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L E T T E R

Colostrum is required for the postnatal ontogeny of small 
intestine innate lymphoid type 2 cells and successful 
anti- helminth defences

To the Editor,
Colostrum is the physiological food for the first 72 h of a newborn.1 
Its window of intake and high content in microbiota- shaping and 
growth factors1 suggest that colostrum is critical in guiding gut im-
mune development. To address this hypothesis, we developed a 
mouse model of colostrum deprivation (Figure 1A). Like humans, 
mice have different lactation stages.2 We compared pups nursed im-
mediately after birth by dams that no longer produced colostrum 
(Day 9 of lactation, a well- defined lactation stage in mice that is dis-
tinct from colostrum2) with control pups. This allowed us to assess 
the causal role of colostrum in the perinatal expansion of two cell 
types important in gut immune regulation, namely ILCs and CD4+ 
T cells.

While we found a major increase in small intestine ILC2 fre-
quency and numbers between Days 7 and 14 in control mice, ILC2 
expansion was severely compromised when mice were deprived of 
colostrum (Figure 1B). Colostrum deprivation did not impact gut ILC, 
ILC1, ILC3, CD4+ T cells, Th1, Th2, Th17 and Treg cells represen-
tation in 2- week- old mice (Figure S1), suggesting a selective effect 
of colostrum on ILC2 ontogeny. The low numbers of Th1, Th2 and 
Th17 cells are consistent with the predominantly naïve T cell com-
partment at this time point of life.3 A more detailed analysis of CD4 
T- cell phenotype including T- cell activation and their response to 
inflammatory signals remains to be performed to fully elucidate the 
role of colostrum in T- cell ontogeny.

To verify that the decreased representation of ILC2 in 14- day- old 
mice was due to the imprinting of a different trajectory due to the 
absence of colostrum at birth, we performed two additional exper-
iments. First, we investigated whether the impact of the interven-
tion on ILC2 at Day 14 was due to changes in diet at birth versus 
at later time points. Therefore, pups were cross- fostered at Day 
10, instead of Day 0, to dams that gave birth 9 days earlier than 
their biological mothers. As shown in Figure S2A, their percentage 
and number of ILC2 at Day 14 were similar to ctrl mice demon-
strating that ILC2 ontogeny is not affected by exposure to ‘old’ milk 
at the time when ILC2 massively expands. We then investigated 
whether the reduced ILC2 expansion in mice nursed from birth by 
dams at Day 9 of lactation was due to colostrum deprivation versus 

exposure to mature milk at birth. We cross- fostered pups at birth to 
dams that had delivered only 3 days earlier. Similar to mice nursed 
by mothers at Day 9 of lactation, we found a major decrease in 
the representation of ILC2 compared to control mice (Figure S2B), 
supporting the hypothesis that colostrum at birth is required for 
ILC2 ontogeny.

Given the importance of the microbiota in gut immune ontogeny, 
we next evaluated whether colostrum shaped the gut microbiota.3 
Both the alpha and beta diversity of the gut microbiota significantly 
differed between control and colostrum- deprived 2- week- old mice 
(Figure S3A,B). To address whether this difference played a causal 
role in decreased ILC2 expansion in colostrum- deprived mice, ex-
periments were repeated in germ- free mice. As observed in specific 
pathogen- free mice, we found that colostrum deprivation resulted 
in a 30% decrease in small intestine ILC2 compared to control germ- 
free mice (Figure S3C), indicating that the role of colostrum in ILC2 
ontogeny is microbiota independent.

The alarmins, IL- 33, IL- 25 and TSLP, play a major role in ILC2 
proliferation and/or activation.4 During the first days of lung alve-
olarization, transient high levels of IL- 33 were found to promote 
ILC2 accumulation.5 We also observed a transient increase in IL- 33 
secretion in the gut of 4- day- old control mice, which was two- fold 
lower in colostrum- deprived mice (Figure 1C). In addition to IL- 33, 
IL- 25, which is known to be important for gut ILC2 expansion/ac-
tivation was significantly reduced in colostrum- deprived mice at 
Day 4 (Figure 1C). TSLP has a synergistic effect on the proliferation 
and Type 2 cytokine production of ILC2 and may be particularly im-
portant in early life where IL- 33 alone is not sufficient to activate 
cytokine secretion.4 We also found a trend towards reduced TSLP 
secretion in colostrum- deprived mice (Figure 1C). Altogether, these 
data strongly suggest an important role for colostrum in alarmins- 
driven perinatal ILC2 expansion.

Whereas we found that colostrum intake affected neither 
the circulating pool of ILC2 nor the expression of gut- homing 
molecules CCR9 and α4β7 on small intestine ILC2 nor their pro-
liferation (Figure S4A–C), we found a threefold increase in apop-
totic ILC2 in colostrum- deprived 2- week- old mice compared 
to controls (Figure 1D). The reduction in alarmins secretion in 
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colostrum- deprived mice may contribute to their increased apop-
totic death of ILC2.4

Finally, we evaluate the functional consequences of a decreased 
representation of small intestine ILC2 in colostrum- deprived mice by 
measuring their gut content in IL- 13 and their ability to clear helminth 
infection, which is known to involve ILC2.5 IL- 13 levels in gut tissues 
form colostrum- deprived mice were significantly reduced compared 
to control mice (Figure 1E). When 3- week- old colostrum- deprived 

mice were infected with Heligmosomoides polygyrus, twice as many 
worms in the intestine and threefold more eggs in the faeces were 
found 21 days later, compared to control mice (Figure 1F), show-
ing the decreased ability of colostrum- deprived mice to efficiently 
control helminth infection later in life. Our data suggest that the 
reduced representation of ILC2 underlies this increased suscepti-
bility to helminth infection. Future studies will establish whether 
other characteristics of colostrum- deprived mice may explain this 

F I G U R E  1  (A) Mouse model of colostrum deprivation. Colostrum- deprived pups were cross- fostered at birth by dams that were no longer 
providing colostrum ((postnatal day (PND) = 9); no colostrum dam, orange). Control groups were cross- fostered at birth by dams that just 
delivered (Day 0) (Ctrl dam, black). (B–E) Gut ontogeny. (B) Flow cytometry analysis of small intestine ILC2 on PND 4, 7 and 14. Left panel. 
Individual data on ILC2 number frequency among total ILC and their number assessed by flow cytometry. Right panel. Dot plot showing 
concatenated event- number controlled averages of ILC2 of all animals from within each condition from a single experiment (C) Kinetic of 
gut tissue IL- 33, IL- 25 and TSLP content (D) Flow cytometry analysis of AnnexinV+ apoptotic gut ILC2 . Left panel. Individual data. Right 
panel. Dot plot showing concatenated event- number controlled averages of AnnexinV+ ILC2 (E) Gut Tissue IL- 13 content at Day 14 (F, G) 
Susceptibility to helminth infection (F) Number of worms in small intestine and eggs in the faeces 21 days post Heligmosomoides polygyrus 
infection in 3- week- old mice. (G) Prevalence of helminths in faeces of 1- 3- year- old Ugandan children who were breastfed within or after 
1 h after delivery; (A–E) Data represent mean +/− sem and individual values; n = 5–8 mice per group, four experiments (B), one experiment 
(C–F). Statistical significance of the differences between ctrl and No colostrum groups was analyzed using Mann–Whitney test and between 
different time points using Kruskal–Wallis test. (*p < .05; **p < .01; ***p < .001, ****p < .0001). (F) Statistical significance determined using 
Fisher test.
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observation. As a first step in translating our findings to humans, we 
analyzed the association between delayed initiation of breastfeed-
ing (based on WHO guidelines recommending initiation within 1 h6), 
a practice that deprives the newborn of the full dose of colostrum, 
and the susceptibility to helminth infection in young children. Three- 
hundred mothers and their children (aged 1–3 years) were recruited 
in Uganda, and data on early feeding practices were collected ret-
rospectively (Table 1). Among mothers who initiated breastfeeding 
after 1 h, 78% initiated breastfeeding on the first day of life, 17% on 
Day 2 and 5% after 1 week. Delayed initiation of breastfeeding was 
strongly associated with an increased risk for helminth infection [OR 
(95% CI): 5.3 (1.9–15.06, p = .009)] (Figure 1G). Data remained signif-
icant after adjustment for maternal and child age, which differed be-
tween the two groups [aOR (95% CI): 6.6 (2–22)]. A limitation of this 
proof- of- concept study is the recall bias on early feeding practice. 
To fully establish the importance of colostrum in the prevention of 
helminth infections, prospective studies specifically addressing the 
relationship between the amount of colostrum feeding and helminth 
infections will be required.

Mouse and human data show there is a massive infiltration of 
ILC2 in the infant small intestine7,8; however, factors involved in this 
process remained unknown. This work uncovers a critical role for 
colostrum in gut ILC2 ontogeny and reveals its importance for anti- 
helminth defence. Given the importance of ILC2 in the regulation 
of allergic responses,5 future research will need to address the im-
pact of colostrum deprivation at birth on allergy risk. Despite WHO 
guidelines, more than half of newborns globally are non- optimally 
colostrum- fed,6 which deprives the newborn of colostrum bioac-
tives at a time of both high vulnerability and critical developmental 
change. There is strong evidence that optimal colostrum feeding has 

a major impact on the prevention of neonatal mortality, especially in 
low- and middle- income countries.9 Our data provide evidence that 
colostrum may also be fundamental in imprinting healthy immune 
development. Expanding the knowledge on colostrum bioactives re-
sponsible for ILC2 expansion should lead to a major impact on child 
health.
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TA B L E  1  Maternal and children characteristics.

Full cohort Early breastfeeding initiation Delayed breastfeeding initiation

p- value(N = 300) (N = 282) (N = 18)

Maternal age [years; mean (SD)] 27.3 (6.7) 27.6 (6.7) 22.6 (5.3) .002**

Child age [years; mean (SD)] 2.26 (0.7) 2.28 (0.7) 1.92 (0.7) .03*

Vaginal delivery [n (%)] 296 (99) 279 (99) 17 (95) .17

Birthing location [n (%)] .96

Institution 218 (73) 205 (73) 13 (72)

Home 82 (27) 77 (27) 5 (28)

Infant Sex (female) [n (%)] 152 (51) 144 (51) 8 (44) .58

Gestation age term (>37 weeks) [n (%)] 286 (95) 270 (96) 16 (89) .2

Breastfeeding parameters

Early initiation of breastfeeding 282 (94)

Exclusive Breastfeeding for first 
6 months [n (%)]

93 (31) 87 (30) 6 (33) .8

Duration of any Breastfeeding [months; 
Median (IQR)]

14 (12,18) 14 (12,18) 14 (12,18)

Children with helminth infection [n (%)] 24 (8) 19 (6) 5 (28) .009**

Note: Unpaired t- tests were used to compare continuous variables and Pearson’s Chi square or Fisher’s exact tests to compare categorical variables. 
*p < .05; **p < .01.
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