for the Golden
city dataset, the WC-CB model achieved average RMSE, MSE, MAE, and
NRMSE values as 2.27, 7.19, 1.32, and 0.48, respectively. In contrast,
the recorded average values for the Johannesburg dataset were 2.40,
6.96, 1.5, and 0.49, respectively. We made an interesting observation
during our study regarding the impact of dataset size on the accuracy
of predictions. Like traditional ML models, the prediction accuracy of
the WC-CB model improves when trained on larger datasets. This is
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Fig. 7. The average RMSE of all four models in the form of a bar chart. It is clearly evident from the results that the proposed WC-CB performs better compared to other
techniques.
Table 6
Proposed hybrid and other models obtained results.

Location Model RMSE MSE MAE NRMSE
(Wm−2) (Wm−2) (Wm−2) (%)

Cloudy Sunny Avg. Cloudy Sunny Avg. Cloudy Sunny Avg. Cloudy Sunny Avg.

Golden

WC-CB 0.82 3.71 2.27 0.67 13.72 7.19 0.32 2.36 1.32 0.24 0.73 0.48
AdaBoost 4.08 17.47 10.8 16.65 305.46 161.1 2.93 15.58 9.25 1.33 3.9 2.62
BiLSTM 19.4 40.29 24.8 376.42 1623.4 999.9 8.09 27.86 17.9 6.44 8.09 7.27
GRU 24.33 44.12 34.2 592.05 1946.7 1269.4 13.26 31.37 22.3 9.32 8.13 8.73

Johannesburg

WC-CB 1.32 3.49 2.4 1.73 12.19 6.96 0.52 2.41 1.5 0.34 0.64 0.49
AdaBoost 3.45 18.47 10.9 11.89 341.18 176.5 2.17 16.25 9.21 0.95 3.39 2.17
BiLSTM 24.19 57.25 40.7 585.49 3277.7 1931.6 11.41 39.76 25.6 7.35 10.64 8.99
GRU 30.63 67.62 49.1 940.25 4573.4 2756.8 12.35 51.27 31.8 10.5 13.89 12.2
Table 7
Inference time of models.

Location Model Inference time (Seconds)

Golden

WC-CB 0.064
AdaBoost 0.111
BiLSTM 2.62
GRU 1.6

evident from the superior forecasting results achieved with the Golden
City dataset compared to the Johannesburg dataset.

The results in Fig. 7, depict the bar chart of average RMSE. The
results show that the WC-CB model consistently outperforms the other
models in terms of RMSE for both locations. The GRU model lagged in
forecasting accuracy compared to other techniques. Furthermore, the
WC-CB model demonstrated better forecasting results during cloudy
than sunny hours. Another crucial aspect of model performance is
inference time, tabulated in Table 7. The WC-CB model boasts the best
inference time, closely followed by AdaBoost. In contrast, the BiLSTM
model exhibited the longest inference time among the models studied.

To show the effectiveness of the WC-CB approach, a fitted line plot
of measured GHI against the output of the hybrid model is depicted in
Fig. 8. A fitted line plot is a scatter plot displaying points against the
regressor line. The model’s predictive accuracy improves as the points
get closer to the regressor line and vice versa. Thus, Fig. 9 demonstrates
that the proposed WC-CB model’s forecasting accuracy is high for both
types of clustered data as the predicted result of the proposed approach
is close to the fitted line.
11
5.3. Two parameter clustering

This section delves into the outcomes when employing a two-
dimensional clustering approach, utilizing two variables for GHI data
classification. The Golden City dataset is used to evaluate how two
parameters affect model classification performance. Fig. 10 depicts the
outcome of classification using two parameters. The results of all four
models on classified data are presented in Table 8. The result demon-
strates the superiority of the proposed approach over other models. The
average RMSE 2.75, 11.3, 34.5 and 42.3 Wm−2 is recorded for WC-CB,
AdaBoost, BiLSTM and GRU, respectively. With two parameters-based
clustering techniques, the errors are further reduced for cloudy cluster
data, while the performances of models deteriorate for the cluster of
sunny hours. This is because more data points are now located in a
cloudy cluster, and the size of the sunny cluster dataset has decreased.
However, the overall performances of the models are not improved
from the former classification approach. Therefore, the classification
of data with one parameter is suited for prediction tasks because of
better predicting accuracy than a classification approach based on two
parameters.

The results in Table 9 thoroughly assess the performance of the
ML models, WC-CB, AdaBoost, BiLSTM, and GRU, across two locations,
Golden and Johannesburg, under different weather conditions, such as
cloudy and sunny. The performance metric used in the evaluation is
RMSE, a widely accepted measure for evaluating the performance of
a predictive model by measuring the deviation from the actual values.
To ensure the reliability of the assessment, the study uses bootstrap
resampling, a well-known method for estimating the distribution of a
statistic (in this case, RMSE) by random sampling with replacement
from the test dataset. This method helps calculate the confidence
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Fig. 8. Graphical representation of measured and predictive GHI. (a) Golden cloudy hours. (b) Golden sunny hours. (c) Johannesburg cloudy hours. (d) Johannesburg sunny hours.
Table 8
Results of the proposed and other models with two parameters clustering.

Location Model RMSE MSE MAE NRMSE
(Wm−2) (Wm−2) (Wm−2) (%)

Cloudy Sunny Avg. Cloudy Sunny Avg. Cloudy Sunny Avg. Cloudy Sunny Avg.

Golden

WC-CB 0.69 4.78 2.75 0.49 22.93 11.7 0.31 2.51 1.41 0.21 0.93 0.57
AdaBoost 4.06 18.59 11.3 16.52 345.61 181.1 3 16.64 9.82 1.32 4.19 2.75
BiLSTM 18.63 50.32 34.5 347.18 2531.9 1439.5 7.16 36.15 21.7 6.1 10.75 8.43
GRU 38.08 46.5 42.3 1449.9 2162.3 1806.1 21.84 32.37 27.1 5.25 9.82 7.53
intervals for each model’s RMSE, providing insights into the precision
and reliability of predictions.

We present a 95% confidence interval for each model, and the range
indicates where the actual RMSE value is likely to be found with 95%
probability. We derive this confidence interval from the distribution of
RMSE values obtained from numerous bootstrap samples from our test
set. The narrow confidence interval (0.69, 0.99) of the WC-CB model
for the Golden City location indicates a relatively high level of precision
in cloudy conditions. The AdaBoost, BiLSTM, and GRU models follow
a similar trend, with generally wider intervals under sunny conditions
than cloudy ones. This suggests that the model’s performance varies
with weather conditions. Furthermore, our results suggest that the WC-
CB model consistently outperforms the other models in terms of RMSE
across different weather conditions and locations. We use bootstrap
resampling for confidence interval estimation, which provides a com-
prehensive understanding of the models’ performance variability. This
reinforces the reliability of our comparative analysis.
12
5.4. Literature comparison

In this section, we compare the performance of the proposed WC-CB
model with the techniques reported in the literature for hour-ahead GHI
forecasting. In [11,41], the datasets of New York and Tripoli cities are
used, collected from NSRDB. We collected these two cities’ datasets and
applied them to the proposed model. In Table 10, a comparison of the
proposed technique with the models presented in [11,41] is presented.

The comparative analysis demonstrates the superiority of the pro-
posed WC-CB model over other approaches presented in the literature
for predicting hour-ahead GHI. The effectiveness of the proposed model
is due to the boosting phenomena of CatBoost and the clustering
strategy, which reduce uncertainties. The datasets used in this study
also contain exogenous variables. The model’s forecasting accuracy also
depends on the accurate measurement of exogenous variables.

In light of our comprehensive analysis, the results underscore the

efficacy and robustness of the proposed WC-CB model, particularly
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Fig. 9. Graphical representation of measured and predictive GHI. (a) Golden cloudy hours. (b) Golden sunny hours. (c) Johannesburg, cloudy hours. (d) Johannesburg sunny hours.
Table 9
Comparative Bootstrap confidence intervals for RMSE for comparison under different
weather conditions in Golden and Johannesburg cities. The narrower confidence
interval indicates higher precision..

Location Cluster Model Confidence interval RMSE (W/m2)

Golden

Cloudy

WC-CB [0.69, 0.97] 0.82 ± 0.15
AdaBoost [3.96, 4.37] 4.08 ± 0.29
BiLSTM [17.52, 21.15] 19.40 ± 1.75
GRU [22.53, 26.29] 24.33 ± 1.96

Sunny

WC-CB [3.23, 4.19] 3.71 ± 0.48
AdaBoost [16.98, 18.01] 17.47 ± 0.54
BiLSTM [37.32, 43.13] 40.29 ± 2.84
GRU [41.11, 46.88] 44.12 ± 3.01

Johannesburg

Cloudy

WC-CB [1.16, 1.47] 1.32 ± 0.15
AdaBoost [3.10, 3.78] 3.45 ± 0.33
BiLSTM [20.92, 27.47] 24.19 ± 3.28
GRU [27.44, 33.83] 30.63 ± 3.2

Sunny

WC-CB [2.94, 4.18] 3.49 ± 0.69
AdaBoost [17.83, 19.08] 18.47 ± 0.61
BiLSTM [50.65, 63.58] 57.25 ± 6.33
GRU [61.11, 74.46] 67.62 ± 6.84

for hour-ahead GHI forecasting. The model’s performance is notewor-
thy, especially compared to other established models such as BiLSTM,
GRU, and AdaBoost. The single-parameter clustering, which catego-
rizes data based on the clear sky DHI parameter, has enhanced the
model’s forecasting performance. This strategic classification facilitates
the identification of distinct irradiance patterns corresponding to vary-
ing weather conditions, enabling the ML model to capture specific
relationships inherent to each weather type. Furthermore, the reduced
inference time of the proposed WC-CB, especially compared to other
13
models like BiLSTM, underscores its efficiency and potential for real-
time applications. It is important to highlight the limitations despite
the promising results of the WC-CB model presented in the study. The
approach of clustering with a single parameter is effective but may
not capture all the complexities of different weather patterns. Hence,
using more sophisticated clustering techniques could lead to improved
accuracy, which needs a through investigation. There are also concerns
about the model’s generalization, particularly concerning long-term
weather patterns or datasets with varying temporal resolutions. Ad-
ditionally, the hybrid nature of the WC-CB model adds complexity,
which could pose challenges when interpreting and troubleshooting the
results.

6. Conclusions and future work

In this paper, we proposed a hybrid WC-CB model for hourly SI
forecasting using historical data. Our approach has a unique strength
as it strategically integrates multiple methodologies. For instance, RF
captures feature importance, effectively addressing the inherent vari-
ability in solar data to avoid overfitting. Additionally, K-means clus-
tering is used for data segmentation into distant weather conditions
(sunny/cloudy), which ensures that the model is trained on more homo-
geneous data subsets. This reduces the potential for large errors due to
sudden weather shifts. Weather-specific data partitioning is a key rea-
son for the model’s low errors. Finally, CatBoost, with power handling
of categorical data and iterative GB mechanism, refines predictions by
learning from previous errors, ensuring accuracy and computational
efficiency. This ensemble design outperforms BiLSTM, GRU and Ad-
aBoost thanks to its adaptation to specific domain intricacies and prior
feature selection and clustering steps, resulting in superior forecasting
performance and faster inference.
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Fig. 10. Clustering using two parameters.
Table 10
Comparison of the proposed model with other approaches.

Ref Journal publisher Location Mode RMSE MAE
(Wm−2) (Wm−2)

[11] IEEE Access New York, USA K-mean-LSTM 41.37 30.19
[41] IEEE Transaction Tripoli, Libya, North Africa SCFT-LSTM 13.48 10.05

on Industrial informatics
Proposed model New York, USA WC-CB 2.16 1.37
Proposed model Tripoli, Libya, North Africa WC-CB 2 1.36
The extensive analysis on two distinct real-world datasets from
geographically diverse locations demonstrates the robustness of WC-CB.
The approach not only outperforms the conventional CatBoost model
trained without clustering but also underscores the scientific value
added by this research. Additionally, comprehensive benchmarking
also proves WC-CB’s superiority over state-of-the-art techniques like
BiLSTM, GRU and AdaBoost in metrics of RMSE, MAE, and inference
time. In the context of performance comparison, the WC-CB model
achieves the overall improvement of 16.23% and 9.5% on the dataset
of Golden city while 39.08% and 6.8% for Johannesburg’s dataset in
terms of RMSE and MAE, respectively, as compared to the conventional
model. The improved SI forecasting can facilitate better renewable en-
ergy integration, load scheduling, and grid management. Applications
such as unit commitment and economic dispatch can leverage improved
predictions to create more efficient and sustainable energy systems.

On the scientific front, this research has contributed to the unique
integration, not commonly seen in existing literature, combining RF,
K-means, and CatBoost, tailored specifically for SI forecasting. The
workflow, which combines selective feature extraction, weather catego-
rization, and tuned boosting, provides a holistic and impactful solution,
setting a benchmark for future research in this domain. However,
it is essential to acknowledge potential limitations and areas for fu-
ture research. Evaluating performance under diverse weather scenarios
and investigating optimal classification techniques can help achieve
robustness across broader deployments. Incorporating the forecasting
model into practical power system operations will validate its real-
world efficacy. Furthermore, hyper-parameter tuning and algorithmic
refinements tailored to solar data nuances can potentially further im-
prove accuracy, offering a promising direction for subsequent studies.
While WC-CB has showcased significant promise, its adaptability to
regions with extreme weather fluctuations or its scalability to larger
datasets remains to be explored.

CRediT authorship contribution statement

Ubaid Ahmed: Writing – review & editing, Writing – original
draft, Software, Methodology, Investigation, Formal analysis, Concep-
tualization. Ahsan Raza Khan: Writing – review & editing, Writing –
original draft, Methodology, Formal analysis, Conceptualization. Anzar
14
Mahmood: Writing – review & editing, Supervision, Methodology, In-
vestigation, Conceptualization. Iqra Rafiq: Writing – review & editing,
Investigation, Formal analysis. Rami Ghannam: Writing – review &
editing, Conceptualization. Ahmed Zoha: Writing – review & editing,
Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

This study used the publicly available dataset.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT
in order to improve the language, grammar, and connectivity of the
manuscript. After using ChatGPT, the authors reviewed and edited the
content as needed and took full responsibility for the content of the
publication.

References

[1] J. Sheffield, World population growth and the role of annual energy use per
capita, Technol. Forecast. Soc. Change 59 (1) (1998) 55–87.

[2] Key world energy statistics 2021, IEA, Paris. URL https://www.iea.org/reports/
key-world-energy-statistics-2021. (Accessed 8 March 2022).

[3] S. Miao, G. Ning, Y. Gu, J. Yan, B. Ma, Markov chain model for solar farm
generation and its application to generation performance evaluation, J. Clean.
Prod. 186 (2018) 905–917.

[4] I.N. Jiya, R. Gouws, Overview of power electronic switches: A summary of
the past, state-of-the-art and illumination of the future, Micromachines 11 (12)
(2020) 1116.

[5] D. Gielen, R. Gorini, N. Wagner, R. Leme, L. Gutierrez, G. Prakash, E. Asmelash,
L. Janeiro, G. Gallina, G. Vale, et al., Global Energy Transformation: A Roadmap
to 2050, Institution of Gas Engineers and Managers (IGEM), 2019.

[6] A.R. Khan, A. Mahmood, A. Safdar, Z.A. Khan, N.A. Khan, Load forecasting,
dynamic pricing and DSM in smart grid: A review, Renew. Sustain. Energy Rev.
54 (2016) 1311–1322.

http://refhub.elsevier.com/S1568-4946(24)00215-1/sb1
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb1
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb1
https://www.iea.org/reports/key-world-energy-statistics-2021
https://www.iea.org/reports/key-world-energy-statistics-2021
https://www.iea.org/reports/key-world-energy-statistics-2021
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb3
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb3
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb3
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb3
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb3
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb4
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb4
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb4
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb4
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb4
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb5
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb5
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb5
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb5
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb5
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb6
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb6
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb6
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb6
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb6


Applied Soft Computing 155 (2024) 111441U. Ahmed et al.
[7] H. Malik, N. Fatema, A. Iqbal, Intelligent Data-Analytics for Condition
Monitoring: Smart Grid Applications, Academic Press, 2021.

[8] M.F. Anjos, A.J. Conejo, et al., Unit commitment in electric energy systems,
Found. Trends® Electr. Energy Syst. 1 (4) (2017) 220–310.

[9] N. Singh, Y. Kumar, Multiobjective economic load dispatch problem solved by
new PSO, Adv. Electr. Eng. 2015 (2015).

[10] C.N. Obiora, A. Ali, A.N. Hasan, Forecasting hourly solar irradiance using long
short-term memory (LSTM) network, in: 2020 11th International Renewable
Energy Congress, IREC, Hammamet, Tunisia, IEEE, 2020, pp. 1–6.

[11] Y. Yu, J. Cao, J. Zhu, An LSTM short-term solar irradiance forecasting under
complicated weather conditions, IEEE Access 7 (2019) 145651–145666.

[12] Y. Lin, D. Duan, X. Hong, X. Cheng, L. Yang, S. Cui, Very-short-term solar
forecasting with long short-term memory (LSTM) network, in: 2020 Asia Energy
and Electrical Engineering Symposium, AEEES, Chengdu, China, IEEE, 2020, pp.
963–967.

[13] F. Serttas, F.O. Hocaoglu, E. Akarslan, Short term solar power generation
forecasting: A novel approach, in: 2018 International Conference on Photovoltaic
Science and Technologies, PVCon, Ankara, Turkey, IEEE, 2018, pp. 1–4.

[14] R. Zafar, B.H. Vu, M. Husein, I.-Y. Chung, Day-ahead solar irradiance forecasting
using hybrid recurrent neural network with weather classification for power
system scheduling, Appl. Sci. 11 (15) (2021) 6738.

[15] H. Tyler, Why is the weather so hard to predict?, Let’s Talk Sci-
ence. URL https://letstalkscience.ca/educational-resources/stem-in-context/why-
weather-so-hard-predict. (Accessed 6 November 2022).

[16] B. Singh, D. Pozo, A guide to solar power forecasting using ARMA models,
in: 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe,
Bucharest, Romania, IEEE, 2019, pp. 1–4.

[17] D. Yang, P. Jirutitijaroen, W.M. Walsh, Hourly solar irradiance time series
forecasting using cloud cover index, Sol. Energy 86 (12) (2012) 3531–3543.

[18] S. Hussain, A. Al Alili, Day ahead hourly forecast of solar irradiance for abu
dhabi, UAE, in: 2016 IEEE Smart Energy Grid Engineering, SEGE, Oshawa, ON,
Canada, IEEE, 2016, pp. 68–71.

[19] S. Garg, A. Agrawal, S. Goyal, K. Verma, Day ahead solar irradiance forecasting
using Markov chain model, in: 2020 IEEE 17th India Council International
Conference, INDICON, New Delhi, India, IEEE, 2020, pp. 1–5.

[20] S. Garg, A. Agrawal, S. Goyal, K. Verma, Day ahead solar irradiance forecasting
using different statistical techniques, in: 2020 IEEE International Conference on
Power Electronics, Drives and Energy Systems, PEDES, Jaipur, India, IEEE, 2020,
pp. 1–4.

[21] J. Boland, M. David, P. Lauret, Short term solar radiation forecasting: Island
versus continental sites, Energy 113 (2016) 186–192.

[22] C. Harsito, T. Triyono, E. Rovianto, Analysis of heat potential in solar panels
for thermoelectric generators using ANSYS software, Civ. Eng. J. 8 (7) (2022)
1328–1338.

[23] W. Musa, V. Ponkratov, A. Karaev, N. Kuznetsov, L. Vatutina, M. Volkova,
O. Shalina, A. Masterov, Multi-cycle production development planning for
sustainable power systems to maximize the use of renewable energy sources,
Civ. Eng. J. 8 (11) (2022) 2628–2639.

[24] A.W. Aryaputera, D. Yang, W.M. Walsh, Day-ahead solar irradiance forecasting
in a tropical environment, J. Sol. Energy Eng. 137 (5) (2015).

[25] P. Bendiek, A. Taha, Q.H. Abbasi, B. Barakat, Solar irradiance forecasting using
a data-driven algorithm and contextual optimisation, Appl. Sci. 12 (1) (2021)
134.

[26] C. Paoli, C. Voyant, M. Muselli, M.-L. Nivet, Forecasting of preprocessed daily
solar radiation time series using neural networks, Sol. Energy 84 (12) (2010)
2146–2160.

[27] T. Mutavhatsindi, C. Sigauke, R. Mbuvha, Forecasting hourly global horizontal
solar irradiance in South Africa using machine learning models, IEEE Access 8
(2020) 198872–198885.

[28] R. Marquez, C.F. Coimbra, Forecasting of global and direct solar irradiance using
stochastic learning methods, ground experiments and the NWS database, Sol.
Energy 85 (5) (2011) 746–756.

[29] A. Alzahrani, P. Shamsi, M. Ferdowsi, C. Dagli, Solar irradiance forecasting using
deep recurrent neural networks, in: 2017 IEEE 6th International Conference on
Renewable Energy Research and Applications, ICRERA, San Diego, California,
USA, Ieee, 2017, pp. 988–994.

[30] N. Sharma, R. Sharma, N. Jindal, Machine learning and deep learning
applications-a vision, Glob. Transit. Proc. 2 (1) (2021) 24–28.

[31] M.S. Hossain, H. Mahmood, Short-term photovoltaic power forecasting using
an LSTM neural network and synthetic weather forecast, IEEE Access 8 (2020)
172524–172533.

[32] X. Qing, Y. Niu, Hourly day-ahead solar irradiance prediction using weather
forecasts by LSTM, Energy 148 (2018) 461–468.

[33] Z. Zixuan, Boosting algorithms explained, Medium. URL https://
towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30. (Accessed
8 November 2022).

[34] M. Kamble, S. Ghosh, P. Patel, Solar irradiance prediction using meteorological
data by ensemble models, in: 2nd International Conference on Data, Engineering
and Applications, IDEA, Bhopal, India, IEEE, 2020, pp. 1–6.
15
[35] S. Tiwari, R. Sabzehgar, M. Rasouli, Short term solar irradiance forecast using
numerical weather prediction (NWP) with gradient boost regression, in: 2018 9th
IEEE International Symposium on Power Electronics for Distributed Generation
Systems, PEDG, Charlotte, NC, USA, IEEE, 2018, pp. 1–8.

[36] L. Benali, G. Notton, A. Fouilloy, C. Voyant, R. Dizene, Solar radiation forecasting
using artificial neural network and random forest methods: Application to normal
beam, horizontal diffuse and global components, Renew. Energy 132 (2019)
871–884.

[37] P. Kumari, D. Toshniwal, Extreme gradient boosting and deep neural network
based ensemble learning approach to forecast hourly solar irradiance, J. Clean.
Prod. 279 (2021) 123285.

[38] J. Fan, X. Wang, L. Wu, H. Zhou, F. Zhang, X. Yu, X. Lu, Y. Xiang, Comparison
of support vector machine and extreme gradient boosting for predicting daily
global solar radiation using temperature and precipitation in humid subtropical
climates: A case study in China, Energy Convers. Manage. 164 (2018) 102–111.

[39] X. Hou, K. Papachristopoulou, Y.-M. Saint-Drenan, S. Kazadzis, Solar radiation
nowcasting using a Markov chain multi-model approach, Energies 15 (9) (2022)
2996.

[40] V.A. Tikkiwal, S.V. Singh, H.O. Gupta, Day-ahead forecasting of solar irradiance
using hybrid improved cuckoo search-lstm approach, in: 2020 2nd International
Conference on Advances in Computing, Communication Control and Networking,
ICACCCN, Greater Noida, India, IEEE, 2020, pp. 84–88.

[41] N. Omar, H. Aly, T. Little, Seasonal clustering forecasting technique for intelligent
hourly solar irradiance systems, IEEE Trans. Ind. Inform. (2022).

[42] M. Abdel-Nasser, K. Mahmoud, M. Lehtonen, Reliable solar irradiance forecasting
approach based on choquet integral and deep LSTMs, IEEE Trans. Ind. Inform.
17 (3) (2020) 1873–1881.

[43] H. Zang, L. Liu, L. Sun, L. Cheng, Z. Wei, G. Sun, Short-term global horizontal
irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal
correlations, Renew. Energy 160 (2020) 26–41.

[44] NSRDB: National solar radiation database, NREL Transforming Energy. URL
https://nsrdb.nrel.gov/data-viewer. (Accessed 22 October 2022).

[45] Normalize data component, Azure, Microsoft. URL https://learn.microsoft.com/
en-us/azure/machine-learning/component-reference/normalize-datar. (Accessed
10 November 2022).

[46] M.B. Kursa, W.R. Rudnicki, Feature selection with the boruta package, J. Stat.
Softw. 36 (2010) 1–13.

[47] M.K. Boutahir, Y. Farhaoui, M. Azrour, I. Zeroual, A. El Allaoui, Effect of feature
selection on the prediction of direct normal irradiance, Big Data Min. Anal. 5
(4) (2022) 309–317.

[48] A. Ahmad, L. Dey, A k-mean clustering algorithm for mixed numeric and
categorical data, Data Knowl. Eng. 63 (2) (2007) 503–527.

[49] P. Vora, B. Oza, et al., A survey on k-mean clustering and particle swarm
optimization, Int. J. Sci. Mod. Eng. 1 (3) (2013) 24–26.

[50] M.A. Syakur, B.K. Khotimah, E.M.S. Rochman, B.D. Satoto, Integration k-means
clustering method and elbow method for identification of the best customer
profile cluster, in: IOP Conference Series: Materials Science and Engineering,
Yekaterinburg, Russia, vol. 336, IOP Publishing, 2018, 012017.

[51] CatBoost, Yandex. URL https://catboost.ai/r. (Accessed 10 November 2022).
[52] S. Hussain, M.W. Mustafa, T.A. Jumani, S.K. Baloch, H. Alotaibi, I. Khan, A.

Khan, A novel feature engineered-CatBoost-based supervised machine learning
framework for electricity theft detection, Energy Rep. 7 (2021) 4425–4436.

[53] G. Huang, L. Wu, X. Ma, W. Zhang, J. Fan, X. Yu, W. Zeng, H. Zhou, Evaluation
of CatBoost method for prediction of reference evapotranspiration in humid
regions, J. Hydrol. 574 (2019) 1029–1041.

[54] T. Simon, CatBoost regression in 6 minutes, Medium. URL https:
//towardsdatascience.com/catboost-regression-in-6-minutes-3487f3e5b329.
(Accessed 10 November 2022).

[55] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, CatBoost:
Unbiased boosting with categorical features, Adv. Neural Inf. Process. Syst. 31
(2018).

[56] R.E. Schapire, Explaining AdaBoost, in: Empirical Inference: Festschrift in Honor
of Vladimir N. Vapnik, Springer, 2013, pp. 37–52.

[57] F. Wang, Z. Li, F. He, R. Wang, W. Yu, F. Nie, Feature learning viewpoint of
AdaBoost and a new algorithm, IEEE Access 7 (2019) 149890–149899.

[58] H. Widiputra, GA-optimized multivariate CNN-LSTM model for predicting multi-
channel mobility in the COVID-19 pandemic, Emerg. Sci. J. 5 (5) (2021)
619–635.

[59] H. Cheng, Z. Xie, L. Wu, Z. Yu, R. Li, Data prediction model in wireless
sensor networks based on bidirectional LSTM, EURASIP J. Wireless Commun.
Networking 2019 (1) (2019) 1–12.

[60] L. Rahman, N. Mohammed, A.K. Al Azad, A new LSTM model by introducing
biological cell state, in: 2016 3rd International Conference on Electrical Engineer-
ing and Information Communication Technology, ICEEICT, Dhaka, Bangladesh,
IEEE, 2016, pp. 1–6.

http://refhub.elsevier.com/S1568-4946(24)00215-1/sb7
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb7
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb7
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb8
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb8
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb8
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb9
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb9
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb9
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb10
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb10
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb10
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb10
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb10
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb11
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb11
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb11
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb12
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb13
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb13
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb13
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb13
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb13
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb14
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb14
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb14
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb14
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb14
https://letstalkscience.ca/educational-resources/stem-in-context/why-weather-so-hard-predict
https://letstalkscience.ca/educational-resources/stem-in-context/why-weather-so-hard-predict
https://letstalkscience.ca/educational-resources/stem-in-context/why-weather-so-hard-predict
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb16
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb16
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb16
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb16
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb16
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb17
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb17
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb17
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb18
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb18
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb18
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb18
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb18
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb19
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb19
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb19
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb19
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb19
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb20
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb21
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb21
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb21
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb22
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb22
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb22
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb22
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb22
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb23
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb24
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb24
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb24
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb25
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb25
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb25
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb25
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb25
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb26
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb26
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb26
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb26
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb26
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb27
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb27
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb27
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb27
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb27
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb28
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb28
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb28
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb28
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb28
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb29
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb30
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb30
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb30
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb31
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb31
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb31
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb31
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb31
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb32
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb32
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb32
https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30
https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30
https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb34
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb34
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb34
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb34
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb34
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb35
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb36
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb37
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb37
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb37
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb37
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb37
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb38
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb39
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb39
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb39
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb39
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb39
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb40
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb41
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb41
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb41
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb42
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb42
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb42
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb42
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb42
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb43
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb43
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb43
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb43
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb43
https://nsrdb.nrel.gov/data-viewer
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/normalize-datar
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/normalize-datar
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/normalize-datar
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb46
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb46
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb46
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb47
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb47
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb47
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb47
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb47
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb48
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb48
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb48
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb49
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb49
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb49
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb50
https://catboost.ai/r
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb52
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb52
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb52
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb52
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb52
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb53
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb53
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb53
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb53
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb53
https://towardsdatascience.com/catboost-regression-in-6-minutes-3487f3e5b329
https://towardsdatascience.com/catboost-regression-in-6-minutes-3487f3e5b329
https://towardsdatascience.com/catboost-regression-in-6-minutes-3487f3e5b329
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb55
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb55
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb55
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb55
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb55
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb56
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb56
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb56
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb57
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb57
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb57
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb58
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb58
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb58
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb58
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb58
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb59
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb59
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb59
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb59
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb59
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb60


Applied Soft Computing 155 (2024) 111441U. Ahmed et al.
[61] Y. Gao, D. Glowacka, Deep gate recurrent neural network, in: Asian Conference
on Machine Learning, Bangkok, Thailand, PMLR, 2016, pp. 350–365.

[62] K. Simeon, Understanding GRU networks, Medium. URL https://
towardsdatascience.com/understanding-gru-networks-2ef37df6c9be. (Accessed
11 November 2022).

[63] K. Yao, T. Cohn, K. Vylomova, K. Duh, C. Dyer, Depth-gated recurrent neural
networks, 9, 2015, p. 98, arXiv preprint arXiv:1508.03790.
16
[64] R.A. Rajagukguk, R.A. Ramadhan, H.-J. Lee, A review on deep learning models
for forecasting time series data of solar irradiance and photovoltaic power,
Energies 13 (24) (2020) 6623.

[65] Z. Wang, T. Zhang, Y. Shao, B. Ding, LSTM-convolutional-BLSTM encoder-
decoder network for minimum mean-square error approach to speech
enhancement, Appl. Acoust. 172 (2021) 107647.

http://refhub.elsevier.com/S1568-4946(24)00215-1/sb61
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb61
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb61
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
http://arxiv.org/abs/1508.03790
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb64
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb64
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb64
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb64
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb64
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb65
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb65
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb65
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb65
http://refhub.elsevier.com/S1568-4946(24)00215-1/sb65

	Short-term global horizontal irradiance forecasting using weather classified categorical boosting
	Introduction
	Literature Review
	Statistical Models for SI Forecasting
	Machine Learning Models for SI Forecasting
	Boosting Algorithms in SI Forecasting
	Hybrid Models for SI Forecasting

	Proposed Methodology
	Data preprocessing
	K-mean Clustering Algorithm
	Categorical Boosting (CatBoost)
	Adaptive Boosting (AdaBoost)
	Bidirectional Long Short-Term Memory Network (BiLSTM)
	Gated Recurrent Unit (GRU)
	Performance evaluation

	Data Processing and Model Configuration
	Dataset Description and Division
	Feature Selection
	Hyper-parameter tuning

	Results and Discussion
	Hybrid vs. Conventional CatBoosting
	Single Parameter Clustering
	Two Parameter Clustering
	Literature comparison

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	References


