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ABSTRACT 
Graph theory effectively explains urban structures via street–street 
connectivity. However, systematic comparisons of street structures 
across cities remain challenging. This study employs graph convo-
lutional networks (GCNs) to analyze street network structures. A 
two-branch GCN was used as the backbone to extract comparable 
features among street networks. The proposed approach was 
used to examine the structures of different urban road networks 
in a case study of polycentricity prediction across 298 Chinese cit-
ies. The model transformed approximately 4.5-million street seg-
ments into natural streets to create urban street graphs, which 
were subsequently analyzed to extract local and global embed-
dings. The extracted embeddings – with a portion labeled with a 
known urban polycentricity score – were used to predict the 
score for each city through a single-layer perceptron (SLP) model. 
Our results show consistency between the predicted polycentric-
ity scores based on the derived street embeddings and those 
based on the population. Thus, the proposed GCN-based method 
can effectively predict the complexity and interconnection of 
street networks in different cities. This innovative integration of 
GCNs into urban studies demonstrates that deep learning techni-
ques can analyze and comprehend the intricate patterns of street 
networks on a large scale.
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1. Introduction

Streets enable the movement of people, goods and information, as well as shape the 
infrastructure layout and land use patterns, thereby realizing various urban functions. 
The intersections and connections of streets form a ‘network.’ A well-developed street 
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network supports economic growth, fosters social cohesion and facilitates emergency 
responses during crises (Sharifi 2019; Wang et al. 2019). Studying street networks is 
imperative for creating sustainable and livable spaces that cater to the needs of individ-
uals and communities. Accordingly, various street network representations have been 
devised to scrutinize spatial configurations (Penn et al. 1998; Marshall et al. 2018), which 
establish a direct link between physical space and people.

With the increasing popularity of graph theory and complex networks, the network 
structure of urban streets from a topological perspective (street–street connectivity) has 
been of primary interest to scholars from various disciplines through network centrality- 
based measures such as betweenness (Crucitti et al. 2006; Kirkley et al. 2018). However, 
comparing these network centrality parameters for individual streets across cities is difficult 
because no geometrically or statistically uniform layout for each urban street network exists 
(Xue et al. 2022). Deep learning techniques have recently exhibited their ability to bridge 
this gap and have attracted significant attention from researchers in both, the computer sci-
ence and geospatial communities (Zhang et al. 2019). Graph convolutional networks (GCNs) 
and graph autoencoders (GAEs) can learn deep representations of street–street connections, 
employ graph convolutional layers to embed the graph into a latent vector space, and 
map the derived embeddings to a reconstruction of the input street network. The learned 
embedding from street networks can be viewed as a specific type of representation learn-
ing (Bengio et al. 2013) in urban studies that focuses on mapping urban configurations to 
continuous vector representations that can be nonlinearly fitted with related urban metrics. 
However, deriving embeddings from large-scale street networks that can balance high 
dimensionality, structural integrity and computational efficiency is challenging (Wang et al. 
2016).

In this study, we propose a novel semi-supervised GCN framework that is designed 
to characterize urban structures across 298 prefectural-level Chinese cities for a com-
prehensive comparative analysis of large-scale urban street networks. Our framework 
leverages a two-branch graph neural network (GNN) structure. The first branch is 
based on an unsupervised autoencoder model that is used to learn the intrinsic pat-
terns and embeddings from the input graph data. This autoencoder model enables us 
to explore the underlying structures of urban streets without requiring extensively 
labeled data. The second branch of the model incorporates embeddings from the first 
branch and is trained using a subset of labeled data to predict the morphological indi-
ces that fit the requirements of different urban analysis purposes. In addition, to 
ensure satisfactory performance and scalability, we rely on urban street graphs con-
structed from approximately 4.5 million street segments and employ a strategic sub-
sampling approach to preserve the global graph structure and significantly reduce the 
computational load created by large street graphs. To showcase the feasibility of our 
framework, we conducted a case study predicting the index of urban polycentricity, 
i.e. a nuanced structural property describing the presence of multiple centers within a 
city (Meijers 2008), using embeddings extracted from street networks.

This study contributes to the literature in two key areas. Methodologically, the devel-
oped GCN-based framework highlights the potential of GNNs for street network analysis. 
It represents a significant advancement over traditional approaches by offering the 
unique capability to adaptively learn graph embeddings suitable for diverse tasks, all 
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without altering the fundamental architecture of the network. Furthermore, this novel 
framework design addresses the challenge of preserving the structure and handling 
nonlinearity in conventional street network analysis approaches, e.g. centrality-based 
analysis. Empirically, our case study of polycentricity prediction not only effectively dem-
onstrated the efficacy of the framework but also illuminated the intricate relationship 
between the structure of street networks and urban polycentricity as informed by popu-
lation. The predicted polycentric structures of Chinese cities revealed by our approach 
are potentially useful for policymakers because they enable a detailed comparison of 
the current urban landscape, facilitate the simulation of future developments and guide 
decisions based on existing or planned street configurations.

The remainder of this article is organized as follows: Section 2 reviews the related lit-
erature. The proposed methodological framework is introduced in Section 3. Section 4
presents the results, with a focus on the subsampled street graphs for 298 cities, the 
GCN model performance and the correlation between the measured and learned urban 
polycentricity scores. The proposed methods, derived results, and implications for urban 
studies are discussed in Section 5. Section 6 provides the conclusions and outlines 
future research directions.

2. Related work

2.1. Complex structure of urban street networks

A city is not a tree but a complex network that embodies many interconnected urban ele-
ments (Alexander 1965). A typical example is a network of urban streets that can be nat-
urally modeled as graph representations. Dual graphs (with the nodes as streets and links 
as intersections; Porta et al. 2006) and their related centrality measures are the most com-
mon methods for street structural configurational analysis (Crucitti et al. 2006; Kirkley 
et al. 2018; Wang and Debbage 2021; Wu et al. 2024). Empirical studies have demon-
strated that urban street networks tend to possess a similar structure to that of many 
other real-world complex networks (e.g. scale-free and/or small-world properties) in terms 
of the statistical distribution (e.g. long-tailed or power-law) of graph measures (Batty 2008; 
Boeing 2017). In addition to the statistics for a single quantity, previous studies have iden-
tified both nonlinear and linear relationships among the street structural complexity, 
urban socioeconomic and environmental factors (such as GDP, population and CO2 emis-
sions) (Lu et al. 2016; Lan et al. 2019; Zhang et al. 2022) and urban life (Huang et al. 
2022). Critics in the space syntax literature (e.g. Ma et al. 2019) have noted that the com-
plex structure of street networks is hardly viewed in terms of geometric primitives, such 
as individual street segments or junctions that are conventionally adopted in geographical 
information system (GIS) models because they have a similar number of neighboring 
nodes or links. Instead, the network is formed by natural streets, each of which denotes a 
group of adjacent segments with strong continuity (see details in Section 3.2). This ena-
bles the complex network structure to be grasped, which further aids in deriving street 
hierarchies that are useful for many applications, such as traffic monitoring (Liu et al. 
2019) and map generalization (Yu et al. 2020).
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2.2. GCNs and their applications in urban studies

Among the different deep learning architectures, convolutional neural networks 
(CNNs) are the most commonly used for analyzing regularly structured data such as 
images (Defferrard et al. 2016). However, the use of these networks in the analysis of 
irregularly structured data, such as graphs remains challenging (Bronstein et al. 2017). 
Motivated by CNNs, two potential solutions, namely, spectral and spatial approaches 
have been investigated. The conceptual basis of the spectral-based approach is the 
graph Fourier transform, which resembles the Fourier transform of a 1D signal (Zhu 
and Rabbat 2012). In contrast, the spatial approach performs convolution operations 
directly on the graph vertices by aggregating the information from neighboring nodes 
in a convolutional manner. The spectral and spatial GCN approaches have both been 
adopted to address various types of graph-structured spatial vector data owing to 
their impressive ability to learn discriminative features from input graph-structured 
data. The potential of GCNs for characterizing urban spatial patterns based on regular 
and irregular geometric configurations has been demonstrated.

In urban studies, spatial vector graphs can be constructed from connections that link 
different types of spatial units, such as equally partitioned grids, self-defined boundaries 
based on data clusters, and individual spatial objects. For example, Yao et al. (2021) pre-
dicted the spatial flow distribution among 1 km � 1 km grids, Zhu et al. (2020) connected 
a set of point-of-interest (POI) clusters and applied a GCN to infer place characteristics, 
and Yan et al. (2019, 2021) proposed a GCN approach for the pattern cognition and classi-
fication of a group of individual buildings. In addition to networks of point or polygonal 
units, networks of linear units (i.e. road networks) have been used extensively for urban 
applications such as traffic forecasting (Yu et al. 2018). However, adapting emerging com-
plex network structures for a comprehensive understanding of the spatial configurations 
among various cities remains a challenge. Xue et al. (2022) predicted the spatial homo-
geneity using segment-based centrality measures from a grid-level road network across 
30 cities and used this GCN-based measure to determine urban structure and socioeco-
nomic performance. Despite this remarkable effort to link street structures with urban 
performance, it is worth discussing whether parts of streets in grids are sufficiently rep-
resentative because no visual or statistical direct self-similarity proof between grid-level 
street segments and entire streets is available in the literature.

Another approach is to effectively sample the street network for each city to boost 
computational efficiency. Pooling or downsampling is commonly applied to grid-like 
image data in CNNs. Atwood and Towsley (2016) pioneered pooling with diffusion- 
based convolutions in GCNs, demonstrating the significance of pooling via graph 
coarsening for merging similar nodes. Subsequently, Ying et al. (2018) introduced a 
differentiable pooling operation for GCNs, which enables a hierarchical reduction in 
the graph size while preserving crucial data structures. Building on this concept, Lee 
et al. (2019) proposed a self-attention mechanism for graph pooling to identify and 
preserve the most salient nodes within a graph. However, whether the pooling strat-
egy of existing methods can be directly applied to street data remains uncertain 
owing to the uniquely complex geometric and topological characteristics of such data.

Existing approaches usually require annotated datasets to train models. However, 
collecting dense semantic labels is usually very labor-intensive and time-consuming, 
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and the quality and adequacy of the labeled dataset significantly affect the perform-
ance of the learned model. Several semi-supervised and unsupervised approaches 
have been proposed to address the demand for strong supervision. GAEs have been 
used extensively to learn the efficient coding of unlabeled graph data. Kipf and 
Welling (2016a, 2016b) introduced a GAE with a GCN encoder and a simple inner 
product decoder, which exhibited competitive link prediction performance in several 
citation network datasets compared to other nondeep learning models. Inspired by 
the above research efforts, we propose a novel semi-supervised architecture to meas-
ure urban polycentricity from road networks using the GAE and single-layer percep-
tron (SLP) models.

2.3. Urban polycentricity

Over the past several decades, rapid urbanization has fostered the development of poly-
centric urban regions (PURs), which have been increasingly recognized in recent studies 
(Derudder et al. 2021; Harrison et al. 2022; Thomas et al. 2022; Derudder et al. 2022). The 
concept of urban polycentricity is often employed to assess the extent of such develop-
ment quantitatively. It is a multifaceted concept that encompasses at least two dimen-
sions: geometrical aspects (i.e. the morphological form) and topological relationships (i.e. 
functional links), as described by Burger and Meijers (2012). However, most of the exist-
ing related research has focused mainly on the morphological dimension of urban poly-
centricity. This approach typically involves examining the distribution and intensity of 
urban elements and activities, as highlighted in a recent study by Thomas et al. (2022).

Gridded data, particularly population grid data and nighttime imagery, have histor-
ically been the primary tools for assessing PURs. For example, Liu and Wang (2016) 
and Liu et al. (2018) used LandScan population grids to capture a holistic view of poly-
centric development in Chinese cities and their surrounding regions. In addition, loca-
tion-based social media data have emerged as a novel source for analyzing urban 
polycentricity. Lv et al. (2021) demonstrated this application by performing a multi-
scale PUR analysis in Chinese cities, incorporating data on POIs at the city level and 
check-in densities of street blocks within city centers.

Although numerous studies have leveraged various geospatial data to deduce 
aspects of urban polycentricity (e.g. Liu and Wang 2016; Wang 2021; Taubenb€ock 
et al. 2017; Liu et al. 2018; Volgmann and M€unter 2022), a notable gap remains in the 
literature regarding the use of large-scale street network data and their inherent net-
work topologies. Therefore, this study aims to illustrate the potential of the proposed 
GCN-based methodology for analyzing and interpreting street networks. Specifically, 
we present a case study that employs this innovative approach to predict urban poly-
centricity using street network data.

3. Methodology

The proposed framework includes three main steps: subsampling urban street net-
works, encoding and decoding subsampled urban street features, and predicting 
urban polycentricity (Figure 1). The full urban street network across almost 300 cities, 
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which is the input for the GCN, was too large to compute. Therefore, each urban 
street network needed to be generalized, and a fixed-size street network sample had 
to be used (Section 3.1). Thereafter, we implemented a GCN as a feature extractor to 
encode each subsampled street graph with a comprehensive embedding layer, result-
ing in a set of multidimensional vectors (embeddings) that could be restored by the 
decoder (Section 3.2). The extracted embeddings for each city further helped us to 
answer the question ‘How polycentric are these cities?’ The embeddings were divided 
into training and test sets. Based on the training set labeled with empirically measured 
urban polycentricity values, we applied the SLP model to predict the urban polycen-
tricity for the test set (Section 3.3). Finally, the loss function was optimized for the pro-
posed models (Section 3.4).

3.1. Subsampling city-scale street graph

Urban roads are naturally modeled as networks or graph representations based on 
their spatial relationships (e.g. intersections). Roads are conventionally stored as seg-
ments in GIS systems, in which they are separated at each street junction where at 
least three polylines intersect. Subsequently, a dual graph can be generated based on 
the segment–segment topology, in which the nodes are segments and the links inter-
sect. This type of topology has been widely adopted for many urban applications, 
such as navigation, and has been effectively integrated into mainstream GIS software 
for spatial analysis (e.g. the Network Analyst toolbox in ArcGIS). However, uncovering 
the underlying street structure as a segment, which can be regarded as a geometric 
primitive with little meaningful information in reality, may be challenging (Ma et al. 

Figure 1. (Color online) Overall framework of GCN-based analysis of urban street structure includes 
three modules: the gray dashed box indicates the creation of subsampled street graphs based on 
the street-street topology, the orange dashed box shows the extraction of graph embeddings 
through the GAE model and the blue dashed box represents the prediction of urban polycentricity 
via the SLP model.
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2019). As shown in Figure 1, the dual graph of street segments that is visualized in a 
circular layout is mechanistic or less vivid because the connectivity for each segment 
is similar. The segment–segment topology can be transformed into a street–street top-
ology for an organic structure. We group and join a set of neighboring segments with 
two conditions, namely, the same name and good continuity (small deflection angles, 
e.g. less than 45�), into a ‘stroke’ (Thomson and Richardson 1999) or ‘natural street’ 
(Ma et al. 2019) to avoid the generation of meaningless streets. Specifically, we first 
merge neighboring segments with the same names. Because not all segments have 
name attributes in reality (database incompleteness), we further consider good con-
tinuity for the processed and unprocessed segments together for the final natural 
street generation. According to Gestalt psychology, a natural street (street) matches 
human visual cognition and is more meaningful than a segment alone.

Apart from human perception, street–street topology enables a complex network 
perspective to be adopted to explore the network of streets. Some street properties 
(e.g. street lengths and connectivities) appear to have a hierarchical structure. As illus-
trated in Figure 2, approximately 80% of the streets are less connected, whereas the 
other 20% are well connected, among which approximately 1% are very well con-
nected. Thus, we can observe that the transformation from segments into streets also 
leads to a profound statistical change in the geometric and topological properties of 
the street, that is from a normal distribution to a heavy-tailed distribution. Heavy-tailed 
distribution statistics imply an imbalanced, hierarchical structure that enables us to 
conduct street network subsampling effectively. Subsequently, well-connected streets 
can be selected to represent the essence of the entire network to a significant extent. 
In addition, drawing on the idea of pyramid representation in image processing 
(Adelson et al., 1984), we adopt the power of two as the scale factor to select streets 
with the highest connectivity values as the input to the GCN for training and testing, 
as denoted by Equation (1).

of subsampled streets ¼ 2level (1) 

To perform street subsampling, we first rank all streets in decreasing order accord-
ing to connectivity and select the top 2level streets as the subsample. An example is 
depicted in Figure 2. A street network with reduced resolution can be obtained 
through simple ranking and selection. The resulting ‘network pyramid’ can be adopted 
as a data structure that efficiently supports the following convolutional operations 
through representation at multiple reduced scales. As an urban-scale street network 
usually consists of thousands of streets and the number of streets differs among cities, 
the level at which the street network should be subsampled must first be decided. 
This level applies to all cities because an equal-sized subsample for each city is 
required as the input to the GCN in the subsequent steps for computation and 
comparability.

3.2. GAE model

Assume a graph G ¼ ðV , A, XÞ, where V is the set of streets, A 2 Rn�n is the adjacency 
matrix, and X is a feature matrix that consists of two features comprising the length 
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and number of connected streets for each street (both values are normalized). 
The Laplacian matrix of the specified graph-structured data can be represented as 
L ¼ D − A: In this mathematical representation, L, D is the diagonal node degree 
matrix, and the diagonal element Dii ¼

P
jAij is the sum of the elements of row i in 

the adjacency matrix A: The graph Laplacian matrix L can be further normalized as 
L ¼ IN − D−1

2AD−1
2 ¼ UKUT , where U is the matrix of eigenvectors of the normalized 

graph Laplacian and K is the diagonal matrix of eigenvalues. Assuming that x is the 
signal vector that is defined on the nodes of graph G, the graph convolution can be 
defined as the multiplication of x with a filter gh according to the convolution 

Figure 2. Subsampling process of illustrative natural street representation and its dual graph lay-
out. Note: The street network consists of 57 natural streets (25.87 � 26), the spatial intersection 
relationship of which helps to derive the dual graph. We visualize the importance of the street 
using the connectivity measure with a color spectrum, where red, yellow, cyan and blue represent 
the streets most connected to the poorest connected streets. Thereafter, subsampling of the net-
work can be performed at a reduction ratio of 1/2 by selecting the top 32 (25), 16 (24) and 8 (23) 
most connected streets. Although the number of streets is continuously halved, the main street 
structure is maintained throughout the series. Source: Adapted from Figure 1 in Ma et al. (2019). 
Copyright # 2019 by Pion. Reprinted with permission from SAGE Publications, Ltd.
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theorem in the frequency domain, as outlined in Equation (2):

y ¼ gh�x ¼ ghðLÞx ¼ ghðUKUTÞx ¼ UghðKÞUT x, (2) 

where ghðKÞ is a function of the eigenvalues of L: Therefore, this convolutional struc-
ture is impractical for large-scale graphs because the eigendecomposition of the nor-
malized Laplacian matrix L may be very computationally expensive. To address this 
problem, Hammond et al. (2011) introduced a fast approximation of ghðKÞ, which is a 
truncated expansion in terms of the Chebyshev polynomials TkðxÞ up to the Kth order:

ghðKÞ ¼
XK

k¼0

hkTk K
�
� �

: (3) 

In the approximation, K
�

¼ 2K
kmax

− IN is the rescaled matrix of K, where kmax denotes 
the maximum eigenvalue of L and IN is an identity matrix of size N; hk 2 Rk is a vector 
of polynomial coefficients, which is to be learned in the training process; and TkðxÞ
is recursively defined as TkðxÞ ¼ 2xTk−1ðxÞ − Tk−2ðxÞ, with T0ðxÞ ¼ 1 and T1ðxÞ ¼ x: Kipf 
and Welling (2016a, 2016b) truncated the Chebyshev polynomial to the first order 
(i.e. K¼ 2 in Equation (3)) as a special variant, leading to the following simplified con-
volution:

gh�x � h IN þ D−1
2AD−1

2

� �
x � h D~−

1
2

A
~

D~−
1
2

� �

x, (4) 

where A� ¼ Aþ IN is equivalent to adding self-loops to the original adjacency matrix 
of the graph and D

�

is the diagonal degree matrix of A
�

: Consequently, we can general-
ize the simplified graph convolution to an input layer of feature XðlÞ 2 RN�C (i.e. a C- 
dimensional feature vector for every node) and F filters as follows:

Xðlþ1Þ ¼ r D
�

−
1
2

A
�

D
�

−
1
2

X lð ÞH lð Þ
� �

, (5) 

where H lð Þ is a matrix of C� F parameters (i.e. a layer-specific trainable weight matrix), 
Xðlþ1Þ 2 RN�F is the convolved matrix, which is also the input feature for the 
next graph convolutional layer l þ 1, and r denotes the activation function, such as 
ReLU(�) ¼ max (0, �).

Given the graph convolution operations that are defined in the frequency domain, 
we can establish an autoencoder comprising five parts: the input, encoder, embed-
ding, decoder and output, as illustrated in Figure 3. In particular, the encoder receives 
the graph features and adjacency matrices and processes them through multiple 
stacked graph convolutional layers, as shown in Equation (5). This procedure facilitates 
information aggregation from interconnected nodes across the graph to generate fea-
tures for every individual node, that is local embeddings. Following the encoding pro-
cess, a max pooling layer is employed to extract the overall features of a particular 
graph from the embedded node-level features. This approach is inspired by the 
objective of model permutation invariance; that is, different orders of nodes in the 
graph should produce identical embeddings. The max pooling layer, which is a 
straightforward symmetric function, accepts n vectors as the input and delivers an out-
put vector that is unaffected by the input order to ensure order invariance. This con-
cept of deriving global features has been used extensively in deep neural networks, 
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such as PointNet (Qi et al. 2017) for point-cloud processing, given that point clouds 
typically consist of points in varying orders. After deriving the global features, the 
graph-level embeddings (i.e. global embeddings) are fed into the decoder to realize 
the reconstruction, which is expected to recover the graph structure in the original 
data. In this study, inspired by the work of Kipf and Welling (2016a, 2016b), the 
decoder recovers adjacency matrix A’ as a product of embedding Z and its transpose. 
Owing to this architecture, the model can be optimized by minimizing the mean 
squared error (MSE) between adjacency matrix A and reconstructed adjacency matrix 
A’. The parameters of the convolution kernels and the biases of the activation func-
tions are updated through backpropagation.

3.3. SLP-based prediction

We adopt an SLP model to predict urban polycentricities with graph-level embedding, 
which can be learned from the proposed autoencoder. As illustrated in Figure 4, the 
SLP model uses the embedding vector from the autoencoder as its input. 
Subsequently, the aggregate of the weighted embedding values is passed through a 
sigmoid function to map the prediction value to the range of 0 to 1. Notably, in this 

Figure 3. Architecture of the proposed GAE model.

Figure 4. (Color online) Architecture of the SLP-based model for predicting urban polycentricity.
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study, the SLP model is trained in a supervised manner, with the city polycentricity 
values calculated by Liu and Wang (2016) used as a reference for our training data. 
During the training process, the reference values of a subset of cities are used to 
refine the predictive model, while the autoencoder network is concurrently trained on 
all the graph data in a purely unsupervised manner. In this regard, the proposed 
framework aligns with the definition of a semi-supervised framework, given that all 
available graphs are used for the unsupervised training of the autoencoder model, 
whereas only a portion of the reference values is used to train the SLP prediction 
model. The concurrent optimization of both branches emphasizes the semi-supervised 
nature of the model. The SLP model parameters are fine-tuned by minimizing the MSE 
between the predicted and reference values.

3.4. Loss function

We address graph-based urban polycentricity prediction using a semi-supervised learn-
ing approach owing to the limited number of reference labels. In this study, we 
express the final loss for model training as the sum of two losses that are derived sep-
arately from the two proposed branches:

L ¼ LGACE þ k LP, (6) 

where the unsupervised loss LGACE is the MSE between adjacency matrix A and recon-
structed adjacency matrix A’ from the GAE model. The supervised loss LP denotes the 
MSE between the predicted and available reference values. In addition, the trade-off 
parameter k is used to balance the supervised and unsupervised losses during train-
ing. In this study, the value of k is set to 0.0001 to prevent overfitting of the predic-
tion branch.

4. Case study and experimental results

4.1. Data sources and processing

Four datasets were used in this study: (1) the national street network, (2) 298 city 
administrative borders, (3) 2019 national GDP statistics and (4) population-based urban 
polycentricity scores. The national street dataset was sourced from OpenStreetMap 
(OSM) and originally included 4,419,603 segments that were strictly separated at the 
vertices where at least three segments intersected. Each city boundary was further 
adopted as the unit for data processing. We extracted city-level street segments and 
transformed them into natural streets. Note that, on average, more than 70% of the 
name information was absent in the raw segment data, and the situation improved to 
50% or less for the top cities. The national GDP data for 2019 were sourced from the 
published editions of the China Statistical Yearbook 2019. The population-based poly-
centricity scores of all Chinese cities were adopted from Liu and Wang (2016) and cal-
culated based on the formula in Green (2007), resulting in a polycentricity score 
ranging from 0 to 1 (a higher value indicates that the city is more polycentric, 0 
denotes a total lack of urban polycentricity where there is only one urban center in a 
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city, and 1 denotes complete urban polycentricity, with several urban centers of the 
same size in the city).

4.2. Subsampled street networks

Before discussing the experimental results, we briefly introduce the ht-index (Jiang and Yin 
2014) to characterize the heavy-tailed distributions of the street measures. Data with a 
heavy-tailed distribution often exhibit an unbalanced pattern between large and small 
ratios, that is, very few large values versus many small values. Interestingly, this imbalance 
may recur within the data. The number of recurrences has been termed the ‘ht-index’ and 
further developed as an effective means for quantifying the extent of imbalance or com-
plexity of data. A higher ht-index indicates a more complex street structure because more 
street hierarchies can be reflected. We computed the ht-index for each of the 298 cities in 
terms of the street connectivity using the generated natural streets. The ht-index values 
ranged from 1 to 9, and almost all the cities had an ht-index �3. As shown in Figure 5(a), 
urban streets with relatively high complexity (red dots) are distributed evenly across the 
western, central and eastern regions. In addition, a general pattern is observed in which 
important cities such as provincial capital cities tend to have higher ht indices (above 5). 
Among these cities, Shanghai has the most complex street structure, with an ht-index of 

Figure 5. (a) Ht-index of street connectivities across 298 Chinese cities, (b) complex structure of 
the Shanghai street network (ht-index ¼ 9), (c) statistical similarity between the top 128 street 
connectivities and all the data examined by the power law and (d) histogram. Note: The nighttime 
image from 2020 of 298 cities in Panel (a) demonstrates the transition of moderate-to-intensive 
economic development from the western to the eastern regions in China to a certain extent.
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nine. Given this high complexity, a clear visual binary division of street connectivities could 
be observed (Figure 5(b)), that is the scarcity of well-connected streets (in red and yellow) 
versus the number of poorly connected streets (in blue). This partitioning enabled us to 
identify the street hierarchies effectively, leading to successful subsampling of large-scale 
street networks.

We selected the 128 most highly connected streets as a subsample of each original 
urban street network. As in the case of streets in Shanghai, we first conducted simple 
power-law fitting for the connectivity values of the entire street and the selected subset. 
By taking the double logarithm of the x- and y-axes, we observed that the distributions 
of the two datasets were comparable (nearly straight lines; Figure 5(c)). In addition, we 
counted the frequencies of each logged value and plotted them in a histogram to ana-
lyze the statistical patterns from one subset to another. As a further step, a trendline 
(using curve fitting) was created for this bar, where the entire pattern appeared very 
right-skewed. Notably, the trendlines for the top 16, 32 and 64 values were distant from 
the pattern, similar to the whole, until the peak of the top 128 values occurred (green 
line in Figure 5(d)). This statistical pattern was also confirmed in other cities. Table 1
and Figure 6 present the representative top 128 streets in 20 selected Chinese cities 
from statistical and geographical perspectives, respectively. Unlike a subsample of 
streets within equally partitioned grids, the subsample in this study (the most connected 
and longest roads) covered the entire urban area. Interestingly, of the 20 cities with dif-
ferent socioeconomic statuses, each subsample (only 1% of streets) had an ht-index 
above or equal to 3, accounting for no less than 50% of the structural complexity of all 
streets (in most cases). In addition, we observed that the power-law distributions of the 
subsampled and full street networks were similar across cities, highlighting the ability of 
the ht-index to delineate subtle differences in street hierarchy.

Table 1. Ht-index for subsample and all streets for 20 Chinese cities.
City # Streets Ht (all) Ht (top)

Beijing 41,829 7 3
Guangzhou 28,215 8 4
Shanghai 34,924 9 5
Shenzhen 18,938 8 4
Zhengzhou 6014 7 4
Hangzhou 24,948 9 3
Foshan 16,053 8 4
Wuhan 12,615 6 3
Fuzhou 8744 8 4
Dalian 7512 8 5
Quanzhou 4414 7 6
Taizhou 6517 7 4
Guiyang 3147 6 5
Nanchong 2769 7 4
Zhanjiang 4061 8 5
Putian 1787 6 4
Xining 1811 5 3
Yuxi 1643 7 4
Xinzhou 3856 8 4
Shanwei 1758 6 5

Note: #Number.
Ht: ht-index; all: all streets; top: top 128 streets
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Figure 6. Layout of the top 128 streets for 20 Chinese cities at different development levels. Note: 
Poly¼ population-based polycentricity scores previously measured by Liu and Wang (2016). The 
hierarchy of the cities from top to bottom is aligned with the row sequence, e.g. the first row indi-
cates the cities at the top hierarchy determined by urban GDP, and the fifth row is the fifth hier-
archy. For each row (cities in the same hierarchy), we ordered the cities in ascending order from 
monocentric (left) to polycentric (right).
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4.3. Model training and parameter settings

The architecture and parameters of the autoencoder model are depicted in Figure 7(a). 
The encoder of the proposed framework contains five convolutional layers, with dimen-
sions of 32, 64, 128, 256 and 512. After the fifth graph convolutional layer, the node- 
level graph features with dimensions of 128� 512 are fed into the max pooling layer to 
derive a 512 � 1 vector, which is the global-level feature for the involved graph. For 
the decoder, the 512 � 1 graph coding is first scaled to a 65,536� 1 vector and then 
reshaped to a 128� 512 matrix Z, with dimensions identical to those of the output of 
the final graph convolutional layer in the encoder. Finally, adjacency matrix A’ is recon-
structed as the product of matrix Z and its transpose. Simultaneously, the 512-dimen-
sional global embeddings are used as the inputs for predicting the urban polycentricity. 
As shown in Figure 7(b), a sigmoid function is used to obtain a predicted value from 0 
to 1. This value represents the predicted urban polycentricity of the input street–street 
connectivity graph.

In the experiment, the autoencoder and SLP models were simultaneously optimized 
using the Adam optimizer with a learning rate of 0.0001. All 298 city graphs were 

Figure 7. Architecture of (a) GAE and (b) SLP models for urban polycentricity prediction.
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used for unsupervised training of the GAE model. A total of 159 cities, each of which 
had a referenced polycentricity score greater than 0, were used for training and test-
ing (i.e. 104 (approximately 65%) for training and 55 (approximately 35%) for testing). 
Note that a total of 139 cities with referenced polycentricity scores of 0 were excluded 
from the training process. The minibatch size was set to 32, and the models were 
trained for 1000 epochs. The area under the receiver operating characteristic curve 
(AUC) was 0.934, and the average precision of the trained GAE model was 0.952.

4.4. Comparison with baseline models

We selected the following baseline models, which all produced 128-dimensional repre-
sentations across cities, to verify the importance of the subsampled streets in relation 
to urban polycentricity and to compare the performance of our proposed GAE model.

� GraphSAGE, which was proposed by Hamilton et al. (2017), is a powerful method 
for learning low-dimensional vector representations of nodes in graphs. This is 
achieved by sampling neighboring nodes and aggregating their features to obtain 
node representations. In this study, we constructed an end-to-end model as a base-
line with a similar structure to that of the proposed GAE. The mean aggregation 
technique was employed for information aggregation.

� Node2Vec is a powerful unsupervised graph representation technique that trans-
forms nodes in graphs into low-dimensional vectors (Grover and Leskovec 2016). 
We employed Node2Vec to embed each street into an eight-dimensional feature 
and combined it with a two-dimensional (2D) street attribute feature, which yielded 
a 128� 10 feature matrix for each city. Thereafter, principal component analysis 
(PCA) was used for dimensionality reduction to obtain 128-dimensional features for 
each city. The walk length and number of walks sampled for each node were set 
to 10, and the actual context size considered for the positive samples was five.

� The vanilla GCN was inspired by the foundational GCN approach introduced by 
Kipf et al. (2016a, 2016b). We implemented five GCN layers, with dimensions that 
were sequentially configured as 32, 64, 128, 256 and 1, for the encoder of the GAE. 
Notably, the final GCN layer in the encoder produced a 128 � 1 output dimension, 
which was an aggregated feature that was achieved by retaining only one feature 
per node in the graph. These aggregated features acted as global embeddings and 
were employed to rebuild the adjacency matrix during the decoder stage.

Street graphs should ideally exhibit a distribution pattern in which graphs of the 
same type are adjacent, whereas graphs of different types are separated from the cod-
ing space. We mapped the 128-dimensional coding representation of each city to the 
two principal axes that were derived via PCA. Figure 8 depicts the correlation between 
the distribution of cities in the encoding space and their predicted polycentricity scores 
for each trained network. The results of our proposed method show that cities with 
lower predicted polycentricity scores are positioned in the lower region of the plot, 
whereas those with higher scores are grouped in the upper part of the graph. This pat-
tern signifies the effective distribution of cities according to their polycentricity.
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Three regression-based metrics, namely, the R2, mean absolute error (MAE) and root 
MSE (RMSE), were adopted to determine the correlation between the predicted and 
observed polycentricity scores. We used data from only nonmonocentric cities (those 
with at least one subcenter) to perform the correlation test. As a result, 55 polycentric 
cities with diverse economic statuses and street complexities were selected. Table 2

Figure 8. Visualization of derived embeddings from (a) vanilla GCN, (b) Node2Vec, (c) GraphSAGE, 
and (d) proposed GAE model in a 2D space. Note: The dot color was rendered using the predicted 
polycentricity scores for 298 cities.

Table 2. Performance of our approach and baseline models.
R2 MAE RMSE

Node2Vec 0.12 0.18 0.24
GraphSAGE 0.23 0.21 0.27
Proposed GAE 0.41 0.14 0.17
Vanilla GCN 0.017 0.23 0.29
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presents the results for the metrics. Similar to the comparison of the embedding plots, 
it can be observed that our proposed approach outperforms the baseline models in 
the three measures. The performance was assessed by GraphSAGE and Node2Vec (as 

Figure 9. Scatterplot of the predicted polycentric values and previously measured values for 55 
Chinese cities at the different levels defined by the urban GDP.
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indicated by the R2 values in Table 2). Noticeable distinctions in performance among 
the different models emerged in terms of the MAE. The proposed GAE exhibited 
remarkable performance, with an MAE of 0.14. In contrast, GraphSAGE and Node2Vec 
yielded higher MAE values of 0.21 and 0.18, respectively. The RMSE metric showed a 
comparable trend. The GAE achieved an RMSE of 0.17, whereas GraphSAGE and 
Node2Vec attained values of 0.27 and 0.24, respectively.

4.5. Correlations between measured polycentricity scores and predicted scores

Figure 9 shows the correlation between the polycentricity predicted using the pro-
posed GAE model and the previously measured scores. The correlation coefficient was 
0.41 (Table 2), which was significant at the 0.01 level (two-tailed). We divided the 55 
cities into three groups according to their urban GDP to conduct an in-depth investi-
gation. Specifically, the cities in the top hierarchies had relatively low polycentricity 
scores owing to the existence of leading dominant centers. In contrast, the polycen-
tricity profiles for the cities in the bottom class differed because the scores were dis-
tributed evenly along the value range. The correlation results varied across the 
different groups. High predictability was observed within cities in the top three hierar-
chies (approximately 0.5) for urban GDP and street complexity. In contrast, cities at 
lower levels were found to have very low predictability (below 0.2). We also visualized 
the ht-index values for each city. Note that the groups based on urban GDP and the 
ht-index were not the same but overlapped to a certain degree. A general trend 
between the two groups was that cities with a better economic status tended to have 
a more complex street structure (but not always).

5. Discussion

This study confirms the effectiveness of a deep learning framework for large-scale 
comparative urban analysis through network representation learning and reveals the 
underlying connection between street network structures and population-based poly-
centric urban structures. Like in other graph-structured data, the difficulty of learning 
street network representations lies in structure preservation and high nonlinearity. To 
address this issue, the proposed architecture first preserves the inherently complex 
street structure by iteratively joining adjacent, homonymic and continuous segments 
into streets with a deep hierarchy; that is, numerous less-connected streets, few well- 
connected streets and some in between. In this way, the street network exhibits a form 
of self-similarity, in which parts reflect the characteristics of the whole network (Zhang 
et al. 2022). Namely, well-connected streets are representative of the entire network 
structure. This recognition of self-similarity is instrumental in the subsampling process 
and offers fresh perspectives on the concept of scale in geographic representation learn-
ing, particularly within spatial networks (Yuan and McKee 2022). Each city possesses 
geometrical, topological and societal properties that differ among cities. The graph 
embeddings of well-connected streets that are extracted through multiple convolutional 
layers can map these attributes in a highly nonlinear latent space (128-dimensional) and 
help characterize urban similarities across different street layouts.
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The superior performance exhibited by the GCN-based approach compared with 
that of other popular GNN models, such as Node2Vec and GraphSAGE, can be attrib-
uted more to the specific downstream task than to the model itself. The desired 
embeddings are expected to accurately represent the structural complexity of the sub-
sampled street graph and its related street features for predicting urban polycentricity. 
The underperformance of Node2Vec is due to its lack of consideration of node fea-
tures. Like Node2Vec, which yields inferior results, the vanilla GCN is inherently 
designed for node-level (rather than graph-level) feature extraction. The selected 
128� 1 global embeddings that are derived by retaining only one feature per node 
from the final GCN layer in the encoder do not optimally represent the graphs exam-
ined in our study. These results also indicate the superior efficacy of the proposed 
max pooling layer in aggregating the global representation of the graph from 
embedded node-level attributes. However, GraphSAGE primarily emphasizes local 
structures by acquiring an aggregator that aggregates features from neighboring 
nodes (first or second order). Nevertheless, when the subsampled graph structure is 
known and representative, the GAE enables a more global perspective (higher-level 
order) by leveraging the relational information among the important nodes and their 
features in the graph. The characteristics of GCNs are more in line with the require-
ments of the task at hand and thus ultimately contribute to the superior performance 
of the proposed architecture.

Our analysis excludes cities that are characterized by a single population center 
during the prediction phase. This exclusion stems from the fact that monocentric cities 
inherently have a polycentricity score of 0 (Green 2007), which renders them unsuit-
able for correlation analysis. Although Liu and Wang (2016) assigned a polycentricity 
score of 0 to these cities based on population data, our findings indicate the potential 
for slight polycentricity (i.e. marginally above 0) in these areas. This discrepancy could 
be attributed to the limited resolution of the LandScan gridded population data (1 km 
� 1 km), which may not capture subtle urban centers as effectively as street network 
data. Street network data not only complement but also enhance our understanding 
of urban polycentricity by revealing more nuanced urban structures. Consequently, 
the integration of street- and population-based findings in this study offers a more 
detailed and comprehensive view of urban structural dynamics.

Cities with a higher GDP tend to have more complex street structures, and their 
predicted polycentricity scores are more consistent with the empirically measured 
population-informed urban polycentricity than those of other cities. Cities with better 
economies, such as those along the eastern Chinese seaboard (e.g. the Pearl River and 
Yangtze River Deltas; Figure 5), have experienced intensive decentralization and 
marketization processes (Liu et al. 2018); thus, they naturally have at least one popu-
lous location where people gather for various activities. As cities evolve, these concen-
trations of people and activities lead to more roads locally and various densities in the 
road network globally, resulting in the emergence of street complexity. The street 
complexity measured using the ht-index in this study reflects the variation in street– 
street connections, which is widely considered to be the driver of network community 
structure (Fortunato and Newman 2022). In other words, a larger ht-index indicates 
greater variation in connectivity values across streets and a greater chance of the 
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street network having communities in which streets are strongly connected. Our 
results show that more developed cities tend to have more complex street structures 
(larger ht-index values). A higher correlation between the predicted and measured pol-
ycentricity values among these cities also strengthens the potential relevance of com-
plex street configurations to the polycentric urban structure.

6. Conclusions

This study successfully demonstrated the efficacy of a GCN-based approach for analyz-
ing cross-city street network structures using a two-branch, semi-supervised architecture. 
The methodological innovation of using natural streets underscores the evolving dis-
course in street network analyses (Marshall et al. 2018). The study demonstrated that 
the representation learning of the subsampled streets across cities, constituting approxi-
mately 1% of the total streets, can capture the global structural characteristics of the 
entire street network. The case study on predicting urban polycentricity informed by 
population data in 298 Chinese cities based on the proposed GCN-based approach relies 
on the unique integration of deep learning with urban street network analysis. A key 
observation was that more economically developed cities exhibit more intricate street 
network structures, reflecting their dynamic urban evolution and the resulting diverse 
densities in street networks. This complexity, as measured using the ht-index, correlates 
with variations in street–street connections and the likelihood of polycentric urban 
forms being developed. This study also highlights that street network data can comple-
ment and enhance the nuanced understanding of urban structures more than trad-
itional data sources, such as the gridded population data of LandScan.

This study lays the foundations for future research. The observed alignment 
between the predicted polycentricity scores from street networks and population- 
based data opens new avenues for research in urban studies. This synergy invites fur-
ther investigation into the interconnected dynamics of street layouts and population 
distributions. However, as Derudder (2021) noted, network analyses do not always pro-
vide clear-cut interpretations, potentially limiting their practical applicability in urban 
planning and policy formulation. To bridge this gap, future research could incorporate 
explainable AI techniques into the proposed methodology to enhance the transpar-
ency and comprehensibility of urban polycentricity predictions from street networks 
for urban policymakers, planners and designers. Future research could also expand 
this methodological framework by applying other urban metrics and investigating 
their potential in different geographical contexts, thereby further enriching the under-
standing of urban structure and dynamics and facilitating the development of more 
livable and sustainable urban environments.
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