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Abstract. Glass artifacts play a significant role in cultural heritage, offering 
valuable insights into ancient craftsmanship and cultural exchange. However, 
accurately analyzing and identifying ancient glass objects presents challenges due 
to limited data. This study aims to enhance the analysis and identification of glass 
compositions in cultural heritage by employing data augmentation techniques and 
the CatBoost prediction model. Firstly, data augmentation techniques are applied 
to expand the limited dataset, increasing sample quantity and diversity to improve 
the model's generalization capability. The TOPSIS method is employed to 
comprehensively evaluate different augmentation factors and select the most 
suitable ones. Subsequently, the CatBoost prediction model is utilized, and the 
model parameters are optimized using a random search method to further enhance 
predictive performance. Experimental research on ancient glass artifacts validates 
the effectiveness and feasibility of the proposed methods. The final model 
demonstrates high predictive performance and a good fit on the training set, 
cross-validation set, and test set. For example, when predicting the sodium oxide 
content before weathering in glass artifacts, the average R-squared(R²) reaches 
0.998, and the Mean Squared Error(MSE) is 0.003. These results signify the 
accurate prediction of glass artifact compositions and the model's stable predictive 
capabilities across different datasets. Utilizing the predicted chemical composition, 
the identification of glass artifacts achieves a classification accuracy of 100%, 
indicating the excellence of the model. In conclusion, this study presents an 
improved approach for analyzing and identifying glass compositions by 
overcoming the limitations posed by limited data through data augmentation and 
the CatBoost model. These advancements provide valuable tools and methods for 
preserving and researching cultural heritage, contributing to the progress of ancient 
civilization studies and technological development. 
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1. Introduction 

As a valuable heritage of ancient civilizations, glass artifacts play a significant role 

worldwide. The history of glass production can be traced back to over 2000 years ago in 

ancient Egypt and ancient Rome, where people melted sand and other materials and 

employed techniques such as blowing and casting to create exquisite glass artworks and 

containers[1]. Over time, glass craftsmanship has evolved and been passed down through 

different cultures, carrying rich historical and cultural information. Therefore, in-depth 

research and analysis of glass artifacts hold great significance in understanding ancient 

civilizations, including their manufacturing techniques, technological inheritance, and 

cultural exchanges. 

With the advancement of archaeological studies and technological progress, 

computational methods like machine learning have gained increasing attention in the 

field of archaeology. These methods provide archaeologists with new tools and 

approaches to explore cultural heritage more comprehensively[2]. However, glass 

artifacts are prone to weathering, leading to changes in their chemical compositions. 

During the weathering process, internal elements of glass undergo significant exchange 

with environmental elements, resulting in alterations of composition ratios and posing 

challenges in predicting the chemical compositions of glass artifacts before 

weathering[3]. 

Traditional weathering prediction models encounter certain issues in forecasting 

and evaluating the weathering process of glass artifacts. Firstly, traditional regression 

models struggle to handle complex non-linear relationships and high-dimensional data. 

The weathering process of glass artifacts is influenced by multiple factors, and the 

relationships between these factors are often non-linear, involving a large number of 

chemical components and structural parameters. Traditional regression models often fail 

to capture these intricate relationships adequately, resulting in lower prediction 

accuracy. Secondly, the collection of glass artifact data is a challenging task. 

Researchers often face small-scale datasets due to the scarcity of artifacts, protective 

requirements, and limitations in data acquisition. Machine learning algorithms typically 

require substantial amounts of data for training and modeling, which limits their 

effectiveness when applied to small datasets[4][5][6]. 

To address these issues, this study aims to improve the prediction and identification 

of chemical compositions of glass artifacts before weathering in cultural heritage. We 

propose an innovative approach that combines data augmentation (DA) techniques with 

the CatBoost prediction model to enhance the analytical capabilities and identification 

accuracy of ancient glass artifacts. Data augmentation techniques allow us to expand and 

modify the original dataset, increasing sample size and introducing diversity, thereby 

improving the model's generalization ability. The CatBoost classification model, known 

for its adaptive learning rate adjustment mechanism and optimization techniques, is 

well-suited for small datasets, as it effectively adapts to data distribution and features, 

leading to enhanced training and modeling performance. 

Predicting the chemical compositions of glass artifacts before weathering holds 

significant importance in the fields of cultural heritage preservation, historical research, 

research method development, as well as identification and counterfeit detection. It not 

only contributes to the preservation and restoration of cultural heritage but also provides 

valuable insights into ancient manufacturing techniques, technological inheritance, and 

cultural exchanges. Accurate prediction of chemical compositions facilitates a deeper 

understanding of ancient glass artifact production methods and techniques, thus 
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advancing historical research and cultural heritage conservation. Moreover, precise 

identification and counterfeit detection of ancient glass artifacts address crucial 

challenges in the field of cultural heritage, while providing valuable auxiliary 

information for authenticating artifacts and ensuring the healthy development of the 

artifact market. The following sections will provide a detailed description of the 

methods and experimental design employed in this study, present the experimental 

results, and conduct discussions. 

2. Research Process 

2.1. Data Preparation and Preprocessing 

This study selected a batch of ancient glass artifacts and collected relevant data. 

Archaeologists have classified these artifacts into two types: high-potassium glass and 

lead-barium glass, based on their chemical compositions and other detection methods. A 

total of 67 sample data points were included, which provided information on the type, 

weathering, color, and chemical composition proportions of the artifacts. To ensure the 

accuracy, completeness, and consistency of the data, the study used the mode-filling 

method to handle missing values. Considering that the detection methods and other 

factors may result in the sum of chemical composition proportions of some sample data 

not being equal to 100%, this study treated data with a sum of proportions between 85% 

and 105% as valid data and excluded those that did not meet this criterion. During the 

data augmentation process, the original data was expanded by a certain factor, and 

random noise ranging from -0.1 to 0.1 was added. Finally, the data was divided into a 70% 

training set and a 30% test set. 

2.2. Research Method 

2.2.1. Exploring Weathering Patterns Based on Statistical Tests 

In this section, the potential weathering patterns of glass artifacts were explored through 

various data mining techniques. The following methods were employed: 

a) Frequency analysis: The data was analyzed to determine the occurrence and 

distribution of different weathering patterns in the glass artifacts. 

b) Categorical aggregation: The glass artifacts were categorized based on their 

weathering patterns to facilitate further analysis. 

c) Cross-tabulation analysis: A cross-tabulation was performed to examine the 

relationship between weathering patterns and other variables, such as pattern type, color, 

etc. 

d) Correlation analysis: In this study, we utilized the Spearman correlation 

coefficient to examine the correlation between weathering patterns and relevant factors, 

aiming to identify potential relationships or dependencies. Unlike the Pearson 

correlation coefficient, the Spearman correlation coefficient measures the strength and 

direction of the monotonic relationship between two variables using ranked data points, 

without assuming a linear relationship. The coefficient (rho) ranges from -1 to 1, where 

-1 indicates a perfect negative monotonic relationship, 1 indicates a perfect positive 

monotonic relationship, and 0 indicates no monotonic relationship. It is a valuable tool 

to assess the ordinal relationship between variables based on the comparison of ranked 
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data points[7]. The formula for calculating the Spearman correlation coefficient is as 

follows: 

 = 1 − (6�d��)/(n(n� − 1)) (1) 

Where  represents the Spearman correlation coefficient, �d��represents the sum 

of squared differences, and n represents the sample size. 

Through the application of these methods, we were able to gain preliminary insights 

into the underlying patterns of weathering in glass artifacts and uncover factors and 

patterns influencing their weathering processes. This has laid the foundation for our 

subsequent research and analysis. 

2.2.2. CatBoost Prediction Model 

This study employs data augmentation and CatBoost regression to predict changes in the 

chemical composition of glass artifacts before and after weathering. Data augmentation 

expands and adds noise to the original data, enhancing sample diversity and variability. 

This approach improves the model's ability to capture different patterns and variations. 

Through data augmentation, we generated additional samples, introducing real-world 

uncertainties and variations in the weathering process, creating a more comprehensive 

and representative dataset for training. This enables capturing a wider range of data 

samples, improving the model's generalization and prediction accuracy. To select the 

optimal expansion factor, we used the TOPSIS method based on five metrics. 

Furthermore, a random search was performed to optimize the CatBoost regression 

model by tuning parameters and improving its performance. 

CatBoost is a Gradient Boosting Decision Tree(GBDT) framework based on 

symmetric decision trees. It is primarily designed to address challenges related to 

handling categorical features, gradient biases, and prediction offsets, to improve 

algorithm accuracy and generalization capability[8][9].While CatBoost shares the overall 

algorithm framework with GBDT, it introduces significant improvements in handling 

categorical features, boosting techniques, and decision tree scoring. These enhancements 

enable CatBoost to effectively handle string features and achieve faster model fitting 

speed compared to XGBoost and LightGBM for the same dataset. 

a) Handling categorical features 

CatBoost adopts an innovative approach for processing categorical features, moving 

away from simple greedy objective-based statistics for node splitting. Instead, CatBoost 

introduces a prior distribution term that considers the specific nature of categorical 

features when computing node gains. This approach effectively mitigates the influence 

of low-frequency features and noise on decision tree generation. 

��,� =
∑ [�

��,�����,�]∙	�
�∙����
���

∑ [�
��,�����,�]
����

���

 (2) 

In the formula, σj represents the j-th data sample, xi,k denotes the k-th discrete 

feature of the i-th row in the training set, a is a prior weight, and p is the prior 

distribution term. For regression problems, the prior term is usually set as the mean of 

the predicted labels in the training set, while for binary classification problems, it 

corresponds to the prior probability of positive instances. The square brackets [] denote 
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an indicator function that outputs 1 if the internal condition is satisfied, and 0 otherwise. 

Through the improved Target Encoding with Symmetry (TS) method, CatBoost can 

convert categorical features into numerical values while minimizing information loss. 

b) Ordered boosting 

Traditional GBDT models adopt a method without row or column sampling, where 

all the base learners, usually represented by Classification and Regression Trees(CART) 

decision trees, are trained on the complete dataset using gradient boosting. In each 

iteration, the negative gradient of the previous round's trees is used for training. 

However, this approach can lead to the accumulation of prediction bias and overfitting. 

To mitigate the overfitting effect, XGBoost, and Microsoft's LightGBM introduced row 

and column sampling as well as regularization techniques. CatBoost goes a step further 

and proposes the Ordered Boosting method. The pseudocode of the algorithm is shown 

in Figure 1. 

 

Figure 1.  Pseudocode of Ordered Boosting 

Among them, σ represents the number of times the training set is randomly 

shuffled, and I represent the number of symmetric decision trees to be generated, which 

is equivalent to the number of learners. For all n samples, initialize �� as 0. Then, 

through sampling on the random sequence and obtaining gradients based on it, the 

purpose of σ permutations is to enhance the robustness of the algorithm and effectively 

avoid overfitting. These permutations are the same as those used to calculate the 

improved TS. For each random permutation σ, train the n different models ��as shown 

above. Then, sequentially calculate the gradients �� of the loss function (Loss) for the 

first i-1 data points, and use the i-1 �� to construct a residual tree in the symmetric tree. 

Update the initial model Mi from ������ to ������. The purpose of this process is to 

remove the influence of ��on the model's prediction for �� , thereby reducing the 

interference of noise on the model. For each permutation in s permutations, we build n 

models �� , resulting in an overall complexity of approximately O�s ∙ n�� . To 

accelerate the algorithm, when updating Mi, CatBoost does not store and update O�n�� 

models M��X��, but instead uses �� '(��), where i=1 to log2(n) and j<2i+1. �� '(��) is an 

approximation based on the same j of the previous 2i samples. Finally, the prediction 

complexity of �� '(��) will not exceed ∑ 2����	�	
����� � 4�. 

c) Fast Scoring 

CatBoost uses Oblivious Decision Trees (ODT) as base learners, which have the 

following structure shown in the diagram below. Unlike general decision trees, ODTs 

have identical feature selection and threshold for internal nodes at the same depth. 

Therefore, ODTs can be transformed into decision tables with 2� entries, where d 

represents the depth of the decision tree. This tree structure is more balanced and 
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features faster processing speed compared to typical decision trees. Additionally, by 

uniformly treating floating-point features, statistical information (such as user IDs), and 

one-hot encoded features as binary, the model greatly reduces the need for 

hyperparameter tuning. The Figure 2 below illustrates the structure of an Oblivious 

Decision Tree. 

 

Figure 2.  Oblivious Decision Tree (ODT) structure 

d) Feature Importance Ranking 

CatBoost not only achieves high prediction accuracy but also allows us to identify 

the relative contributions of different influencing factors (i.e., the features used for 

prediction) to the prediction results. The relative contribution of a feature in a single 

decision tree is measured using the following formula: 

��
� �

�

�∑ ��
�����

���

 (3) 

Where M represents the number of iterations (number of trees) and J�
� represents 

the global importance of feature j. 

��
���� � ∑ ��

����� � �����
���  (4) 

In the formula, L represents the number of leaf nodes in the tree, L-1 represents the 

number of non-leaf nodes, �� is the feature associated with node t, and ��
� represents 

the squared loss reduction after the split at node t. A higher value of ��
� indicates a 

greater benefit from the split, indicating a higher feature importance for the 

corresponding node. 

2.2.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

TOPSIS is a multi-criteria decision analysis method used to evaluate and rank multiple 

alternative solutions. It is based on the principle of comparing each solution to both the 

ideal and anti-ideal solutions and determining their relative superiority by calculating 

distances. The basic idea of TOPSIS is to construct a normalized matrix by normalizing 

the original data with the same trend, and then measure the differences between the 

evaluation objects and the ideal and anti-ideal vectors to assess their differences[10]. 

Assuming there are n evaluation objects and m criteria, the basic steps of TOPSIS are as 

follows: 

Step 1: Same-trend normalization of the original data: 

Differentiate the categories of indicators in the criteria system (higher is better or 

lower is better) and perform forward transformation according to different formulas for 
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different types of indicators. Construct an n x m matrix ��, where X represents the 

value of the j-th criterion for the i-th object. 

Step 2: Construct the normalized matrix using the following formula. 

�� =
���

�∑ ���
	


���

 (5) 

Step 3: Calculate the distances between each evaluation criterion and the ideal and 

anti-ideal vectors using the following formula, where j represents a specific evaluation 

criterion, m represents the number of evaluation criteria, � is the weight of the j-th 

criterion, �
represents the data for the ideal solution of the j-th criterion,�� represents 

the normalized data of the j-th criterion for a specific evaluation object i, and ��represents the data for the anti-ideal solution of the j-th criterion. 

⎩⎨
⎧
�
 = �∑ �(�
 − ��)����


�� = �∑ �(�� − ��)����
 (6) 

Step 4: Measure the proximity of the evaluation objects to the ideal solution using 

the following formula, where 
�
 and 
�� represent the positive and negative ideal 

distances of the i-th object, and a larger value of Ci indicates a more optimal evaluation 

object. 

C� = 
�� 
�
 + 
��⁄  (7) 

3. Statistical Result 

3.1. Analysis of Weathering Patterns 

The Table 1 below shows the results of the cross-tabulation analysis with surface 

weathering as the grouping variable and pattern, type, and color as the analysis 

variables. It includes variables, frequencies, and percentages. 

Table 1 Table of Cross-tabulation Analysis 

 Name 
Surface Weathering 

Total 
No weathering weathering 

Pattern 

A 14(50.000%) 14(50.000%) 28 
B 0(0.000%) 6(100.000%) 6 
C 11(33.300%) 22(66.700%) 33 

Total 25 42 67 

Type 
Lead-Barium 13(26.500%) 36(73.500%) 49 

High Potassium 12(66.700%) 6(33.300%) 18 

Total 25 42 67 

Color 

Light Green 2(66.700%) 1(33.300%) 3 
Light Blue 6(23.100%) 20(76.900%) 26 

Dark Green 3(42.900%) 4(57.100%) 7 
Dark Blue 3(100.000%) 0(0.000%) 3 

Purple 2(33.300%) 4(66.700%) 6 
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 Name 
Surface Weathering 

Total 
No weathering weathering 

Green 1(100.000%) 0(0.000%) 1 

Blue-Green 8(47.100%) 9(52.900%) 17 

Black 0(0.000%) 4(100.000%) 4 

Total 25 42 67 

Pattern B of the glass artifacts has undergone complete weathering, indicating that it 

provides less protection against external factors such as humidity, light, and chemicals 

compared to other patterns. The simplicity and smaller coverage area of Pattern B 

contributes to its lower level of protection and higher susceptibility to weathering. In 

contrast, Pattern A is considered the most complex, offering a higher level of protection, 

followed by Pattern C. However, overall, more than 60% of the samples in all patterns 

have experienced weathering, suggesting that patterns have limited effectiveness in 

protecting glass artifacts. 

When comparing different types of glass artifacts, lead-barium glass exhibits a 

higher weathering rate of 73.500%, while potassium-rich glass has a lower rate of 

33.300%. This preliminary analysis indicates that lead-barium glass is more prone to 

weathering compared to potassium-rich glass. 

Table 2 Table of Spearman correlation coefficient 

 Pattern  Type  Color  
Surface 

Weathering 

Pattern 
1 

(0.000***) 

-0.432 

(0.000***) 

-0.402 

(0.001***) 

-0.004 

(0.977) 

Type  
-0.432 

(0.000***) 

1 

(0.000***) 

0.569 

(0.000***) 

0.368 

(0.002***) 

Color  
-0.402 

(0.001***) 

0.569 

(0.000***) 
1(0.000***) 

-0.033 

(0.790) 

Surface 

Weathering 

-0.004 

(0.977) 

0.368 

(0.002***) 

-0.033 

(0.790) 

1 

(0.000***) 

a.
 *** , ** , and * represent significance levels of 1%, 5%, and 10%, respectively. 

Table 3 Table of Joint Cross-Analysis of Type and Decoration 

 Name 
Type 

Total 
High Potassium Lead-Barium 

Pattern 

A 8(28.600%) 20(71.400%) 28 

B 6(100.000%) 0(0.000%) 6 

C 4(12.100%) 29(87.900%) 33 

Total 18 49 67 

 

Figure 3.  Cross-Chart of Decoration and Color. 
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Figure 4.  Cross-Chart of Type and Color. 

Based on the Spearman correlation coefficients presented in Table 2 above, we can 

conduct the following analysis at the significance level of α = 0.05: 

 There is a significant negative correlation between the pattern and the type of 

glass artifacts, indicating a close association between the complexity of 

patterns and the type of glass artifacts. Further analysis in Table 3 reveals that 

high-potassium glass is predominantly associated with Pattern B, while 

lead-barium glass is mainly associated with Patterns A and C. 

 There is a significant negative correlation between decoration and color, 

suggesting a certain association between the patterns and the colors of glass 

artifacts. Combining the analysis with Figure 3, Pattern A is mainly found in 

light blue and blue-green artifacts, Pattern B is predominantly observed in 

blue-green artifacts, and Pattern C is mainly found in light blue, purple, and 

deep green. 

 There is a significant positive correlation between the type of glass artifacts 

and their color, indicating a relationship between the type of glass and its color. 

Analyzing Figure 4, high-potassium glass tends to have a blue-green color, 

while lead-barium glass exhibits a wider range of color variations, with light 

blue being the most common. 

 There is a significant positive correlation between the type of glass artifacts 

and their surface weathering, suggesting that certain types of glass artifacts 

may be more susceptible to surface weathering, supporting the previous 

conclusion that lead-barium glass is more prone to weathering. 

3.2. CatBoost Model for Predicting Changes in Chemical Composition before and after 

Weathering 

In this section, we will use Na2O as an example to demonstrate in detail the process of 

improving the model through data expansion and parameter adjustment. 
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3.2.1. The Predictive Performance of the CatBoost Regression Model on the Original 

Dataset. 

In this study, we assessed the predictive model using four evaluation metrics: MSE, 

RMSE, MAE, and MAPE. The MSE measures the squared difference between predicted 

and actual values, indicating prediction accuracy. The RMSE is the square root of MSE 

and quantifies the average difference between predicted and actual values, with a 

smaller value denoting better predictive performance. The MAE measures the average 

absolute difference, indicating accuracy, while the MAPE represents the average 

absolute percentage difference, reflecting prediction accuracy. As shown in Table 4, Our 

results indicate relatively accurate predictions on the training set, as evidenced by low 

MSE, RMSE, and MAE values. However, the larger MSE and MAE on the 

cross-validation and test sets suggest potential overfitting, and the relatively large 

MAPE values point to significant prediction errors. 

Table 4 Table of CatBoost Regression Model Evaluation Results Based on Original Data 

 MSE RMSE MAE MAPE R² 

Training Set 0.005 0.07 0.045 55.725 0.998 

Cross-Validation 

Set 
0.651 0.807 0.388 354.538 0.771 

Test Set 0.56 0.748 0.463 289.538 0.755 

In summary, the CatBoost regression model on the original data demonstrates good 

prediction accuracy on the training set. However, there are larger prediction errors on 

the cross-validation and test sets, indicating potential overfitting. Further steps such as 

optimizing model parameters, conducting feature engineering, and increasing the 

training data size may improve the model's generalization ability and prediction 

performance. 

3.2.2. Data Augmentation Improves the Model. 

In this section, we attempted to improve the performance of the model by using data 

augmentation techniques. We set different augmentation multipliers ranging from 1 to 

10 and used the TOPSIS method to calculate scores based on the MSE, RMSE, MAE, 

MAPE, and R² metrics to select the most suitable augmentation multiplier. Tables 5 and 

6 below show the results of the entropy weight method for weight calculation and the 

TOPSIS evaluation results. 

Table 5 Table of Indicator Weight Calculation 

Indicator Entropy (e) Information Utility (d) Weight (%) 

R^2 0.954 0.046 18.918 

MSE 0.953 0.047 19.087 

RMSE 0.95 0.05 20.585 

MAE 0.951 0.049 20.181 

MAPE 0.948 0.052 21.229 

Table 6 Table of TOPSIS Evaluation Results 

Multiplier D+ D- Comprehensive Score Ranking 

1 0.89708404 0.32725592 0.26729171 10 

2 0.32410145 0.70190073 0.68411232 8 

3 0.48276993 0.75694527 0.61057997 9 

4 0.19928142 0.84657479 0.8094562 7 

5 0.05569424 0.9516854 0.94471376 3 

6 0.15781201 0.87312885 0.84692429 6 

7 0.09350346 0.91674289 0.90744489 5 
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Multiplier D+ D- Comprehensive Score Ranking 

8 0.08395407 0.92540059 0.91682401 4 

9 0.03015994 0.98224883 0.97020972 1 

10 0.03107141 0.98542975 0.96943298 2 

Choosing the highest-scoring augmentation factor may suggest that the model 

performs the best under the current data augmentation setting. However, it does not 

necessarily mean that it is the globally optimal choice. In the process of parameter 

tuning, we typically aim for the model to adapt better to different data and conditions, 

rather than just performing well under the current data augmentation setting. Therefore, 

we choose a good but not the highest augmentation factor to provide greater flexibility 

and exploration space for subsequent parameter tuning, to achieve a more stable and 

robust model configuration. 

 

Figure 5.  Scores at Different Multiples. 

Figure 5 clearly shows the scores at different multiples, and it can be observed that 

the scores are already excellent from 4 to 8 multiples, fluctuating around 0.9. Here, we 

select 8 as our final augmentation multiple. 

3.2.3. Parameter tuning further improves the model 

After expanding the dataset using data augmentation techniques, we further optimized 

the model performance through parameter tuning. We employed the random search 

method to optimize the parameters of the CatBoost model. During the experiment, we 

considered the trade-off between time cost and model complexity by limiting the 

maximum number of iterations to 100 for CatBoost. 

The parameters we tuned include: 

 Learning Rate: Controls the step size for each iteration and influences the 

contribution of each tree. We explored different learning rates to find the 

optimal balance between convergence and learning speed. 

 Depth: Determines the complexity and capacity of each tree in the CatBoost 

ensemble. By adjusting the depth parameter, we aimed to find the optimal tree 

depth level that maximizes model performance without overfitting the data. 

 Regularization Parameters: CatBoost offers regularization options such as L1 

and L2 regularization to prevent overfitting. These parameters control the 

degree of regularization in the model. By tuning the regularization parameters, 

we sought to strike a balance between model complexity and generalization 

ability. 
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We evaluated the performance of each parameter combination on the validation set 

using the mean squared error (MSE) as the evaluation metric. We set the initial 

parameter ranges based on typical values and iteratively narrowed down the parameter 

ranges in each round of optimization based on the results from the previous round, until 

convergence. The detailed optimization process is presented in Table 7. 

Table 7 Table of Random Search Parameter Tuning Process 

Iteration Parameters Random 

Count 
Result（X1,X2,X3） MSE  

1 X1: [0.01, 0.1, 0.5, 1.0] 
X2: [3, 5, 7, 9] 

X3: [0.1, 0.5, 1.0, 3.0, 5.0] 

50 (0.1,5,0.5) 0.0063 

2 X1: [0.08,0.09,0.1,0.2,0.3] 
X2: [4, 5, 6] 

X3: [0.3,0.4, 0.5, 0.6] 

50 (0.08,5,0.5) 0.0060 

3 X1: [0.06,0.07,0.08,0.09] 
X2: [4, 5, 6] 

X3: [0.4, 0.5, 0.6] 

20 (0.7,5,0.5) 0.0053 

b.
 X1 represents the learning rate, X2 represents the depth, and X3 represents the l2_leaf_reg. 

We used the final model to make predictions on the test set and training set and 

performed 5-fold cross-validation to calculate various evaluation metrics. The results are 

shown in Table 8. 

Table 8 Table of Final Model Evaluation Results 

 MSE RMSE MAE MAPE R² 

Training Set 0.001 0.038 0.026 26.823 0.999 

Cross-Validation 

Set 
0.005 0.073 0.042 98.718 0.998 

Test Set 0.003 0.054 0.033 33.110 0.998 

 

Figure 6.  Fitment Effect Graph on the Test Set. 

The comprehensive analysis of the table indicators indicates that the final model 

demonstrates high predictive performance and fitting ability on the training, 

cross-validation, and test sets. This implies that the model is capable of accurately 
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predicting the target variable and exhibits stable predictive capability across different 

datasets. This is crucial for practical prediction tasks as the consistency of the model 

across different datasets indicates good generalization ability and stability. These results 

further support the effectiveness and reliability of the model in predicting the target 

variable. The Figure 6 shows the fitting performance of the model on the test set. 

3.3. The CatBoost Model for Classifying Glass Artifacts 

Based on the previous discussions on predicting the chemical composition of glass 

artifacts before weathering, a CatBoost classification model was established. Table 9 

below displays the evaluation results of the CatBoost classification model. The model 

achieved perfect scores in accuracy, recall, precision, and F1 score on all three datasets 

(training, cross-validation, and test). This indicates that the model performed 

exceptionally well in classifying glass artifacts, demonstrating high accuracy and 

effectiveness in identifying the glass artifact categories. This suggests that there are 

significant differences between the two categories of glass artifacts, and on small 

datasets, the CatBoost classification model is often able to effectively utilize the 

differences between categories to learn the feature patterns between them. Moreover, 

CatBoost is capable of leveraging the differences between categories to construct more 

powerful decision boundaries, thereby achieving better classification performance. 

Table 9 Table of CatBoost Classification Model Evaluation Results Based on Original Data 

 Accuracy Recall Precision F1 

Training Set 1 1 1 1 

Cross-Validation 

Set 
1 1 1 1 

Test Set 1 1 1 1 

4. Conclusion and Future Outlook 

This study aimed to improve the prediction and identification of the pre-weathering 

chemical composition of glass artifacts in cultural heritage. By applying data 

augmentation techniques and combining them with the CatBoost prediction model, we 

successfully enhanced the analytical capabilities and identification accuracy of ancient 

glass artifacts. This research provided valuable support for a deeper understanding of 

ancient civilizations' manufacturing techniques, technological heritage, and cultural 

exchanges. 

Through the evaluation of experimental results, we validated the effectiveness and 

feasibility of the proposed methods. The final model demonstrated high predictive 

performance and fitting on the training set, cross-validation set, and test set. This 

indicates that the model can accurately predict the target variables and exhibits stable 

predictive capabilities across different datasets. These findings are crucial for the 

preservation and restoration of cultural heritage, historical research, and identification 

and forgery detection. 

However, this study still has some limitations that need to be addressed. Firstly, the 

size of the dataset remains relatively small, which may limit the model's generalization 

ability and applicability. Expanding the dataset is key to improving the model's 

performance, and we recommend collecting more diverse and extensive glass artifact 

data in future research. Secondly, this study focused solely on the prediction and 

X. Hu et al. / Improved Glass Composition Analysis and Identification of Cultural Heritage 747



identification of the pre-weathering chemical composition of glass artifacts, without 

considering other relevant features and attributes. Future research can explore the 

introduction of additional features and attributes to enhance the predictive ability and 

identification accuracy of the model. 

In terms of future outlook, we propose several areas for improvement. Firstly, 

further expanding the dataset by collecting more diverse and extensive glass artifact data 

will enhance the model's generalization ability and predictive performance. Secondly, 

incorporating additional features and attributes, such as structural parameters and 

physical properties of artifacts, will increase the model's diversity and generalization 

ability. Additionally, integrating other analytical techniques and methods, such as image 

processing and spectral analysis, can provide a more comprehensive and 

multi-dimensional analysis of glass artifacts. 

In conclusion, through continuous research and improvement, we can further 

enhance the accuracy and reliability of predicting and identifying the pre-weathering 

chemical composition of glass artifacts. This will provide stronger support for the 

preservation and transmission of cultural heritage and promote advancements in the 

study of ancient civilizations and technological development. 
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