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Data-Importance Aware User Scheduling for

Communication-Efficient Edge Machine Learning

Dongzhu Liu, Guangxu Zhu, Jun Zhang, and Kaibin Huang

Abstract—With the prevalence of intelligent mobile appli-
cations, edge learning is emerging as a promising technology
for powering fast intelligence acquisition for edge devices from
distributed data generated at the network edge. One critical task
of edge learning is to efficiently utilize the limited radio resource
to acquire data samples for model training at an edge server.
In this paper, we develop a novel user scheduling algorithm
for data acquisition in edge learning, called (data) importance-
aware scheduling. A key feature of this scheduling algorithm is
that it takes into account the informativeness of data samples,
besides communication reliability. Specifically, the scheduling
decision is based on a data importance indicator (DII), elegantly
incorporating two “important” metrics from communication and
learning perspectives, i.e., the signal-to-noise ratio (SNR) and
data uncertainty. We first derive an explicit expression for this
indicator targeting the classic classifier of support vector machine
(SVM), where the uncertainty of a data sample is measured by
its distance to the decision boundary. Then, the result is extended
to convolutional neural networks (CNN) by replacing the distance
based uncertainty measure with the entropy. As demonstrated via
experiments using real datasets, the proposed importance-aware
scheduling can exploit the two-fold multi-user diversity, namely
the diversity in both the multiuser channels and the distributed
data samples. This leads to faster model convergence than the
conventional scheduling schemes that exploit only a single type
of diversity.

Index Terms—Scheduling, Resource management, Image clas-
sification, Multiuser channels, Data acquisition

I. INTRODUCTION

The proliferation of smart devices and the booming of

artificial intelligence (AI) ushered in a new era of ambient

intelligence. Materializing the vision motivates the deploy-

ment of machine learning algorithms at the network edge,
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named edge learning [1]–[5], to enable intelligent mobile

applications. Edge learning aims at fast AI model training

by exploiting computing resources at edge servers, and low-

latency access to distributed data at edge devices. In return,

downloading the trained models to the devices will equip them

with human-like intelligence to cope with real-time inference

and decision making. Edge learning sits at the intersection

of two areas: wireless communications and machine learning.

The emergence of the new area gives rise to many inter-

disciplinary research opportunities that require joint designs

interweaving the two said areas towards an ultimate goal of

fast and efficient intelligence acquisition.

With rapidly growing data-processing speeds, the bottleneck

of fast edge learning is more on the communication aspect.

Specifically, wirelessly uploading high-dimensional data from

a large number of edge devices can congest the air-interface

due to the limited radio resource [6]. To overcome this

bottleneck, it calls for innovations on highly efficient wireless

data acquisition tailored for edge learning systems. The con-

ventional wireless technologies focus on rate maximization or

Quality-of-Service (QoS), which implicitly assume that trans-

mitted data bits are equally important. However, the assump-

tion is improper for machine learning applications since some

data samples are more effective than the others for improving a

learning model [7]. This fact motivates a novel design principle

of importance aware radio resource management (RRM) that

the radio resource should be allocated to edge devices not only

based on channel states but also accounting for the importance

of their data for model training. In this work, we apply this

principle to revamp user scheduling by exploiting multi-user

diversity in both the channel and data domains for efficient

wireless data acquisition.

A. Related Work and Motivation

1) Radio Resource Management for Edge Learning: The

mission of conventional wireless communications is to reliably

transmit data bits at a rate as high as possible, regardless

of the data content and its usefulness. Therefore, directly

applying such a communication-learning separation principle

to edge learning will lead to inefficient transmission [8].

This has triggered a lot of research interests recently on

redesigning communication techniques for edge learning [1],

covering key topics such as RRM [9]–[15], multiple access

[16]–[18], and signal encoding [19]–[21]. The new idea in

RRM, the theme of this paper, is to allocate resources to edge

devices for transmitting learning relevant data by considering

the learning task. Prior work on this topic can be separated

for two learning paradigms. The first paradigm is federated
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edge learning that preserves privacy by avoiding direct data

uploading. In this paradigm, a model is distributively trained

at edge devices, and the purpose of uplink transmission is to

upload local models which are aggregated at an edge server

to cooperatively improve a global model [9], [10]. In this

paradigm, a resource allocation method integrating comput-

ing and communication is proposed to improve the learning

efficiency [11]. Specifically, the training batch size is adapted

to the wireless channel condition for attaining higher learning

accuracy without compromising the latency. A similar idea

has also been investigated in the other paradigm, centralized

edge learning, where edge devices directly upload data to the

server for training the global model. In this paradigm, given

the communication overhead, the offloading data size in each

communication round is optimized to acquire sufficient data

samples for reducing the learning bias, and avoids insufficient

learning due to exceeding the computing capacity, thereby

improving the learning performance [12]. The efficiency of

wireless data acquisition can be further enhanced by differ-

entiating the usefulness of training data samples [13], [14].

Specifically, a novel retransmission scheme is designed for

adapting the reliability requirement of a received data sample

according to its importance for model improvement [15]. By

intelligently allocating the constrained transmission budget,

the scheme allows more important data to be received with a

guaranteed reliability compared to the conventional channel-

aware design, thereby improving learning accuracy. This idea

of importance-aware retransmission motivates us to propose

the new principle of importance-aware user scheduling to

explore the new dimension of multiuser diversity in both

channels and data to improve the communication efficiency

of edge learning.

2) Multiuser Diversity: Multiuser channel diversity is an

intrinsic characteristic of wireless networks arising from inde-

pendent fading in multiuser channels. To increase the network

throughput, multiuser diversity can be exploited by scheduling

the user with the best channel at any given time [22], [23].

The diversity gain tends to increase for channels with large

dynamic ranges, e.g., rich scattering and fast fading, as well

as the large number of users. On the other hand, the scheme

targeting throughput maximization is biased towards users

with favourable channels and unfair for others [24]. To address

this issue, one solution is proportional fair scheduling where

a scheduling metric being the radio between the instantaneous

and average rates of each user is adopted to strike a balance

between rate maximization and fairness [25]–[27]. In the

existing work, data importance is assumed homogeneous.

However, in the context of edge learning, data samples differ

in their importance for learning, called data diversity. Then

the distribution of data at multiple devices gives rise to a new

type of multiuser diversity, namely, multiuser data diversity.

In this work, we make the first attempt to exploit both types

of multiuser diversity in scheduling so as to improve the

communication efficiency of edge learning.

Data diversity is not new but a fundamental concept in

the area of active learning [7]. It concerns a scenario where

abundant unlabelled data are available and manual labelling

is costly. Data diversity can be exploited by selecting the

most informative data samples to be labeled (by querying an

oracle), such that a model can be accurately trained using

fewer labelled samples, thereby reducing the labelling cost.

Generally, the informative data samples are those highly

uncertain to be predicted under the current model. Their use

in training can significantly improve the accuracy of the clas-

sifier model. There are several commonly adopted metrics for

measuring data uncertainty including entropy [28], expected

model change [29], and expected error reduction [30]. For

active learning, all data are assumed to be located at a server

and hence wireless transmission is irrelevant. Nevertheless, the

data-uncertainty measures developed in the area are found in

this work to be a useful tool for designing importance aware

scheduling for wireless data acquisition in edge learning.

B. Contributions and Organization

In this work, we propose importance-aware scheduling for

communication efficient edge learning. To this end, consider a

centralized edge learning system where a classifier is trained

at the edge server by utilizing the data distributed at multiple

edge devices. To accelerate the model training, the edge server

schedules a device for wireless data uploading under the cri-

terion of maximum improvement on the classifier’s accuracy.

The proposed scheduling scheme exploits channel diversity

and data diversity simultaneously, to ensure received data are

both important and reliable in the presence of channel fading

and noise. As a result, the model convergence is accelerated

and channel use is reduced. To the authors’ best knowledge,

this work represents the first attempt on exploiting both the

channel and data diversity to improve the communication

efficiency of an edge learning system.

The main contributions of this work are summarized as

follows.

• Importance-aware scheduling for SVM: We first con-

sider the classic classifier model of support vector

machine (SVM), and develop the basic principle of

importance-aware scheduling. The core element of the

scheme is a new scheduling metric, named data im-

portance indicator (DII), that is proposed to be the

expected uncertainty of a received data sample in the

presence of channel fading and noise. For SVM, the DII

is suitably defined as the expected negative distance from

a received data sample to the decision boundary of the

classifier. The theoretical contribution of the DII design

lies in that its derived closed form elegantly combines the

received signal-to-noise ratio (SNR) from the communi-

cation perspective and data uncertainty from the learning

perspective in a simple addition form. This allows the

DII to measure the effective importance of a received

data sample for model training given fading and noise.

Consequently, scheduling under the criterion of maximum

DII, yielding the proposed importance-aware scheduling,

is capable of exploiting both multiuser channel-and-data

diversity to accelerate model convergence while effec-

tively coping with channel hostility.

• Extension to general classifiers: The principle of

importance-aware scheduling developed for SVM is ex-

tended to general classifier models. The generalization
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essentially replaces the distance-based uncertainty mea-

sure in the previous DII design for SVM with a general

measure. It can be specified as one of available measures

(e.g., entropy or expected model change) depending on

the design choice. For illustration, a case study for the

modern convolutional neural networks (CNN) classifier

is presented.

• Practical issues in implementation: Several practical

implementation issues of the proposed scheme are dis-

cussed and addressed by suitable design modifications.

– Exploiting data-label information: The design in-

volves revising the DII as the expectation of model

update, which is derived to combine the SNR and

label dependent hinge loss (see e.g., [31]) in a

product form. Based on the revised DII with label in-

formation, the scheduling scheme can achieve faster

convergence rate than the previous design.

– Model compression: The second issue is the high

computational complexity of data uncertainty eval-

uation at edge devices. This can be addressed by

using a compressed model that prunes the model

parameters with small values.

– Data deficiency: In practice, the scheduling may

face the data deficiency due to limited available

devices in the system. That may degrade the per-

formance of the proposed scheme since it is highly

dependent on the global data size (or higher data

diversity). To cope with this issue, several practical

solutions are discussed for increasing the data size

by increasing the number of devices, increasing

buffer sizes, updating the local buffer with a higher

frequency, or utilizing user mobility.

• Experiments: We evaluate the performance of the pro-

posed importance-aware scheduling via extensive exper-

iments using real datasets. The results demonstrate that

the proposed method is able to exploit the two types of

multiuser diversity, and as a result achieves better learning

performance than the two baseline schemes that exploit

only a single type of diversity. Moreover, the performance

can be further improved by increasing the data size using

several proposed methods. By exploiting the label in-

formation, the importance-aware scheduling could attain

a faster convergence rate. Last, the computational com-

plexity can be reduced by implementing a compressed

evaluation model without significantly compromising the

learning performance.

The remainder of the paper is organized as follows. The

communication and learning models are introduced in Sec-

tion II. In Section III, the principle of importance-aware

scheduling is proposed. Several practical issues and solutions

are discussed in Section IV. Section V provides experimental

results, followed by concluding remarks in Section VI.

II. COMMUNICATION AND LEARNING MODELS

In this section, we first introduce the communication model,

including multiuser scheduling and the data channel model.

Then the learning models are introduced, followed by the data

importance measures.

A. Communication Model

We consider an edge learning system in a single-cell wire-

less network as shown in Fig. 1, which comprises a single edge

server and multiple edge devices, each equipped with a single

antenna. A machine learning model is to be trained at the edge

sever by utilizing the labeled data samples distributed over the

K edge devices. The devices are coordinated by a scheduler to

share the wireless channel in a time division manner, and they

take turn to upload a data sample in each time slot. Each device

is equipped a local buffer with the size of N samples. Note that

both the buffer updating frequency and device mobility affect

the learning performance which are discussed in Section IV-C.

Denote the n-th data sample at the k-th device as xk,n ∈ R
p,

and its label ck ∈ {1, 2, · · · , C} is acquired after the data

sample is selected for transmission. Note that a label has a

much smaller size than a data sample (e.g., a 0 − 9 integer

versus a vector of a million real coefficients), thus a low-

rate noiseless channel for label transmission is assumed for

simplicity.

1) Multiuser Scheduling: Time is divided into symbol

durations, called slots. Slot synchronization among devices are

assumed. Transmission of a data sample requires p slots, called

a symbol block, which occupies a fixed duration of τ seconds.

Thus, the slot during is τs = τ
p

. Each sample coefficient is

modulated into one symbol using linear analog modulation

which will be discussed in sequel. The scheduled device is

allocated a frequency flat fading channel for transmission

and requires the passband bandwidth of B = 1+α
τs

, where

α ∈ [0, 1] is the parameter of the raised-cosine pulse-shaping

filter. The fading channel is assumed to be fixed within one

sample duration and vary over multiple durations. In other

words, a sample duration spans one channel coherence time

and thus is referred to as one channel use in the sequel. At the

beginning of each symbol block, the edge server broadcasts

the global model for the devices to evaluate the importance

of their data samples, measured by the DII and denoted as

Ik at the k-th device, based on which, a device is selected

for data uploading. The main purpose of this work is to

design the DII. The model broadcast for data importance

evaluation can be the current global model under training or a

compressed one for low-complexity computation, as discussed

in Section IV-B. Assuming a noiseless broadcast model and

perfect channel state information (CSI), the data importance

measure is evaluated at the devices and the results fed back to

the server for scheduling. Upon receiving the DIIs, the server

selects one of the devices for data-sample transmission.

2) Data Channel Model: Data channels are assumed to

follow block-fading, where the channel coefficients remain

static within a symbol block and are independent and iden-

tically distributed (i.i.d.) over different users. In a series of

recent studies, analog modulation is seeing its revival to be

a promising solution for multimedia transmission and found

to outperform its digital counterpart in terms of edge learning

performance [32], in the presence of Gaussian noise [33], in

compression efficiency [34] and power consumption [35] for

video transmission, and in alleviating the noise effect on video

quality [36]. For these advantages as well as simplification



4

Edge Server…

Edge Devices

Model Broadcast Channel

I
k

DII Feedback Channel,

Label ChannelData Channel

Update Model

Received Data Samples
(x̂

k*, c
k*)

Global Classifier  

Model

Scheduler
I1, I2, ⋯, I

K

Broadcast

(a) Scheduling and data uploading.

Local 


Dataset

x
k,1, x

k,2, ⋯, x
k,N

Importance  

Evaluation

Channel State 

Information
h

k

I
k

Broadcast Model

(Uncompressed/Compressed)

DII

(b) Data importance evaluation at an edge device.

Figure 1. An edge learning system with importance-aware scheduling.

of the design, analog modulation is adopted for transmitting

training data which are typically images or videos. Specifi-

cally, during an arbitrary symbol block, the scheduled k-th

device sends the data sample x using linear analog modulation,

yielding the received signal given by

y =
√
Phkx+ zk, (1)

where P is the transmit power, the Rayleigh fading coeffi-

cient hk is a complex Gaussian random variable (r.v.), i.e.,

hk ∼ CN (0, 1), and zk is the additive white Gaussian noise

(AWGN) vector with the entries following the i.i.d. CN (0, σ2)
distributions. The average power constraint is

P

q
E
[
‖x‖2

]
=

P

q

q∑

i=1

E
[
|Xi|2

]
≤ P0 (2)

where the expectation E[·] is taken over the coefficients in

the whole dataset. Since many data samples are transmitted

and each has a large number of coefficients, the average

transmission power approaches that at the left-hand side of (2).

Therefore, P can be set as P = qP0∑q

i=1
E[|Xi|2] under the power

constraint for sustaining the same SNR during the whole data

transmission. Analog uncoded transmission is assumed here

to allow fast data transmission [17] and for a higher energy

efficiency (compared with the digital counterpart) as pointed

out by [37]. We assume that perfect CSI is available at the edge

server 1. This allows the server to compute the instantaneous

SNR and decode the received sample x̂ as follows:

x̂ =
1√
P
ℜ
(

hk
∗
y

‖hk‖2
)
, (2)

where y is given in (1). In (2), we extract the real part of

the combined signal for further processing since the data for

1The perfect CSI is assumed for simplifying the analysis. Nevertheless,
it is straightforward to extend the current design to the imperfect CSI case.
For instance, an additive noise can be introduced to account for the channel
estimation error.
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Figure 2. Comparison of hard-margin SVM and soft-margin SVM for binary
classification.

machine learning are real-valued in general (e.g., photos, voice

clips or video clips). As a result, the receive SNR for sample

x̂ is given as

SNRk =
2P

σ2
|hk|2, (3)

where the coefficient 2 at the right hand side arises from the

fact that only the noise in the real dimension with variance σ2

2
affects the received data. The SNR expression in (3) measures

the reliability of a received data sample and serves as one of

two performance metrics to be accounted for in scheduling as

discussed in Section III.

B. Learning Model

For the learning task, we consider supervised training of

a classifier. Prior to wireless data acquisition, there is some

initial data at the server. The data, denoted as L0, allow the

construction of a coarse initial classifier, which is used for

importance evaluation at the beginning. The classifier is refined

progressively in the subsequent data acquisition (and training)

process. In this work, we consider two widely used classifier

models, i.e., the classic SVM classifier and the modern CNN

classifier as introduced below.

1) SVM Model: As shown in Fig. 2, the original hard

margin SVM is to seek the optimal hyperplane wTx+ b = 0
as a decision boundary by maximizing its margin γ to data

points, i.e., the minimum distance between the hyperplane to

any data sample [38]. However, it works only for linearly

separable datasets, which is hardly the case when the dataset is

corrupted by channel noise in the current scenario. To enable

the algorithm to cope with a potential outlier caused by noise,

a variant of SVM called soft-margin SVM is adopted. Soft-

margin SVM is widely used in practice to classify a noisy

dataset that is not linearly separable by allowing misclassifi-

cation, but with an additional penalty ξi for the non-separable

sample xi. The comparison between hard margin SVM and

soft margin SVM is graphically shown in Fig. 2. A convex

formulation for the soft margin SVM problem is given by

min
w,b

1

2
‖w‖2 + C

∑

i

ξi

s.t. ci(w
Txi + b) ≥ 1− ξi, (4)

ξi ≥ 0, ∀i,
where C is a parameter to control the tradeoff between

maximizing the margin and minimizing the training error.
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Small C tends to emphasize the margin maximization by

allowing certain level of misclassification in the training data,

and vice versa. In soft-margin SVM, as shown in Fig. 2, the

support vector is defined to be the point lies either on or

inside the margin [31]. Mathematically, a labelled training data

sample (x, c) is a support vector if it satisfies the following

equation:

(Support Vector) V (x, c) = 1− c(wTx+ b) ≥ 0. (5)

After training, the learnt SVM model can be used for predict-

ing the label of a new sample by computing its output score

is given as

(Output Score) s(x) = (wTx+ b)/‖w‖, (6)

where ‖ · ‖ represents the Euclidean norm.

2) CNN model: CNN is made up of neurons that have

adjustable weights and biases to express a non-linear mapping

from an input data sample to class scores as outputs [39].

Note that the weights and biases constitute the parameters

of the CNN. Typical implementation of a CNN consists of

multiple layers including convolutional layers, ReLu layers,

pooling layers, fully connected layers and normalization lay-

ers. Without the explicitly defined decision boundaries as for

SVM, CNN adjusts the parameters of the hidden layers to

minimize the prediction error, calculated using the outputs of

the softmax layer and the true labels of training data. The

expression of output score is given as:

(Output Score) sĉ(x) = Pθ(ĉ|x), (7)

indicating the posterior distribution of the predicted label of

a data sample. After training, the learnt CNN model can then

be used for predicting the label of a new sample by choosing

one with the highest posterior probability.

C. Data Uncertainty Measures

The importance of a data sample for learning is usually

measured by its uncertainty, as viewed by the model under

training [7]. Two uncertainty measures targeting SVM and

CNN respectively are introduced as follows.

1) Uncertainty Measure for SVM: For SVM, we adopt the

distanced based uncertainty which is motivated by the fact that

a classifier makes less confident inference on a data sample

which is located near the decision boundary [15]. Given a data

sample x and a binary classifier {w, b}, the said distance can

be readily computed by the absolute value of the output score

as follows

d(x) = |s(x)| = |wTx+ b|/‖w‖. (8)

Then the distance based uncertainty measure is defined as

(Distance Based Uncertainty) Ud (x) = −d2(x)

= − (wTx+ b)2

‖w‖2 .

(9)

2) Uncertainty Measure for CNN: For CNN, a suitable

measure is entropy, an information theoretic notion, defined

as follows [28]:

(Entropy) Ue (x) = −
C∑

ĉ=1

Pθ (ĉ|x) logPθ (ĉ|x) , (10)

where ĉ denotes a predicted class label and θ the set of model

parameters to be learnt.

III. PRINCIPLE OF IMPORTANCE-AWARE SCHEDULING

In this section, we first consider the task of training a

binary SVM classifier at the edge. To attain a more accurate

model under the constrained transmission budget, it requires

the edge server to schedule the device with the most useful

data sample for transmission. The scheduling decision making

is challenging as there lacks a selection metric to evaluate

the importance of noisy data. The problem is tackled in this

section by designing the DII, which combines two metrics

in communication and learning to indicate the effective im-

portance of a transmitted data sample for learning. Then,

the importance-aware scheduling is proposed based on the

indicator, so as to accelerate the model training at the edge

server. Finally, the proposed scheme for SVM is extended to

general classifiers.

A. Data Importance Indicator

The direct design of DII for optimizing the learning perfor-

mance is difficult due to a lack of tractable mapping from

noisy data importance to the learning speed and accuracy.

Nevertheless, the following fact in active learning provides

a potential connection between data uncertainty and model-

convergence rate: a model can be trained using fewer labelled

data samples if the highly uncertain data is selectively added

into the training set. The fact suggests that data uncertainty

should be incorporated into the design of DII to maximize

the improvement on the classifier’s accuracy. However, an

uncertainty measure in active learning targets noiseless data

selection, and thus cannot be directly used for edge learning,

as the acquired training data is corrupted by channel fading and

noise, thereby affecting the effective uncertainty. To address

this issue, the expectation of received data uncertainty can

serve as a reasonable measure of effective uncertainty, and

thus is used for defining the DII.

Definition 1 (Data Importance Indicator). Conditioned on the

local dataset Dk at the k-th edge device and its associated

channel, the corresponding DII is defined as:

Ik = max
n∈N

Ezk
[Ud (x̂k,n)] , (11)

where x̂k,n and Ud(·) are defined in (2) and (9) respectively,

and N = {1, 2, · · · , N} represents the sample index set.

The remainder of the sub-section focuses on deriving a

closed-from expression for DII. To begin with, we first give

the expression for calculating the distance from a received

data sample to the decision boundary. The derivation of the
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result involves utilizing the equivalence between the square of

distance measure and that of the corresponding score.

Lemma 1. Conditioned on the parameters {w, b} of a binary

SVM classifier, channel coefficient hk, and channel noise zk,

the distance from a received data sample x̂ to the decision

boundary is given as:

d(x̂) =

√

s2(x) + 2s(x)× wTz̃k

‖w‖ +

(
wTz̃k

‖w‖

)2

, (12)

where s (·) is the output score given in (6), and z̃k =
1√
P
ℜ
(

hk
∗

‖hk‖2 zk

)
is the equivalently noise after decoding.

According to Lemma 1, the key step for deriving DII

is to find the distribution of the projected channel noise
w

T
z̃k

‖w‖ . The derivation simply involves projecting the high-

dimensional Gaussian distribution onto a particular direction

specified by w, which yields a univariate Gaussian distribution

as elaborated below.

Lemma 2. Given the specific direction w/‖w‖, the projected

channel noise follows a Gaussian distribution:

wTz̃k

‖w‖ ∼ N
(
0,

1

SNRk

)
. (13)

Applying the expectation and variance of projected channel

noise (see Lemma 2) into Lemma 1, the expected distance of

a received data sample is presented in the following lemma.

Lemma 3. The expected distance from the received data

sample x̂k,n to the decision boundary is

Ezk

[
d2(x̂k,n)

]
= d2(xk,n) +

1

SNRk

. (14)

Lemma 3 suggests that the channel fading and noise tend to

degrade the data importance. The effect of noise on the receive

data importance can be further illustrated in Fig. 3, where

the solid black dots represent the transmitted data samples.

The corresponding received data sample is expected to be the

grey dot, which is more likely to be pushed away from the

decision boundary, i.e., it suffers importance reduction. The

degradation is proportional to the power of channel noise (or

the inverse of SNR). The result is aligned with the intuition

that channel noise is harmful and can not be exploited for

improving learning performance.

With Lemma 3, we are ready to derive a closed-form

expression of DII, as shown in the following proposition.

Proposition 1. Consider the training of a binary SVM clas-

sifier at the edge and the model is broadcast to the edge

devices for data uncertainty evaluation. Given the local dataset

Dk = {xk,1,xk,2, · · · ,xk,N} of the k-th edge device and

SNRk, the DII is given as

Ik = − 1

SNRk

+max
n∈N

Ud (xk,n) , (15)

where N = {1, 2, · · · , N} represents the sample index set,

and Ud (·) is a distance-based uncertainty measure defined in

(9).

Remark 1 (How does the local buffer size affect DII?). With

the increase of buffer size, the DII is dominated by the SNR

due to convergence of the second term related to data uncer-

tainty towards zero. A larger buffer size suggests potentially

higher diversity of the dataset for selection. Specifically,

lim
N→∞

max
n∈Nk

Ud (xk,n) = lim
N→∞

min
n∈Nk

d2 (xk,n) → 0, ∀k.
(16)

As a result, the DII in the case of large buffer becomes:

lim
N→∞

Ik = − 1

SNRk

. (17)

The developed DII for binary SVM can be extended to
multi-class SVM. Given a data sample x, the distance based
uncertainty is evaluated based on the predicted label as il-
lustrated in the sequel. Specifically, a C-class SVM classifier
is implemented by L = C(C − 1)/2 one-versus-one binary
component classifiers that each trained using the samples
from the two concerned classes only [40]. To predict the
label ĉ, the output L-dimension vector, denoted as s =
[s1(x), s2(x), · · · , sL(x)] is compared with a reference coding
matrix of size C × L, denoted by M. An example of the
reference coding matrix with C = 4 is provided as follows:

M=











binary1 binary2 binary3 binary4 binary5 binary6

class1 1 1 1 0 0 0

class2 −1 0 0 1 1 0

class3 0 −1 0 −1 0 1

class4 0 0 −1 0 −1 −1











,

where each row gives the “reference output pattern” corre-

sponding to the associated class. Given M, the prediction of

the class index of s involves simply comparing the Hamming

distances between s and different rows in M, and choosing

the row index with the smallest distance as the predicted class

index:

ĉ = argmin
c

L∑

ℓ=1

|mcℓ|[1− sgn(mcℓsℓ(x))]/2, (18)

where mcℓ denotes the ℓ-th element in vector mc, and sgn(x)
denotes the sign function taking a value from {1, 0,−1}
corresponding to the cases x > 0, x = 0 and x < 0, re-

spectively. Having obtained the predicted label ĉ, the distance

based uncertainty is averaged over all the effective component

classifiers of the predicted label and DII is defined below:

Ik = − 1

SNRk

+max
n∈N

{
− 1

C − 1

L∑

ℓ=1

|mĉℓsℓ(xk,n)|2
}
. (19)
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B. Importance-Aware Scheduling

In this section, the importance-aware scheduling is designed

for binary SVM classification. Specifically, the edge sever

schedules the device with highest value of DII. The design

can be extended to multi-class SVM following the procedure

described in the preceding section. Given the derived DII in

Proposition 1, the resultant scheme is described in Scheme 1

below.

The summation form of DII in (20) elegantly incorporates

both data uncertainty and channel quality in the design of

scheduling criterion, which provides a simple mechanism

for simultaneous exploitation of multiuser data-and-channel

diversity. Any criterion purely exploits only a single type of

diversity may compromise the learning performance degrada-

tion and lead to inefficient use of radio resources. Particularly,

a scheduling criterion based on only SNR (only exploiting

channel diversity, see Scheme 2) is prone to selecting a

useless data sample which has little contribution to refining

the decision boundary. On the other hand, the one based on

data importance (only exploiting data diversity, see Scheme 3)

may suffer from selecting highly noisy data, and thereby

compromise the learning.

Scheme 1 (Importance-aware scheduling for binary

SVM). Consider the acquisition of a data sample from

multiple edge devices in an edge learning system. The

edge server schedules device k∗ for data transmission if

k∗ = argmax
k

{
− 1

SNRk

+ max
n∈Nk

Ud (xk,n)

}
, (20)

where Ud(·) is the distance based uncertainty defined in

(9).

Remark 2 (How does a transmit SNR affect scheduling?).

The effect of the transmit SNR P/σ2 on scheduling can

be understood by rewriting the scheduling scheme using the

definition of SNR given in (3):

k∗ = argmax
k

{
−σ2

P
× 1

2‖hk‖2
+ max

n∈Nk

Ud (xk,n)

}
. (21)

One can observe that the transmit SNR P/σ2 is a weight factor

to balance the influences of channel quality and data uncer-

tainty on the scheduling decision. The scheduling schemes for

low and high transmit SNR scenarios are discussed as follows.

• Low transmit SNR: For this case, wireless channels are

unreliable. The channel diversity is more critical to be

exploited for reliably receiving a data sample. Other-

wise, received data samples are severely corrupted by

noise and become useless regardless of their uncertainty

(importance) prior to transmission. This fact causes the

proposed scheme to enforce a large weight factor (low

transmit SNR) for channel quality in the scheduling

metric. Moreover, the scheme is reduced to channel-

aware scheduling (see Scheme 2) when the transmit SNR

approaches zero.

• High transmit SNR: On the contrary, when the transmit

SNR is high, it is more critical to exploit the data diversity

as all wireless data channels are reliable. In this case,

acquiring data samples with high original uncertainty val-

ues accelerates the model training. This fact is translated

into the small weight factor (high transmit SNR) for

channel quality so as to make data uncertainty dominant

in scheduling decision making. If the transmit SNR is

sufficiently large, the scheduling scheme reduces to pure

important data selection (named data-aware scheduling in

Scheme 3) as the first term in (21) vanishes.

Last, the two mentioned conventional schemes that are

special cases of importance-aware scheduling are presented

as follows.

Scheme 2 (Channel-aware scheduling). Consider the ac-

quisition of a data sample from multiple edge devices in

an edge learning system. The edge server schedules the

k∗ device for data transmission if

k∗ = argmax
k

SNRk, (22)

where SNRk is defined in (3), and the transmitted data

sample is randomly selected from the scheduled edge

device.

Scheme 3 (Data-aware scheduling). Consider the acqui-

sition of a data sample from multiple edge devices in an

edge learning system. The edge server schedules the k∗

device for data transmission if

k∗ = argmax
k

max
n∈Nk

Ud (xk,n), (23)

where Ud(·) is the distanced based uncertainty defined in

(9).

C. Extension to General Classifier Models

In this section, the proposed importance-aware scheduling

targeting for SVM classifier is extended to a general model.

However, the derivation for SVM may not be directly applied

to a generic classifier (e.g., CNN), due to the lack of an

explicitly defined functional mapping from input noisy data

to the output score. Nevertheless, the general form of the DII

derived in the SVM setting is applicable to a generic model.

This motivates the simple generalization of the importance-

aware scheduling by replacing the uncertainty measure in (9)

targeting SVM with a general measure, which can be properly

chosen depending the specific learning model. The modified

scheme is descried as follows.

Scheme 4 (Importance-aware scheduling for a generic

classifier). Consider the acquisition of a data sample from

multiple edge devices in an edge learning system. The

edge server schedules the k∗ device for data transmission

if
k∗ = argmax

k

{
− 1

SNRk

+ max
n∈Nk

Ux (xk,n)

}
, (24)
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Figure 4. Illustration of the DII with label information.

where Ux is a general uncertainty measure. In particular,

it can be the entropy Ue defined in (10) if CNN classifier

model is adopted.

As a guideline, the selection of the uncertainty measure

should allow easy computation using the model output. For

example, for SVM, the output score evaluated using the linear

decision boundaries allows easy evaluation of the distance-

based uncertainty. On the other hand, for CNN, the softmax

output, which gives the posterior probability for each predicted

class, makes the entropy to be a more natural choice for

measuring uncertainty.

IV. IMPLEMENTATION ISSUES AND SOLUTIONS

A. Importance-Aware Scheduling With Label Information

In the preceding sections, the data importance (uncertainty)

is evaluated and a scheduling decision made based on un-

labelled data with a label generated after scheduling. This

targets the scenario where labelling (e.g., by a human labeler)

is costly. However, in some cases, data at the edge devices

are generated together with labels. For example, training

data for auto-driving (e.g., outputs of cameras and radar) are

automatically labelled by sensing the driving decisions of a

human driver. Then, the design of DII should exploit label

information to further accelerate the learning speed.

The design of DII for the current case of all labelled data

is based on the fact in the incremental learning of SVM

that a newly added data sample to the training dataset can

update the improve model if it is a support vector [41]. As

a result, the DII is defined to be the expectation of model

update. With the definition of support vector given in (5),

the event of model update, denoted as V , is defined as that

both transmitted and received data samples are support vectors:

{V(x̂|x, c)| (V (x, c) ≥ 0)∩(V (x̂, c) ≥ 0)}. The event ensures

the model update is due to the important data sample instead

of the channel noise. Mathematically, the DII with label

information is defined as follows:

Ik = max
n∈N

Ezk
[V(x̂k,n|xk,n, ck,n)] (25)

= max
n∈N

∫ ∞

−V (xk,n,ck,n)

√
SNRk

2π‖w‖2 exp

(
− t2

2‖w‖2/SNRk

)
dt

= max
n∈N

1

2

[
1 + erf

(
V (xk,n, ck,n)√
2‖w‖2/SNRk

)]
,

∀ V (xk,n, ck,n) ≥ 0, (26)

where V (x, c) has been given in (5). The result is graphically

shown in Fig. 4 as the shaded area. One can notice that DII

is a probability that requires the variation of channel noise

lies inside the margin boundary, which is determined by the

ratio of V (x, c) and noise power 1√
SNRk

as derived in (26).

Then the importance-aware scheduling with label information

is designed as follows based on the simplified DII.

Scheme 5 (Importance-aware scheduling with label infor-

mation). Consider the acquisition of a data sample from

multiple edge devices in an edge learning system. The

edge server schedules the k∗ device for data transmission

if
k∗ = argmax

k

{√
SNRk × max

n∈Nk

max
[
0, V (xk,n, ck,n)

]}
,

(27)

where V (xk,n, ck,n) is defined in (5) and

max
[
0, V (xk,n, ck,n)

]
is to pre-select the support

vector (V (xk,n, ck,n) ≥ 0) for transmission.

It is remarked that max
[
0, V (xk,n, ck,n)

]
is exactly the

same as the definition of hinge loss [31], and thus DII with

label information elegantly incorporates two metrics from

communication and learning perspectives. Compared with the

data selection by using the uncertainty measure (without label

information), hinge loss is another way to exploit data diversity

which has its pros and cons. For the data selection based on

uncertainty, the new coming data sample near to the decision

boundary helps to refine the optimal classifier (reduce the

hypothesis space) in a binary search manner. With the label

information, the selected data sample based on hinge loss

could cross the decision boundary with a wrong predicted

label, thereby achieve a faster rate than the binary search

so as to accelerate learning speed. On the other hand, when

the hypothesis space is small, the hinge loss may guide to

select the outlier in non-separable dataset, and thus mislead

the classifier to the opposite side.

B. Compressed Model for DII Evaluation

One practical issue in implementing importance-aware

scheduling is high local computing complexity of DII evalua-

tion. Specifically, the energy consumption and the requirement

of computing resources for data uncertainty evaluation using

the full model may be too costly for a resource constrained

edge device. This motivates the use of compressed model

for DII evaluation that can reduce local computing com-

plexity without significantly compromising the scheduling

performance. Underpinning the design is the fact that no

performance loss will be incurred as long as the compressed

model can provide sufficient differentiability amongst data

in terms of DII values. To illustrate this point, as shown in

Fig. 5, the scheduling based on the DII evaluated using the

compressed model may make exactly the same decision as

that based on DII evaluated using the full model. This fact

indicates the existence of model redundancy to be reduced for

efficient data uncertainty evaluation.

To avoid performance degradation, the compression ratio

should be properly selected according to data distribution,
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SNR and the number of users. For example, a highly separable

dataset and sparse device population allows large space for

model compression. On the other hand, for the low transmit

SNR scenario, the scheduling scheme relies less on data

importance, thus requires less accurate model to evaluate its

value.

In the experiment, we vary the compression ratio Cr ∈
(0, 1), representing the ratio of parameters remained, and show

its effect on learning performance. Given the compression

ratio, we could further characterize the computational effi-

ciency of data uncertainty evaluation at edge devices, which

is determined by the number of computer operations for

calculating the output score. In general, it is scaled by the total

number of parameters W in the learning model. Specifically,

for a linear classifier like SVM, the overall local computational

cost is O (WCrN), for calculating linear score functions of

N data samples. On the other hand, computing an output

score of CNN requires forward propagation in the compressed

neural network, and thus the local computational cost is also

O (WCrN) as indicated in [31].

C. Several Methods for Performance Enhancement

As the importance-aware scheduling exploits data diversity,

the resultant performance highly depends on total distributed

data samples for selection, which is proportional to the number

of users, local buffer size, the update frequency of local buffer

and user mobility as characterized in the following. Assume

the number of edge users is K in the network in each time slot,

during T slots of the wireless data acquisition, the available

number of data samples for scheduling is given as

D(T ) = KN +

T∑

t=2

[K − Pu(t)]Pd(t) + Pu(t)N, (28)

where Pd(t) ∈ {0, 1, 2, · · · , N} is the number of updated

samples in each devices, and Pu(t) ∈ {0, 1, 2, · · · ,K} is

the number of users replaced in the coverage cell due to

mobility. The result in (28) suggests that the performance

of importance-aware scheduling can be improved in several

possible ways such as increasing the number of users K and

the buffer size N , updating the local buffered samples with a

higher frequency, or utilizing user mobility. They are verified

by simulation to be effective.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

The default experiment settings are as follows unless spec-

ified otherwise. The number of edge devices is K = 10. Each

device is equipped with a local buffer, with the size N = 10,

and updates one of outdated data samples with a new one,

denoted as Pd(t) = 1, for an arbitrary slot t. Consider the

static user case where the number of users replaced in the

coverage cell is set as Pu(t) = 0 for all t. The maximum

transmission budget T for the learning task is given as 100 and

1, 000 (channel uses) for binary and multi-class classifications,

respectively. Under the transmission budget constraint, we

consider the test accuracy as the performance metric. All

results are averaged over 150 and 20 experiments for binary

SVM and multi-class CNN, respectively.

1) Channel Model: We assume the classic Rayleigh fad-

ing channel with channel coefficients {hk} following i.i.d.

complex Gaussian distribution CN (0, 1). The average transmit

SNR defined as ρ̄ = P/σ2 is by default set as 15 dB.

2) Experimental Dataset: We consider the learning task

of training a classifier using the well-known MNIST dataset

of handwritten digits. The training and test sets consist of

60, 000 and 10, 000 samples, respectively. Each sample is a

grey-valued image of 28 × 28 pixels that gives the sample

dimensions p = 784. The experiments of multi-class classifi-

cation are conducted by using the whole dataset. For binary

classification, we choose the relatively less differentiable class

pair of “3” and “5” (according to t-distributed stochastic

neighbor embedding visualization) from the whole data set,

including 11, 552 training samples and 1902 test samples. The

training set used in experiments is partitioned as follows. At

the edge server, the initially available training dataset L0 is

constructed by randomly sampling 2 data samples for each

class. The remaining training data are evenly and randomly

partitioned for constructing the local datasets at edge devices,

which are used for updating local buffers. The placement of

data samples into a local buffer are randomly sampled from

its local dataset, following the update rules as discussed at the

beginning of this section.

3) Learning Model Implementation: The considered classi-

fier models include binary SVM and CNN. For binary SVM,

the soft-margin SVM is implemented with slack variable set

as 1. Iterative Single Data Algorithm (ISDA) [42] is used for

solving the SVM problem with maximum 106 iterations. For

the implementation of CNN, we use a 6-layer CNN including

two 3× 3 convolution layers with batch normalization before

ReLu activation (the first with 16 channels, the second with

32), the first one followed with a 2 × 2 max pooling layer

and the second one followed with a fully connected layer,

a softmax layer, and a final classification layer. The model is

trained using stochastic gradient descent with momentum [43].

The mini-batch size is 2048, and the number of epochs is 120.

To accelerate training, the CNN is updated in a batch mode

with the incremental sample size set as 10. The broadcast

model is uncompressed, i.e., Cr = 1, by default.

B. Learning Performance for SVM
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1) Convergence Rate: In Fig. 6, the learning performance

of the proposed importance-aware scheduling is compared

with two baseline schemes, namely the channel-aware schedul-

ing and data-aware scheduling, corresponding to pure channel

selection and important data selection respectively. The trans-

mission budget varies from 0 to its maximum value which is

set as 800 for ensuring model convergence of all schemes.

It is observed that the proposed scheme outperforms the two

benchmarks. Specifically, if the targeted accuracy is 0.9, the

required budget is 118 for importance-aware scheduling while

it is 215 and 276 for channel-aware scheduling and data-aware

scheduling respectively. Thus, it saves more than half budget to

achieve the targeted performance by using importance-aware

scheduling. The comparison is more remarkable if the targeted

accuracy is 0.935, where the budget requirements are 324
and 785 for the proposed scheme and conventional channel-

aware scheme respectively. In contrast, data-aware scheduling

can not achieve that targeted accuracy within the maximum

transmission budget. This confirms the fast convergence by

exploiting both data and channel diversities, and verifies the

effectiveness of the proposed scheme for fast edge learning.

In the following experiments, we fix the transmission budget

of all schemes and compare their test accuracies instead,

which is equivalently to reflect the difference in terms of

convergence rate.

2) Multi-user Diversity: In Fig. 7, we investigate the gain of

multi-user diversity by plotting test accuracy over the number

of users. The performance of importance-aware scheduling

consistently outperforms two benchmarks in varying number

of users scenarios. This verifies the performance gain by

intelligently allocating radio resources according to both data

importance and channel condition. It is observed that the
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Figure 8. Test accuracy versus the average transmit SNR ρ̄.

data-aware scheduling is hardly to exploit data diversity in

the wireless edge learning scenario. As the scheme itself is

unconscious of channel conditions, the important data sam-

ples are contaminated by large channel noise that impeding

the performance improvement by data selection. The result

indicates that reliable transmission is the principle requirement

before exploiting data importance for learning. Second, by

involving more users in the learning system, importance-

aware scheduling achieves larger performance improvement

than that of the channel-aware scheduling at the initial stage

(e.g., K < 10). The reason is that small number of users

incurs data deficiency that could be overcome by adding

more users. In contrast, when the number of users is large

(e.g., K > 10), the improvement rates of two schemes are

comparable. In this case, the improvement is mainly due to

channel diversity while the gain by exploiting data is saturated

if more users are involved. The result reflects that multi-user

diversity include two folds, data and channel, which should

be jointly exploited for improving learning performance. The

schemes only exploiting one aspect like the baseline schemes

will cause a potential degradation in learning performance.

3) Transmit SNR: To demonstrate its robustness against

the hostile channel conditions, the proposed importance-aware

scheduling is tested under different values of transmit SNR

and the results are shown in Fig. 8. One can notice that the

test accuracy of proposed scheme is always better than that of

the two baseline schemes. The results further substantiates the

performance gain by jointly exploiting both data and channel

diversities. To be specific, it is more essential to balance the

tradeoff between data importance and data reliability in a

moderate transmit SNR scenario (e.g., ρ = 5− 25 dB), since

the proposed scheme is shown to achieve a more remark-

able performance gain than the two benchmarking schemes.

In contrast, the proposed scheme reduces to channel-aware

scheduling and data-aware scheduling in low transmit SNR

(e.g., ρ = 0 dB) and high transmit SNR (e.g., ρ = 25 dB) sce-

narios respectively, which verifies the discussion in Remark 2.

The comparison of three schemes reflects that data reliability

is the most critical requirement, since all of schemes suffer

severe performance degradations in low SNR scenario. Upon

a certain guarantee on data reliability, then the performance

can be further improved by exploiting data importance

4) Data Diversity: Fig. 9 demonstrates the performance

improvement by increasing the number of available data
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(b) Impact of sample-update frequency.
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Figure 9. Impact of different approaches for data diversity enhancement.

samples for selection, which depends on the number of users,

local buffer size, the update frequency of local buffer and

user mobility, as discussed in Section IV-C. Since the effect

of the number of users has been discussed, this part will

focus on the other three, which purely exploit the diversity

in distributed data. The relevant results are shown in subfig-

ures respectively, where the performance of importance-aware

scheduling is compared with the channel-aware scheduling.

The three figures verify that the conventional scheme is unable

to exploit the distributed data samples.

• Local buffer size: Fig. 9(a) presents the performance

improvement by increasing the number of buffer size.

The incremental buffers size leads to a remarkable per-

formance improvement at the initial stage (N < 5),

corresponding to a data deficiency scenario. Then the

improvement will be saturated if continuously increase

the buffer size (N > 15).
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Figure 10. The effect of tradeoff factor α.

• Update frequency of local buffer: Fig. 9(b) displays the

performance curves of test accuracy versus the number

of update samples in each device. Note that the update

data frequency of local buffer could affect the learning

performance only in a data deficiency scenario and the

number of users is set as K = 5 in this experiment. The

result of importance-aware scheduling reveals that the

data deficiency can be overcome by frequently updating

the samples in local buffer.

• User Mobility: The user mobility could be specified as

the number of replaced users Pu(t) in each time slot, and

high mobility corresponds to the large value of Pu(t). In

Fig. 9(c), the test accuracy is plotted over the number of

replaced users. In this experiment, the buffer size is set

as N = 5 for a data deficiency scenario, and Pd(t) is set

as 0 to reflect the unique performance improvement by

exploiting user mobility, which is shown to be prominent.

5) Tradeoff Between SNR and Data Uncertainty: Fig. 10

shows the effect of different tradeoff between SNR and un-

certainty on the learning performance. In this experiment, the

DII is constructed as follows.

Ik = − 1

SNRk

× (1 − α) + max
n∈N

Ud (xk,n)× α , (29)

where the tradeoff factor α ranges from 0 to 1. The trade-

off factor specifies how the scheduling scheme weights the

importance of SNR and uncertainty in the decision making,

varying from purely SNR-based selection (α = 0) to purely

data-uncertainty-based selection (α = 1). The experimental

result shows that the best test accuracy is achieved at α = 0.5,

verifying the optimality of the equal treatment between SNR

and data uncertainty derived in (15). It is interesting to find

that, the accuracy barely decreases for a large range of α, e.g.,

α ∈ [0.1, 0.8]. This suggests that as long as both the SNR and

data-uncertainty can be taken into account to some extent in

the scheduling decision, considerable performance gains can

be achieved compared with the schemes based on either SNR

or data-uncertainty.

6) Compressed Model for Importance Evaluation: In

Fig. 11, the proposed scheme is tested under different

importance-evaluation models, by varying the model compres-

sion ratio. Although a simple model as SVM, it is able to

reduce half computing operations (Cr = 1/2) without incur-

ring performance loss. The performance of importance-aware
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Figure 11. Test accuracy for different evaluation models by varying its
compression ratio Cr .
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Figure 12. Learning performance evaluation for importance-aware scheduling
with label information.

scheduling by using a compressed importance-evaluation

model is shown to consistently outperform the channel-aware

scheduling, even the number of model parameters is reduced

by 10× (Cr = 1/10). On the other hand, the performance

loss due to model compression is related with the training

stage: the precision of evaluation model should be increased

as the learnt model becomes more accurate, that is, allowing

fewer number of model parameters to be reduced. As shown

by the curve of Cr = 1/5, at the initial stage, it achieves same

performance as the one using uncompressed model, while the

performance loss increases as the model being more accurate.

7) Scheduling With Label Information: In Fig 12,

importance-aware scheduling with label information is com-

pared with the unlabeled scheduling scheme and the two

benchmarks. By exploiting additional label information, the

model attains faster convergence rate than the unlabeled

scheme. However, if the transmission budget is large, the

learning accuracies of two schemes will be converged to

a comparable level. Comparing with the benchmarks, the

importance-aware scheduling with label information achieves

remarkable improvement in terms of learning accuracy, cor-

responding to 5% for channel-aware scheduling and 8 % for

data-aware scheduling.

C. Learning Performance for CNN

Our heuristic design for CNN is tested in the scenario

of multi-class classification and the results are provided in

Fig. 13. For the uncompressed evaluation model, the test

0 200 ��� 600 800 1000

'��	
��

�	 ������

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

�
�
�
�
�
�
�
�
��
�
�

Importance-aware scheduling

Channel-aware scheduling

Data-aware scheduling

Importance-aware scheduling, Compression Ratio=1/5

Importance-aware scheduling, Compression Ratio=1/20

Figure 13. Learning performance evaluation for CNN classifier.

accuracy consistently outperforms the two baseline schemes.

Although the heuristic design can not guarantee an optimal

tradeoff between data importance and data (channel) relia-

bility, the performance gain is prominent. That confirms the

benefit of exploiting both channel-and-data diversity in CNN.

On the other hand, each training sample in CNN contributes

to define the multiple decision boundaries, that is different

from SVM where a single hyperplane determined by few

support vectors. In another word, CNN is less robust with the

existing of channel noise, and requires more training samples

to construct multiple boundaries. Thereby it has a potential to

achieve more remarkable performance gain if more users are

involved in the system, since the achievable multiuser diversity

for SVM may not be enough for the training of CNN classifier.

In general, a large number of CNN parameters are redun-

dant that enables a highly compressed model for importance

evaluation. This can be supported by the curve of Cr = 1/5,

which achieves almost same performance as that of by using

the uncompressed one. Furthermore, the performance loss will

be less than 50% if the compression ratio is 1/20. In contrast,

the SVM classifier suffers a prominent performance loss for

Cr = 1/10. That verifies the redundancy of CNN which is

capable to utilize a compressed evaluation model to reduce

computing complexity.

VI. CONCLUDING REMARKS

In this paper, we have proposed the novel scheduling

scheme, namely importance-aware scheduling, for wireless

data acquisition in edge learning systems. The scheme intelli-

gently makes a joint channel-and-data selection for training

data uploading so as to accelerate learning speed. Com-

prehensive experiments using real datasets substantiate the

performance gain by exploiting two-fold multi-user diversity,

namely multiuser data-and-channel diversity.

At a higher level, the work contributes the new principle

of exploiting data importance to improve the efficiency of

multiuser data acquisition for distributed edge learning. It is

interesting to study the convergence rate and the resultant

diversity gain in future work. Specifically, the convergence

rate can be quantified as the speed of gradient norm vanishing

with respect to the number of iterations. The analysis of the

convergence rate involves applying the extreme value theory

over two types of stochastic processes: data stochasticity

and channel stochasticity, in a similar way as in [44]. The
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scaling of the convergence rate is expected to be monotonically

increasing with the size of dataset and the number of individual

channels, which represents the order of multiuser diversity

gain. This work can be generalized to the more sophisticated

batch mode training and more complex systems, such as broad-

band wireless systems with OFDMA and MIMO. Moreover,

the scheduling algorithms can be further designed to ensure

the global data diversity, where the feedback is required to

account for both multiuser diversity and data diversity with

respect to global dataset. Besides raw data acquisition, another

interesting direction is the acquisition of learning relevant

information in a federated learning framework, e.g., gradient

updates and model updates. The relevant scheduler design

can build on the current one by changing the data-importance

measure to a suitable measure based on gradient divergence

[45] or model variance [46].
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