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Accuracy of IGBT junction temperature prediction: 

An improved sailfish algorithm to optimize support 

vector machine 
 

Lingling Li, Jiaqi Liu, Ming-Lang Tseng and Ming K. Lim 
 

 Abstract—This study improves the accuracy of junction 

temperature prediction, as the IGBT reliability is important for 

the safe operation of its working system due to junction 

temperature is limited in its actual performance and reliability. 

A model based on improved sailfish optimization algorithm to 

optimize support vector machine (ISFO-SVM) is proposed to 

solve the problem that the junction temperature prediction 

accuracy is not high enough. The proposed algorithm is 

improved by adaptive nonlinear iterative factor, Le'vy flight and 

differential mutation strategy to optimize the support vector 

machine internal parameters to predict junction temperature. 

The results indicate that ISFO-SVM performs better under the 

same evaluation indexes. The RMSE average value decreased 

by 67.189%, and the MAPE average value decreased by 

63.189%, compared with sailfish optimization algorithm to 

optimize support vector machine. The prediction error of ISFO-

SVM is smaller and the error value is in the [-5℃, 5℃] range 

accounting for 98.270% of the total test samples. ISFO-SVM 

has a higher fitting degree than the actual junction temperature 

and the R2 has reached 99.660%. The model predicts the 

junction temperature of IGBT modules and provides scientific 

guidance for system reliability evaluation to maintain safe and 

stable operation effectively. 

 
Index Terms—improved sailfish optimization algorithm; support 

vector machine; junction temperature prediction; Insulated Gate 

Bipolar Transistor 

 

I. INTRODUCTION 

nsulated gate bipolar transistor (IGBT) has the advantages 

of bipolar junction transistor and metal oxide 

semiconductor field effect transistor that is the most 

representative product of the third revolution of power 

electronics technology, and its reliability plays a significant part 

in the safe operation of application system. IGBT is used in 
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medium and high-power semiconductor devices [1]. Prior 

studies related reliability problems have been gradually 

concerned with the wide use of power electronic devices [2] [3]. 

IGBT produces large switching loss, and result in large junction 

temperature fluctuation of IGBT module in the working 

environment of high-frequency and large-power [4]. Generally, 

the IGBT failure probability is doubled every 10 ℃ rise of 

ambient temperature [5]. Meanwhile, the junction temperature 

represents the IGBT actual temperature [6]. This has an 

sinificant impact on the power converter conversion efficiency 

and safety. It is necessary to obtain the junction temperature 

accurately for ensuring the reliable operation of the module. 

The junction temperature is an important parameter to 

characterize the reliability of the module. 

Especially, the failure rates of different components in power 

electronic devices are different according to the relevant 

industrial research statistical data. Fig. 1 shows that the highest 

failure rate in power electronic devices, accounting for 34% [7]. 

The power semiconductor device is the weakest link in the 

whole power electronic device, and its reliability greatly 

restricts the reliability of the whole device. Literature [8] 

claimed that the measurement method of IGBT junction 

temperature has gone through a process from the original 

measurement method of unpacking the packaging structure, 

sensor and fiber optic detection technology to the novel 

mathematical junction temperature calculation models. The 

development of computational intelligence, intelligent 

algorithms, machine learning and other technologies are 

gradually being applied to IGBT junction temperature 

calculation and prediction [9]. How is the improvement of 

IGBT junction temperature prediction and uses to evaluating 

IGBTs’ reliability effectively? 

Yet, a combined prediction model based on intelligent 

algorithms and machine learning is established to obtain 

accurate IGBT junction temperature by studying the working 

characteristics and failure mechanism, and analyzing the 
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relationship between IGBT junction temperature and other 

parameters[10]. This is significant for the safe and stable 

operation of power converter devices and the sustainable 

development of the new energy industry. 

 
(a)                                                     (b) 

Fig. 1. (a) Failure rate of different devices in power electronic 

devices; (b) Proportion of power semiconductor devices used 

This study establishes an improved sailfish algorithm to 

optimize support vector machine  (ISFO-SVM) prediction 

model to obtain the junction temperature and evaluates its 

reliability by analyzing the IGBT junction temperature 

prediction. The proposed model learns the relationship among 

the characterization parameters and the actual junction 

temperature through the combined prediction model training 

process, and achieve more accurately prediction by optimizing 

the machine learning model random parameters using 

intelligent algorithm. The contributions are as follows: 

⚫ A high-precision and novel-type prediction model is 

established based on ISFO-SVM. 

⚫ An ISFO with strong global search capabilities and 

better optimization capabilities is proposed in view of the 

limitations of SFO.  

⚫ The internal parameters of support vector machine 

(SVM) are optimized by ISFO, and the prediction results 

obtained by ISFO-SVM are better than other methods 

comparatively. 

⚫ The proposed model improves the prediction 

accuracy, contributes to effectively evaluating IGBTs’ 

reliability, and improving the reliability of system. 

The structure is as follows: the related literature is introduced 

and analyzed in section Ⅱ; the test platform is established in 

section Ⅲ, and the relationship of relevant parameters is 

analyzed; the ISFO is proposed and the prediction model based 

on ISFO-SVM is established in section Ⅳ; section Ⅴ analyzes 

and verifies the model using experimental data; conclusions and 

implications are presented in section Ⅵ. 

II. LITERATURE REVIEW 

A. IGBT junction temperature prediction 

The methods of obtaining junction temperature are divided 

into three categories: simulation analysis, experimental 

measurement, and numerical calculation [11]. 

The simulation analysis method predicts junction 

temperature by establishing the model based on the electrical 

and thermal characteristics [12]. A calculation model based on 

electrical-thermal coupling is introduced in [13] and the whole 

radiator was decoupled into several subdivision elements 

representing different heat dissipation boundary conditions to 

estimate temperature. However, this method has only been 

studied on one inverter, so its generalizability may be limited. 

Literature [14] presented solder fatigue level into the electrical-

thermal model, and this model can estimate junction 

temperature. This model is only validated for one type and lacks 

universality analysis. Literature [15] presented that an 

electrothermal management was proposed and based on gate 

voltage to monitor junction temperature. The transient thermal 

model of IGBT junction temperature with different physical 

parameters was simulated by finite element analysis method, 

and the simulation results were verified. However, the impact 

of environmental factors on its reliability was not considered 

that has certain limitations. In sum, the IGBT reliability is 

evaluated by establishing electrical and thermal models or 

coupling models to estimate the junction temperature, but the 

prediction accuracy and generalizability need to be improved. 

The experimental measurement methods include contact 

measurement method and non-contact measurement method 

[16]. The contact measurement method involves directly 

assessing the temperature on the surface or within the 

component using thermal sensors, probe sensors, and similar 

devices [17]. For example, literature [18] achieved accurate 

measurement of IGBT current using compact online sensors. 

Literature [19] used thermistor sensors and temperature 

observers to monitor changes in the internal temperature of 

IGBT module. However, the operation steps of the contact 

measurement method are relatively complex and usually 

require opening the IGBT package. Compared to contact 

measurement methods, non-contact measurement methods 

have simpler operating steps and do not require opening the 

IGBT package. Instead, devices such as infrared thermal 

imagers and laser displacement sensors are directly used to 

measure the surface temperature of the equipment. By 

analyzing the temperature changes on the surface of the 

equipment, the temperature of internal components can be 

inferred. A laser displacement sensor to measure temperature 

with the different deformation of ceramic substrates was used 

in [20], and the simulation model was established and verified 

that the model can accurately predict within the error range of 

7.3%. But this method of obtaining data is not very suitable 

under operating conditions. In summary, the implementation of 

experimental measurement methods requires a variety of 

equipment types and high precision requirements for the 

equipment. Therefore, the procurement and maintenance of 

equipment require a certain amount of cost. 

The numerical calculation methods establish a mapping 

relationship between electrical parameters and junction 

temperature, and can to observe the junction temperature by 

monitoring the status of electrical parameters [21] [22]. 

Literature [23] elaborated on the relationship between the 

junction temperature, conduction current, and maximum 

recovery current to establish a junction temperature monitoring 

model. Literature [24] conducted a detailed analysis of IGBT 

fault related parameters and established the relationship 

between IGBT junction temperature and other parameters by 

surface fitting the data. Due to the nonlinearity of most 

parameter changes, the predicted junction temperature values 

obtained by traditional methods are not accurate enough. The 
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artificial intelligence methods are derived from numerical 

calculation techniques and good at learning patterns and 

regularities within actual data. By extracting features from the 

data, they delve deeply into the complex relationships between 

the junction temperature of IGBT and input parameters. 

Empirical evidence indicates that, compared to traditional 

numerical calculation methods, artificial intelligence methods 

exhibit stronger prediction accuracy and generalization 

capabilities [25]. 

B. Artificial intelligence in junction temperature prediction 

Computer intelligence, machine learning and combined 

models are developing rapidly to show the advantages of 

smaller error and higher prediction accuracy [26] [27]. A high-

precision IGBT junction temperature online detection model 

was established by [28], which used step-wise regression 

method to optimize the model parameters. However, there is a 

lack of universal validation of the model. The IGBT prediction 

model based on ant colony algorithm optimized Gaussian 

process (GP) model was established by [29], compared with the 

original GP, which improved the prediction accuracy shown by 

prediction results. However, the complexity of GP is relatively 

high. Machine learning can discover patterns and rules from 

large amounts of data, and utilize these rules for prediction and 

decision-making, thereby improving efficiency and creating 

more value. Therefore, machine learning can explore the 

potential connections between the characterization parameters 

and junction temperature, and utilize these patterns to achieve 

high-precision prediction. 

SVM is a machine learning model with advantages such as 

efficiency, nonlinear classification ability, robustness, 

generalization ability, and interpretability, and it has become a 

powerful tool for dealing with large-scale data regression and 

complex classification problems [30]. In this study, SVM is 

selected to characterize the potential relationship between 

parameters and junction temperature for accurate prediction. 

However, the internal parameters of SVM greatly influence 

predictive ability. SFO algorithm is a new intelligent algorithm 

proposed, and it has been applied to solve many optimization 

problems [31]. For instance, Literature [32] used the improved 

SFO to solve the berth allocation problem. In [33], the sigmoid 

transfer function was introduced into SFO to improve the 

development capability. Therefore, SFO is used to solve 

optimization problems, and is selected to optimize the internal 

parameters in this study.  

An ISFO algorithm is proposed to deal with the limitations 

of SFO and further improve the convergence and optimization 

performance. A better prediction model based on ISFO-SVM is 

established. The proposed model achieves iterative 

optimization of SVM internal parameters through ISFO to 

improve the prediction accuracy, accelerate the training 

process, and better handle the nonlinear problem between IGBT 

junction temperature and other parameters. This method also 

provides a reference method for the reliability prediction of 

other devices. 

III. EXPERIMENT 

A. Establishment of test platform 

Power cycle test is a technical means to monitor and 

investigate the aging and failure process of IGBT power 

modules throughout their entire lifecycle. As illustrated in Fig. 

2, the power cycle test can be conducted in two ways. In the 

constant junction temperature fluctuation (Tj) power cycle 

aging test, the opening and closing times are brief, enabling the 

junction temperature to rapidly reach a stable value. However, 

stabilizing the case temperature proves challenging, and the 

junction temperature exhibits a large fluctuation amplitude 

(Tj >100K). This results in significant thermal stress on the 

chip and aluminum bonding lead components, leading to 

potential bonding lead failures. Therefore, it is often used to 

simulate the aging failure of IGBT module bonding leads.  

In contrast, the constant case temperature fluctuation (Tc) 

power cycle accelerated aging test employs longer opening and 

closing times. This configuration facilitates the stabilization of 

both the junction temperature and the case temperature of the 

module. It is presumed that the case temperature is equivalent 

to the junction temperature, which is conducive to monitoring 

the junction temperature through case temperature. 

Furthermore, this test exhibits reduced temperature fluctuations 

(Tj<80K). This characteristic, in turn, induces failure in the 

module's solder layer and bonding leads, aligning more closely 

with the module's failure mechanism. Consequently, this study 

opted for the constant case temperature fluctuation (Tc) power 

cycle aging acceleration test to investigate the failure of IGBT. 

In the test, the module is heated and cooled by turning it on 

and off. Upon opening, a large current is applied to the module, 

causing losses and a rapid increase in junction temperature. The 

opening time is represented as Ton, and once the highest junction 

temperature, Tcmax, is attained, the current is discontinued. 

Following a closing time, Toff, the junction temperature 

descends to the lowest value, Tcmin. This sequence constitutes a 

complete Tc power cycle.  

Ton Toff

ΔTj

Tj

Tc

ΔTc

Ic  
(a) Tj power cycle principle diagram 

Ton Toff

Tj

Tc ΔTc

ΔTj

Ic  
(b) Tc power cycle principle diagram 

Fig. 2. Schematic diagram for power cycle aging test 

This study establishes an IGBT power cycle aging 

accelerated test platform to accelerate aging of IGBT and make 

Tj change meet the test setting requirements, as shown in Fig. 

3. In this test, the IGBT model is MMG75SR120B, rated 
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1200V/75A. The range of junction temperature fluctuation ΔTj 

is set to [0℃, 100℃]. The saturation voltage drop fluctuation Δ

Vce is increased by 5% as the arbitrary criterion for end of life. 

According to this standard, the module fails after 6000 test 

cycles. 

The aging test is conducted on the lower arm IGBT for the 

power module. The IGBT gate of the upper bridge arm is 

connected to reverse voltage and remains continuously turned 

off. Regarding the IEC60068-2-14JEDEC standard set for the 

power cycle test, the basic test procedure is as follows: 
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Fig. 3. Platform of IGBT power cycle aging accelerated test 

Step 1: Set the initial case temperature (Tc) to 40°C, the 

output current of the programmable constant current source to 

50A, and the gate output drive voltage to 15V. Close the switch 

S1, and then power loss is generated by the test module, which 

causes the Tj and Tc to rise; 

Step 2: Monitor the temperature change through the 

temperature sensor at the bottom of the module. When the 

maximum case temperature is 90°C, switch off and turn on the 

air-cooled radiator to quickly cool the IGBT power module to 

40°C. One cycle of power aging of case temperature fluctuation 

is completed; 

Step 3: Repeat steps 1 and 2 until the test is stopped when the 

module is close to the standard end of life criterion. The power 

cycle test is suspended once every 1000 times. Remove the 

module and put it into a thermostat for short-term single-pulse 

test, and record the Ic and Vce.  

The rapid rise of the junction temperature results in a big 

difference with the case temperature, and the accurate internal 

Tj cannot be obtained through the temperature sensor, due to the 

self-heating effect caused by the conduction of the module 

under high current. A small current (≤100mA) is generally 

applied and the pulse width is less than 0.001s. Under this 

condition, the module is not to produce self-heating effect, and 

the case temperature is equivalent to Tj. The single pulse test 

platform is shown in Fig. 4. In Fig. 4, the IGBT power module 

uses a single pulse drive signal to pass a single pulse trigger 

current to the IGBT through the DSP development board, 

amplifying circuit and driver. The temperature adjustment 

range of the thermostat is [0℃, 100℃], and the temperature 

adjustment interval is 10℃. The setting range of the Ic is [25A, 

70A], and the adjustment interval is 5A. The single pulse test 

steps are as follows: 

Step 1: Put the IGBT power module to be tested into a 

thermostat to adjust the temperature. After the thermostat 

temperature stabilizes, it is considered that the module has 

reached thermal equilibrium. 

Step 2: Adjust the programmable power supply Vdc to achieve 

the set value of Ic when the thermal equilibrium condition is 

met. In this test, start with Ic at 25A and increase it by 5A at 

each current measurement point. At this point, apply a single 

pulse trigger current to IGBT, and record the data of Vce, Tj and 

Ic under the corresponding aging times in sequence. 
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Fig. 4. Platform of IGBT single pulse test 

B. Experimental data analysis 

Due to the huge amount of data obtained during the IGBT 

power cycle aging accelerated test platform, this study selected 

the data of Vce, Tj and Ic under the conditions of the range of Ic 

is [40A,70A] and the range of Tj is [0℃,100℃] for analysis. 

After 6000 power cycles of the module, its Vce has increased by 

about 5.0% compared to the initial value, which has reached the 

failure standard of the module, and the test is terminated at this 

time. 

To better explore the relationship between Vce, Tj, Ic and 

aging times, this study conducted a detailed analysis, which 

focuses on Vce and aging times (Fig. 5), Vce and Tj (Fig. 6), Vce 

and Ic (Fig. 7). 

 
(a) Ic= 45A                                   (b) Ic=65A 

Fig. 5.  The correlation between the Vce with aging times at Ic 

 
(a) Ic= 45A                                   (b) Ic=65A 

Fig. 6.  The correlation between the Vce and Tj at Ic 

 
       (a) 1000 aging times                         (b) 6000 aging times 

Fig. 7.  The correlation between Vce and Ic under aging times 
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Fig. 5 indicated that under the condition of a certain Ic, as the 

aging times of power cycles increases, the aging level of the 

IGBT deepens, and the Vce presents a stepped growth trend. 

From Fig. 6, when the Ic is set to a fixed value, as the aging 

times increases, the value of Vce also increases. In addition, 

there is a certain linear correlation between Vce and Tj. Due to 

experimental equipment testing, the linear relationship is not 

obvious. Fig. 7 showed that the Ic is also an important parameter 

that affects the Vce. The Vce increases with the increase of Ic, and 

there is a positive correlation between them. As the Tj rises, the 

relationship curve between the Vce and the Ic moves upward as 

a whole. It is verified that the Tj has an effect on the saturation 

voltage drop. 

In this study, the Vce, Tj and Ic data obtained under the 

conditions of the range of Ic is [40A,70A] and the range of Tj is 

[0℃ ,100℃ ] were plotted into a three-dimensional surface 

graph, as shown in Fig. 8. It showed that with the increase of 

the aging times of power cycles, the relation surface of the 

relationship between the Vce, Tj and Ic remain unchanged, 

showing an overall upward trend. In the same aging condition, 

the Vce, Tj and Ic correlate better with the aging times of power 

cycles. Therefore, a better relationship between Vce, Tj, Ic and 

aging times can be used to establish a model based on multi-

state parameters for junction temperature prediction. 

Based on the above analysis, an IGBT junction temperature 

prediction model based on ISFO-SVM is established in this 

study. The relationship between ISFO-SVM and junction 

temperature characterization can be involved as a learning 

process. The model achieves high-precision prediction of 

junction temperature by analyzing and learning the correlation 

between junction temperature characterization and actual 

junction temperature. 

 
Fig. 8.  The correlation curved surface diagram between Vce, Tj 

and Ic under different aging times 

Ⅳ. METHOD 

A. Support vector machine 

SVM is often used for pattern classification and nonlinear 

regression. In regression prediction analysis, the linear division 

in high-dimensional space can better deal with small sample 

problems. The functional relationship is as follows: 

( ) ( )f x x b =  +                                                             (1) 

where,  is the weight coefficient; b is the bias term; f(x) is the 

prediction value corresponding to sample x. 
The objective function of SVM model in the prediction 

process is as follows: 

2 *
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where, C is the penalty parameter; 𝜃𝑖and 𝜃𝑖
∗ are two relaxation 

factors; 𝜎 is the error between the prediction value and the real 

value. 

IGBT junction temperature is multidimensional and 

nonlinear. To solve this nonlinear problem, the K(xi, xj) is 

introduced into the SVM model, and the nonlinear optimization 

problem is expressed as: 
*

1

( ) ( ) ( , )
n

i i i j
i

f x K x x b 
=

= − +                                         (4) 

The expression of the Gaussian kernel function in equation 

(5). 
2

2
( , ) exp( )

2

i j

i j

x x
k x x



−
= −                                             (5) 

where,   is the key parameter of the kernel function. 

B. Sailfish optimization algorithm 

SFO algorithm is a new optimization algorithm proposed in 

2019, which is inspired by a group of hunting sailfish.  

The initialization includes sailfish and sardine. Among them, 

the Sailfish population is expressed by XSF, and sardine 

population is expressed by XF. SFO consists of two aspects, the 

following are described in detail. 

(a) The search for the best individual position in the sailfish 

population. 

The updated equation of sailfish position is as follows: 

1 ( ( ) )
2

i i

i i i

t t

eliteSF injuredSt t t

newSF eliteSF i oldSF

X X
X X r X+

+
= −   −    

(6) 

where, 
i

t

eliteSFX represents the best individual position at the ith 

iteration; r is random value; 
i

t

injuredSX  represents the best 

individual position in the sardine population at the ith iteration. 

The definition of coefficient in equation (6) is shown in 

equation (7). 

2i r PD PD =   −                                                          (7) 

where, PD represents the density of the prey group, which is 

described in detail by equation (8). 

1 ( )SF

SF S

N
PD

N N
= −

+
                                                         (8) 

where, SFN represents the number of sailfish; SN represents the 

number of sardines. 

(b) The diversity search space of sardine population. 

The position update equation of sardine is shown in equation 

(9). 

( )
i i i

t t t

newS eliteSF oldSX r X X AP=  − +                                          (9) 

where, AP represents the attack strength of the sailfish, which 

express is shown in equation (10) in detail. 

(1 2 )AP A t e=  −                                                   (10) 
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where, A and e are the control coefficients, which make the 

attack power of sailfish change linearly from A to 0. 

In addition, the number of sardine and their displacement 

depend on the attack intensity of the sailfish. As mentioned 

above, sailfish's attack power decreases as time passes. 

Reducing the attack strength of sailfish can help search agents 

to converge adaptively. 

When AP>0.5, that is to say, the attack power of sailfish is 

strong, equation (9) to update the position of the sardine is used. 

When AP<0.5, the attack power of sailfish is low, and only α 

and 𝛽  need to be updated. The range of some positions is 

defined as follows: 

SN AP =                                                                         (11) 

id AP =                                                                              (12) 

where, di is the number of variables at the ith iteration 

C. Improved sailfish optimization algorithm 

1) To adaptively and dynamically adjust the global and local 

search ability in the optimization process, an adaptive nonlinear 

iterative factor is designed to update the position of individuals 

in the sailfish population. As the number of iterations increases, 

𝑣𝑖
𝑡  meets the requirements of large value at the initial stage of 

iteration, fast update speed of search location, slow update 

speed of search location and fast local convergence. Thus, the 

global and local search ability of this strategy is better balanced. 

The mathematical model is shown equation (13). 

( )max

max

2 T
1 sin

2 T

t

i

t
v

   + 
+  

 
=                                             (13) 

The improvement strategy effectively avoids premature 

convergence caused by excessive concentration of individuals. 

With the increase of iterations, the influence of sailfish 

individual speed update on the search position changes is 

reduced, which is conducive to the rapid convergence near the 

optimal value and ensures that the algorithm has a strong local 

search ability. After introducing 
t

iv , the improved position 

update equation for the ith sailfish and sardine after the iteration 

of t+1 is as follows in equations (14), (15). 
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2
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( )
i t t

t t t t

newS i eliteSF oldSX r v X X AP=   − +                                  (15) 

To improve the randomness of the population, the Le'vy 

flight strategy is introduced into the algorithm to improve the 

diversity of the search space. The detailed description of Le'vy 

flight strategy is shown in equations (16), (17). 
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 =                                                      (16) 

where, 
1p , 2p  are two random numbers, the value range is 

[0,1];   is a constant,  =1.5;   is calculated as: 
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( ) 2
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 +
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where, )!1()( −= xx   

Currently, the position of sailfish and sardines is updated as:  
1 ' ( )

i i i

t t t

newSF newSF newSFX X Le vy d X+ = +                                   (18) 

1 ' ( )
i i i

t t t

newS newS newSX X Le vy d X+ + =                                        (19) 

2) SFO simulates that during the movement of the sailfish 

hunting, the sailfish can search for prey and the sailfish can 

attack sardine. At the beginning of iteration, the strong search 

ability avoids individual aggregation. As the iteration increases, 

the attack power decreases, and SFO enters the local optimal 

solution. The algorithm can not completely solve the problems 

of premature convergence and local optimization, and the 

optimal result cannot be obtained. The difference mutation 

strategy is added in each iteration to solve the problem of falling 

into local optimization after optimization. The equation of 

difference mutation strategy is as follows: 

31 2 ,, ,, ( )
k tk t k ti tM x S x x= +  −                               (20) 

where, 1 2 3k k k  , 32 ,, k tk t
x x− is the difference vector; 

[0.1, 0.9]S   is the scaling factor; ,i tM  is the mutation vector 

of the ith position in the iteration of t. 

After obtaining the differential variables, the crossover and 

selection operation are carried out to select excellent 

individuals, as shown in equations (21) and (22). 
,

,

,

if 0 & rand(0,1)

else
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=                      (21) 
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=                                    (22) 

where, ,i tu  is the cross variable; j0 is a random value in the 

dimension; 𝑝𝐶𝑅 ∈ [0,1] is cross probability. 

D. The test of algorithm performance 

This study uses two groups of standard test functions, as 

shown in TABLE Ⅰ. To verify the proposed algorithm, tunicate 

swarm algorithm (TSA), moth-flame optimization algorithm 

(MFO), multiverse optimization algorithm (MVO), PSO and 

chaotic particle swarm optimization algorithm (CPSO) are 

selected as comparative algorithms, which have been widely 

recognized and applied. The parameters of TSA are from 

literature [34]. The parameters of MFO and MVO are from 

literature [35] and [36]. The parameters of PSO and CPSO are 

from literature [37]. The parameter settings are shown in 

TABLE Ⅱ. In TABLE Ⅱ, W is the weight coefficient. M is the 

maximum iterations in PSO and CPSO, C1 and C2 are individual 

learning factors. N is the total number of populations. amin and 

amax are the minimum and maximum convergence coefficients. 

The remaining parameters are default values. Where, CPSO is 

a particle swarm optimization algorithm based on chaotic 

mapping. TSA, MVO and MFO are new swarm intelligence 

optimization algorithms proposed in recent years, and often 

selected for solving optimization and regression problems. 

To ensure the fairness of the test results, the algorithm is 

tested on the same platform. The experimental environment of 

this study is Windows 10 operating system, 8G memory, Intel 
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Core i7. All experiments are written and run based on 

MATLAB R2017a. Each algorithm is run 50 times, and the 

results of final solution are shown in TABLE Ⅲ. 

TABLE Ⅲ showed that for the Q1(x) - Q4(x), under the same 

number of experiments, the statistical results of ISFO are 

significantly better than the other six algorithms. For Q3(x), the 

ISFO reaches the optimal value 0. The difference between the 

optimal solution and average value obtained by ISFO is small. 

The results of ISFO do not fluctuate obviously, showing strong 

convergence stability and high convergence accuracy. For the 

Q5(x) - Q7(x), ISFO can effectively avoid local extremum 

solution and has significant advantages in solving multimodal 

functions. For the multimodal functions Q5(x) and Q7(x), the 

ISFO converges to the function optimal solution 0. For Q6(x), 

although the ISFO does not converge to the global optimal 

value, it converges to 8.88E-16 and maintains stability. 

TABLE Ⅲ showed that ISFO exhibits good advantages in 

terms of optimization accuracy. However, the optimization time 

is slightly longer due to introducing the different mutation 

strategies in the later stage. This study aims to use the ISFO to 

accurately find the optimal internal parameters of SVM and 

establish a high-precision IGBT junction temperature 

prediction model. ISFO with higher optimization capabilities 

can be used for internal parameter optimization in SVM. More 

importantly, the method proposed in this study is an offline 

method. Therefore, the consumption of iteration for optimizing 

the running time is acceptable. 

TABLE Ⅰ 

THE TABLE OF STANDARD TEST FUNCTIONS 

Type Function (Q) Lower Upper Dim Optimum 

Unimodal 

2

1

1

( )
n

i

Q x x
=
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-100 100 30 0 

2

1 1

( )
nn

i i

i i

Q x x x
= =

= + 
 

-10 10 30 0 

2

3 1 1
( ) ( )

n i

ji j
Q x x

= =
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-100 100 30 0 

4 ( ) max{ ,1 }iQ x x i d=    -100 100 30 0 
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2

5 1
( ) 10cos(2 ) 10

n

i ii
Q x x x

=
 = − +    -5.12 -5.12 30 0 

2

6 1 1

1 1
( ) 20exp( 0.2 exp( cos(2 )) 20

n n

i ii i
Q x x x e

n n= =
= − − − + +    -32 32 30 0 

2

7 1 1

1
( ) cos( ) 1

4000

nn i
ii i

x
Q x x

i= =
= − + 

 
-600 600 30 0 

TABLE Ⅱ 

PARAMETER SETTINGS 

Algorithm Parameter settings 

MVO M=500; N=30 

MFO b=1; M=500; N=30 

PSO C1=C2=1.5; W=0.75; M=500; N=30 

CPSO C1=C2=1.5; W=0.75; M=500; N=30 

TSA amin =1; amax =4; M=500; N=30 

SFO M=500; N=30 

ISFO M=500; N=30 

Ⅴ. MODEL PREDICTION AND ANALYSIS VERIFICATION 

A. Data processing 

The experimental data are normalized by mapminmax 

function to reduce the influence of the fluctuation and non-

stationarity of the junction temperature. The principle of 

normalization of mapminmax function is explained by taking 

IGBT junction temperature data as an example, and its 

mathematical expression is as follows: 

( ) (min)

( , )

(max) (min)

j i j

j scale i

j j

T T
T

T T

−
=

−
                                                 (23) 

where, Tj(max) and Tj(min) is maximum and minimum values of Tj; 

Tj(i) is the actual value of Tj. 

B. Selection of optimization objective function 

The mean squared error (MSE) is set as the objective 

function (Fobj), and its expression is: 

( )
2

'

1

1 n
iobj i iF MSE T T

n
== = −                                     (24) 

where, 
iT  is the actual value; '

iT  is the prediction value. 

The fitness function (Ffit) of the ISFO in the prediction model 

is set to have the optimal solution when the function value is the 

smallest. Then the Fobj of the model is the fitness function of the 

ISFO in the model. Currently, the fitness function is shown in 

equation (25). 

fit objF F MSE= =                                                            (25) 

C. Prediction model of junction temperature based on ISFO-

SVM 

The ISFO-SVM junction temperature prediction flowchart is 

shown in Fig. 9. The steps are described in detail as follows: 

(a) The Tj, Vce, Ic and the aging times of IGBT are obtained 

to make the data set of junction temperature prediction. 

(b) The Vce, Ic and the aging times as the input data, and Tj as 

the output data. 

(c) The data set is divided into training data and test data. 

(d) Data confusion and data normalization. 

(e) Set the parameters of ISFO and SVM. The population n 
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is 30, the maximum iterations t is 500, the dimension D is 2, the 

value range of the penalty factor C is [0.1, 1200], and the kernel 

function parameter ϑ is [0.01, 100]. 

(f) ISFO algorithm initialization. 

(g) Calculate the initial fitness values of all individuals. 

(h) Start iterative optimization and update the individual 

position of sailfish according to the position update equation. 

(i) Calculate the fitness value of individuals, and record the 

optimal sailfish individual. 

(j) The difference mutation operation was performed, the 

position of sailfish in the population was updated, the fitness 

value was calculated, and the optimal global individual was 

recorded and updated. 

(k) Judge whether the iteration gets a better fitness value. If 

so, run the next step; Otherwise, continue step h. 

(l) Input the optimal parameter combination (C, ϑ) carried by 

the selected global optimal individual into SVM. 

(m) The SVM model optimized by ISFO is used to predict 

the test data of junction temperature. 

(n) Output the prediction results and inverse normalize the 

prediction results to obtain the junction temperature prediction 

value for detailed analysis. 

D. Evaluation index 

SVM, SFO-ELM, SFO-BP, SFO-SVM and ISFO-SVM 

prediction models are adopted to compare with ISFO-SVM to 

demonstrate the better performance of the proposed prediction 

model. Besides root mean squared error (RMSE), mean 

absolute percentage error (MAPE) and R-squared (R2) are also 

selected as the evaluation indicators of the model. 

' 2
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where, Q is the number of testing samples; 
'

iT  is the prediction 

value; iT  is the actual value. 

E. Results 

There are 2310 sets of data measured through the IGBT 

power cycle aging accelerated test. To facilitate the 

establishment of the prediction model with universality and 

versatility, 386 groups of data from the IGBT power cycle aging 

accelerated test are selected randomly. The first 70% of the data 

set is used as training samples, the remaining 30% are used as 

test samples, which test and verify the effectiveness of the 

IGBT junction temperature prediction model. 

Five prediction models of SVM, SFO-ELM, SFO-BP, SFO-

SVM and ISFO-SVM were established by MATLAB, and 

junction temperature prediction experiments were carried out 

from the same data. The maximum iterations and the number of 

populations are set to 500 and 30. The remaining parameters are 

default value. Each prediction model runs 30 simulation 

experiments independently. The results of five prediction 

models of SFO-SVM, ISFO-SVM, SFO-ELM, SFO-BP and 

SVM are obtained showed in Fig.10. 

Start
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The data are normalized

Parameters of algorithm and model 

are set

The junction temperature prediction 

model based on

 ISFO-SVM  is constructed

Output results

Error analysis

End

Initialization of swordfish, sardine 
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The value of individual objective 
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Self-learning  movement factor is 
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The data of IGBT aging related 
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N Y
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Fig. 9.  The flowchart of ISFO-SVM junction temperature prediction model 

Fig. 10 showed the comparison between the actual value and 

the predicted results of the junction temperature. The junction 

temperature data has great volatility, the prediction errors are 

quite different although the prediction models can predict the 

junction temperature. The SFO-SVM has larger errors at a few 

points. The prediction curve of ISFO-SVM is closest to the 

actual value. The detailed evaluation indicators of the 

experimental results are shown in TABLE Ⅳ. 

In comparing the pros and cons of each model more 

conveniently, the error curve is obtained to more clearly 

analyze the magnitude of the prediction errors of the five 

prediction models in Fig. 11 and the error histograms in Fig. 

12. 

TABLE Ⅳ and Fig.11 indicated that the RMSE, MAPE and 

R2 of ISFO-SVM are better than the other four models, and 

ISFO-SVM shows better prediction performance and has higher 
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prediction accuracy. Compared with SFO-SVM, the average 

RMSE and MAPE of ISFO-SVM have reduced by 67.189% 

and 63.189%, respectively, and the average R2 increased by 

0.765%. Compared with SFO-ELM and SFO-BP, the average 

RMSE of ISFO-SVM has reduced by 82.44 % and 74.154%, 

and the average R2 also increased by 1.542% and 0.92%. It 

proves that ISFO-SVM has better performance and prediction 

accuracy in predicting junction temperature.  

TABLE Ⅳ 

ANALYSIS OF JUNCTION TEMPERATURE PREDICTION AND 

EVALUATION INDEXES 

Model Index Minimum Maximum Average 

SFO-SVM 

RMSE/℃ 3.312 3.506 3.409 

MAPE/% 6.007 6.225 6.116 

R2/% 98.752 98.876 98.814 

ISFO-SVM 

RMSE/℃ 1.831 2.247 2.039 

MAPE/% 3.681 4.147 3.914 

R2/% 99.480 99.660 99.57 

SFO-ELM 

RMSE/℃ 3.41 3.98 3.72 

MAPE/% 6.773 9.56 8.227 

R2/% 97.71 98.80 98.028 

SFO-BP 

RMSE/℃ 3.22 4.60 3.551 

MAPE/% 4.283 9.924 6.8703 

R2/% 97.25 98.91 98.65 

SVM 

RMSE/℃ 3.506 3.567 3.5365 

MAPE/% 13.338 13.388 13.363 

R2/% 98.663 98.693 98.678 

In Fig.12, the ISFO-SVM has stronger robustness and 

smaller prediction error for junction temperature prediction. 

Within the error range of [-2℃, 2℃], the ISFO-SVM covers 

67.24% of the total sample points, while the SFO-SVM covers 

48.28%. It has been proven that the improvement strategies 

adopted are effective. Compared to the SFO, ISFO has stronger 

optimization ability. The ISFO-SVM accounts for 98.27% of 

the total sample points within the error range of [-5℃, 5℃]. 

The proportion within this error range is 10.34% and 11.2% 

higher than SFO-ELM and SFO-BP. The maximum error points 

appeared in the prediction results of SFO-BP, and the absolute 

error of the model exceeded 10 ℃, accounting for 1.72%. It can 

be seen that ISFO can effectively optimize the internal 

parameters of SVM, thereby enhancing prediction accuracy. 

 
Fig. 10.  The prediction results based on five models 

 
Fig. 11.  The error curve comparison chart of the five prediction models 

F. Generalizability validation of the proposed model 

The universality verification ideas of IGBT junction 

temperature prediction model based on ISFO-SVM are shown 

in Fig. 13. In addition, based on the type of MMG75SR120B, 

this study also selected the FGH60N60SMD type and 

FF300R17ME4 type for verification and analysis , respectively. 

(1) Verification of case 1 

Conduct experiments on IGBT with FGH60N60SMD type to 

obtain the required dataset for model validation in this study. 

And use the process shown in Fig. 13 for model validation. The 

results obtained by ISFO-SVM are shown in Fig. 14. The 

statistical results compared to other models showed in TABLE 

V. From the results, it can be concluded that ISFO-SVM can 

achieve more accurate prediction of IGBT junction 

temperature, and its prediction error is smaller compared to 
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other models. 

 
Fig. 12. The error histogram of the five prediction models 

TABLE Ⅴ 

STATISTICAL RESULTS OF MODELS WITH FGH60N60SMD 

Model RMSE/℃ MAPE/% R2/% 

SFO-SVM 5.80 7.83 98.86 

ISFO-SVM 5.69 7.87 99.58 

SFO-ELM 6.21 8.97 97.57 

SFO-BP 6.04 8.57 98.56 

SVM 9.07 12.42 96.81 
Generality verification of IGBT junction temperature prediction based on ISFO-SVM

Junction temperature prediction model based on 

ISFO-SVM
Predicted junction temperature

IGBT test dataset in this study (Ndata)
IGBT junction temperature dataset 

for other types

Training data: 

70%×Ndata

Validation data: 

30%×Ndata

Testing data set

Training model based 

on ISFO-SVM

Optimizing model 

parameters and validation

Prediction of junction temperature 

and evaluation of performance

 
Fig. 13. Verification process of the proposed model 

(2) Verification of case 2 

To verify the universality of the ISFO-SVM model in 

multiple aspects, this study fully considered the impact of real-

time wind speed on the IGBT junction temperature, and used 

the FF300R17ME4 IGBT module for simulation to predict the 

IGBT junction temperature. The prediction results of this model 

and other models are statistically analyzed, as shown in TABLE 

Ⅵ.  

TABLE Ⅵ 

STATISTICAL RESULTS OF MODELS WITH FF300R17ME4 

Model RMSE/℃ MAPE/% R2/% 

SFO-SVM 0.326 0.334 99.61 

ISFO-SVM 0.251 0.240 99.83 

SFO-ELM 0.968 1.311 98.40 

SFO-BP 0.623 1.024 98.99 

SVM 0.975 1.409 97.94 

Fig. 15 indicated that ISFO-SVM can fit the temperature 

curve well and achieve better prediction results. TABLE Ⅵ 

showed the statistical results of above five models. It showed 

that ISFO-SVM has the smallest prediction error and the 

highest coefficient of determination with the actual values.  

Through above experiments, it is verified that junction 

temperature predicted model based on ISFO-SVM can achieve 

high accuracy, robustness and precision. It is significant for 

improving the safety, operational efficiency, and lifespan of 

electrical equipment, and can provide strong support for the 

maintenance and optimization of IGBT and its systems. 

Ⅵ. CONCLUDING REMARKS 

This study is to achieve high-precision prediction of IGBT 

junction temperature. And the main findings are as follows:  

(1) The data of Vce, Ic, Tj and aging times of IGBT are 

obtained by aging accelerated test, it is concluded that the other 

three parameters express the junction temperature by analyzing 

the data in detail. 

(2) An ISFO algorithm is proposed by introducing adaptive 

nonlinear iteration factor, Le'vy flight and differential mutation 

strategy. Through the verification of standard test functions, 

ISFO has better robustness and accuracy. 

(3) An ISFO-SVM model used to predict junction 

temperature is proposed. It is proved that the ISFO-SVM model 

can better fit the junction temperature by comparing the five 

models. Moreover, compared with SFO-SVM, the RMSE and 

MAPE of ISFO-SVM is reduced by 67.189% and 63.189%.  

(4) This study conducted experiments on different types of 

IGBT to validate the universality and versatility of the proposed 

model based on ISFO-SVM. 

IGBT is the central power conversion device and its 

reliability research has been widely concerned with 

continuously developing new energy. The scientific research 

result in this field is to evaluate the reliability of IGBTs from 

multiple perspectives. High-precision prediction of IGBT 

junction temperature can effectively assess the remaining useful 

life and reliability. ISFO-SVM model achieves high precision 

of IGBT junction temperature prediction, which helps evaluate 

reliability. This study aims to maintain the reliable operation of 

IGBT module and its application system. The proposed method 

is also used in the research of IGBT residual life prediction or 

the reliability prediction of other devices, which provides 

valuable scientific method and guidance for investigating high-

precision prediction. 

There are still some limitations. In future research, the 

accuracy of prediction model will be enhanced by assigning 

corresponding weights to different parameters. In addition, this 

study focuses on developing an accurate method for predicting 

junction temperature to evaluate IGBT reliability, considering 

that IGBT junction temperature prediction is an essential topic 

in its reliability research. Future research can build upon this 

study to assess the reliability of applications such as power 

electronics, renewable energy systems, electric vehicles, or 

industrial automation. Predicting IGBT junction temperature in 

different application scenarios can help designers and engineers 

better understand the reliability performance in specific 

application environments and take appropriate measures to 

improve system reliability. 
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Fig. 14.  Junction temperature prediction results with FGH60N60SMD type of IGBT 

 
Fig. 15.  Junction temperature prediction results with FF300R17ME4 type of IGBT 

APPENDIX 

TABLE Ⅲ 

THE RESULTS UNDER UNIMODAL TEST FUNCTIONS 

Q Algorithm Optimum Worst Average Tm(s) 

Q1(x) 

PSO 4.68E-06 2.26E-03 2.16E-04 0.15 

CPSO 2.65E-10 3.82E-07 2.12E-08 0.13 

TSA 2.94E-24 9.26E-20 3.70E-21 0.12 

MVO 0.5688 2.8434 1.2569 0.32 

MFO 0.6972 2.00E+04 2.21E+03 0.28 

SFO 9.70E-19 5.76E-10 8.53E-11 0.44 

ISFO 1.96E-110 2.71E-65 7.14E-67 0.55 

Q2(x) 

PSO 0.0017 0.2426 0.0333 0.12 

CPSO 5.51E-06 0.0027 2.27E-04 0.14 

TSA 3.07E-15 1.70E-12 1.15E-13 0.14 

MVO 0.3047 9.8143 1.1360 0.28 

MFO 0.1132 70.0521 31.5342 0.15 

SFO 3.45E-07 2.28E-04 3.75E-05 0.46 

ISFO 8.72E-45 4.24E-27 8.77E-29 0.70 

Q3(x) 

PSO 37.8052 206.337 92.832 0.55 

CPSO 0.4124 7.9412 2.3388 0.50 

TSA 2.59E-08 0.0177 5.32E-04 0.48 

MVO 58.4245 387.670 198.877 0.60 

MFO 4.35E+03 4.81E+04 2.04E+04 0.45 

SFO 9.04E-13 8.26E-07 5.04E-08 1.04 

ISFO 0 8.30E-38 1.67E-39 1.37 

Q4(x) 

PSO 0.6180 1.9267 1.1474 0.12 

CPSO 0.0831 0.5840 0.2253 0.11 

TSA 0.0096 2.4339 0.4501 0.12 

MVO 0.7901 4.6647 0.0291 0.33 

MFO 49.1851 87.2626 68.3478 0.21 

SFO 5.11E-09 6.14E-06 1.38E-06 0.46 

ISFO 5.20E-45 1.08E-30 2.19E-32 0.51 

Q5(x) 

PSO 32.9245 87.6035 54.8241 0.11 

CPSO 5.5098 37.9052 23.3663 0.11 

TSA 89.5192 272.585 176.2507 0.15 

MVO 55.3470 191.5869 121.5087 0.34 

MFO 75.7590 255.9174 161.540 0.16 

SFO 5.29E-12 5.17E-05 1.48E-08 0.46 

ISFO 0 0 0 0.67 

Q6(x) 

PSO 0.0014 2.1201 0.2837 0.11 

CPSO 2.35E-05 1.1551 0.0232 0.11 

TSA 1.88E-12 3.5871 1.3635 0.14 

MVO 0.3557 3.2859 2.0216 0.30 

MFO 0.3120 19.9631 14.3427 0.32 

SFO 2.45E-07 1.86E-05 5.89E-06 0.64 

ISFO 8.88E-16 8.88E-16 8.88E-16 0.66 

Q7(x) 

PSO 1.92E-06 0.0369 7.66E-03 0.12 

CPSO 5.53E-11 0.1522 0.0278 0.14 

TSA 1.11E-16 0.0890 0.0168 0.25 

MVO 0.6437 1.0177 0.8542 0.31 

MFO 0.2369 91.0419 11.7417 0.33 

SFO 3.94E-14 8.37E-11 9.48-12 0.55 

ISFO 0 0 0 0.64 
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