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Abstract

The evolution of stomata marks one of the key advances that enabled plants to

colonise dry land while allowing gas exchange for photosynthesis. In large measure,

stomata retain a common design across species that incorporates paired guard cells

with little variation in structure. By contrast, the cells of the stomatal complex

immediately surrounding the guard cells vary widely in shape, size and count. Their

origins in development are similarly diverse. Thus, the surrounding cells are likely a

luxury that the necessity of stomatal control cannot do without (with apologies to

Oscar Wilde). Surrounding cells are thought to support stomatal movements as

solute reservoirs and to shape stomatal kinetics through backpressure on the guard

cells. Their variety may also reflect a substantial diversity in function. Certainly

modelling, kinetic analysis and the few electrophysiological studies to date give hints

of much more complex contributions in stomatal physiology. Even so, our knowledge

of the cells surrounding the guard cells in the stomatal complex is far from complete.
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1 | INTRODUCTION

From an evolutionary point of view, the guard cell is a revolutionary

design that enabled the dominance of plants on dry land and

facilitated their colonisation across a wide range of habitats. The vast

majority of plant species share a common, kidney‐shaped design that

can be traced back to pores on sporangia of fossil moss‐like plants at

the end of the Ordovician period throughout their evolution (Clark

et al., 2022; Edwards et al., 1986; Salamon et al., 2018). Guard cells

appear as pairs of cells that surround a pore through the epidermal

cell layer. The swelling and shrinking of the guard cells opens and

closes the pore, thereby regulating water loss via transpiration from

the plant and CO2 diffusion from the atmosphere for photosynthesis.

The only major innovation in design, with dumbbell‐shaped guard

cells, appeared more recently in the evolution of the grasses

(Poaceae) some 100Myr ago (Cai et al., 2017; Chen et al., 2017).

By contrast, a very active diversification is evident across multi-

cellular streptophytes in the epidermal cells adjacent to the guard

cells, sometimes referred to as subsidiary cells and what we identify

broadly as surrounding cells (Clark et al., 2022; Sack, 1987). In large

measure, it is the surrounding cell organisation that defines the

variety in structures between stomatal complexes; this diversity in

surrounding cell shape, size and organisation most likely also

contributes to differences in stomatal function without altering the

vital design of the stoma.

Although their definition within the stomatal complex is simple,

identifying the surrounding cells of the complex remains challenging.

Often, surrounding cells are distinguishable by their smaller size when

compared with other epidermal pavement cells, their morphology and

organisation around the guard cells (Figure 1). Paracytic stomata, for
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F IGURE 1 Typical stomatal complex
structures. (a, b) Paracytic stomata.
(a) Grass‐type stomata (paracytic) in
members of Poaceae. (b) Paracytic stomata
in horsetail (Equisetum) and coffee (Coffea).
(c) Diacytic stomata of Dianthus.
(d–f) Tetracytic stomata of Tradescantia
(d), Agave (e) and Anacampseros rufescens
(f). (g) Hexacytic stomata of Commelina
communis. (h) Cyclocytic stomata of Ginkgo
bibola, Kanenchoë and cycads. (i) Anisocytic
stomata of the Brassicaceae and
Arabidopsis. (j, k) Anomocytic stomata in
onion (Allium cepa) (j) and watermelon
(Citrullus lanatus) (k). colour code: guard
cell—green, surrounding cell—light yellow,
pavement cell—white. [Color figure can be
viewed at wileyonlinelibrary.com]
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example, occur with pairs of surrounding cells aligned parallel to

guard cells. Such complexes are found among horsetails (Equisetum)

(Cullen & Rudall, 2016; Hauke, 1957), coffee (Coffea) (Pompelli

et al., 2010) and grasses. Diacytic stomata form complexes with a pair

of surrounding cells at right angles above and below the guard cells,

such as in Dianthus species (Ramayya & Rajagopal, 1980). Stomatal

complexes with four and six surrounding cells are termed tetracytic

and hexacytic, respectively. These stomata often appear with a pair

of terminal (or polar) subsidiary cells at both ends of the guard cells

(Rudall et al., 2017) and are common to Tradescantia (Kappen &

Haeger, 1991), Agave (Gray et al., 2020; Monja‐Mio et al., 2015) and

Commelina species (Schwartz et al., 1994). The tetracytic stomatal

complex of Anacampseros rufescens, however consists of four lateral

surrounding cells (Gray et al., 2020). In Ginkgo biloba (Gray et al., 2020;

Kausik, 1974) and cycads (Coiro et al., 2021; Pant & Mehra, 1964),

the guard cells are wholly encircled by a narrow ring of four or more

surrounding cells, forming a cyclocytic stomatal complex (Van

Cotthem, 1970a).

However, many plants exhibit so‐called anomocytic stomata,

those lacking morphologically distinct surrounding cells, including

onion (Allium cepa) (Schnabl & Ziegler, 1977), watermelon (Citrullus

lanatus) (Duan et al., 2014) and members of the Ranunculaceae (Van

Cotthem, 1970b). The model plant Arabidopsis has both anomocytic

and anisocytic stomata, with three unequally sized surrounding cells,

a pattern which is shared across the cruciferous plants (Pant &

Kidwai, 1967). In these instances, identifying the surrounding cells is

more challenging and, even with gene expression signatures, may

differ quantitatively rather than qualitatively from other pavement

cells.

To date, the gene PATROL1 is the only molecular marker that

identifies the surrounding cells in Arabidopsis (Gray et al., 2020;

Higaki et al., 2014). The PATROL1 promoter was found to be active in

guard cells and one or two of the (usually smaller) adjacent cells.

However, the lack of uniformity in expression does raise questions

about the utility of PATROL1 as a surrounding cell marker. PATROL1

was first identified in association with H+‐ATPase traffic to the

plasma membrane (Hashimoto‐Sugimoto et al., 2013). As guard cell

function depends heavily on H+‐ATPase activity, it is no surprise that

PATROL1 is always expressed in guard cells (Higaki et al., 2014) and

may also explain why it is more prevalent in the surrounding cells. Of

course, H+‐ATPase activity contributes also to cell expansion and

apoplastic acidification for relaxing of the cell wall (Hager et al., 1991;

Rayle & Cleland, 1970; Xia et al., 2019). This association, too, might

also have connected PATROL1 expression to the smaller surrounding

cells, if they were still expanding. In other words, caution must be

taken when interpreting data using PATROL1 as a surrounding cell

marker.

Much the same issue applies to expression of several of the

genes encoding K+ channels in subsidiary cells (Büchsenschütz

et al., 2005; Nguyen et al., 2017). These channels are found also in

guard cells and the mesophyll and, hence, cannot be used as

subsidiary cell markers. To date, only Closed Stomata1 (CST1), a

protein belonging to SWEET‐family of sugar transporters, appears to

mark maize subsidiary cells but not the guard cells or any other plant

tissues (Wang, Yan, et al., 2019), suggesting that this gene could be a

potential molecular marker of utility. Whether the CST1 orthologues

in other grass species also show a similar pattern in expression and

whether its homologue in non‐grass species may also mark all

surrounding cells remains to be seen. Certainly, establishing a set of

molecular markers for the cells surrounding the guard cells, in

general, will facilitate future research.

2 | THE ORIGINS OF SURROUNDING
CELLS

The stomatal complex forms through a series of asymmetric cell

divisions (Facette & Smith, 2012; Gray et al., 2020). In Arabidopsis,

after differentiating from a protodermal cell, the meristemoid mother

cell (MMC) divides asymmetrically to generate a small meristemoid

cell and a stomatal lineage ground cell. The meristemoid cell then

differentiates into a guard mother cell (GMC) which later gives rise to

a pair of guard cells by symmetric cell division. The associated

surrounding cell arises before the symmetric division of GMC, but

need not derive from the same lineage. This difference in cell lineages

therefore gives rise to three different classifications based on the

surrounding cells (Figure 2) (Rudall et al., 2013). Surrounding cells

arising from the asymmetric division of meristemoid cells, so from the

same cell lineage with guard cells, are mesogenous. Arabidopsis is a

typical example of a mesogenous lineage in which the surrounding

cells originate through amplification divisions of meristemoid cells

(Lau & Bergmann, 2012). By contrast, perigenous stomata arise with

the surrounding cells recruited from protodermal cells adjacent to the

GMC. Perigenous surrounding cells are typical of the grass stomatal

complex (Cheng & Raissig, 2023; Wu et al., 2019). Finally, some

species exhibit mesoperigenous surrounding cells, with one or more

mesogenous and perigenous surrounding cells. The stomatal com-

plexes of several Amborella and Austrobaileya species follow this

pattern (Rudall & Knowles, 2013).

Extensive studies, primarily of Arabidopsis, have uncovered many

regulators, notably three transcription factors, SPEECHLESS (SPCH),

MUTE and FAMA that act in stomatal initiation, proliferation and

differentiation (Herrmann & Torii, 2021; Raissig et al., 2016). The

underlying developmental processes are widely reviewed and we

point readers also to those of Spiegelhalder and Raissig (2021) and

Wu et al. (2019). Orthologues of the Arabidopsis transcription factors

in grass species similarly play central roles in stomatal developments

(Liu et al., 2009). While the activity of MUTE in Arabidopsis defines

only the fate of GMC, its orthologues in grasses also recruit and

facilitate development in surrounding cells (Raissig et al., 2017;

Serna, 2020; Wang, Guo, et al., 2019). Mobile MUTE orthologs

appear specific to grasses—species with perigenous surrounding

cells—and, to date, have been studied in Brachypodium, maize and

rice; these orthologues diffuse from GMCs to neighbouring epidermal

cells where they trigger asymmetrical cell divisions to generate

surrounding cells (Raissig et al., 2017; Wang, Guo, et al., 2019). To
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prove the mobile property of MUTE in Brachypodium, Raissig et al.

(2017) expressed the gene fused with YFP in wild‐type Arabidopsis

under the control of the GMC‐specific MUTE promoter of Arabi-

dopsis and observed YFP fluorescence also in cells adjacent to GMC

(Pillitteri et al., 2007; Raissig et al., 2017). In the reciprocal

experiment where the corresponding Arabidopsis MUTE construct

was expressed in Brachypodium under its MUTE promoter, the

fluorescence was only observed in GMC. These results suggest that

(1) the Arabidopsis MUTE protein is immobile, (2) Brachypodium

MUTE expression is specific to the GMC and (3) the Brachypodium

MUTE is able to move from the GMC to adjacent cells. This intrinsic

mobility seems to be common in grass species as the YFP

fluorescence of constructs with Brachypodium, maize and rice MUTE

genes were always observed in the GMC and the cells adjacent to the

GMC (Raissig et al., 2017; Wang, Guo, et al., 2019). Overexpressing

Brachypodium MUTE using a constitutive ubiquitin promoter resulted

in polarised cell divisions in the majority of pavement cells, finally

forming multiple rings of surrounding (subsidiary) cell layers around

the guard cells that resembled the structure of stomatal complexes of

Commelina communis (Raissig et al., 2017). This result is consistent

with the idea that Brachypodium MUTE alone is sufficient to define

surrounding cell fate.

The MUTE transcription factor is not the sole player controlling

surrounding cell fate. Downstream controls are also mediated by

F IGURE 2 Origins of surrounding cells. (a) The formation of perigenous (a1→a5), mesoperigenous (a1→a2→a6 and a1→a2→a3→a7) and
mesogenous (a1→a2→a3→a4→a8) stomata from a protodermal cell (a1—light blue). Surrounding cells that do not share the same cell lineage
with the guard cells (green) are perigenous (pink). In contrast, the successive division of the meristemoid cell (blue) gives rise to the stomatal
lineage ground cells (a2, a3 and a4, yellow) which later develop into mesogenous surrounding cells (a6, a7 and a8, orange). The mesoperigenous
stomata have both mesogenous and perigenous surrounding cells (a6 and a7). (b) The development of the grass‐type stomata (perigenous). An
asymmetric division of the protodermal cell (light blue) (b1) gives rise to the guard mother cell (GMC) (blue) (b2). The perigenous surrounding
cells (pink) are recruited from the two lateral pavement cells in direct contact with the GMC (b3) by asymmetric cell division before the formation
of the pair of guard cells (b4, green). Figure adapted from Rudall et al. (2013). [Color figure can be viewed at wileyonlinelibrary.com]
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POLAR in Arabidopsis and its homologue in Brachypodium (Han

et al., 2018; Zhang et al., 2022). Abnormal surrounding cells were

observed in the pangloss1 (pan1) and pangloss2 (pan2) mutants, and in

the double mutant pan1/pan2 in maize (Cartwright et al., 2009;

Humphries et al., 2011; Zhang et al., 2012). The PAN gene products

are leucine‐rich repeat receptor‐like proteins localised at the site of

contact with GMC, suggesting the importance of signal transduction

from GMC in surrounding cell formation of maize. Interacting with

PAN1, the two Plant Rho family GTPases (ROPs), ROP2 and ROP9,

were also found involved in maize surrounding cell development as

their partial loss of function enhance the pan1 phenotype (Humphries

et al., 2011). Additionally, in maize, the LINC KASH AtSINE‐like2

(MLKS2) gene, encoding a member of the linker of nucleoskeleton

and cytoskeleton (LINC), was shown to be responsible for the correct

division of maize surrounding cells (Gumber et al., 2019). The mlks2

mutants displayed abnormal surrounding cell phenotype, which was

later proven to be associated with incorrect division plane due to a

defect in premitotic nuclear migration and nuclear position stabilisa-

tion (Ashraf et al., 2023). Recently, a new gene affecting surrounding

cell formation was found in maize (Cui et al., 2023): the mutation of

LOST SUBSIDIARY CELL, encoding a large subunit of ribonucleotide

reductase, led to the abortion of 50% polarised cell divisions

generating the SMC. This result suggested the sensitivity of

surrounding cell development to dNTP deficiency.

Finally, it is worth noting that the position of stomata within the

leaf epidermis is often not at the same height relative to other cells

on the leaf surface (Gray et al., 2020). Stomata may be positioned

either above or below the epidermal surface, depending on the plant

species, and this characteristic results in elevated and sunken

stomata. Although the real role of stomatal position in plant

adaptation to the environment remains controversial, the origins of

stomatal positioning may depend, in part, on surrounding cell

development (Gray et al., 2020).

2.1 | Surrounding cells in stomatal function

Almost nine decades ago, Heath observed how surrounding cells

could alter the stomatal aperture (Heath, 1938). By alternately

puncturing guard cells and surrounding cells, he could show that

pressure from the surrounding cells on the dorsal wall of the guard

cells opposed stomatal opening. Glinka (1971) extended these studies

to show the mechanical advantage of the surrounding cells by

manipulating the epidermal cell osmotic potential. Later modelling

work again confirmed the mechanical advantage of surrounding cells

(DeMichele & Sharpe, 1973). This mechanical advantage is of

particularly importance in stomatal closing: Itai et al. (1978) noted

that full closure of Commelina guard cells in abscisic acid (ABA) was

only observed in stomata surrounded by living surrounding cells. In

short, it has long been recognised that changes in the turgor pressure

of the surrounding cells imposes a substantial and opposing pressure

on the guard cells that affects steady‐state aperture. Furthermore, by

surrounding the guard cells, these larger neighbouring cells gain

considerable physical—or mechanical—advantage to dominate the

final pore size.

The mechanical advantage of surrounding cells also creates

problems when the guard cells are displaced laterally toward the

space occupied by surrounding cells during stomatal opening (Franks

& Farquhar, 2007). Pressure probe measurements of stomatal

aperture versus guard cell turgor highlighted the problem with the

opening of paracytic stomata (stomata with parallel‐oriented sur-

rounding cells) when epidermal cell turgor is maximal. A cryo‐section

of these stomata in the open‐state showed that the surrounding cells

deformed allowing lateral displacement of guard cells, suggesting a

decrease in turgor pressure against the guard cells (Franks &

Farquhar, 2007). In this work, the authors also pointed out the

discrepancy between experimental data and the model in the

stomatal conductance (gs) in response to different value of leaf‐to‐

air vapour pressure differences (VPD). Mechanical advantage alone

predicts a proportional change of gs with the change of VPD which

cannot explain how a plant can attain full aperture under high

humidity when the turgor pressure of the surrounding cell is high. To

solve this discrepancy, the authors proposed an exchange in turgor

pressure in inverse proportion with that of the guard cells. A similar

explanation has been invoked for the fast and large dynamic range

of barley stomata (Durney et al., 2023) and was modelled successfully

as part of the OnGuard systems platform to explain the discrepan-

cies between guard cell transport and the kinetics of stomatal

movements (Jezek et al., 2019). Durney et al. reported that the

simulations captured the steady‐state aperture of open and closed

stomata, while Jezek et al. emphasised the importance of a turgor

exchange in the kinetics of stomatal movements.

It is worth noting that turgor exchange as a means to control

stomatal aperture requires active mechanisms to adjust and

reverse the turgor pressure of the surrounding cells. These

processes pose some interesting mechanical challenges. Guard

cells lack functional plasmodesmata (Palevitz & Hepler, 1985; Wille

& Lucas, 1984) and, therefore, can adjust their turgor pressure

efficiently. Such is not obviously the case for surrounding cells,

which retain plasmodesmatal connections with their adjacent

epidermal cells. Does the presence of functional plasmodesmata

mean that changes in turgor pressure in the surrounding cells are

temporary? Could these plasmodesmatal connections be regulated

during stomatal movements to alter or buffer turgor changes in the

surrounding cells?

Certainly, comparisons between simulations and experimental

data suggest a transient and reversible element to the turgor

exchange between guard and surrounding cells. Jezek et al. (2019)

used the OnGuard platform, which incorporates the quantitative

characteristics of guard cell solute transport and metabolism, to

describe the kinetics of stomatal movements and define the

differential between simulation and experiment. Their analysis

uncovered a dynamic and reversible process of constraint relaxation

and recovery by the surrounding cells that acts on the guard cells. In

this analysis, during stomatal opening the surrounding cells lose

solute and reduce in turgor as the guard cells take up solute; the

SURROUNDING CELLS OF STOMATA | 5
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surrounding cells then recover slowly to regain their turgor. This

‘constraint‐relaxation‐recovery’ (CRR) model is supported by experi-

mental data obtained from maize subsidiary cells (Mumm et al., 2011;

Raschke & Fellows, 1971). Raschke and Fellows showed a shuttle of

K+ between the guard cells and surrounding cells suggesting a

cooperatively reciprocal change in turgor pressure of these cell types

during stomatal movements (Raschke & Fellows, 1971). Mumm et al.

(2011) observed that the free‐running voltage of the surrounding

cells followed a transient depolarisation upon the transition from dark

to light with a slow recovery in voltage analogous to the changes in

solute flux predicted by Jezek et al. (2019; Mumm et al., 2011). While

there remains no substantive proof, it is to be anticipated that the

transient depolarisation could reflect a rapid solute loss and decrease

in turgor pressure in these cells while the slower recovery associates

with solute and turgor recovery by the surrounding cells. Thus, the

CRR model of Jezek et al. (2019) explains how a transient change in

the turgor pressure of surrounding cells contributes to a fast kinetic

reversibility in stomatal movements (Figure 3).

Finally, it is worth noting that the CRR concept finds support also

in the characteristics of the mute mutant of Brachypodium noted

above that lack surrounding cells. The mutant plants showed

significantly slower stomatal movements in response to light changes

when compared to wild‐type plants (Raissig et al., 2017). These

mutants also had lower stomatal conductance and significantly lower

fresh weight compared to wild type. This result strongly suggests that

subsidiary cells are important and actively contribute to the control of

stomatal kinetics.

2.2 | Solute transport in surrounding cells

Since water can only flow across the cell membrane following the

water potential, cellular turgor depends on the regulation of the

solute content. Potassium has long been recognised in determining

guard cell turgor (Raschke & Humble, 1973), as it is in virtually all

plant cells. The charge on the K+ ion is balanced principally by Cl− and

the malate anion, much of the latter synthesised in the guard cells

(Travis & Mansfield, 1977). Surrounding cells are also known to

accumulate K+ (Squire & Mansfield, 1972). The first strong evidence

of K+ and Cl− shuttling between guard cells and surrounding cells was

reported in maize using histochemical staining (Raschke &

Fellows, 1971). Later, similar staining methods were used to confirm

the phenomenon in 22 different plant species (Dayanandan &

Kaufman, 1975). However, such studies place K+ within a constrained

environment since, after peeling, only guard cells and surrounding

cells survive and plasmodesmatal connections to the pavement cells

are broken. So a question remains whether pavement cells of the

epidermis may serve as an additional ion reservoir. Certainly, the

surrounding cells of the stomatal complex are known to adjust their

content of K+ during stomatal movements: a reduction in the K+

content of these cells was often observed accompanied by K+

accumulation in the guard cells during stomatal opening (Sawhney &

Zelitch, 1969; Squire & Mansfield, 1974).

Pallaghy (1971) first described the different kinetics of K+

content changes of maize surrounding cells in response to light and

CO₂ that opposed those of the guard cells. Similarly, on treating

epidermal peels of Commelina with ABA, which triggers stomatal

closure, K+ was found to accumulate in the surrounding cells with a

corresponding increase in turgor (Itai & Meidner, 1978; Itai

et al., 1982). These data are consistent with the role of ion reservoir

and sink for guard cell solute exchange during stomatal movements.

Indeed, measurements of Commelina stomata showed an apparent

exchange of K+ and Cl− in the surrounding cells with the guard cells

that was directed to the guard cells during stomatal opening and

reversed during stomatal closure (Figure 4) (Bowling, 1987; Penny &

Bowling, 1974; Penny et al., 1976). These seeming directional

movements of ion suggest the presence of ion transport systems in

the surrounding cells that facilitate an ion shuttle with the guard cells.

What transport systems in the surrounding cells might contribute

to ion shuttling? Much of our knowledge to date comes from the

grass models of maize and rice (Table 1). Not surprisingly,

histochemical assays revealed the expression of a subset of K+

channel genes, among these one encoding an outward‐ and two

encoding inward‐rectifying channels; all of these channels were

found in both guard cells and subsidiary cells of rice (Hwang

et al., 2013; Nguyen et al., 2017). In maize, the expression of ZMK1

and ZORK encoding inward‐ and outward‐rectifying K+ channels,

respectively, were identified in surrounding cells (Büchsenschütz

et al., 2005). In many respects, the characteristics of these channels

mirror those found in Arabidopsis guard cells. In Arabidopsis, KC1 and

AKT2 were also found expressed in all the epidermis including guard

cells, surrounding cells, pavement cells and trichomes (Lacombe

et al., 2000; Nieves‐Cordones et al., 2022; Pilot et al., 2003). KC1 is

thought to be a so‐called ‘silent’ channel subunit that assembles with

other inward‐rectifying channel subunits but does not yield a current

by itself; AKT2 is a weakly rectifying channel that facilitates net K+

flux both inward and outward, depending on the prevailing

electrochemical driving force. Expression of SLAH3, a gene encoding

a slow‐activating anion channel, was also reported in Arabidopsis

pavement cells (Negi et al., 2008) although in another study, this gene

appeared to be present only in the guard cells (Zheng et al., 2015).

Note, however, that all of these genes are also expressed in guard

cells with the sole exception of ZMK1.

In rice, mutation of OsK5.2, normally encoding an outward‐

rectifying K+ channel, slowed down both stomatal opening and

closing kinetics (Nguyen et al., 2017). While the slow closing of

osk5.2mutants is linked to the function of this gene in guard cells, the

slow stomatal opening kinetics is more readily explained by its

activity in the surrounding cells if its absence were to slow the

release of K+ from these cells and thereby favour a higher turgor in

the surrounding cells. These findings echo those of the kc1 mutant in

Arabidopsis that appears to enhance stomatal conductance (Nieves‐

Cordones et al., 2022). The KC1 subunit normally suppresses channel

activity when assembled with other inward‐rectifying subunits, and

may suggest the importance of a lower K+ conductance in the

pavement cells for stomatal function. To date, the glucose

6 | NGUYEN and BLATT
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F IGURE 3 Constraint‐relaxation‐recovery (CRR) mechanism of stomatal movement. (a) Schematic transverse sections through the leaf
epidermis (left) present guard cells and surrounding cells colour‐coded to indicate the osmotic pressure. The changes in osmotic pressures and
stomatal aperture are presented in temporal order from fully closed (top) to fully open (bottom). Scale 1–8MPa. The blue vectors represent
relatively the forces exerted by guard cells and surrounding cells on one another. Red vectors are the sums of blue vectors representing the
direction and the net force directing the displacement of the guard cell. The right panel plots the change of stomatal aperture (black line) and the
relative turgor (ΔTurgor) of the guard cell (red line) and surrounding cell (grey dashed line). The inverse of the change in relative turgor of
surrounding cells (‐[surrounding cell]—green dashed line) is added to yield the aperture kinetics. Adapted from Jezek et al. (2019). (b) The
relationship between guard cell turgor pressure and stomatal aperture generated by the OnGuard3e platform (Nguyen, Silva‐Alvim, et al., 2023)
when the turgor of the SC was kept constant at low (0.68MPa—black dashed line) or high value (3MPa—black line). Enabling the CRR
mechanism (red line) give rise to a temporal and curvilinear relationship as the turgor of the SC changes from high to low values and then
recovers. For the CRR model, the maximum SC turgor pressure was set at 3MPa, and the graph represents only the constraint‐relaxation step
when the SCs and GCs reciprocally change their turgor pressures. [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 K+ and Cl− shuttling between surrounding and guard cells in the Commelina communis stomatal complex. Schematic of K+

(left‐hand side) and Cl− (right‐hand side) contents in the vacuole and apoplast of cells in the C. communis stomatal complex during stomatal opening
(a) and stomatal closure (b). Graphics adapted from the data of Penny and Bowling (1974), Penny et al. (1976) and Bowling (1987). Each stomatal
complex is formed by a pair or kidney‐shaped guard cells (gc) surrounded by a set of six surrounding cells including two inner lateral surrounding
cells (isc), two outer lateral surrounding cells (osc) and two terminal surrounding cells (tsc). The whole stomatal complex is surrounded by four
to five epidermal pavement cells (pc) of much larger size. The ion contents of the guard cells, lateral surrounding cells and lateral pavement cells are
colour‐coded to indicate the vacuolar [K+] ([K+]vac) and [Cl−] ([Cl−]vac). Scale 0–500mM for [K+]vac and 0–150mM for [Cl−]vac. Black lines link the
apoplast of each cell to its respective K+ or Cl− concentrations (below). [Color figure can be viewed at wileyonlinelibrary.com]
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transporter, CST1, appears to be the first glucose transporter specific

for subsidiary cells (Wang, Yan, et al., 2019). Mutation of this gene in

maize reduced stomatal opening, suggesting the importance of

glucose transport in the surrounding cells for stomatal function.

However, the qualitative differences in transporter gene expression

between guard cells and their surrounding cells identified to date do

not offer many clues to a reciprocity in ion shuttling.

It is likely that differences in how ion transport is regulated between

the two cell types contributes to ion shuttling. Indeed, the effects of

ABA and cytosolic Ca2+ ([Ca2+]i) on anion transport in the surrounding

cells of maize have been reported to complement what that of guard

cells (Mumm et al., 2011). Both ABA and elevated [Ca2+]i, which are

known to activate anion channels in guard cells (Brandt et al., 2012;

Chen et al., 2010; Demir et al., 2013; Garcia‐Mata et al., 2003; Geiger

et al., 2011; Grabov et al., 1997; Maierhofer et al., 2014; Scherzer

et al., 2012; Thiel et al., 1992), reduced the anion conductance in

subsidiary cell protoplasts (Mumm et al., 2011). How these changes

arise remains unknown, however. SLAC1 and SLAH3 are activated in

various cell types by Ca2+‐dependent kinases, including several CPKs and

CIPK23 (Brandt et al., 2012; Demir et al., 2013; Dubiella et al., 2013;

Geiger et al., 2010, 2011; Gutermuth et al., 2013;Maierhofer et al., 2014;

Scherzer et al., 2012; Sun et al., 2021). By contrast, only two

phototropin‐related kinases, CBC1 and CBC2, are known to reduce

the activity of SLAC‐like anion currents in Arabidopsis (Hiyama

et al., 2017), and these are not Ca2+‐dependent. So, it is likely that

other Ca2+‐dependent inhibitors have yet to be identified.

Mumm et al. also observed an inverse behaviour in the response of

the membrane voltage between surrounding and guard cells, with the

surrounding cells depolarising and guard cells hyperpolarising on

transition to light (Mumm et al., 2011). These changes may arise from

differences in H+‐ATPase regulation with corresponding consequences

for the voltage‐sensitive K+ channels. Depolarisation of maize surround-

ing cells might be expected to facilitate K+ release via the ZORK

channel, with hyperpolarization promoting K+ uptake in the guard cells.

The changes in membrane voltage were transient, whereas prolonged

voltage changes would be required for net changes in ion contents in

each case. Whether the voltage changes reflect differences in H+‐

ATPase activity is similarly unclear; the observations of subsidiary cell

acidification in the dark and alkalinization in the light are more readily

understood if the pumps were activated by the light to promote H+

efflux from the cells, much as in guard cells.

2.3 | Perspectives

The diversity in the structures of the cells surrounding the guard cells

of the stomatal complex suggests that plants have adapted the

function of these cells through evolution to optimise their stomatal

function. Some of the relationships to stomatal function are known

(Cowan, 1972; Mott et al., 1999; Rand et al., 1982) but others have

yet to be explored in any detail. It is notable that an analysis of the

stomatal kinetics in 15 different plant species (McAusland et al., 2016)

focused on guard cells and carbon assimilation without reference to

the contributions of the surrounding cells. The seven grass species

used in this study divide between two groups based on their stomatal

kinetics, a slower group that included oat (Avena sativa) and wheat

(Triticum aestivum) coincides with dome‐shaped surrounding cells,

and a faster group that consists mostly of species with triangular‐

shaped surrounding cells. However, this comparison is, at best, rough

and ready, and other factors may also need consideration. In short, a

reassessment is needed, especially in relation to stomatal kinetics

(Blatt et al., 2022; Jezek et al., 2019).

Equally, attention to ion transport in surrounding cells is also

needed to provide greater depth to our understanding of their

characteristics and regulation in coordination with the guard cells in

the control of stomatal movements. Such understanding is certain to

help nuance efforts towards engineering stomatal function (Blatt &

Alvim, 2022; Horaruang et al., 2022; Nguyen, Lefoulon, et al., 2023;

Papanatsiou et al., 2019). The availability of new research tools, for

example, optogenetics (Cosentino et al., 2015; Papanatsiou et al., 2019;

Reyer et al., 2020; Zhou et al., 2021) and mechanistic modelling

platforms (Blatt et al., 2014; Hills et al., 2012; Jezek et al., 2019; Nguyen,

Silva‐Alvim, et al., 2023), clearly will aid in exploring the properties and

functions of surrounding cells. The knowledge gained from these studies

is certain to facilitate our knowledge of how plants accommodate the

wide range of environments in which they survive.
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