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Wireless Data Acquisition for Edge Learning:

Data-Importance Aware Retransmission

Dongzhu Liu, Guangxu Zhu, Qunsong Zeng, Jun Zhang, and Kaibin Huang

Abstract—By deploying machine-learning algorithms at the
network edge, edge learning can leverage the enormous real-time
data generated by billions of mobile devices to train AI models,
which enable intelligent mobile applications. In this emerging
research area, one key direction is to efficiently utilize radio
resources for wireless data acquisition to minimize the latency of
executing a learning task at an edge server. Along this direction,
we consider the specific problem of retransmission decision in
each communication round to ensure both reliability and quantity
of those training data for accelerating model convergence. To
solve the problem, a new retransmission protocol called data-
importance aware automatic-repeat-request (importance ARQ) is
proposed. Unlike the classic ARQ focusing merely on reliability,
importance ARQ selectively retransmits a data sample based on
its uncertainty which helps learning and can be measured using
the model under training. Underpinning the proposed protocol
is a derived elegant communication-learning relation between
two corresponding metrics, i.e., signal-to-noise ratio (SNR) and
data uncertainty. This relation facilitates the design of a simple
threshold based policy for importance ARQ. The policy is first
derived based on the classic classifier model of support vector
machine (SVM), where the uncertainty of a data sample is
measured by its distance to the decision boundary. The policy
is then extended to the more complex model of convolutional
neural networks (CNN) where data uncertainty is measured by
entropy. Extensive experiments have been conducted for both the
SVM and CNN using real datasets with balanced and imbalanced
distributions. Experimental results demonstrate that importance
ARQ effectively copes with channel fading and noise in wireless
data acquisition to achieve faster model convergence than the
conventional channel-aware ARQ. The gain is more significant
when the dataset is imbalanced.

I. INTRODUCTION

With the prevalence of smartphones and Internet-of-Things

(IoT) sensors on the network edge, known as edge devices,
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people envision an incoming new world of ubiquitous com-

puting and ambient intelligence. This vision motivates Inter-

net companies and telecommunication operators to develop

technologies for deploying machine learning on the (network)

edge to support intelligent mobile applications, named as edge

learning [1]–[4]. This trend aims at leveraging enormous real-

time data generated by billions of edge devices to train AI

models. In return, downloading the learnt intelligence onto the

devices will enable them to respond to real-time events with

human-like capabilities. Edge learning crosses two disciplines,

wireless communication and machine learning, which cannot

be decoupled as their performances are interwound under a

common goal of fast learning.

As data-processing speeds are increasing rapidly, wireless

acquisition of high-dimensional training data from many edge

devices has emerged to be a bottleneck for fast edge learning,

which faces the challenges due to high mobility and unreliable

devices (see e.g., [5]). This calls for designing highly efficient

techniques for radio resource management targeting edge

learning. For conventional techniques, data bits (or symbols)

are assumed of equal importance, which simplifies the design

criterion to be rate maximization but fails to exploit the

features of learning. In contrast, for learning, the importance

distribution in a training dataset is non-uniform, namely that

some samples are more important than others. For instance,

for training a classifier, the samples near decision boundaries

are more critical than those far away [6]. This fact motivates

the proposed design principle of importance-aware resource

allocation. In this work, we apply this principle to redesign

the classic technique of automatic repeat-request (ARQ) for

efficient wireless data acquisition in edge learning.

A. Wireless Communications for Edge Learning

Conventional communication techniques are designed

mostly for either reliable transmission or data-rate maximiza-

tion without awareness of data utility for learning. Such a

“communication-learning separation” principle does not yield

efficient solutions for acquiring large-scale distributed data

in edge learning. Its increasingly critical communication bot-

tleneck calls for redesigning communication techniques with

a new objective of low-latency execution of learning tasks.

Research opportunities in this largely uncharted area can be

roughly grouped under three topics: radio resource allocation,

multiple access, and signal encoding. The new idea in radio re-

source allocation for edge learning, the topic of our interest, is

to consider data usefulness for learning in allocating resources

for data uploading from devices to a server [7]. In this paper,

we consider retransmission which is a simple time-allocation

method for ensuring reliable communication in the presence
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of channel hostility [8]. The widely used ARQ protocols

repeat the transmission of a data packet until it is reliably

received. Thereby, channel uses are allocated to packets under

a reliability constraint. While existing ARQ designs purely

target data reliability [9], [10], accelerating edge learning calls

for new protocols incorporating the new feature of considering

data importance in retransmission decision. This motivates our

work.

B. Wireless Data Acquisition

Efficient data acquisition is a classic topic in designing

wireless sensor network (WSN) with a rich literature [17]–

[21]. The main challenge is how to overcome the energy

constraints of sensors to allow fusion centers to collect dis-

tributed sensing data without interruptions. There exist diver-

sified solutions such as wireless power transfer [17], multi-hop

transmission [18], [19], and UAV-assisted data collection [20].

One approach that shares the same spirit as the current work

is to schedule sensors based on their data quality evaluated

using criteria including cost, sensing accuracy and timeliness

[21]. On the other hand, the ARQ protocol proposed in the

current work also involves data evaluation which, however, is

based on a different criterion, namely importance for learning.

Overall, data utilization (i.e., computing or learning) is con-

sidered out of scope in prior work and not accounted for in

existing techniques for data acquisition, leaving some space

for performance improvement.

In machine learning, one topic relevant to data acquisition

is active learning [6]. Consider the scenario where unlabeled

data are abundant but manually labeling is expensive. Active

learning aims to selectively label informative data (by querying

an oracle), such that a model can be trained using as few

labelled data samples as possible, thus reducing the labelling

cost. Roughly speaking, the informativeness of a sample is

related to how uncertain the prediction of this sample is

under the current model. Specifically, the more uncertain

the prediction is, the more useful the sample can be for

model learning. Several commonly used uncertainty measures

are entropy [22], expected model change [23], and expected

error reduction [24]. In active learning, the focus is on the

learning aspect, while the effect of communication channels

has not been considered. However, the uncertainty measures

developed therein are useful for this work and integrated with a

retransmission protocol to enable intelligent data acquisition in

an edge learning system. Active learning aims at reducing the

cost of labeling for unlabeled data samples, while we consider

the retransmission cost of correcting distorted samples given

labels. The intuitions are analogous that both schemes focus on

the concept of data-importance to enhance the learning speed.

C. Contributions and Organization

This work concerns wireless data acquisition in edge learn-

ing. In this work, we propose a new retransmission protocol

called data-importance aware ARQ, or importance ARQ for

short, which adapts retransmission decisions to both data

importance and reliability (or equivalently the channel state).

As a result, the allocation of channel uses is biased towards

protecting important data samples against channel noise while

ensuring the quantity of acquired data. Balancing the two

aspects in the design results in the combined effects of

accelerating model convergence and reducing the required

budget of channel uses. To the authors’ best knowledge,

this work represents the first attempt on exploiting the non-

uniform distribution of data informativeness to improve the

communication efficiency of an edge learning system.

The main contributions of this work are summarized as

follows.

• Importance ARQ for SVM: First, consider the classic

classifier model of support vector machine (SVM). The im-

portance ARQ is designed to improve the quality-vs-quantity

tradeoff. The protocol selectively retransmits a data sample

based on its underlying importance for training an SVM

model which is estimated using the real-time model under

training. For SVM, a suitable importance measure is proposed

to be the shortest distance from a data sample to decision

boundaries. The theoretical contribution of the design lies in

a derived elegant communication-learning relation between

two corresponding metrics, i.e., signal-to-noise ratio (SNR)

and data importance, for targeted learning performance. This

new relation facilitates the design of a simple threshold based

policy for making retransmission decisions, where the SNR

threshold is shown to be proportional to the importance

measure.

• Extension to general classifiers: The derived importance-

ARQ policy for SVM models is extended to general classifier

models. Particularly, the SNR threshold is designed to be

proportional to a monotonically increasing reshaping function

of a general importance measure. The design captures the

heuristic that more important data should be better protected

against noise by a higher target SNR. Moreover, general

guidelines on how to select the reshaping function and the

SNR-importance scaling factor are discussed. Subsequently,

a case study on designing importance ARQ for the modern

convolutional neural networks (CNN) classifier is presented.

While the proposed approach is developed for classification

under supervised learning, it can be generalized to other types

of learning by substituting a suitable data-importance measure

into the designed algorithms.

• Experiments: We evaluate the performance of the proposed

importance ARQ via extensive experiments using real datasets

with balanced and imbalanced distribution. The results demon-

strate that the proposed method avoids learning performance

degradation caused by channel fading and noise while achiev-

ing faster convergence than the conventional channel-aware

ARQ. Furthermore, the performance gain is found to be more

significant for the imbalanced data distribution.

The remainder of the paper is organized as follows. Sec-

tion II introduces the communication and learning models.

Section III presents some initial experimental results and

motivates the design of an intelligent retransmission protocol.

The principle of importance ARQ is proposed for SVM in

Section IV. It is extended to general classifiers in Section V.

Section VI provides experimental results, followed by con-

cluding remarks in Section VII.
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Figure 1. An edge learning system.

II. COMMUNICATION AND LEARNING MODELS

In this section, we first introduce the communication system

model and learning models. Then data uncertainty metrics are

defined for different learning models.

A. Communication System Model

We consider an edge learning system as shown in Fig. 1

comprising an edge server and multiple edge devices, each

equipped with a single antenna. A classifier is trained at

the server using a labelled dataset distributed over devices.

Denote the k-th data sample (xk, ck) with xk ∈ R
q , q its

dimensions, and ck ∈ {1, 2, · · · , C} its label. The devices

time share the channel and take turn to transmit local data to

the server. The time sharing is coordinated by a channel-aware

scheduler while importance-aware scheduling is noted to be an

interesting direction for future investigation. Note that a label

has a much smaller size than a data sample (e.g., a 0 − 9
integer versus a vector of a million coefficients). Thus two

separate channels are planned: a low-rate label channel and a

high-rate data channel. The former is assumed to be noiseless

for simplicity.1 Reliable uploading of data samples over the

noisy and fading channel is the bottleneck of wireless data

acquisition and the focus of this work. Time is slotted into

symbol durations, called slots. Transmission of a data sample

requires q slots, called a symbol block.

Upon receiving a data sample, the edge server makes

a binary decision on whether to request a retransmission

to improve the sample quality or a new sample from the

scheduled device. The decision is communicated to the device

by transmitting either a positive ACK or a negative ACK. The

device is assumed to have backlogged data. Upon receiving a

request from the server, the device transmits either the previous

sample or a new sample randomly picked from its buffer.

This work is based on the assumption of linear analog mod-

ulation for transmission of training data, which are typically

multimedia data (such as images considered in the experi-

ments). The assumption is made not only for design tractability

but equally important for its high efficiency in multimedia

communication. Researchers have reported in recent findings

1 For clarification, label and data channels can refer to either physical
or virtual channels. They are differentiated by different levels of protection
against channel hostility. In particular, being critical information, labels are
ensured error-free by e.g., repetition coding. Both “channels” can coexist
together in the same frame in a similar way as the header (control information)
and payload of an eMBB frame. Alternatively, labels can be transmitted using
short frames (like URLLC) while data samples using long frames.

that linear analog modulation can outperform its digital coun-

terpart in terms of edge learning performance [36], in the

presence of Gaussian noise [37], in compression efficiency

[38] and power consumption [39] for video transmission, and

in alleviating the noise effect on video quality [40]. The

data channel is assumed to follow block-fading, where the

channel coefficient remains static within a symbol block and

is independent and identically distributed (i.i.d.) over different

blocks. The transmit data sample x = [X1, X2, · · · , Xq]
T

is a

random vector. During the i-th symbol block, the active device

sends the data x(i) using linear analog modulation, yielding

the received signal:

y(i) =
√
Ph(i)x(i) + z(i), (1)

where P is the transmit power, the channel coefficient h(i) is

a complex random variable (r.v.) with a unit variance, and

z(i) is the additive white Gaussian noise (AWGN) vector

with the entries following i.i.d. CN (0, σ2) distributions. We

assume that perfect channel state information (CSI) on h(i) is

available at the server. This allows the server to compute the

instantaneous SNR of a received data sample and make the

retransmission decision.

1) Available Resources: The transmission of each data

sample occupies a fixed duration of τ seconds. Each sample

comprises q coefficients, each of which is modulated into

one symbol using linear analog modulation. Thus, the symbol

duration τs = τ
q

. The considered device is allocated a

frequency non-selective channel for transmission and requires

the passband bandwidth of B = 1+α
τs

, where α ∈ [0, 1] is the

parameter of the raised-cosine pulse-shaping filter. The fading

channel is assumed to be fixed within one sample duration

and vary over multiple durations. In other words, a sample

duration spans one channel coherence time and thus referred

to as one channel use in the sequel.

2) Latency Constrained Transmission: Either due to the

application-specific latency requirement for the learning task

or limited radio resources, the objective of designing the

communication system is to maximize the speed of model

convergence. Considering latency constrained data acquisi-

tion, a transmission budget is defined as a given transmission

duration of N channel uses, over which a dataset is acquired

for training the classifier model. The budget represents the total

radio resource utilization for the learning task. At the end of

the duration (N channel uses), the trained model is evaluated

using a test dataset to yield a test accuracy, which is the metric
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for performance comparison in experimental results. Note that

given the same transmission budget, different retransmission

schemes acquire training datasets having different sizes and

noise levels, resulting in different test accuracies. In this work,

we consider a latency constraint specified by a transmission

budget (in channel use), which determines allowed data-

acquisition duration. By designing the retransmission protocol

for accelerating model convergence, the accuracy of the trained

model (as evaluated using a test dataset) can be improved

at the end of the allowed duration. Under this objective,

the retransmission protocol is designed in the sequel to bias

channel-use allocation towards providing better protection for

more important data samples against channel noise.

3) Power Constraint: The peak power constraint for each

data sample transmission is

P‖x‖2 ≤ P0 (2)

Therefore, P can be set as P = P0/‖x‖2 under the power

constraint. For the same transmission budget N , the total en-

ergy consumption is NP0qτs regardless of the retransmission

scheme. This ensures the fairness in performance comparison

in Section VI.

4) Retransmission Combining: To exploit the time-diversity

gain provided by multiple independent noisy observations of

the same data sample from retransmissions, the maximal-ratio

combining (MRC) technique is used to coherently combine all

observations for maximizing the receive SNR. To be specific,

consider a data sample x retransmitted T times. All T received

copies, say from symbol block n+1 to n+T , can be combined

by MRC to acquire the received sample, denoted as x̂(T ), as

follows:

x̂(T ) =
1√
P
ℜ
(

n+T∑

i=n+1

(h(i))∗
∑n+T

m=n+1 |h(m)|2
y(i)

)
, (3)

where y(i) is given in (1). In (3), we extract the real part of

the combined signal for further processing since the data for

learning are real-valued in general (e.g., photos, voice clips or

video clips). As a result, the effective receive SNR for x̂(T )
after combining is given as

SNR(T ) =
P0

σ2

n+T∑

i=n+1

|h(i)|2, (4)

where σ2 denotes the variance of the noise in the real

dimension. The summation in (3) has a value growing as the

number of retransmissions T increases. The SNR expression

in (4) measures the reliability of a received data sample and

serves as a criterion for making the retransmission decision as

discussed in Section IV.

B. Learning Models

For the learning task, we consider supervised training of

a classifier. Prior to training, we assume that the edge server

has a small set of clean observed samples, denoted as L0. This

allows the construction of a coarse initial classifier, which is

used for making retransmission decisions at the beginning.

The classifier is refined progressively in the data acquisition

(and training) process. In this paper, we consider two widely

Hyperplane: 

+

+

++

++

++

+
+

Margin:

w
T
x+ b = 0

Support Vector

γ = min
k

|wT
xk + b|

Figure 2. A binary SVM-classifier model.

used classifier models, i.e., the classic SVM classifier and the

modern CNN classifier as introduced below. To clarify, the

SVM model refers to a set of hyperplanes used for separating

data clusters; the CNN model refers to the set of parameters of

the CNN architecture; model convergence refers to the stage

of model training where a model is capable of classifying test

data at a required accuracy.

1) SVM Model: As shown in Fig. 2, the SVM algorithm

is to seek an optimal hyperplane wTx + b = 0 , where

w is the vector perpendicular to the hyperplane and b/‖w‖
determines the offset of the hyperplane from the origin along

the line defined by w, as a decision boundary by maximizing

its margin γ to data points, i.e., the minimum distance between

the hyperplane to any data sample [27]. The points lie in

the margin are referred to as support vectors which directly

determine the decision boundary. Let (xk, ck) denote the k-th

data-label pair in the training dataset. A convex optimization

formulation for the SVM problem is given as

max
w,b

γ =
2

‖w‖ (5)

s.t.

{
wTxk + b ≥ +1, ck = +1, ∀k;
wTxk + b ≤ −1, ck = −1, ∀k. (6)

which is equivalent to

min
w,b

1

2
‖w‖2 (7)

s.t. ck(w
Txk + b) ≥ 1, ∀k. (8)

To solve the problem, the Karush-Kuhn-Tucker (KKT)

conditions can be applied as follows.





αk ≥ 0,

ck(w
Txk + b) ≥ 1,

αk

(
ck(w

Txk + b)− 1
)
= 0,

(9)

where αk is the Lagrange multiplier for data sample (xk, ck).
The original SVM works only for linearly separable datasets,

which is hardly the case when the dataset is corrupted by

channel noise in the current scenario. To enable the algorithm

to cope with a potential outlier caused by noise, a variant of
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Figure 3. Illustration of the data-label mismatch issue for SVM.

SVM called soft margin SVM is adopted. The problem can

be formulated as

min
w,b

1

2
‖w‖2 + λ

K∑

k=1

ξk (10)

s.t. ck(w
Txk + b) ≥ 1− ξk, ∀k, (11)

ξk ≥ 0, ∀k, (12)

where λ > 0 is a constant and {ξk} are slack variables. The

KKT conditions require that






αk ≥ 0, µk ≥ 0,

ck(w
Txk + b) ≥ 1− ξk,

αk

(
ck(w

Txk + b)− 1 + ξk
)
= 0,

ξk ≥ 0, µkξk = 0,

(13)

where αk and µk are Lagrange multipliers. The technique

is widely used in practice to classify a noisy dataset that is

not linearly separable by allowing misclassification but with

an additional penalty on the objective in (10) (see [27] for

details). After training, the learnt SVM model can be used

for predicting the label of a new sample, denoted by x, by

computing its output score. The binary-classification case is

as follows:

(Output Score) s(x) = (wTx+ b)/‖w‖, (14)

where ‖ · ‖ represents the Euclidean norm and s(x) is a

normalized score. Then the sign of the output score yields

the prediction of the binary label.

2) CNN model: CNN is made up of neurons that have

adjustable weights and biases to express a non-linear mapping

from an input data sample to class scores as outputs [28]. A

typtical CNN consists of an input and an output layers, as

well as multiple hidden layers. The hidden layers of a CNN

typically include convolutional layers, ReLU layers, pooling

layers, fully connected layers and normalization layers. With-

out the explicitly defined decision boundaries as for SVM,

CNN adjusts the parameters of hidden layers to minimize the

prediction error, calculated using the outputs of the softmax

layer and the true labels of training data. After training, the

learnt CNN model can then be used for predicting the label

of a new sample by choosing one with the highest posterior

probability, which is obtained from the outputs of the softmax

layer.
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Figure 4. The impact of retransmission on the accuracy of the learnt model.

C. Data Uncertainty Metrics

The importance of a data sample for learning is usually

measured by its uncertainty, as viewed by the model under

training [6]. Two uncertainty measures targeting SVM and

CNN respectively are introduced as follows.

1) Uncertainty Measure for SVM: For SVM, the uncer-

tainty measure of a data sample is synonymous with its

distance to the decision boundary [29]. The definition is

motivated by the fact that a classifier makes less confident

inference on a data sample which is located near the decision

boundary. Based on this fact, we measure the uncertainty of

a data sample by the inverse of its distance to the boundary.

Given a data sample x and a binary classifier, the said distance

can be readily computed by the absolute value of the output

score [see (14)] as follows

d(x) = |s(x)| = |wTx+ b|/‖w‖. (15)

Then the distance based uncertainty measure is defined as

Ud (x) =
1

d2(x)
= ‖w‖2/|wTx+ b|2. (16)

One can observe that the measure diverges as a data sample

approaches the decision boundary, and it reduces as the sample

moves away from the boundary.

2) Uncertainty Measure for CNN: For CNN, a suitable

measure is entropy, an information theoretic notion, defined

as follows [22]:

Ue (x) = −
∑

c

Pθ (c|x) logPθ (c|x) , (17)

where c denotes a class label and θ the set of model parameters

to be learnt. To be precise, the model parameters are the

weights and biases of the neurons in CNN.
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III. WIRELESS DATA ACQUISITION BY RETRANSMISSION

A. Why Retransmission is Needed?

Given a noisy data channel and a reliable label channel, the

classifier model at the edge server is trained using noisy data

samples with correct labels. The channel noise and fading can

cause a data sample to cross the ground-truth decision bound-

ary, thereby resulting a mismatch between the sample and its

label, referred to as a data-label mismatch. The issue can cause

incorrect learning as illustrated in Fig. 3. Specifically, for the

noiseless transmission case in Fig. 3(a), the new data sample

helps refine the current decision boundary to approach the

ground-truth one. However, for the case of noisy transmission

in Fig. 3(b), noise corrupts the new sample and causes it to

be an outlier falling into the opposite (wrong) side of the

decision boundary. The situation will be exacerbated when the

SVM classifier is used since the outlier may be selected as the

supporter vector (or indirectly affect the decision boundary by

increasing the penalty in soft-margin SVM).

Retransmission can exploit time diversity to suppress chan-

nel noise and fading so as to improve data reliability and

hence the learning performance. To visualize the benefit of

retransmission, we compare in Fig. 4 the performance of

classifiers which are trained using the noise corrupted dataset

with a varying number of retransmissions. Specifically, we

consider the learning task of handwritten digit recognition

using the well-known MNIST dataset that consists of 10

categories ranging from digit “0” to “9” [30]. The level of

channel-noise is controlled by the average transmit SNR which

is set as ρ̄ = 4dB. We train three SVM classifiers with

different fixed numbers of retransmissions: T = 1, 10, 100.

The curves of their test accuracy are shown in Fig. 4(a), with

the corresponding received dataset distribution visualized in

Fig. 4(b) using the classic t-distributed stochastic neighbor

embedding (t-SNE) algorithm for projecting the images onto

the horizontal plane. It is observed from the case without

retransmission (T = 1), after receiving a certain number (i.e.,

8000) of noisy data samples, the training of the classifier fails

as reflected in the abrupt drop in test accuracy. The reason is

that the strong noise effect [see Fig. 4(a)] accumulates to cause

the divergence of the model [see Fig. 4(b)]. As the number

of retransmission increases, the noise effect is subdued to a

sufficiently low level ensuring that the class structure of the

ideal dataset can be resolved, leading to a converged model

and a high test accuracy. The experiment demonstrates the

effectiveness of retransmission in edge learning. To further

improve learning performance and more efficiently utilize

the transmission budget (i.e., the total channel uses for

transmitting data samples), retransmission should be adapted

to the importance levels of individual data samples, which is

the focus of the remainder of the paper.

B. Problem Statement

The objective of designing importance ARQ is to adapt

retransmission to both the data importance and the channel

state so as to efficiently utilize the finite transmission budget

for optimizing the learning accuracy. The challenges faced by

the design are reflected in two issues described as follows.

• Quality-vs-Quantity Tradeoff : The learning performance

can be improved by either increasing the reliability

(quality) of the wirelessly transmitted training dataset by

more retransmissions, or increasing its size (quantity) by

acquiring more data samples at the cost of their quality.

Given a limited transmission budget, a tradeoff exists

between the two aspects, called the quality-vs-quantity

tradeoff. An efficient retransmission design must exploit

the tradeoff to optimize the learning performance.

• Non-uniform Data Importance: In conventional data com-

munication, bits are implicitly assumed to have equal

importance. This is not the case for training a classifier

where data samples with higher uncertainty are more

informative and thus more important than those with

lower uncertainty. Considering the non-uniform impor-

tance in training data provides a new dimension for

improving the communication efficiency, which should

be also leveraged in the design.

IV. DATA-IMPORTANCE AWARE RETRANSMISSION

In this section, we consider the task of training an SVM

classifier at the edge. First, the concept of noisy data alignment

is introduced to relate wireless transmission and learning

performance. By applying a relevant constraint, the importance

ARQ protocol is derived to intelligently allocate channel uses

to the acquisition of individual data samples so as to accel-

erate model convergence. The protocol is designed for binary

classification and the extension to multi-class classification is

straightforward which is shown in the extended version of this

paper [32].

A. Probability of Noisy Data Alignment for Binary Classifi-

cation

The direct design of importance ARQ for optimizing the

learning performance is difficult as there lacks a tractable

mapping from data quality to learning accuracy. In this section,

the difficulty is overcome by deriving a condition for retaining

the usefulness of received data for learning in the presence of

channel noise, which can differentiate data importance levels.

The condition is derived based on the following fact: a noisy

received data sample can mislead the model training if its

label as predicted by the model differs from the ground truth

received without noise. To avoid this problem in the context of

SVM, a pair of transmitted and received data samples should

be forced to lie at the same side (ground-truth) of the decision

hyperplane of the classifier model so that they have the

same predicted labels. This event is referred to as noisy data

alignment and denoted as A. Its probability is called the data-

alignment probability. From the distance based uncertainty

defined in (16) for SVM, one can see that data samples with

higher uncertainty are more vulnerable to noise corruption ,

because such data samples are closer to the decision boundary.

To be specific, a small noise perturbation can push a highly

uncertain data sample across the decision boundary to result

in the aforementioned data-label mismatch (see Fig. 3).

The high vulnerability of important data is the reason that

importance ARQ allocates more resources to ensure their

reliability, giving the protocol its name. The objective of
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designing importance ARQ is to satisfy a constraint on the

data-alignment probability.

Next, the data-alignment probability is defined mathemati-

cally for a binary classifier. Since the ground-truth model is

unknown, the occurrence of the event A is evaluated using

the current model under training as a surrogate. As a result,

the output scores defined in (14) must yield the same signs

for a pair of transmitted and received data samples if they are

aligned. Consider an arbitrary transmitted data sample x and

its received version x̂(T ) after T retransmissions as defined

in (3). The event A is specified as the set of events that occur

with

s(x)s(x̂(T )) > 0. (18)

Then data alignment probability can be mathematically de-

fined as follows.

Definition 1 (Data-alignment probability). Conditioned on the

received data sample, the data-alignment probability is defined

as:

P (x̂(T )) = Pr (A | x̂(T )) . (19)

The remainder of the sub-section is focused on analyzing the

probability. To begin with, the distribution of the transmitted

sample score s(x) conditioned on the received data sample

x̂(T ) can be obtained from the conditional distribution of the

transmitted sample, i.e., p(x|x̂(T )), as derived below.

Lemma 1. Conditioned on the received sample x̂(T ), the

distribution of the transmitted sample x follows a Gaussian

distribution:

x|x̂(T ) ∼ N
(
x̂(T ),

1

SNR(T )
I

)
, (20)

where SNR(T ) is the effective SNR given in (4).

Proof: See Appendix A.

With the result, the useful distribution p(s(x)|x̂(T )) can

be readily derived using the linear relationship in (14). The

derivation simply involves projecting the high-dimensional

Gaussian distribution onto a particular direction specified by

w, which yields a unit variance Gaussian distribution of

dimension one as elaborated below.

Lemma 2. Conditioned on the estimated sample x̂(T ), the

distribution of the transmitted sample score s(x) follows a

unit variance Gaussian distribution, given by

s(x)|x̂(T ) ∼ N
(
s(x̂(T )),

1

SNR(T )

)
. (21)

Based on Lemma 2, the data-alignment probability is pre-

sented in the following proposition.

Proposition 1. Consider the training of a binary SVM clas-

sifier at the edge. Conditioned on the received sample x̂(T ),
the data-alignment probability is given as

P (x̂(T )) =
1

2

[
1 + erf

(√
SNR(T )× |s(x̂(T ))|√

2

)]
, (22)

where erf(·) is the well known error function defined as

erf(x) = 2√
π

∫ x

0 e−t2dt.

Current Decision Boundary

+

+

++

++

+

x̂

s(x̂(T ))1
√

SNR(T )

(a) Small uncertainty.

Current Decision Boundary 

+

+

++

++

+
x̂

(b) Large uncertainty.

Figure 5. Illustration of the probability of noisy data alignment.

Proof: As shown in Fig. 5, the conditional distribution

for the transmitted data score s(x) is a Gaussian and the

probability of data alignment is equal to the area shaded in

grey. Mathematically, the probability can be derived using

Lemma 2 as follows:

P (x̂(T )) =

√
SNR(T )

2π

∫ |s(x̂(T ))|

−∞
e−SNR(T ) t

2

2 dt

=

√
SNR(T )

2π

∫ 0

−∞
e−SNR(T ) t

2

2 dt+

√
SNR(T )

2π

×
∫ |s(x̂(T ))|

0

e−SNR(T ) t
2

2 dt

=
1

2
+

√
SNR(T )

2π

∫ |s(x̂(T ))|

0

e−SNR(T ) t
2

2 dt. (23)

The integral therein can be expressed using the error func-

tion erf(x) = 2√
π

∫ x

0 e−t2dt. �

Remark 1. (How does retransmission affects noisy data

alignment?) Retransmission contributes to increasing the

data-alignment probability. Specifically, retransmission affects

both the mean and variance of the conditional distribution

p(s(x)|x̂(T )) in (21). From the mean perspective, retransmis-

sion helps align the average of retransmitted samples with its

ground truth. Specifically, the received estimate approaches the

ground-truth value as the number of retransmissions grows:

lim
T→∞

s(x̂(T )) → s(x). (24)

From the variance perspective, retransmission continuously

reduces the variance by increasing the receive SNR or equiva-

lently the number of retransmissions T . Particularly, it follows

from the definition of SNR [see (4)] that

1

SNR(T )
= O(1/T ) and lim

T→∞

1

SNR(T )
→ 0. (25)

Combining the two aspects, one can further apply the Chernoff

bound to (23) and obtain:

P (x̂(T )) = 1−O(e−aT ), (26)

where a > 0 is a positive constant. As a result, the probability

of noisy data alignment approaches one at an exponential rate

as T grows.

Last, given the data alignment probability in (22), it is

ready to specify the aforementioned condition for ensuring

the usefulness of wirelessly acquired data for learning as
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the following constraint on a received sample x̂(T ) with T
retransmissions:

(Data Alignment Constraint) P (x̂(T )) > pc, (27)

where pc ∈ (0.5, 1) is a given constant , i.e., a target data-

alignment probability.

B. Importance ARQ for Binary Classification

In this section, the importance ARQ protocol is designed for

binary SVM classification under the data alignment constraint

in (27) and the optimal control policy is proved to have a

threshold based structure.

First, it is shown that the constraint in (27) leads to a varying

receive-SNR constraint on a data sample that depends on its

importance level. The result is given below, which follows

directly from the monotonicity of the error function.

Proposition 2. Consider the training of a binary SVM classi-

fier at the edge. For a received data sample x̂(T ), the data

alignment constraint in (27) is satisfied if and only if the

receive SNR exceeds an importance based threshold:

SNR(T ) > θ0 Ud (x̂(T )) , (28)

where Ud (·) is the uncertainty measure given in (16) and θ0 =[√
2erf−1 (2pc − 1)

]2
.

It is remarked that the scaling factor θ0 in (28) can be in-

terpreted as a conversion ratio specifying the rate at which the

uncertainty measure is translated into the SNR requirement.

The factor grows as the data-alignment constraint, pc, becomes

more stringent, and vice versa.

Next, using the result in Proposition 2, the importance ARQ

protocol is designed as follows. Since the effective receive

SNR after combining is a monotone increasing function of

the number of retransmission, the constraint in (27) can be

translated into a threshold based retransmission policy. On

the other hand, the SNR threshold in (28) can diverge for

an extremely uncertain data sample. Hence, it is necessary to

limit the threshold value to avoid resource-wasteful excessive

retransmission. The resultant simple protocol is described as

follows.

Protocol 1 (Importance ARQ for binary SVM classi-

fication). Consider the acquisition of a data sample x

from a scheduled edge device. The edge server repeatedly

requests the device to retransmit x until the effective

receive SNR satisfies

SNR(T )>min(θ0 Ud (x̂(T )) , θSNR), (29)

where θSNR is a given maximum SNR.

Remark 2 (Importance-aware SNR control). The importance

ARQ protocol is a threshold based control policy with a SNR

threshold adapted to data importance. From (29), the SNR

threshold is proportional to the distance-based uncertainty

of the data sample, Ud (x). It is aligned with the intuition

that a data sample of higher uncertainty should be more

reliably received. To better understand this result, a graphical

illustration is provided in Fig. 5. For a pre-specified pc, a

highly uncertain sample near the decision hyperplane requires

a slim distribution with small variance (corresponding to a

higher receive SNR and hence more retransmissions) to meet

the requirement on the data-alignment probability (the area

shaded in grey) to be larger than pc [see Fig. 5(b)]. On the

other hand, for a less uncertain data sample, the requirement

of pc can be easily satisfied with a relatively flat distribution

with a large variance and low receive SNR [see Fig. 5(a)].

Last, the importance ARQ protocol is compared with the

conventional channel-aware counterpart. For the latter, the re-

transmission policy is merely channel-aware, and a fixed SNR

threshold is set for all data samples without differentiating

their importance, as described below.

Protocol 2 (Channel-aware ARQ). Consider the acquisi-

tion of a data sample x from a scheduled edge device. The

edge server repeatedly requests the device to retransmit

x until the required effective SNR, θSNR, is attained:

SNR(T ) > θSNR, (30)

where SNR(T ) is defined in (4).

Remark 3 (Uniform vs. heterogenous reliability). As the

SNR requirement in (30) is independent of data uncertainty,

the channel-aware protocol achieves uniform reliability for

data samples. If deployed in an edge learning system, it

can lead to inefficient utilization of radio resource due to

unnecessary retransmissions for unimportant data, resulting in

sub-optimal learning performance. In contrast, the proposed

importance ARQ protocol achieves heterogeneous reliability

for data samples according to their importance levels. This

allows more efficient resource utilization via improving the

quality-vs-quantity tradeoff, thereby accelerating learning.

V. EXTENSION TO GENERAL CLASSIFIERS

In this section, we extend the proposed importance ARQ

protocol designed in the preceding section for the SVM

classifier model to a general model, and present a case study

using the modern CNN model.

A. Importance ARQ for a Generic Model

The derivation of Protocol 1 targets for SVM and may not be

directly extended to a generic classifier model (e.g., CNN), due

to the lack of explicitly defined decision boundaries, and thus

an explicit distance based uncertain measure. Nevertheless, the

following insight derived for the SVM model is applicable

to a generic model: the receive-SNR threshold in wireless

data acquisition with retransmission should be adapted to

data uncertainty. This motivates the generalization of the

importance ARQ protocol by modifying Protocol 1 as follows.

Protocol 3 (Importance ARQ for generic classifier). Con-

sider the acquisition of a data sample x from a scheduled
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edge device. The edge server repeatedly requests the

device to retransmit x until

SNR(T )>min
(
θ0 L(Ux (x̂(T ))), θSNR

)
, (31)

where Ux is an uncertainty measure, θ0 is a given conver-

sion ratio between the uncertainty measure and the target

SNR, and L(·) is a monotonically increasing function.

The main difference of the generic protocol from Protocol

1 for SVM is that the distance-based uncertainty measure in

the latter is replaced by a general monotonically increasing

function of a general uncertainty measure. The function is

called (uncertainty) reshaping function. The main motivation

for introducing the function is to accommodate various forms

of uncertainty measures. In particular, this function provides

the flexibility to reshape a selected uncertainty measure to

allow it to have certain desired properties as discussed in the

sequel. Furthermore, the monotonicity of the function enforces

the intuition that more uncertain data should be more reliably

received.

To apply the general Protocol 3 to training a specific

classifier model, the uncertainty measure, the reshaping func-

tion, and the conversion ratio should be carefully designed

for efficient radio-resource utilization to achieve the desired

learning performance. Several design guidelines are provided

as follows.

• Selection of Uncertainty Measure: In general, the uncer-

tainty measure should be selected for ease of computation

according to the output of the learning model. For example, for

SVM, the output score evaluated by linear decision boundaries

allows easy evaluation of the distance-based uncertainty in

(15). In contrast, for CNN, the softmax output, which gives

the posterior probability for each predicted class, makes the

entropy in (17) a more natural choice for measuring uncer-

tainty.

• Design of Reshaping Function and Conversion Ratio: The

reshaping function and the conversion ratio should be jointly

designed to address the following two practical issues.

– Unregulated SNR for Data with Zero Uncertainty: The

minimum value of some uncertainty measures, e.g. en-

tropy, can be zero. Its direct use in (31) without proper

modification may lead to a corrupted training dataset.

Specifically, since the corresponding SNR thresholds

have zero values, data samples with zero uncertainty fail

to trigger retransmission and thus may be received with

unacceptably low reliability with strong noise. The use of

such corrupted data in model training can cause model

divergence. This issue can be addressed by a proper

design of the reshaping function.

– Low Differentiability in SNR Threshold: An issue can

arise in practice due to a narrow dynamic range of a

selected uncertainty measure. For example, if the uncer-

tainty is measured by entropy, the corresponding dynamic

range is given by Ue (x) ∈ [0, logC], where C denotes

the number of classes. For 10-class classification, we

have Ue (x) ∈ [0, 2.3], which can be too narrow in

retransmission implementation. In particular, without any

reshaping function or a suitable conversion ratio, the SNR

thresholds set as in (31) for the most and least important

data would be about the same, making importance ARQ

insensitive to uncertainty and barely “importance aware”.

B. Implementing Importance ARQ for CNN

In this subsection, we use CNN as an example to illustrate

how the generic importance ARQ in Protocol 3 can be

particularized to a mode of choice based on the guidelines in

the preceding sub-section. To begin with, as discussed, entropy

is chosen as a suitable measure of data uncertainty for CNN.

Then, we design the reshaping function to have the following

form: L(x) = 1 + ζx, where ζ is a scaling factor to be

determined in the sequel.2 Note that the bias term 1 in L(x) is

added to address the issue of zero SNR threshold. Particularly,

we set the bias term to be 1 rather than other positive values

as it allows the conversion ratio θ0 to be also interpreted as

the minimum quality requirement for the least uncertain data

with the entropy being zero. This allows θ0 to be set easily

following the typical settings in a wireless communication

system (e.g., θ0 = 10 dB). Note from (31) that θSNR denotes

the maximum quality requirement for the data with the largest

uncertainty. Thus the scaling factor ζ can be determined

by solving the equality θ0 [1 + ζUmax] = θSNR where the

maximum entropy Umax = logC. The above designs lead to

the importance ARQ for the CNN classifier as shown below.

Protocol 4 (Importance ARQ for CNN). Consider the

acquisition of a data sample x from a scheduled edge

device for training a CNN classifier model. The edge

server repeatedly requests the device to retransmit x until

SNR(T )>min
(
θ0 [1 + ζ Ue (x̂(T ))] , θSNR

)
, (32)

where ζ is a scaling factor given as ζ =
1

Umax

(
θSNR
θ0

− 1
)

.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Channel Model: We assume the classic Rayleigh fading

channel with channel coefficients following i.i.d. complex

Gaussian distribution CN (0, 1). The average transmit SNR

defined as ρ̄ = P/σ2 is by default set as 4 dB.
2) Learning Performance Metrics: The performance met-

rics are defined separately for the cases of balanced and im-
balanced training datasets, depending on whether the dataset
has more instances of certain classes than others. A balanced
dataset is an ideal setting while the imbalanced setting is
more likely to happen in real-world applications, e.g., fraud
detection, medical diagnosis and network intrusion detection
[33]. Given a balanced dataset, the learning performance is
measured by the test accuracy. However, the overall accuracy
is unable to reflect the performance using a highly skewed
dataset. For example, a naive classifier that predicts all test
samples as the majority class could achieve a high accuracy.
However, it is unable to detect the minority but critical class.

2An alternative such as the nonlinear increasing functions L(x) =
(1 + x)ζ is also a suitable choice as verified by experiments.
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To tackle the issue, two performance metrics, i.e., G-mean
and F-measure, widely used for imbalanced classification are
adopted [33]. Both are based on the following confusion
matrix defined for binary classification for imbalanced data,
where positive and negative classes correspond to minority
and majority classes, respectively:

Confusion Matrix =

(

predicted positive predicted negative

real positive true positive (TP) false negative (FN)

real negative false positive (FP) true negative (TN)

)

.

Based on the confusion matrix, several useful metrics can be

defined, followed by the definitions of G-mean and F-measure:

recall =
TP

TP + FN
, precision =

TP

TP + FP
,

specificity =
TN

TN+ FP
,

G−mean =
√
recall× specificity,

F−measure =
2× precision× recall

precision + recall
.

Recall and specificity measure the relevance between the

predicted and ground-true results for the positive class and

negative class, respectively. On the other hand, precision is the

prediction accuracy for the positive class. As seen, G-mean

is the geometric mean of recall and specificity, representing

the average detection rate of positive and negative classes.

However, one may be only interested in the highly effective

detection for the rare case in some applications, e.g., cancer

detection. In this case, F-measure is adopted which concerns

only the positive class, integrating the detection and prediction

rates as a single metric.
3) Experimental Dataset: We consider the learning task

of training classifiers using the well-known MNIST dataset

of handwritten digits as described in Section III-A. The

training and test sets consist of 60, 000 and 10, 000 samples,

respectively. Each sample is a grey-valued image of 28 × 28
pixels that gives the sample dimensions p = 784. For binary

classification, we consider both balanced and imbalanced

datasets. For a balanced dataset, we choose the relatively

less differentiable class pair of “3” and “5” (according to

t-SNE visualization). For an imbalanced data set, the class

“1” is chosen as the minority class and the majority class

is made up of the remaining classes. The training set used

in experiments is partitioned as follows. At the edge server,

the priorly available collection of clean observations L0 are

constructed by randomly sampling the global training dataset

based on fixed ratios over classes: a) 2 samples for each class

for the case of balanced data; b) 1 sample for minority and

8 samples for majority for the case of imbalanced data. The

remaining training data are evenly and randomly distributed

over edge devices. The maximum transmission budget N is

set to be 4000 and 20, 000 (channel uses) for binary and

multi-class classification, respectively. All results are averaged

over 200 and 20 experiments for binary and multi-class cases,

respectively.
4) Learning Model Implementation: The considered clas-

sifier models include the binary SVM and CNN. For bi-

nary SVM, the soft-margin SVM is implemented with slack
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Figure 6. Quality-vs-quantity tradeoff in wireless data acquisition.

variable set as 1. Iterative Single Data Algorithm (ISDA)

[34] is used for solving the SVM problem with maximum

106 iterations. For the implementation of CNN, we use a

6-layer CNN, including two 3 × 3 convolution layers with

batch normalization before ReLU activation (the first with 16
channels, the second with 32), the first one followed with a

2× 2 max pooling layer and the second one followed with a

fully connected layer, a softmax layer, and a final classification

layer. The model is trained using stochastic gradient descent

with momentum [35]. The mini-batch size is 2048, and the

number of epochs is 120. To accelerate training, the CNN is

updated in a batch mode with the incremental sample size as

10.

B. Quality-vs-Quantity Tradeoff

To demonstrate the quality-vs-quantity tradeoff in wire-

less data acquisition, Fig. 6 displays the curves of learning

accuracy versus transmission budget for both channel-aware

ARQ and importance ARQ. In Fig. 6(a), we test the per-

formance of channel-aware ARQ with three SNR thresholds,

i.e., θSNR = 10, 25 and 30 dB, from low to high data-

reliability requirements. Similar cases for importance ARQ

are considered in Fig. 6(b) with the reliability requirements

specified by the data-alignment probability: pc = 0.730, 0.800
and 0.999. It is observed from both Fig. 6(a) and 6(b) that

setting the thresholds too low (e.g., θSNR = 10 and pc = 0.730)

leads to a fast convergence rate but at a cost of performance

degradation as the errors accumulate. In contrast, a too high

threshold (e.g., θSNR = 30 and pc = 0.999) also leads to poor

learning performance due to insufficient acquired samples.

This suggests that the retransmission threshold should be care-
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(a) Learning performance for different values of average transmit SNR ρ̄.
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Figure 7. Learning performance for a binary SVM classifier trained using with wirelessly acquired data.

fully picked for optimizing the quality-vs-quantity tradeoff and

thereby improving the learning performance. In the following

experiments, we select thresholds based on observations in this

sub-section to optimize performance.

C. Learning Performance for Balanced Data

1) Binary SVM Classification: In Fig. 7, the learning per-

formance of the proposed importance ARQ is compared with

two baseline protocols, namely the channel-aware ARQ and

the protocol without retransmission (maximum data quantity).

It is observed that the performance of edge learning without

retransmission dramatically degrades after acquiring a suffi-

ciently large number of noisy samples. This is aligned with our

previous observations from Fig. 4(a) and justifies the need for

retransmission. Next, one can observe that importance ARQ

outperforms the conventional channel-aware ARQ throughout

the entire training duration. This confirms the performance

gain from the intelligent resource utilization in data acquisi-

tion. Furthermore, the performance gain of importance ARQ is

almost the same in varying SNR scenarios. This demonstrates

the robustness of the proposed protocol against the hostile

channel condition.

In Fig. 7(b), we further investigate the underlying reason for

the performance improvement of importance ARQ by plotting

the distribution of average numbers of retransmissions over a

range of sample uncertainty (inversely proportional to sample

distance to the decision hyperplane). One can observe close-

to-uniform distribution for conventional channel-aware ARQ

corresponding to uncertainty independence. In contrast, for

importance ARQ, retransmission is concentrated in the high

uncertainty region. This is aligned with the design principle

and shows its effectiveness in adapting retransmission to data

importance.

2) Multi-class Classification of CNN: Our heuristic design

for CNN is tested in the scenario of multi-class classification

and the related results are provided in Fig. 8. Fig. 8(a) displays

the learning performance adopting entropy based uncertainty,

which consistently outperforms two baseline protocols. One

can notice that without retransmission the performance of

CNN quickly degrades especially compared with the previous
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Figure 8. Learning performance evaluation for multi-class CNN classification.

result for SVM, which implicates that CNN is more sensitive

to noisy environment. This is due to the fact that, in CNN

classifier, all samples contribute to define the decision hyper-

plane. As a result, the noisy effect accumulates faster in CNN

than SVM where only a few support vectors determine the

decision hyperplane. Therefore, CNN in general requires more

retransmission to attain a higher receive SNR to guarantee the

learning performance as shown in Fig. 8(b). Besides, Fig. 8(b)

shows the linear relationship between entropy and the number

of retransmissions, which is consistent with our design.
D. Performance Comparison with Digital Modulation

In this subsection, the proposed importance-aware retrans-

mission scheme is compared with the conventional digital
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Figure 9. Performance comparison between analog and digital modulation
for retransmission in edge learning systems.

approach of adaptive modulation and coding. For digital

transmission, the image data sample is compressed based on

JPEG. We adopt a convolution code with the 1/2 coding

rate and adaptive modulation varying the QAM constellation

(from BPSK to 64 QAM) depending on the channel condition.

No retransmission is used for the digital transmission as the

bit error rate (set to be 10−3) is guaranteed by the adaptive

modulation. For fair comparison, the power constraint for

each digitally modulated symbol is set as P0, and the time

duration for each symbol transmission is τs. Therefore, the

total energy consumption for the digital transmission scheme

during the transmission budget N , i.e., Nq transmission slots,

is NqP0τs, which is identical to that of the analog counterpart.

To avoid excessive idle channel uses incurred by a low SNR

which degrades the performance of digital transmission, in this

experiment, we set the transmit SNR as 15 dB, and adjust the

transmission budget to 350 for binary classification and 3500
for multi-class classification accordingly.

The performance comparison between importance-aware

retransmission by analog modulation and the conventional

digital transmission with adaptive modulation and coding is

shown in Fig. 9. It is observed that, under the above simulation

settings, analog modulation is shown to be more efficient

than the digital transmission in terms of test accuracy. The

observation shows that the finding in the literature that analog

modulation is more efficient for multimedia communication

[36]–[40] may also hold in the context of edge learning.

E. Learning Performance for Imbalanced Data

1) Imbalanced Classification of SVM: In Fig. 10(a), both

F-measure and G-mean of the proposed importance ARQ

are compared with two baseline protocols in the scenario

of imbalanced classification by using SVM. Compared with

balanced classification (Fig. 7(a)), the performance curves in

the imbalanced setting degrade faster if no retransmission is

made, which implicates that imbalanced classification is more

vulnerable to the hostile channel environment. This fact calls

for an intelligent retransmission protocol to regulate the quality

of each training sample. One can notice that importance ARQ

could achieve a larger gain in imbalanced classification (nearly

10% performance improvement is observed compared with the

conventional channel-aware ARQ). To further investigate the

underpinning reason, we visualize the imbalanced dataset by

using t-SNE and plot the relationship between retransmission

and uncertainty. The left subfigure in Fig. 10(b) shows that, the

minority class has a higher uncertainty value since the average

distance to the hyperplane is shorter than the majority one.

This is aligned with the blue bar in the right subfigure. It is

also observed that a highly uncertain minority class consumes

more retransmission budget in importance ARQ, as shown by

the red bar. However, the green bar shows that channel-aware

ARQ allocates equal transmission budgets to both majority

and minority classes. The superiority of importance ARQ in

the balanced setting further substantiates the theoretical gain

brought by the intelligent adaptation of the radio resource

allocation according to the data importance.

2) Imbalanced Classification of CNN: In Fig. 11, F-

measure and G-mean are examined in the imbalanced classifi-

cation by deploying CNN. Similar trends as the SVM classifier

are observed, and the importance ARQ is found to consistently

outperform the benchmarking protocols, which confirm the

effectiveness of our extension in Section V.

VII. CONCLUDING REMARKS

In this paper, we have proposed a novel retransmission pro-

tocol, namely importance ARQ, for wireless data acquisition in

edge learning systems. It intelligently adapts retransmission to

data-sample importance so as to enhance the learning perfor-

mance given a transmission latency constraint. Comprehensive

experiments using real datasets substantiate the performance

gain of the proposed design. At a higher level, the work

contributes the new principle of exploiting the non-uniform

distribution of data importance to improve the efficiency of

wireless data acquisition for edge learning. Importance aware

retransmission is just one way for materializing this principle.

It can be applied to many other aspects of wireless data acqui-

sition such as scheduling, power control, spectrum allocation,

and energy efficient transmission. Furthermore, for the digital

counterpart, such a concept can be implemented in source

and channel coding, and quantization therein can be tailored

for the learning task as described in [41], [42] besides the

channel state information. Thereby many promising research

opportunities are presented.
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Figure 10. Learning performance for SVM classifier training using imbalanced data.
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Figure 11. Learning performance for CNN classifier training using imbalanced data.

APPENDIX A

PROOF OF LEMMA 1
The received sample x̂(T ) in (3) can be rewritten as

x̂(T ) = x+ ℜ (z̃(T )) ,

where z̃(T ) = 1√
P

(∑
n+T

i=n+1(h
(i))

∗

z
(i)

∑
n+T

m=n+1 |h(m)|2

)
. Consequently, the

transmitted sample is

x = x̂(T )−ℜ (z̃(T )) , (33)

where z̃(T ) = [z̃1(T ), · · · , z̃p(T )]T is the equivalent noise

after combining with the entries being

z̃j(T ) =
1√
P

×
∑n+T

i=n+1

(
h(i)
)∗

z
(i)
j∑n+T

m=n+1 |h(m)|2
, j = 1, 2, · · · , p.

Since z
(i)
j follows i.i.d CN

(
0, σ2

)
, each entries in z̃(T ) are

i.i.d and the distributions are:

z̃j(T ) ∼ CN
(
0,

σ2

∑n+T

i=n+1 |h(i)|2P

)
, j = 1, 2, · · · , p.

With effective SNR defined in (4), taking the real part of z̃

yields to the following distribution:

ℜ (z̃(T )) ∼ N
(
0,

I

SNR(T )

)
,

which leads to the desired result in (20).
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