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The effective field theory (EFT) framework is a precise approximation procedure when the inherent
assumptions of a large-scale separation between the Standard Model (SM) and new interactions alongside
perturbativity are realized. Constraints from available data might not automatically guarantee these
circumstances when contrasted with UV scenarios that the EFT analysis wishes to inform. From an EFT
perspective, achieving sufficient precision in navigating the alignment or decoupling limits beyond the SM
scenarios can necessitate moving beyond the SM’s leading, dimension six EFT deformation. Using the
example of Higgs boson mixing, we demonstrated the importance of higher-dimensional terms in the EFT
expansion. We analyze the relevance of virtual EFT corrections and dimension eight contributions for well-
determined electroweak precision observables. We find that when moving away from the decoupling limit,
the relevance of additional terms in the EFT expansion quickly becomes relevant. This demonstrates the
necessity to move beyond dimension six interactions for any scenario that contains Higgs boson mixing.
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I. INTRODUCTION

Effective field theory (EFT) [1] is a formidable tool for
communicating sensitivity beyond the Standard Model
(BSM) physics in times when particle physics data seem-
ingly points toward a large-scale separation of new states
relative to the Standard Model (SM) degrees of freedom.
The extension of the SM by effective interactions relevant to
the high-energy frontier of, e.g., the Large Hadron Collider
(LHC), i.e., Standard Model Effective Theory (SMEFT) at
dimension six [2] has received a lot of theoretical attention
and improvement alongside its application in a series of
experimental investigations. Matching calculations [3–14]
that coarse grain ultraviolet (UV) BSM scenarios into EFT
provide the technical framework to marry together concrete
scenarios of new interactions with the generic EFT analysis
of particle data. The latter is typically plagued with

considerable uncertainties, both experimentally and theo-
retically. Even optimistic extrapolations of specific proc-
esses to the LHC’s high luminosity (HL) phase can imply a
significant tension between the intrinsic viability criteria
that underpin the EFT limit setting trying to inform the UV
scenarios’ parameter spaces: EFT cutoffs need to be lowered
into domains that can be directly resolved at the LHC. This
can be at odds with the perturbativity of the obtained
constraints (and hence limits the reliability of the fixed-
order matching).
The obvious way out of this conundrum is to include

higher-dimensional terms in the EFT expansion. Dimension
eight interactions have increasingly moved into the focus of
the theory community [15–17]. From a practical point of
view, this prompts the question of when we can be confident
about reaching the point where phenomenologically minded
practitioners can stop. Unfortunately, an answer to this
question is as process and model-dependent as matching a
UV-ignorant EFT to a concrete UV scenario.
Therefore, the phenomenological task is developing

theory-guided intuition using representative scenarios that
transparently capture key issues. The purpose of this note is
to contribute to this evolving discussion using (custodial
isosinglet) Higgs boson mixing as an example. This
scenario has seen much attention from the EFT perspective
as the number of degrees of freedom and free parameters is
relatively small, thus enabling a transparent connection of
EFT and UV theory beyond the leading order of the EFT
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approach (see, e.g., Refs. [3,18,19]). Higgs mixing also
arises in many BSM theories. We focus on electroweak
precision observables as these are well constrained by
collider data, thus enabling us to navigate cutoffs and
Wilson coefficients of the effective theory under experi-
mental circumstances where precise predictions and match-
ing are very relevant. This work is structured as follows: In
Sec. II, we first discuss the oblique corrections and their
relation to the polarization functions to make this work self-
contained; Sec. II A gives a quick discussion of the oblique
corrections in the singlet scenario (see also [20–25]) with
formulas provided in the Appendix. We then focus on the
oblique parameters for this case in dimensions six and eight
SMEFT in Sec. II B. We detail the comparison in Sec. III

with a view toward perturbative unitarity. Finally, we
provide conclusions in Sec. IV.

II. ELECTROWEAK PRECISION OBSERVABLES

Extensions of the SMwith modified Higgs sectors can be
constrained through electroweak precision measurements.
A famous subset of these that were instrumental in
discovering the Higgs boson is the so-called oblique
corrections parametrized by the Peskin-Takeuchi parame-
ters [26] (see also [27]). These Ŝ, T̂, Û are chiefly extracted
from Drell-Yan-like production during the LEP era using
global fits, e.g., Refs. [28,29]. Defining the off-shell two-
point gauge boson functions for the SM gauge bosons as

ð2:1Þ

with V; V 0 ¼ W, Z, γ. The Peskin-Takeuchi parameters can then be written as
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sW , cW denote the sine and cosine of the Weinberg angle, α
is the fine structure constant, and Mi stands for the gauge
boson masses.1 Constraints on new physics can then be
formulated by examining the difference of these parameters
from the best SM fit point. To draw a comparison between
the full theory and EFTwe restrict our analysis to one loop
order. In the next subsection, we provide the contributions
to the oblique parameters from the full theory.

A. SM extended by a real singlet scalar

The extension of the Standard Model by a real singlet
scalar finds its relevance in various compelling instances,
such as the electroweak hierarchy problem and dark matter
[31–44]. Additionally, extensive research has been con-
ducted at the LHC [45–50] to analyze the distinctive
features of the singlet scalar, particularly its influence on

the characteristics of the Higgs. Moreover, the inherent
simplicity of this model serves as an additional impetus for
delving into precision and matching calculations, and this
has made it a focal point in recent EFT studies [51–60].
Building on this motivation, we begin our analysis by
describing a scalar potential for the SM Higgs Sector
extended by a real singlet scalar field (S),

VðH; SÞ ¼ −μ2H†H þ 1

2
m2

SS
2 þ ηS

�
H†H −

v2

2

�
S

þ kS

�
H†H −

v2

2

�
S2 þ λhðH†HÞ2 þ 1

4!
λSS4;

ð2:3Þ

with H being the SM Higgs doublet, which gets a vacuum
expectation value (vev) v ≃ 246 GeV. H can then be
expanded around the vev:

H ¼ 1ffiffiffi
2

p
� ffiffiffi

2
p

Gþ

vþ hþ iη

�
: ð2:4Þ

1Note that we employ the normalization of Peskin and Take-
uchi, although the hatted quantities are typically defined in the
normalization of [30]. This is to avoid confusion between the
oblique corrections and the singlet field introduced below.
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The minimization of the potential relates the Lagrangian
parameters λh, μ and the Higgs vev, μ2 ¼ v2λh. The
presence of the mixing terms in the potential given in
Eq. (2.3), results in different mass eigenstates, correspond-
ing to the mass mixing matrix given by,

ðM2Þij ¼
�
2v2λh vηS
vηS m2

S

�
; ð2:5Þ

that are a mixture of h that is the neutral component of H,
and S, related by the mixing angle θ:

�
h̃

s̃

�
¼

�
cos θ − sin θ

sin θ cos θ

��
h

S

�
: ð2:6Þ

The mass eigenvalues corresponding to the physical
parameters shown in correspond to the masses of the
scalars in the theory, i.e., Mh ¼ 125 GeV and a free
parameter MS, respectively. These mass eigenvalues can
be expressed in terms of the Lagrangian parameters and the
Higgs vev (v) as,

M2
h;M

2
S ¼ 1

2
ðm2

S þm2
h ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2η2S þ ðm2

S −m2
hÞ2

q
Þ; ð2:7Þ

where m2
h ¼ 2λhv2 ¼ 2μ2. The mixing angle cos θ can be

written in terms of the physical pole masses and the
parameter ηS as

cos2θ ¼ 1

2

�
1þ ½ðM2

S −M2
hÞ2 − 4η2Sv

2�1=2
M2

S −M2
h

�
: ð2:8Þ

This implies cos θ ¼ 1 for ηS ¼ 0. We will focus on the
region of large MS ≫ Mh for our EFT comparison; in this
region

cos2θ ≃ 1 −
η2Sv

2

M4
S

: ð2:9Þ

Equations (2.7) and (2.8) can be used to relate the Lagrange
parameters m2

S;h to the pole masses.
For the computation of the oblique parameters we only

consider the radiative corrections from the scalar-involved
diagrams shown in Fig. 1, since the other diagrams will
provide the same contribution to BSM and SM theory,
therefore dropping out from the deviation. The explicit
expressions are given in the Appendix A 1.
Equation (2.6) clearly shows that the light (heavy) scalar

couplings to the SM particles are suppressed by a factor of
cos θ (sin θ). Therefore, the contributions to the gauge
boson self-energies get modified by a factor of cos2 θ or
sin2 θ depending on the neutral scalar coupled to. We then
express the mixing angle regarding the BSM parameters in
the potential. Limits are then imposed on the independent

BSM parameters (in our case, we choose this ηS, the mixing
angle can then be inferred from Eq. (2.8) for allowed
regions) and the mass of the heavy scalar (MS) using the
constraints from GFitter [61] as shown in Fig. 2.

B. Real singlet model from SMEFT perspective

To investigate how well the effective theory replicates the
minute signatures of the singlet extension of the SM
described in Sec. II A or, in turn, adjudge the significance
of the higher-order effective corrections, we extend the
effective series with relevant operator structures till dimen-
sion eight:

L ¼ LSM þ
X
i

Cð6Þi

Λ2
Oð6Þ

i þ
X
j

Cð8Þj

Λ4
Oð8Þ

j : ð2:10Þ

Here, the Wilson coefficients Ci parametrize the strengths
of the operators Oi that are produced after integrating out
the heavy real singlet scalar (for a complete matching of

FIG. 1. Relevant Feynman diagrams with scalars in the loop
that have been considered to compute the oblique corrections.
Here ϕ∈ ðh̃; s̃Þ when one-loop correction in the full theory is
computed.

FIG. 2. 95% and 68% confidence interval bounds on the BSM
trilinear coupling ηS and the Mass of the heavy scalar (MS)
obtained from the full-theory calculation setting constraints from
GFitter [61]. An additional unitarity bound is superimposed which
identifies a region of ηS where perturbative matching is applicable
(see Appendix B for details), this region is limited by the
approximate bound ηS ≈MS .

EFT, DECOUPLING, HIGGS BOSON MIXING, AND HIGHER … PHYS. REV. D 109, 055035 (2024)

055035-3



such operators at dimension six, see Refs. [17]). We have
chosen the cutoff scale Λ to be mS. This implies that in the
case of effective theory, there may be tree-level electroweak
corrections, as shown in Fig. 3, to Eq. (2.1) from the
effective operators that may emerge in the process of
integrating out heavy fields from the UV diagram and
(or) through the renormalization group running of effective
operators generated by integrating out tree-level heavy
propagator at the cutoff scale. These contributions depend
on the renormalization scale and play an essential role in
our further computation, see also [3]. Depending on
whether the operators that could contribute to the dominant
(when considered in a model-independent way) tree-level
correction, as shown in Fig. 3, are generated at one-loop
itself, the contributions from the operators generated at the
tree level, which can modify the interactions at the one-
loop, can become significant.
We categorically list the effective corrections to Ŝ, T̂ up

to one loop:
(i) Tree-level correction: Expanding the Lagrangian

with dimension six and dimension eight operators
can induce corrections to the transverse tree-level
vector boson propagators (ΠVV 0 ) itself, which in turn
modifies Ŝ, T̂ parameters [15]

Ŝeft;tree ¼
4cWsWv2

α
Cð6ÞHWB þ 2cWsWv4

α
Cð8ÞHWB;

T̂eft;tree ¼ −
v2

2α
Cð6ÞHD −

v4

2α
Cð8ÞHD;2: ð2:11Þ

The expressions for modifying the individual ΠVV 0

functions are given in the Appendix A 2. The
dimension six operators contributing to Eq. (2.11)
are generated at one-loop while integrating out the
heavy field. The matching expressions for these
coefficients are given in Table I. We have also
computed the one-loop matching for the dimension
eight operators involved in Eq. (2.11) and noticed
that these do not receive any correction while
integrating out complete heavy loop diagrams. On
the other hand, these coefficients receive contribu-
tions from removing the redundant structures at
dimension six, as discussed in Ref. [17]. Since
the latter corresponds to a two-loop suppressed
subleading contribution, we neglect the associated
effects in our analysis.

(ii) One-loop insertion of operators: One-loop correc-
tions to the oblique parameters are essential for the
tree-level generated operators, for they provide a

similar contribution as the operators that are pro-
duced at one-loop contributing to the tree-level
propagator corrections shown in Eq. (2.11) for a
model-dependent analysis. In our case, such a

contribution arises from the operators Oð6Þ
H□

and

Oð8Þ
HD;1. The explicit forms of their structures are

given in Tables I and II, respectively. These oper-
ators modify the canonical form of the kinetic term
for the Higgs field

Lh;kin ¼
1

2

�
1− 2v2Cð6ÞH□

þv4

4
Cð8ÞHD;1

�
ð∂μhÞ2; ð2:12Þ

which can be removed by redefining the field h0 →
Zhh with

Zh ¼
�
1 − v2Cð6ÞH□

þ v4

8
Cð8ÞHD;1

�
: ð2:13Þ

This implies that while computing the higher order
corrections for EFT, we need to recall that ϕ ¼
h0 → Zhh in Fig. 1. This also accounts for suitable
modifications in the vertices, involving Higgs and
Goldstone in Fig. 1. This correction, up to Oð1=Λ4Þ
capturing the effects from both ðdimension sixÞ2
and dimension eight terms, is incorporated by
replacing the cos2 θ with Z2

h and setting sin2 θ to
zero in the expressions shown in Appendix A 1.

FIG. 3. Tree-level correction to the gauge boson propagators
due to the presence of effective operators.

TABLE I. Relevant operators that produce tree and one-loop
corrections to the gauge boson self-energy. The structures high-
lighted in bold, first appear at tree-level correction, whereas the
rest of the operators contribute at one-loop first.

Operator Op. Structure Wilson coeffs.

Oð6Þ
H□

ðH†HÞ□ðH†HÞ − η2S
2m4

S

Oð6Þ
HWB

ðH†τIHÞWI
μνBμν gWgYη2S

128m4
Sπ

2

Oð6Þ
HD

ðH†DμHÞ�ðH†DμHÞ − 7g2Yη
2
S

288m4
Sπ

2

TABLE II. Relevant dimension eight operators that produce
one-loop equivalent corrections to the gauge boson self-energy.
These operators first appear while integrating out heavy fields at
tree-level.

Operator Op. Structure Wilson coeffs.

Oð8Þ
HD;1

ðH†HÞ2ðDμH†DμHÞ 4η2SkS
m6

S
− 8λSη

2
SkS

m6
S

Oð8Þ
H4D4;3

ðDμH†DμHÞðDνH†DνHÞ 2η2S
m6

S
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(iii) RGE improved correction: It is important to include
the running effects to the Wilson coefficients which
arise at tree-level. T̂eft;tree in Eq. (2.11) at dimension
six receives such an additional contribution from the

operator Oð6Þ
HD. Contributions arising from the run-

ning of the coefficient of the operator Oð6Þ
H□

[62,63]

16π2
dCð6ÞHDðμÞ
d ln μ

¼ 20

3
g2YC

ð6Þ
H□

;

⇒ ΔCð6ÞHDjRGE ¼ −
5g2Yη

2
S

24π2m4
S
log

�
MZ

mS

�
:

ð2:14Þ

The total contribution to CHD at the EW scale
becomes

Cð6ÞHDðMZÞ¼−
7g2Yη
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24π2m4
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�
MZ

mS

�
: ð2:15Þ

The part of the beta function [cf. Eq. (2.14)] for the

dimension eight Wilson coefficient Cð8ÞHD;2 and Cð8ÞHWB

stems from
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with gY ¼ e=cW , gW ¼ e=sW . Since we aim to make a
comparative analysis between the full theory and the EFT
predictions for the oblique parameters, it is necessary to
express both of them in terms of the same model
parameters. To achieve this, once we find the relevant
Wilson coefficients in terms of mS, we must substitute it
with the physical mass (MS). In the framework of EFT,
this substitution needs to be performed carefully, given
that M2

S ¼ m2
S þ ΔNLO, where ΔNLO ≈ v2η2S=m

2
S.The next

order term in this expansion is ≈ − v4η4S=m
6
S, i.e., the mS

suppression in this order is equivalent to dimension ten
corrections, hence we neglect this term, and any higher
order contribution beyond this. We express mS in terms of
MS implementing the correction stemming from ΔNLO to
use the Wilson coefficients for further analysis. In addition
to contributions from dimension six effective operators,
we also compute the contribution to dimension eight
operators from the equations of motion of the dimension
six operators and the RGE-improved corrections due to
dimension six operators, see further Refs. [15,16,64,65].

III. FULL THEORY VS EFT

In this section, we compare a full theory and its effective
version captured inSMEFT.Wecarefully investigate how the
inclusion of higher mass dimensional operators, suppressed
by the mass of the heavy integrated-out field, in the EFT
expansion, affects the computation of our chosen observable
ðT̂; ŜÞ. For this, we categorize the EFT contribution into two
parts. To start with, we discuss the dimension six (d6) part,
containing linear dimension six Wilson coefficients. Here,
we include the cumulative effects of field redefinition and
radiative corrections on the oblique parameters. Then, we
consider the corrections from the dimension eight (d8)
operators that are linear functions of dimension eight
Wilson coefficients. We also include the dimension eight
equivalent contributions (referred to as ðd6Þ2), from dimen-
sion six operatorswhich are quadratic functions of dimension
six Wilson coefficients. This takes care of the radiative
generation of dimension eight operators from dimension six
ones, see Eq. (2.16) and the expansion ofZ2

h.We list all those
operators that contribute in different orders:
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(i) d6∶ Cð6ÞHD; C
ð6Þ
HWB; C

ð6Þ
H□

;

(ii) d8∶ Cð8ÞHD;1; C
ð8Þ
HD;2; C

ð8Þ
H4D4;3

; Cð8ÞHWB;

(iii) ðd6Þ2∶ ðCð6ÞH□
Þ2.

We investigate the departure of the truncated-EFT
computation at dimension six from the full theory calcu-
lations and the role that the Higgs mixing plays in matching
these two. The mixing can be expressed as a function of the
trilinear coupling ηS and the heavy cutoff scale MS, for
allowed ηS values, the decoupling can be quantified
through the difference of the two theories. In Fig. 4(a),
we show the lines for the constant mixing angles that allow
a single ηS value for each choice of the cutoff. We also
impose the constraint from the perturbative unitarity that
rules out a specific region in the ηS −MS plane, in turn
putting a lower-bound for the mixing for each value of the
cutoff MS , that can be seen in Fig. 4(b).
Intuitively, adding higher and higher order terms in EFT

expansion would take the EFT closer to the full theory. This
concept is illustrated through the T̂ parameter in Fig. 5.
Here, we consider two different types of contributions.
First, the leading order terms in the expansion, i.e., d6 ones.
Then, we add d8 contributions including the ðd6Þ2 ones. In
passing, we want to highlight that though the d8 term adds
positively to the difference between the full theory and
EFT, the further addition of ðd6Þ2, the equivalent of d8
ones, allows us to capture the complete contribution at d8.
We note that the correction to ΔT̂ and ΔŜ due to the
dimension eight inclusion is of the order of the deviations.
Thus, dimension eight interactions may be crucial to
bringing EFT predictions close to the full theory for given
measured constraints. It is important to highlight here that
incorporating the ΔNLO contribution leads to a 7.5%
deviation between mS and MS at 700 GeV. This is the
highest deviation achievable when accounting for ΔNLO

within the parameter range of our choice. At 1 TeV and
5 TeV, we observe deviations of only 3.2% and 0.1%,
respectively. Ultimately, it reflects that going to higher
order in EFT expansion reduces the gap between full theory
and EFT, especially for a relatively large mixing. We
perform similar analyses for Ŝ parameter in Fig. 6. We
draw a similar conclusion as the previous one, and that
makes our conclusion more generic.
In Fig. 7, we have calculated the relative difference

between full theory and EFT while calculating the T̂
parameter for three different heavy mass scales. In this

FIG. 4. (a) shows the variation of the trilinear coupling with respect to heavy scalar mass. In (b) we show how the mixing angle varies
as a function of the heavy mass for fixed values of the trilinear coupling ηS . In both plots, the gray-shaded region respects perturbative
unitarity (see Appendix B). The first plot indicates that when moving away from the traditional decoupling limit (cos θ ∼ 1), a small
portion of theMS − ηS plane is permitted by unitarity. However, the region ofMS − ηS that corresponds to cos θ ∼ 1 is always allowed.
The second plot shows how a large value of ηS can shift the cos θ value away from 1 while still maintaining unitarity.

FIG. 5. Impact of individual contributions on relative ΔT̂ ¼
ðT̂Full − T̂eftÞ=T̂Full for three benchmark choices of ηs ¼ MS,
having nearly-maximal allowed mixing. The total contributions
up to dimension eight effective operators including the running
effects reduce ΔT̂ signifying inclusion of dimension eight
operators brings the effective theory prediction relatively closer
to that from the full theory. Comparing the outcome correspond-
ing to each benchmark point, it becomes evident that for the lower
mass range of the heavy field, the correction from dimension
eight produces a more pronounced impact.
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case, we have performed the EFT expansion to accommo-
date contributions up to dimension eight effective operators
including the running of all contributory operators as well.
In each subfigure, we have shown that if we lower the value
of ηS for a fixed mass, the value of cos θ increases. As the
cos θ reaches unity, the full theory and EFT are in excellent

agreement, which is expected as the new physics contri-
bution vanishes. It is also evident that for a fixed ηS, once we
go for higher masses the difference also decreases. This
illustrates the interplay among the coupling ηS, the heavy
mass scale MS , and mixing parameter cos θ. One can tune
the value of these parameters so that EFT can be a good
explanation for the full theory. Doing the same kind of
investigation for the Ŝ parameter in Fig. 8 further empha-
sises the idea.

IV. SUMMARY AND CONCLUSIONS

Effective field theory is a powerful tool to look for
deviations from the SM expectation in a theoretically well-
motivated way. In a modern sense, it enables us to extend
good quantum field theoretic properties to generic depar-
tures from the SM interactions, with potential relevance for
UV complete scenarios depending on the accuracy with
which constraints can be formulated. Along these lines, a
set of particularly well-motivated observables are the
oblique corrections as a subset of relevant electroweak
corrections.
In this paper, we have looked into a few queries related to

the decoupling limit of a UV theory or in other words the
validation of an EFT truncation. We have worked with two
oblique parameters S and T as example observables. First,
we have estimated these two observables from a full theory

FIG. 7. Relative difference between the full theory and the EFT computation for T̂ parameter at different heavy field mass scales. In
this case, we have performed the EFT expansion to accommodate contributions from up to dimension eight effective operators including
the running of all contributory operators as well. The mass scales are chosen to be (a) 700 GeV, (b) 1 TeV, and (c) 5 TeV. The values for
ηS are chosen such that they satisfy the unitarity bounds.

FIG. 6. Impact of individual contributions on relative ΔŜ ¼
ðŜFull − ŜeftÞ=ŜFull for three benchmark choices of ηs ¼ MS.
Similar to the case of ΔT̂, corrections up to dimension eight
including the running effects leave more impact when the heavy
field is relatively lighter, even though, they do not have the same
magnitude as seen in the case ofΔT̂. This makes the truncation of
the effective series a process-dependent (i.e., choice of observ-
able) issue.

EFT, DECOUPLING, HIGGS BOSON MIXING, AND HIGHER … PHYS. REV. D 109, 055035 (2024)

055035-7



perspective and parametrized them in terms of the physical
mass of heavy scalar (MS), trilinear coupling (ηS), and
scalar mixing angle (cos θ). The unitarity limits the choice
of trilinear coupling for a given mass of heavy scalar and
that in turn helps us to estimate the allowed maximum
values of cos θ. We know that in the alignment limit, i.e.,
ηS → 0, and decoupling limit, i.e., MS → ∞ the EFT
resembles the full theory, and that is the ideal situation
when EFT is valid. We have argued, in this work, that one
can approximate a full theory by its effective one even
when these parameters are chosen to be far from their ideal
values. To establish our claim, we have chosen a few
benchmark values (BVs) of these parameters and computed
S and T assuming the full theory. Then, we integrated out
the heavy scalar and computed the effective operators up to
dimension eight that affect these observables. From the
EFT perspective, we have further computed S and T and
noted the following contributions—from (i) d6, (ii) d6 as
well as d8 operators including the effects from running
from contributory effective operators too. We have also
incorporated the effects due to the running of d6 operators.
We have systematically highlighted, for different BVs, that
while estimating these two observables, the higher dimen-
sional effective operators play a crucial role especially
when MS is not too large. As Higgs boson mixing is a

feature in almost all BSM theories with a non-minimal
Higgs sector, our analysis shows the necessity to go beyond
dimension six interactions when data is very precise or
when wewant to inform a potential UV scenario accurately.
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APPENDIX A: GAUGE BOSON TWO-POINT
FUNCTIONS

1. Modification due to a singlet scalar extension

We note down the modifications to the gauge boson two-
point functions due to the presence of a new heavier scalar
degree of freedom. Here, only the contributions from the
scalar-involved diagrams are presented. The BSM contri-
bution to the two-point functions (in Feynman gauge) are
then [66]

FIG. 8. Relative difference between full theory and the EFT computation for Ŝ parameter at different heavy field mass scales. In this
case, we have performed the EFT expansion to accommodate contributions from up to dimension eight effective operators including the
running of all contributory operators as well. The mass scales are chosen to be (a) 700 GeV, (b) 1 TeV, and (c) 5 TeV. The values for ηS
are chosen such that they satisfy the unitarity bounds.
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Πγγðp2Þ ¼ ΠγZðp2Þ ¼ 0; ðA3Þ

where, the Passarino-Veltman functions [67] (see also [68,69]) A0, B0 and B00 capture the scalar one-loop dynamics (the vev
is fixed via v ¼ 2MWsW=e). We have cross checked these results numerically against previous results [22,23].

2. Modification due to the corresponding EFT at tree-level

We note down the tree-level correction to the gauge boson propagators as shown in Fig. 3 due to the presence of effective
operators.
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The couplings are given by gW ¼ e=sW, gY ¼ e=cW .
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APPENDIX B: UNITARITY CONSTRAINTS

Unitarity provides a suitable tool to gauge whether the
matching is indeed for perturbative choices of the UV
model parameters. Perturbativity, in one way or another, is
implicitly assumed in analysing any collider data and this
extends to the electroweak precision constraints as well. To
this end, we consider the partial wave constraints that can
be derived from longitudinal gauge boson scattering to
identify the regions of validity this way. The zeroth partial
wave relevant for this is given for scattering i1i2 → f1f2
(see Ref. [70])

a0fi ¼
β1=4ðs;m2

i;1; m
2
i;1Þβ1=4ðs;m2

f;1; m
2
f;1Þ

32πs

×
Z

1

−1
d cos θMð ffiffiffi

s
p

; cos θÞ; ðB1Þ

suppressing factors of 1=
ffiffiffi
2

p
for identical particles in the

initial i or final state f.
ffiffiffi
s

p
denotes the center-of-mass

energy, and θ is the scattering angle in this frame for the
2 → 2 scattering process described by the amplitude ∼M.
Furthermore,

βðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2xz: ðB2Þ

such that lims→∞β
2=s ¼ 1. Unitarity of the S matrix then

translates for f ¼ i to the conditions

jRe a0iij ≤
1

2
and jIm a0iij ≤ 1: ðB3Þ

of which we use the first one to analyze constraints on the
singlet extension parameter space. We only consider the
impact of ηS; perturbative choices of kS, λS will not lead to
additional unitarity violation.
There are two principle sources of unitarity violation that

we consider. First, the presence of a large coupling jηSj can
lead to unitarity violation inHH scattering if the size of the
coupling is nonperturbative, e.g., comparable to the cutoff
scaleMS from the EFT perspective although the full theory
remains convergent [see Eq. (2.9)]. Second, large coupling
jηSj implies large mixing cos2 θ < 1 and longitudinal gauge
boson scattering can set limits as the light Higgs boson only
partially restores unitarity there [71]. We include WþW−

scattering as a representative process to obtain unitarity
constraints. Both effects are calculated using FeynArts and
FormCalc [66,72,73] and included to the results of Sec. II for
the full theory. We identify the critical value of unitarity
violation via

jRe a0iiðηS;MS;Mh;
ffiffiffi
s

p ¼ 0.9MSÞj ¼
1

2
; ðB4Þ

which determines the ηS, MS contour used throughout
this work.
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