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Privacy For Free: Wireless Federated Learning Via

Uncoded Transmission With Adaptive Power Control

Dongzhu Liu and Osvaldo Simeone

Abstract—Federated Learning (FL) refers to distributed proto-
cols that avoid direct raw data exchange among the participating
devices while training for a common learning task. This way,
FL can potentially reduce the information on the local data
sets that is leaked via communications. In order to provide
formal privacy guarantees, however, it is generally necessary
to put in place additional masking mechanisms. When FL is
implemented in wireless systems via uncoded transmission, the
channel noise can directly act as a privacy-inducing mechanism.
This paper demonstrates that, as long as the privacy constraint
level, measured via differential privacy (DP), is below a threshold
that decreases with the signal-to-noise ratio (SNR), uncoded
transmission achieves privacy “for free”, i.e., without affecting the
learning performance. More generally, this work studies adaptive
power allocation (PA) for distributed gradient descent in wireless
FL with the aim of minimizing the learning optimality gap
under privacy and power constraints. Both orthogonal multiple
access (OMA) and non-orthogonal multiple access (NOMA)
transmission with “over-the-air-computing” are studied, and
solutions are obtained in closed form for an offline optimization
setting. Furthermore, heuristic online methods are proposed that
leverage iterative one-step-ahead optimization. The importance
of dynamic PA and the potential benefits of NOMA versus OMA
are demonstrated through extensive simulations.

Index Terms—Federated learning, differential privacy, adap-
tive power control, uncoded transmission.

I. INTRODUCTION

In modern wireless systems, mobile devices generate and

store data that can be utilized to train machine learning models

[1]–[3]. While data at one device may be insufficient to obtain

effective trained solutions, networked devices can benefit from

data stored at other devices via communications. Federated

learning (FL) refers to decentralized training protocols that

avoid direct data sharing among devices, while exchanging

information about the local models [4], [5]. This has the

potential benefits of reducing the communication load and of

leaking less information about the local data sets at the devices

[6]–[8]. A well-established measure the privacy of local data

sets with respect to disclosed aggregate statistics is differential

privacy (DP) [9]. Typical DP mechanisms randomize the

disclosed statistics by adding random noise [9]. This creates a

trade-off between accuracy and privacy, as determined by the

amount of added noise.

This paper investigates the idea of letting the channel noise

serve as privacy mechanism. To this end, we focus on uncoded
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transmission of the gradients using either orthogonal or non-

orthogonal protocols, and we analytically demonstrate that

for these transmission schemes, privacy may be obtained “for

free”. This is in the sense that enforcing a DP constraint causes

no performance loss with respect to a non-private design as

long as the signal-to-noise ratio (SNR) is sufficiently low.

More generally, we introduce a novel optimal closed-form

adaptive transmit power control strategy that optimizes the

learning performance while ensuring DP requirements.

A. Wireless Federated Learning

A illustrated in Fig. 1, typical wireless FL protocols iterate

between local adaptation and centralized combining. Adapta-

tion involves local optimization steps based on a device’s data,

while central aggregation amounts to averaging operations on

the devices’ updates. To reduce the time to convergence, recent

work has proposed to leverage computations over multiple ac-

cess channels [10] as a primitive for the global combining step

[11]–[15]. Accordingly, all devices simultaneously transmit

their updates to edge server using uncoded transmission, which

are aggregated “over-the-air” by exploiting the waveform-

superposition property of a multi-access channel.

To further improve the bandwidth efficiency of this non-

orthogonal multiple access (NOMA) scheme, devices can pre-

process the analog updates via sparsification based dimension-

ality reduction [13]. And the learning performance of this

approach can be further enhanced by gradient aware power

control [14] and joint device selection and beamforming design

[15].

As a more conventional solution, FL can be implemented

using digital coded transmission. Under digital coded trans-

mission and orthogonal multiple access (OMA), quantiza-

tion of the local gradients has been proposed to trade off

communication bandwidth and convergence rate [16], with

each component of the gradient being represented even by

a single bit [17]. More complex quantization schemes include

hierarchical quantization via a low-dimensional codebook on

a Grassmann manifold [18]. With NOMA, reference [19]

proposes a strategy whereby each device quantizes the gradient

based on its informativeness and on the channel condition.

An alternative is to use one-bit quantization followed by

BPSK/QPSK modulation at the devices with NOMA, and

to estimate the aggregated gradient at the edger sever using

majority voting [20].

B. Differential Privacy for Federated Learning

According to its original motivation, FL may have desirable

privacy properties since training is conducted in a distributed
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manner without sharing the raw data. Nevertheless, the model

updates shared by the devices may reveal information about

local data. For example, a malicious server could potentially

infer the presence of an individual data sample from a learnt

model by membership inference attack [21] or model inversion

attack [7]. DP quantifies information leaked about individual

data points by measuring the sensitivity of the disclosed

statistics to changes in the input data set at a single data point.

DP can be guaranteed by introducing a level of uncertainty into

the released model that is sufficient to mask the contribution

of any individual data point [9]. The most typical approach

is to add random perturbations, e.g., Gaussian [22], Laplacian

[23], or Binomial noise [24], to the released statistics.

DP mechanisms have been investigated for FL under the

assumption that the edge server is “honest-but-curious” and

that communication is noiseless and unconstrained. In [25],

Gaussian noise is added to the local model updates, and the

power of the Gaussian noise is adapted to ensure a target pri-

vacy level. Analysis indicates that there is a tradeoff between

convergence rate and privacy protection levels. Furthermore, a

higher privacy guarantee is achievable if the DP algorithm uses

random mini-batches — the so-called “privacy amplification

by subsampling” principle [26]. Another DP mechanism based

on random quantization is explored in [24], [27].

While the work reviewed so far assumes ideal communica-

tion, several recent works have appeared that share the com-

mon theme of exploiting the channel noise for differentially

private FL. In [28], each device adds Gaussian noise before

transmission via NOMA with static power allocation. The

superposition property of NOMA is shown not only to provide

benefits in terms of efficient gradient aggregation, but also to

offer better privacy guarantees. Instead of injecting noise be-

fore transmission, an energy efficient approach is to scale down

the transmit power [29]. A digital counterpart of these ideas is

proposed in [30] which uses quantized gradient descent with

privacy-inducing binomial noise. The quantization bits and

noise parameters are optimized to maximize the convergence

rate under channel capacity and privacy constraints.

All the discussed works assume a simple static power

allocation, not accounting for the fact that channel noise

has a different impact on convergence and privacy level.

As our analysis demonstrates, channel noise added in the

first iterations tends to impact convergence less significantly

than the noise added in later iterations, whereas the privacy

level depends on a weighted sum of the inverse noise power

across the iteration. These properties, captured by compact

analytical expressions derived in this paper, are leveraged to

define optimization problems that are solved in closed form,

yielding significant performance gains over standard static

power allocation.

C. Contributions and Organization

In this paper, we study differentially private wireless dis-

tributed gradient descent via the direct, uncoded, transmission

of gradients from devices to edge server. The channel noise

is utilized as a privacy preserving mechanism and dynamic

power control is separately optimized for OMA and NOMA

Figure 1. Differentially private federated edge learning system based on
distributed gradient descent.

protocols with the goal of minimizing the learning optimality

gap under privacy and power constraints across a given number

of communication blocks. The main findings and contributions

of the paper can be summarized as follows.

• Offline optimized power allocation for OMA and NOMA:

Considering OMA and NOMA separately, we first analyze the

convergence rate and privacy requirements for a given number

of iterations under uncoded transmission. The resulting offline

optimization problems are shown to be convex programs, and

the optimal dynamic power allocation (PA) is obtained in

closed form. The optimal PA is shown to be adaptive across

the iterations, outperforming static PA assumed in prior works.

The analytical results prove that privacy can be obtained

“for free” as long as the privacy constraint level is below a

threshold that decreases with the signal-to-noise (SNR). We

also demonstrate that it is generally suboptimal to devote

part of the transmitted power to actively add noise to the

local updates. This is unlike the standard scenario with ideal

communication, in which adding noise is essential to ensure

DP constraints.

• Online power allocation scheme: A heuristic online ap-

proach is then proposed that leverages iterative one-step-

ahead optimization based on the offline closed-form solutions,

predicted channel state information (CSI).

• Experiments: We provides extensive numerical results

that demonstrate the advantages of NOMA over conventional

OMA protocols under DP constraints. We note here that

these benefits is not a prior evident, since, with NOMA,

devices transmit more frequently, and hence may leak more

information if power is not properly allocated.

The remainder of the paper is organized as follows. Sec-

tion II introduces the models and definitions. Section III

presents the power allocation design for OMA. The design

for NOMA is presented in Section IV. Section V provides

numerical results, followed by conclusions in Section VI.

II. MODELS AND DEFINITIONS

As shown in Fig. 1, we consider a wireless federated edge

learning system comprising a single-antenna edge server and

K edge devices connected through it via a shared noisy

channel. Each device k, equipped with a single antenna, has its

own local dataset Dk. This consists of labelled data samples

{(ui, vi)} ∈ Dk, where ui denotes the vector of covariates and

vi its associated label, which may be continuous or discrete.

Local data sets are disjoint. A common regression or classi-

fication model, parameterized by vector w, is collaboratively
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trained by the edge devices through communications via edge

server. In this section, we first introduce the learning protocol

and the communication model, and then detail which the

definition of differential privacy adopted in this work, along

with main assumptions.

A. Learning Protocol

The regularized local loss function for the k-th device

evaluated at model vector w ∈ R
d is given by

(Local loss function) Fk(w) =
1

Dk

∑

(u,v)∈Dk

f(w;u, v)

+ λR(w), (1)

where f(w;u, v) is the sample-wise loss function quantifying

the prediction error of the model w on the training sample u

with respect to (w.r.t.) its ground-truth label v; Dk = |Dk| is

the cardinality of data set Dk; and R(w) is a strongly convex

regularization function, which is scaled by hyperparameter

λ ≥ 0. The global loss function evaluated at model vector

w is

(Global loss function) F (w) =
1

Dtot

K∑

k=1

DkFk(w), (2)

where Dtot =
∑

k Dk. This amounts to the regularized

empirical average of the sample-wise loss functions on the

global data set D =
⋃K

k=1Dk obtained as the union of

the local data sets. We note that the training loss (2) is an

unbiased estimate of the generalization loss only if the devices

observe independent and identically distributed (i.i.d.) samples

from a common distribution. Nevertheless, this objective is

also routinely considered for non-i.i.d. data sets in federated

learning [31]–[33]. Other criteria that may be better suited to

account for heterogeneous statistics across the devices may

also be considered [34], but we leave this aspect for future

work. The learning process aims to minimize the regularized

global loss function as

w∗ = argminF (w). (3)

In order to address problem (3), we study a differentially

private implementation of federated distributed gradient de-

scent via gradient-averaging. As we will detail, privacy is

defined here from the point of view of any device with

respect to the edge server, which is assumed to be “honest-

but-curious”. Accordingly, the edge server follows the protocol

described below, but may attempt to infer information about

data at the edge devices. We do not directly enforce privacy

constraints on the other devices, which are implicitly trusted.

More discussion on this point can be found in Section VI.

As illustrated in Fig. 1, at each t-th communication round,

with t = 1, . . . , T , the edge server broadcasts the current

model iterate w(t) to all edge devices via the downlink

channel. We assume that downlink communication is ideal,

so that each device receives the current model w(t) without

distortion. This assumption is practically well justified when

the edge sever communicates through a base station with

less stringent power constraint than the devices. By using the

received current model w(t) and the local dataset Dk, each

device computes the gradient of the local loss function in (1),

that is

(Local gradient) ∇Fk

(
w(t)

)
=

1

Dk

∑

(u,v)∈Dk

∇f
(
w(t);u, v

)

+ λ∇R(w(t)). (4)

The devices transmit information about the local gradient (4)

over the wireless shared channel to the edge server. Based

on the received signal, the edge server obtains an estimate

∇̂F
(
w(t)

)
of the global gradient

(Global gradient) ∇F
(
w(t)

)
=

1

Dtot

K∑

k=1

Dk∇Fk

(
w(t)

)
.

(5)

The edge server then updates the current global model via

gradient descent

(Model updating) w(t+1) = w(t) − η∇̂F
(
w(t)

)
, (6)

where η denotes the learning rate. The steps in (4), (5), and

(6) are iterated until a convergence condition is met.

The transmission of the gradient (4) from each k-th device

may reveal information about the local data sets to the edge

server. This motivates the use of DP as a rigorous mathemati-

cal framework to provide privacy guarantees that are agnostic

to the computing resources and data processing requirements

of the edge server. This will be detailed in Sec. II-C.

B. Communication Model

All devices communicate via the uplink to the edge server

on the shared wireless channel using uncoded transmission.

The main focus of this paper is the study of uncoded non-

orthogonal multiple access (NOMA)1 protocol, which enables

over-the-air computing. For reference, we also study orthogo-

nal multiple access (OMA) scheme under the same assumption

of uncoded transmission. We note that it would be useful to

include digital coded strategies for OMA as a benchmark.

However, the design of digital communication protocols under

DP constraints is a non-trivial problem that is currently subject

to research [30].

We assume a block flat-fading channel, where the channel

coefficients remain constant within a communication block,

and they vary in a potentially correlated way over successive

blocks. Each block contains d channel uses, allowing the

uncoded transmission of a gradient vector. Due to memory and

processing complexity constraints, on-device machine learning

models are typically of small size, so that the model parame-

ters dimension d can be assumed to be limited to a few tens of

thousands of entries [35]. In this case, considering that typical

coherence blocks may be of the same order of magnitude

[36], [37], it is generally feasible to communicate the entire

gradient vectors within one communication block. For larger

model sizes, the gradient would need to be communicated

across multiple coherence blocks – a setting that we leave

1In this context, NOMA is used as a transmission strategy, and it does not
imply the use of specific decoders, such as successive decoding.
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Figure 2. Illustration of the transmission schedule for the considered multiple
access protocols.

for future investigations. We consider total I blocks available

for training.

As in most papers on over-the-air computing [11]–[13],

[15], [28], we assume perfect channel state information (CSI)

at all nodes, so that each device can compensate for the phase

of its own channel, ensuring the effective channel h
[i]
k for each

device k and block i is real and non-negative. This allows us

to focus on a real channel model with non-negative channel

gain, and it simplifies the design in power control parameters.

We note that this assumption is also made in [14], [38], and

that, as in these prior works, we do not make optimality claims

in this regard. Details for OMA and NOMA are provided next.

1) Orthogonal Multiple Access (OMA): For orthogonal ac-

cess, all devices time-share the channel uses via Time Division

Multiple Access (TDMA). As illustrated in Fig. 2, devices are

scheduled successively in orthogonal blocks, and we assume

that the total number of blocks satisfies I = KT , so that

T global gradient descent iterations (6) are implemented. In

the i-th block, with i = K(t − 1) + k, device k transmits

gradient information corresponding to the t-th iteration. The

signal received at the edge server during the i-th block is

y
[i]
k = h

[i]
k x

[i]
k + z

[i]
k , (7)

where h
[i]
k ≥ 0 is the channel gain for device k in

block i, x
[i]
k ∈ R

d is an uncoded function of the lo-

cal gradient ∇Fk(w
(t)), and z

[i]
k is channel noise i.i.d. ac-

cording to distribution N (0, N0I). We define as y(t) =
[y[K(t−1)+1], · · · ,y[Kt]] the vector collecting all signals re-

ceived for iteration t across K blocks.

2) Non-Orthogonal Multiple Access (NOMA): For non-

orthogonal access, we assume symbol-level synchronization

among the devices that transmit simultaneously in each block.

This can be achieved by using standard protocols such as the

timing advance procedure in LTE and 5G NR [39]. In the i-th
block, all devices upload the local gradients corresponding to

the t = i-th iteration, and we have I = T so that the number

of blocks equals the number of iterations. The corresponding

received signal is

y[i] =

K∑

k=1

h
[i]
k x

[i]
k + z[i], (8)

where h
[i]
k and z[i] are defined as above; and signal x

[i]
k ∈ R

d

encodes information about the local gradient ∇Fk(w
(t)) with

t = i. For NOMA, we will also write y(t) = y[t].

Note that for both forms of access, the transmit power

constraint of a device is given as

(Power constraint) E[‖x[i]
k ‖2] ≤ P. (9)

Accordingly, we define the maximum signal to noise ratio

(SNR) as

SNRmax =
P

dN0
, (10)

where dN0 represents the power of the channel nosies within

one communication block. We refer to (10) as the maximum

SNR since devices may optimally transmit with a power

strictly smaller than P in (9) in order to satisfy the DP

constraints.

C. Differential Privacy

As a threat model, we assume a “honest-but-curious” edge

server that may attempt to infer information about local data

sets from the signals {y(t)}Tt=1 received across T successive

iterations. Note that, as discussed, T iterations correspond

to T communication blocks for NOMA and TK blocks for

OMA. The standard definition DP imposes a point-wise upper

bound on the divergence between the distributions P (y|D) and

P (y|D′) of the received signals y = {y(t)}Tt=1 conditioned on

the use of either one of two “neighboring” global data sets D
and D′. The two neighboring data sets D and D′ differ only

by one sample at one of the devices. Defining the cardinality

of the set difference for two sets A and B as ‖A − B‖1, we

have the following formal definition.

Definition 1 (Differential Privacy [9]). The communication

and learning protocol is (ǫ, δ)-differentially private, where ǫ >
0, and δ ∈ [0, 1), if any two possible adjacent global datasets

D′ =
⋃K

k=1D′
k and D′′ =

⋃K
k=1D′′

k , with
∥∥D′

j −D′′
j

∥∥
1
= 1

for some device j and ‖D′
k −D′′

k‖1 = 0 for all k 6= j, we

have the inequality

P (y|D′) ≤ exp(ǫ)P (y|D′′) + δ. (11)

The bound (11) can be interpreted in terms of the test

variable.

(Differential privacy loss) LD′,D′′(y) = ln
P (y|D)
P (y|D′)

, (12)

which is referred to as differential privacy loss. This corre-

sponds to the log-likelihood ratio for the detection of neighbor-

ing data sets D′ and D′′. The (ǫ, δ)-DP condition (11) ensures

that, for all possible adjacent global datasets D′ and D′′, the

absolute value of privacy loss variable (12) is bounded by ǫ
with probability at least 1 − δ, i.e., Pr(|LD′,D′′(y)| ≤ ǫ) ≥
1− δ (see Lemma 3.17 in [9]). If ǫ and δ are suitably small,

this makes it statistically impossible, even for an adversary

that knows all data points in D except one, to identify the

remaining individual sample.

D. Assumptions On the Loss Functions

Finally, we list several standard assumptions we make on

the loss functions and on its gradients.
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Assumption 1 (Smoothness). The global loss function F (w)
is smooth with constant L > 0, that is, it is continuously

differentiable and the gradient ∇F (w) is Lipschitz continuous

with constant L, i.e.,

‖∇F (w)−∇F (w′)‖ ≤ L ‖w −w′‖ , for all w,w′ ∈ R
d.

(13)

Inequality (13) implies the following inequality

F (w′) ≤ F (w) +∇F (w)T(w′ −w) +
L

2
‖w −w′‖2 ,

for all w,w′ ∈ R
d. (14)

Assumption 2 (Polyak-Lojasiewicz Inequality). The opti-

mization problem (3) has a non-empty solution set. Further-

more, denoting as F ∗ the corresponding optimal function

value, the global loss function F (w) satisfies the Polyak-

Lojasiewicz (PL) condition, that is, the following inequality

holds for some constant µ > 0

1

2
‖∇F (w)‖2 ≥ µ [F (w)− F ∗] . (15)

The PL condition (15) is significantly more general than the

standard assumption of strong convexity [40]. A strong convex

with constant µ > 0 implies the PL inequality with same

parameter µ [41]. Note also that for a convex loss function

f(·;u, v), e.g., for least squares and logistic regression, the

strong convexity of function F (w) follows from the addition

of the regularizing term with λ > 0.

III. ORTHOGONAL MULTIPLE ACCESS

In this section, we consider the design and analysis of

orthogonal multiple access with uncoded transmission and

adaptive power control. To start, we assume that, at each

iteration t, device k transmits a scaled and noisy version of

the gradient x
[i]
k = x

(t)
k in block i = K(t− 1) + k as

x
(t)
k = α

(t)
k

(
Dk∇Fk

(
w(t)

)
+ n

(t)
k

)
. (16)

In (16), the artificial noise term n
(t)
k ∼ N (0, (σ

(t)
k )2I) is added

in accordance to the standard Gaussian mechanism in the DP

literature; and α
(t)
k ≥ 0 is a scaling factor. We note that, by

(16), the effective noise in the received signal (7) is given by

the summation of channel and artificial noise. The standard

deviation of the effective noise is

m
(t)
k =

√
(h

(t)
k α

(t)
k σ

(t)
k )2 +N0. (17)

We are interested in optimizing over the sequences of param-

eters (α
(1)
k ,· · ·,α(T )

k ) and (σ
(1)
k ,· · ·,σ(T )

k ) in order to maximize

the learning performance under the (ǫ, δ)-DP constraint. To

this end, the remainder of this section first provides DP and

convergence analysis, based on which the optimization prob-

lem is then formulated and solved. Throughout this section,

we use the notation h
[i]
k = h

(t)
k , y

[i]
k = y

(t)
k and z

[i]
k = z

(t)
k

for i = K(t − 1) + k, and we make the following common

assumption (see, e.g., [23], [42], [43]).

Assumption 3 (Bounded Sample-Wise Gradient). At any

iteration t, for any training sample (u, v), the gradient is upper

bounded by a given constant γ(t), i.e., for all possible (u, v)
(not limited to those in data sets {Dk}) we have the inequality

‖∇f(w(t);u, v)‖ ≤ γ(t). (18)

A. Differential Privacy Analysis

By standard results on DP, the privacy level (ǫ, δ) depends

on the sensitivity of the function being disclosed, excluding

the effect of noise, to the input data set. More specifically, the

sensitivity measures the amount by which a single individual

data point can change the disclosed function in the worst

case. For each device k, the edge server is assumed to be

informed about parameters {α(t)
k }. We assume here that those

parameters are fixed constants that do not reveal information

about the local datasets. Hence, the only function of the data

being disclosed is the received signal y
(t)
k , upon subtraction

of the effective noise. The sensitivity ∆
(t)
k of the noiseless

received signal y
(t)
k − z

(t)
k − h

(t)
k α

(t)
k n

(t)
k is defined as

(Sensitivity in OMA) ∆
(t)
k =max

D′

k
,D′′

k

∥∥∥∥h
(t)
k α

(t)
k ×

( ∑

(u,v)∈D′

k

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′′

k

∇f
(
w(t);u, v

))∥∥∥∥, (19)

where data sets D′
k and D′′

k satisfy ‖D′
k − D′′

k‖1 = 1. By the

triangular inequality and Assumption 3, we have the bound

∆
(t)
k ≤ 2h

(t)
k α

(t)
k γ(t). (20)

Lemma 1 (Differential Privacy Guarantees for OMA). For any

fixed sequence of parameters {α(t)
k , σ

(t)
k }, federated gradient

averaging via OMA guarantees (ǫ, δ)-DP if the following

condition is satisfied
T∑

t=1

(√
2h

(t)
k α

(t)
k γ(t)

m
(t)
k

)2

≤
(√

ǫ+ [C−1 (1/δ)]
2 − C−1 (1/δ)

)2

(21)

∆
= Rdp(ǫ, δ), for all k, (22)

where m
(t)
k in (17) is the standard deviation of the effective

noise, and C−1(x) is the inverse function of C(x) = √πxex2

.

Proof: The proof is based on the advanced composition

theorem [9, Theorem 3.20] and is detailed in Appendix A.

Lemma 1, along with (20), indicate that the privacy

level depends on the sum of the per-iteration ratios

(
√
2h

(t)
k α

(t)
k γ(t)/m

(t)
k )2, which, by (16), depend on the ratio

between useful signal and effective noise powers. The effective

noise level m
(t)
k contributing to the privacy of device k equals

the sum of the channel noise power and of the noise added by

device k in (16). The constraint (21) suggests that the effective

noise variance can be adapted to the sequence of channel gains,

as long as the impact on convergence is suitably accounted for.

B. Convergence Analysis

At the t-th iteration, encompassing the blocks i = K(t −
1)+1, · · · ,Kt, the edge server estimates the scaled local gra-
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dient Dk∇Fk(w
(t)) as (h

(t)
k α

(t)
k )−1y

(t)
k , and then the global

gradient is estimated as

∇̂F (w(t)) =
1

Dtot

K∑

k=1

(
h
(t)
k α

(t)
k

)−1

y
(t)
k

=
1

Dtot

K∑

k=1

Dk∇Fk

(
w(t)

)
+n

(t)
k +
(
h
(t)
k α

(t)
k

)−1

z
(t)
k .

(23)

Building on standard results on gradient descent with noisy

gradient [41], we have the following bound on the average

optimality gap at the end of iteration T .

Lemma 2 (Optimality Gap Bound for OMA). Under Assump-

tions 1 and 2, for a learning rate η = 1/L, after T iterations

the average optimality gap is upper bounded as

E

[
F
(
w(T+1)

)
− F ∗

]
≤
(
1− µ

L

)T [
F
(
w(1)

)
− F ∗

]

+
d

2LD2
tot

T∑

t=1

(
1− µ

L

)T−t K∑

k=1

(
m

(t)
k

h
(t)
k α

(t)
k

)2

, (24)

where the standard deviation m
(t)
k of the effective noise is

defined in (17).

Proof: See Appendix B.

The first term in (24) reflects the standard geometric decay

of the initial optimality gap (F (w(1)) − F ∗) as T increases,

while the second accounts for the impact of the effective addi-

tive noise powers (21). Interestingly, the bound (24) suggests

that noise added in the initial iterations is less damaging to

the final optimality gap than the noise added in later iterations.

This is because the contribution of the noise added at iteration

t is discounted by a factor (1 − µ/L)T−t. We will leverage

this result in the next section to optimize power allocation.

C. Optimization

In this section, we are interested in minimizing the optimal-

ity bound in Lemma 2 under (ǫ, δ)-DP constraint (21) and the

power constraints (9), for all K devices across T iterations.

Note that, for the objective function (24), the optimization

variables only exist in the second term. By replacing m
(t)
k with

its definition given in (17), the resulting optimization problem

(OMA Opt.) of interest is formulated as

min
{σ(t)

k
,α

(t)
k

}K

k=1

T∑

t=1

(
1− µ

L

)−t K∑

k=1

[
(σ

(t)
k )2+

( √
N0

h
(t)
k α

(t)
k

)2]

(25a)

s.t.

T∑

t=1

(
√
2γ(t))2

(σ
(t)
k )2 +N0/(h

(t)
k α

(t)
k )2

≤Rdp(ǫ, δ), ∀k,

(25b)

(α
(t)
k )2

[
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤P, ∀k, t, (25c)

where Rdp(ǫ, δ) is defined in (22), and Parameter G
(t)
k rep-

resents an upper bound on the norm of the local gradi-

ent as
∥∥∇Fk

(
w(t)

)∥∥ ≤ G
(t)
k . By Assumption 3, we have

G
(t)
k ≤ γ(t). Under OMA, the optimization (25a)-(25c) over

the additive noise deviations {σ(1)
k , · · · , σ(T )

k } and scaling

factors {α(1)
k , · · · , α(T )

k } for each devices k can be carried out

in parallel. The corresponding problem (OMA Local Opt.) to

be solved by device k is

min
{σ(t)

k
,α

(t)
k

}

T∑

t=1

(
1− µ

L

)−t
[
(σ

(t)
k )2 +

( √
N0

h
(t)
k α

(t)
k

)2]
(26a)

s.t.

T∑

t=1

(
√
2γ(t))2

(σ
(t)
k )2 +N0/(h

(t)
k α

(t)
k )2

≤ Rdp(ǫ, δ), (26b)

(α
(t)
k )2

[
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤ P, ∀t. (26c)

Without the DP constraint (26b), the optimal solution to

problem (26) is to fully use the power budget P for the trans-

mission of the local gradient, i.e., to set α
(t)
k =

√
P/(DkG

(t)
k )

and σ
(t)
k = 0 for all k and t. Due to the DP constraint, we now

show that this may not be the optimal solution if the privacy

condition is sufficiently strict.

Before detailing offline and online solutions, it is useful to

observe that, in order for constraint (26b) to guarantee (ǫ, δ)-

DP, by leave t, it is necessary that the parameters G
(t)
k be fixed

at each iteration t in a way that does not depend on the local

data sets. We will return to this point when discussing online

methods.

1) Offline Optimization: We first assume that the parame-

ters {h(t)
k , γ(t), G

(t)
k } are known beforehand so that problem

(26a)-(26c) can be tackled offline. As we show in Appendix C,

problem (26a)-(26c) can be converted into a convex program

via a change of variables. The resulting optimal solution is

described in the following theorem.

Theorem 1. The optimal offline solution of problem (25a)-

(25c) under OMA is given as follows:

• If condition

T∑

t=1

P (
√
2γ(t)h

(t)
k )2

N0(DkG
(t)
k )2

< Rdp(ǫ, δ) (27)

holds, there exists a unique optimal solution given as

(α
(t)
k )opt =

√
P/(DkG

(t)
k ) and (σ

(t)
k )opt = 0. In this case,

the power budget P is fully used for the transmission of

the local gradient, and the channel noise is sufficient to

guarantee privacy. The optimal solution is identical as that

of without DP constraint, and privacy is hence obtained

“for free”;

• Otherwise, there exist multiple optimal solutions, and the

solution that minimizes the transmit power is

(α
(t)
k )opt = min

{√
N0(2ζk)

− 1
4

h
(t)
k

√
γ(t)

(
1− µ

L

)−t/4

,

√
P

DkG
(t)
k

}

(28)

(σ
(t)
k )opt = 0, (29)

where the value of parameter ζk can be obtained by

bisection to satisfy the constraint

T∑

t=1

(
√
2γ(t))2 min

{
(1− µ/L)−t/2

√
2ζkγ(t)

,
P (h

(t)
k )2

(
√
N0DkG

(t)
k )2

}

= Rdp(ǫ, δ). (30)
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In this case, the transmitted power needs to be scaled

down in order to leverage the channel noise to ensure

(ǫ, δ)-DP.

Proof: The proof is detailed in Appendix C.

A first interesting observation from Theorem 1 is that it is

optimal for the devices not to add noise to the transmitted

signals (16). It is, in fact, sufficient to scale down their

transmitted powers, via the choice of α
(t)
k , with smaller powers

transmitted when more stringent DP constraints are imposed.

Second, when condition (27) is satisfied, privacy is obtained

“for free”, that is, without affecting the learning performance

of the system, as the devices can use their full power. Third,

condition (27) is less strict as Dk increases, showing that

devices with larger datasets can attain privacy “for free” over

a broader range of SNR levels. Finally, we note that it is

generally suboptimal to use a time-invariant policy that sets

the scaling factor α
(t)
k as a constant.

2) Online Optimization: Theorem 1 assumes that the se-

quence of parameters {h(t)
k , γ(t), G

(t)
k } is known a priori so

as to enable offline optimization. Here we describe a heuristic

online approach that leverages iterative one-step-ahead opti-

mization based on predicted values for the future parameters

{h(t)
k , γ(t), G

(t)
k }.

To elaborate, assume that, at each iteration t, we have

predicted values {ĥ(t′)
k , γ̂(t′), Ĝ

(t′)
k } for t′ = t, t + 1,· · ·, T

and that the accumulated DP loss is given by L(t−1)
k =∑t−1

t′=1(
√
2h

(t′)
k α

(t′)
k γ(t′)/m

(t′)
k )2 from (21). As summarized in

Algorithm 1, we propose to apply the solution in Theorem 1 to

the interval (t, t+1, · · · , T ) by replacing the true parameters

{h(t)
k , γ(t), G

(t)
k } with the estimates {ĥ(t)

k , γ̂(t), Ĝ
(t)
k } and the

DP constraint with the residual Rdp(ǫ, δ) − L(t−1)
k . The pro-

duced scaling factors α
(t)
k are then applied, and the procedure

is repeated for iteration t+1. We now discuss the problem of

prediction of parameters {h(t)
k , γ(t), G

(t)
k }.

To start, we model the sequence of fading channels {g[i]k }
via an autoregressive (AR) Rician model. We note that the

method can be directly extended to other probabilistic models.

Accordingly, each channel gain h
[i]
k is obtained as h

[i]
k = |g[i]k |,

where the complex channel coefficient {g[i]k } is given as

g
[i]
k =

√
κk

κk + 1
+

√
1

κk + 1
r
[i]
k , (31)

with κk being the Rice parameter and the stochastic diffuse

component r
[i]
k following an AR(1) process. We specifically

write r
[i+1]
k = ρkr

[i]
k +

√
1− ρ2k r̃

[i]
k , with temporal correlation

coefficient 0 ≤ ρk ≤ 1, and r̃
[i]
k ∼ CN (0, 1) being an

i.i.d. innovation process. Given the current CSI g
[i]
k , the future

channel power (h
[j]
k )2 = |g[i]k |2 for j > i can be predicted via

minimum mean squared error (MMSE) estimation as

(ĥ
[j]
k )2 = E

[
(h

[j]
k )2

∣∣g[i]k

]
=

κk + (ρj−i
k )2

κk + 1
|g[i]k |2 +

1− (ρj−i
k )2

κk + 1
.

(32)

Next, we discuss the estimations of parameters {γ(t)} and

{G(t)
k }. Parameter γ(t) is by definition independent of the

local data sets, and is typically determined by clipping the

local gradient before transmission to the server [22], [44].

To this end, in (4), we substitute the per-sample gradient

∇f
(
w(t);u, v

)
with its clipped version

(Clipped per-sample gradient)

∇f
(
w(t);u, v

)
= min

{
1,

γ̂

‖∇f
(
w(t);u, v

)
‖

}

×∇f
(
w(t);u, v

)
(33)

for some fixed threshold γ̂ > 0.

The definition of the parameters {G(t)
k } makes them gen-

erally data-dependent. In order to avoid leaking additional

information about the data to the server, we propose to predict

bounds {Ĝ(t′)
k } for t′ ≥ t based on an additional signal

broadcast by the server. Specifically, we let the edge server

transmit the positive scalar ‖y(t−1)
k ‖/(h(t−1)

k α
(t−1)
k ) back to

device k in addition to the broadcast signal w(t). Basing the

predictions Ĝ
(t′)
k on the past received signal y

(t−1)
k does not

affect privacy, since the privacy loss due to the reception of

y
(t−1)
k at the edge server is accounted for by L(t−1)

k . At each

iteration t, any device k sets

Ĝ
(t)
k =

{
‖y(t−1)

k ‖/(h(t−1)
k α

(t−1)
k Dk), t > 1,

γ̂, t = 1.
(34a)

and Ĝ
(t′)
k = Ĝ

(t)
k , ∀ t′ > t. (34b)

Furthermore, in order to ensure constraint on the bounded local

gradient
∥∥∇Fk

(
w(t)

)∥∥ ≤ G
(t)
k , we clip the local gradient for

transmission as

(Clipped gradient transmission in OMA)

∇f
(
w(t);u, v

)
= min

{
1,

γ̂

‖∇f
(
w(t);u, v

)
‖

}

×∇f
(
w(t);u, v

)
(35)

with ∇F k = 1
Dk

∑
(u,v)∈Dk

∇f
(
w(t);u, v

)
+ λ∇R(w).

Finally, we observe that, strictly speaking, the analysis of

convergence in Lemma 2 should be modified in order to

account for clipping, but we found the heuristic approach

summarized in Algorithm 1 to perform well in practice.

IV. NON-ORTHOGONAL MULTIPLE ACCESS

In this section, we consider the design and analysis of

NOMA. For the t-th iteration, local gradients are transmitted

using the uncoded strategy (16). As in [11]–[13], [15], [28],

we select the scaling factors α
(t)
k so as to ensure that, in the

absence of noise, the edge server can recover a scaled version

of the global gradient (5). Accordingly, we set

(Gradient Alignment) h
(t)
k α

(t)
k = c(t), (36)

for some constant c(t). We note that the effective noise in

NOMA is equal to the summation of the channel noise and

the contributions of artificial noise from all devices, and its

standard deviation is given by

m(t) =

√√√√(c(t))2
K∑

k=1

(σ
(t)
k )2 +N0. (37)
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Algorithm 1 Online Scheme for OMA

Input: DP level Rdp, channel noise
√
N0, channel correlation

ρ, clipping threshold γ(t) = γ̂

Initialize: Local privacy loss L(0)k = 0
For each iteration: t = 1, . . . , T

For each device: k = 1, . . . ,K
Receive w(t) from edge server

Update local model by (35)

If t > 1
Receive y

(t−1)
k /(h

(t−1)
k α

(t−1)
k ) from edge server

end

Compute predictors {ĥ(t′)
k , Ĝ

(t′)
k } via (32) and (34)

for t′ ∈ [t, · · · , T ] with ĥ
(t)
k = h

(t)
k

Apply Theorem 1 over the time interval [t, · · · , T ] with

{h(t′)
k ← ĥ

(t′)
k , G

(t′)
k ← Ĝ

(t′)
k , γ(t) ← γ̂}

and residual DP constraint Rdp − L(t−1)
k

Use optimized scaling factor α
(t)
k to transmit (35)

Update local privacy loss as

L(t)k = L(t−1)
k +

(
√
2γ(t)h

(t)
k

α
(t)
k

)2

N0

end

end

As per (36), in this section, we are optimizing over the

parameters (c(1), · · · , c(T )) as well as over the added noise

power (σ
(1)
k , · · · , σ(T )

k ). Throughout this section, we denote

h
[i]
k = h

(t)
k , and z[i] = z(t) for i = t.

A. Differential Privacy Analysis

As discussed in Section III-A, the DP level depends on the

sensitivity of the function being disclosed, which, in NOMA,

for the same reasons discussed in Section III-A, is the received

noiseless aggregated signal. The sensitivity to change in the

data set of device k is accordingly defined as

(Sensitivity in NOMA) ∆
(t)
k = max

D′

k
,D′′

k

∥∥∥∥c(t)×
( ∑

(u,v)∈D′

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′′

∇f
(
w(t);u, v

))∥∥∥∥, (38)

where ‖D′
k −D′′

k‖1 = 1,
∥∥D′

j −D′′
j

∥∥
1
= 0 for all j 6= k, and

D′ =
⋃K

k=1D′
k, D′′ =

⋃K
k=1D′′

k . By Assumption 3, we can

bound the sensitivity as

∆
(t)
k ≤ 2c(t)γ(t). (39)

Then, the DP guarantees for NOMA are given as follows.

Lemma 3 (Differential Privacy Guarantees for NOMA). Fed-

erated gradient averaging via NOMA guarantees (ǫ, δ)-DP if

the following condition is satisfied

T∑

t=1

(√
2c(t)γ(t)

m(t)

)2

≤ Rdp(ǫ, δ), for all k. (40)

where m(t) is the standard deviation of the effective noise (37).

Proof: The proof follows in a manner similar to Lemma 1 by

replacing the sensitivity and effective noise with those defined

in NOMA.

Lemma 3 indicates that the effective noise contributing to

the privacy of each device k is given by the sum of channel

noise and the privacy-inducing noise added by all devices. This

is an important advantage of NOMA, which was also observed

in [28].

B. Convergence Analysis

At the t-th iteration, the edge server estimates the global

gradient as

∇̂F (w(t)) =
1

Dtot

(
c(t)
)−1

y(t)

=
1

Dtot

K∑

k=1

Dk∇Fk

(
w(t)

)
+ n

(t)
k +

(
c(t)
)−1

z
(t)
k .

(41)

Lemma 4 (Optimality Gap Bound for NOMA). Under As-

sumptions 1 and 2, for a learning rate η = 1/L, after T
iterations the average optimality gap is upper bounded as

E

[
F
(
w(T+1)

)
− F ∗

]
≤
(
1− µ

L

)T [
F
(
w(1)

)
− F ∗

]

+
d

2LD2
tot

T∑

t=1

(
1− µ

L

)T−t
(
m(t)

c(t)

)2

, (42)

where the standard deviation m(t) of the effective noise is

defined in (37).

Proof: The proof follows via the same steps reported in

Appendix B by replacing the summation of (17) with (37).

C. Optimization

In this section, we are interested in minimizing the op-

timality bound in Lemma 4 under the (ǫ, δ)-DP constraint

(40) and the power constraints (9) across T iterations. The

resulting optimization problem for NOMA (NOMA Opt.) is

formulated as

min
{σ(t)

k
,c(t)}K

k=1

T∑

t=1

(
1− µ

L

)−t K∑

k=1

(σ
(t)
k )2 +N0/(c

(t))2 (43a)

s.t.

T∑

t=1

(
√
2γ(t))2

∑K
k=1(σ

(t)
k )2 +N0/(c(t))2

≤ Rdp(ǫ, δ) (43b)

(
c(t)

h
(t)
k

)2 [
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤ P, ∀k, t. (43c)

Without the DP constraint (43b), the optimal solution to

problem (43) is determined by the devices with the smallest

value of the ratio h
(t)
k /(DkG

(t)
k ) due to the need to satisfy the

gradient alignment condition (36). In particular, the optimal

solution prescribes that such devices use the full power budget

P to transmit the local gradient while the other devices

transmit at the maximum power allowed under condition (36),

i.e., c(t) =
√
P mink h

(t)
k /(DkG

(t)
k ) and σ

(t)
k = 0. We will

see next that this is no longer the optimal solution under

sufficiently strict DP constraints.
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1) Offline Optimization: We first assume that the parame-

ters {h(t)
k , γ(t), G

(t)
k } are known beforehand so that problem

(43a)-(43c) can be tackled offline. With a change of the

variables, the problem can be shown to be convex. Unlike the

previously studied problem for OMA, the optimization (43a)-

(43c) cannot be solved in parallel across the devices.

Theorem 2. The optimal offline solution of problem (43a)-

(43c) under NOMA is given as follows:

• If condition

2P

N0

T∑

t=1

(γ(t))2 min
k

(
h
(t)
k

DkG
(t)
k

)2

< Rdp(ǫ, δ) (44)

holds, there exists a unique optimal solution given as

(c(t))opt =
√
P mink h

(t)
k /(DkG

(t)
k ) and (σ

(t)
k )opt = 0.

In this case, the devices with smallest value of the ratio

h
(t)
k /(DkG

(t)
k ) transmit using the full power budget P ,

while the other devices do not use full power. Therefore,

under the gradient alignment condition (36), privacy is

obtained “for free”;

• Otherwise, there exist multiple optimal solutions, and

the solution that minimizes the transmit power at all

devices is

(c(t))opt = min

{√
N0(2ζ)

− 1
4√

γ(t)

(
1− µ

L

)−t/4

,

√
P min

k

h
(t)
k

DkG
(t)
k

}
(45)

(σ
(t)
k )opt = 0, (46)

where the value of parameter ζ can be obtained by

bisection to satisfy the constraint

T∑

t=1

(
√
2γ(t))2 min

{
(1− µ/L)−t/2

√
2ζγ(t)

,
P

N0
min
k

(
h
(t)
k

DkG
(t)
k

)2}

= Rdp(ǫ, δ). (47)

In this case, all the transmitted powers need to be scaled

down in order to leverage the channel noise to ensure

(ǫ, δ)-DP.

Proof: The proof follows via the same steps of Theorem 1

by replacing the local optimization problem in OMA with the

optimization problem of the device with smallest value of the

ratio h
(t)
k /(DkG

(t)
k ).

In a manner similar to OMA, Theorem 2 demonstrates

that it is optimal for devices not to add further noise to the

transmitted signals, i.e., to set n
(t)
k = 0 in (16). Furthermore,

under condition (44), privacy is attainable “for free” since the

optimal solution coincides with that obtained when excluding

the DP constraint (43b). As for OMA, increasing the size Dk

of the data sets makes condition (44) less restrictive.

2) Online Optimization: With the offline results in Theorem

2, we are ready to describe a heuristic online approach for

NOMA which follows the same logic as in Section III-C. In

particular, at each iteration t, the edge server solves problem

(43) over the interval [t, · · · , T ] of current and future time

instants by using estimated parameters {h(t)
k , γ(t), G

(t)
k }, and

imposing the residual DP constraint for each device. We note

that the optimization problem for NOMA is solved at edge

server with the known values of {Dk}.
To detail the procedure summarized in Algorithm 2, chan-

nels are predicted as in (32). Parameter γ̂ is set through the

clipped per-sample gradient (35). Finally, estimates {Ĝ(t)
k } are

obtained by using the received signal of the last iteration as

described in OMA, but averaged with the number of global

data set, which is given as

Ĝ
(t)
k =

{
‖y(t−1)‖/(c(t−1)Dtot), t > 1, ∀k,

γ̂, t = 1, ∀k, (48a)

Ĝ
(t′)
k = Ĝ

(t)
k , ∀ t′ > t, ∀k. (48b)

One last issue to consider is that the optimized c(t) may violate

the power constraint due to the use of estimated parameters.

We hence modify the clipped gradient transmission as

(Clipped gradient transmission in NOMA)

x
(t)
k = min

{
1,

√
Ph

(t)
k

c(t)Dk‖∇F k‖

}
c(t)

h
(t)
k

Dk∇F k

(
w(t)

)
. (49)

As for NOMA, we make no claims of optimality, and we test

the performance of the proposed online scheme via numerical

results in the next section.

Algorithm 2 Online Scheme for NOMA

Input: DP level Rdp, channel noise
√
N0, channel correlation

ρ, clipping threshold γ(t) = γ̂

Initialize: Privacy loss L(0)g = 0.

For each iteration: t = 1, · · · , T
For edge server:

Compute predictors {ĥ(t′)
k , Ĝ

(t′)
k } via (32) and (48) for

t′ ∈ [t, · · · , T ] with ĥ
(t)
k = h

(t)
k

Apply Theorem 2 over the time interval [t, · · · , T ] with

{h(t′)
k ← ĥ

(t′)
k , G

(t′)
k ← Ĝ

(t′)
k , γ(t) ← γ̂} and

residual DP constraint Rdp − L(t−1)
g

Broadcast optimized scaling factor c(t) to devices

Update privacy loss as L(t)g = L(t−1)
g + (

√
2c(t)γ(t))2

N0

end

For each device: k = 1, · · · ,K
Update local model by (35)

Receive c(t) and apply it to transmit (49).

end

end

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

schemes in order to gain insights into the impact of the DP

constraints and into the benefits of adaptive power allocation.

We first consider a randomly generated synthetic dataset with

Dtot = 10000 pairs (u, v), where the covariates u ∈ R
10 are

drawn i.i.d. as N (0, I) and the label v for each vector u is

obtained as v = u(2)+ 3u(5)+ 0.2zo, where u(d) is the d-th

entry in vector u and the observation noises zo ∼ N (0, 1)
are i.i.d. across the samples [28]. Unless stated otherwise, the

training samples are evenly distributed across the K = 10
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devices, so that the size of local data set is Dk = 1000
for all k. We consider ridge regression with the sample-

wise loss function f(w;u, v) = 0.5‖wTu − v‖2 and the

regularization function R(w) = ‖w‖2 with λ = 5×10−5. The

PL parameter µ and smoothness parameter L are computed

as the smallest and largest eigenvalues of the data Gramian

matrix UTU/Dtot+2λI, where U = [u1, · · · ,uDtot
]T is data

matrix of the data set. The initial value for w is set as an all-

zero vector. We note that the (unique) optimal solution to the

joint learning problem (3) is w∗ = (UTU+2DtotλI)
−1UTv,

where v = [v1, · · · , vDtot
]T is label vector. We will also

consider experiments with the MNIST data set at the end of

this section.

Unless stated otherwise, the maximum SNR defined in (10)

is set to SNRmax = 30 dB, and we consider the availability of

30 communication blocks. Note that this implies T = 30/K =
3 iterations per device for OMA and T = 30 iterations for

NOMA. Furthermore, the default DP settings are ǫ = 20 and

δ = 0.01.

As a benchmark, we consider a scheme that divides up

the DP constraint equally across all iterations, i.e., it requires

(
√
2h

(t)
k α

(t)
k γ(t)/m

(t)
k )2 < Rdp/T for all t = 1, · · · , T in lieu

of constraint (26b) and similarly for the constraint (43b). This

yields

(Static PA in OMA)

α
(t)
k = min

{√
NoRdp(ǫ, δ)

2T (h
(t)
k γ(t))2

,

√
P

DkG
(t)
k

}
, (50)

(Static PA in NOMA)

c(t) = min

{√
NoRdp(ǫ, δ)

2T (γ(t))2
,
√
P min

k

h
(t)
k

DkG
(t)
k

}
. (51)

Another benchmark is set by the scheme that doe not impose

the DP constraint (26b) and (43b). We adopt the normalized

optimality gap [F (wT+1) − F (w∗)]/F (w∗) as performance

metric, and the offline results are averaged over 1000 channel

realizations while online results are averaged over 100 channel

realizations.

A. Offline Optimization

We now focus on offline optimization by applying the

optimal adaptive PA strategies in Theorems 1 and 2. For the

channel model in (31), we set κ = 10, and the channel corre-

lation parameter is set as ρ = 1, since this parameter has no

discernible effect on the performance of offline strategies. We

use the simple upper bounds γ(t) = 2W max(u,v)∈D L(u, v)

and G
(t)
k = 2WLk, where W ≥ ‖w‖ is a bound on the norm

‖w‖ (which can be in practice ensured via convex projection

and is set to W = 3.2 in our results); and L(u, v) and Lk are

the Lipschitz smoothness constants of functions f(w;un, vn)
and Fk(w), respectively.

In Fig. 3, we plot the normalized optimality gap as a

function of the privacy level ǫ. In the considered range of ǫ,
NOMA with either adaptive or static power allocation (PA) is

seen to achieve better performance than OMA. Furthermore,

adaptive PA achieves a significant performance gain over static

PA under stringent DP constraints, while the performance
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Figure 3. Optimality gap versus DP privacy level ǫ (for δ = 0.01) for different
power allocation (PA) schemes and for the scheme without DP constraint
(SNRmax = 30 dB).
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Figure 4. Optimality gap versus SNRmax for different power allocation (PA)
schemes and for the scheme without DP constraint (ǫ = 20, δ = 0.01).

advantage of adaptive PA decreases as the DP constraint is

relaxed, i.e., for larger values of ǫ. The figure also shows

the threshold values of ǫ beyond which the privacy “for free”

conditions (27) and (44) are satisfied.

We now study the impact of the SNRmax (10) in Fig. 4.

The normalized optimality gap of all schemes is seen to

decrease with the SNR until the DP requirement becomes

the performance bottleneck. While NOMA is confirmed to be

generally advantageous over OMA, OMA with optimal PA can

perform better than NOMA with static PA, which emphasizes

the importance of PA optimization, particularly in the high-

SNR regime. In a manner analogous to Fig. 3, the plot also

marks the maximum SNR levels for which the privacy “for

free” condition (27) and (44) are satisfied.

Fig. 5 plots the normalized optimality gap versus a measure

of the heterogeneity of the data sets. To this end, one of the

devices is allocated a lager value Dk, while the remaining

data points are evenly distributed to the other devices. The

ratio maxk Dk/Dtot varies from 0.1 (uniformly distributed)

to 0.95 (highly skewed). Increasing data set heterogeneity

generally affects negatively all schemes, even in the absence of
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without DP constraint (ǫ = 20, δ = 0.01, SNRmax = 30 dB).
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allocation (PA) schemes and the scheme without DP constraint (ǫ = 20,
δ = 0.01, SNRmax = 30 dB, κ = 5, ρ = 0).

privacy constraints. Nevertheless, the heterogeneity of Dk has

a stronger impact for NOMA than for OMA due to gradient

alignment condition (36). In particular, for NOMA, the power

constraint becomes the performance bottleneck as the ratio

maxDk/Dtot increases, and the performance of adaptive PA

converges first to that without the DP constraint and then to

that of static PA.

B. Online Optimization

We now turn to the heuristic online optimization methods

proposed in Algorithms 1 and 2. For the channel model in

(31), we set κ = 5 and ρ = 0. Note that channel prediction

is possible due to the non-zero Rician factor. The maximum

value of ‖w‖ is set as W = 10, which is ensured by

convex projection. Unless stated otherwise, we set the clipping

threshold as γ̂ = 20.

In Fig. 6, we study the impact of the communication

budget in terms of number of communication blocks I . With

conventional static PA, there exists an optimal communica-

tion budget under privacy constraints. This is because more
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Figure 7. Optimality gap versus the number of user K for different power
allocation (PA) schemes and for the scheme without DP constraint (ǫ = 20,
δ = 0.01, SNRmax = 30 dB, κ = 5, ρ = 0).
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Figure 8. Optimality gap versus the clipping threshold γ̂ for different power
allocation (PA) schemes and for the schemes without DP constraint (ǫ = 20,
δ = 0.01, SNRmax = 30 dB, T = 30).

communication blocks may cause an increase in privacy loss

(see also [25]). In contrast, increasing the communication

budget always benefits adaptive PA, which is able to properly

allocate power across the communication blocks. Furthermore,

without DP constraint, the performance of OMA converges to

that of NOMA when the communication budget I is large;

while, under privacy constraints, NOMA retains performance

advantages even with a large I .

Fig. 7 plots the normalized optimality gap versus the number

of users. It shows that increasing the number of users has a

negative effect on OMA, but it causes no harm to NOMA. This

emphasizes the spectral efficiency of NOMA in wireless edge

learning. Furthermore, under OMA, a larger number of users

implies fewer iterations, and thus less information leakage of

each user, decreasing the performances gain of adaptive PA.

Specifically, when K = 30, a simple iteration T = 1 is carried

out by OMA, and adaptive PA is equivalent to static PA.

We now study the impact of the clipping threshold γ̂ for

the gradient in Fig. 8. To show the impact of clipping, we

also plot the performance with clipped local updates without
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the DP constraint for both OMA and NOMA. Without DP

constraint, the larger clipping threshold incurs a smaller distor-

tion of the gradients, which benefits the learning performance.

However, under the DP constraint, increasing the clipping

threshold beyond a given value degrades the performance,

since ensuring privacy requires a more pronounced scaling

down of the transmitted signals. This indicates the importance

of selecting a threshold γ̂ that strikes a balance between

learning performance and privacy.

C. MNIST Data Set

We now consider the problem of classification on the

MNIST data set via multinomial logistic regression with

quadratic regularization. Accordingly, the global loss function

is given as the regularized cross-entropy loss

F (w) =
1

Dtot

∑

(u,v)∈D

C∑

c=1

1{v = c} log exp(wT
c u)∑C

j=1 exp(w
T
j u)

+ λ

C∑

c=1

‖wc‖2,

where C = 10 represents the total number of classes of

handwritten digits; u is data image extended to include a bias

term; and the model parameter w, with dimension 7650, is

comprised of the per-class vectors {wc}Cc=1. We set λ = 0.01,

the maximum value of ‖w‖ to W = 10, the clipping threshold

as γ̂ = 40, and SNRmax = 13 dB. The smoothness parameter

L and strongly convex parameter µ are treated as hyper-

parameter and selected via validation as µ = 0.3 and L = 2.5.

For ǫ = 5 and δ = 0.01, Fig. 9 plots the training cross-entropy

loss and the probability of error on the test set versus the value

of communication budget I for OMA. Adaptive PA is seen to

significantly outperform static PA both in terms of training loss

and test error. Similar results can be obtained for NOMA.

VI. CONCLUSIONS

In this paper, we have considered differentially private wire-

less federated learning via the direct, uncoded, transmission of

gradient from devices to edge server. The proposed approach

is based on adaptive PA schemes that are optimized to min-

imize the learning optimality gap under privacy and power

constraints. First, offline optimization problems are separately

formulated for OMA and NOMA, which are converted to

convex programs. The optimal PA, obtained in closed form,

adapts the power along the iterations, outperforming static

PA assumed in prior works. Furthermore, a heuristic online

approach is proposed that leverages iterative one-step-ahead

optimization based on the offline result and predicted CSI.

The analysis in this paper proved that privacy can be

obtained “for free”, that is without affecting the learning

performance, as long as the privacy constraint level is below a

threshold that decreases with the SNR. Our analytical results

also demonstrate that it is generally suboptimal to devote

part of the transmitted power to actively add noise to the

local updates. This is unlike the standard scenario with ideal

communication, in which adding noise is essential to ensure
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Figure 9. Training loss and test error for different power allocation (PA)
schemes on the MNIST dat set for OMA (ǫ = 5, δ = 0.01, SNRmax = 13

dB, κ = 5, ρ = 0).

DP constraints. Via numerical results, we have finally shown

that techniques that leverage over-the-air computing provide

significant benefits over conventional OMA protocols under

DP constraints. This is not a prior evident, since, with NOMA,

devices transmit more frequently, and hence may leak more

information.

We note that the power control policy based on channel

inversion for all the devices was proven to be suboptimal in

the scenario of over-the-air computing without DP constraint.

In fact, channel inversion can incur noise amplification by

adapting the power to the device with worst channel condition

[11], [38]. However, this may not be the case under DP

constraints since noise amplification benefits privacy. As a

possible extension of the current work, it would be interesting

to study the optimization of the threshold for channel inversion

so as to maximize the learning performance under privacy and

power constraints. As directions for future work, the threat

model could also include “honest-but-curious” edge devices,

which would generally incur larger DP loss. The study could

be further generalized to other network topologies including

multi-hop device-to-device (D2D) networks. Another inter-

esting direction is to consider the implementation of digital

transmission where quantization introduces additional privacy
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preserving mechanism on top of the channel noise. It would

also be interesting to investigate the effect of clipping in terms

of convergence as in [44], [45], and to address the convergence

properties of the proposed online scheme.

APPENDIX

A. Proof of Lemma 1

To start, we denote as yk = [y
(1)
k , · · · ,y(T )

k ] the T

successive received signals from device k, and m
(t)
k =√

(h
(t)
k α

(t)
k σ

(t)
k )2 +N0 is the standard deviation of the effec-

tive noise in y
(t)
k . According to the definition of DP loss given

in (12), for the k-th device, the privacy loss after T iterations

can be represented as

LD,D′(yk) = ln




T∏

t=1

P
[
y
(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,Dk

]

P
[
y
(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,D′
k

]




=

T∑

t=1

ln



P
[
y
(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,Dk

]

P
[
y
(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,D′
k

]




=

T∑

t=1

ln



exp

(
− ‖y(t)

k
−h

(t)
k

α
(t)
k

Dk∇Fk(w
(t);Dk)‖2

2(m
(t)
k

)2

)

exp

(
− ‖y(t)

k
−h

(t)
k

α
(t)
k

Dk∇Fk(w(t);D′

k
)‖2

2(m
(t)
k

)2

)




=

T∑

t=1

ln




exp

(
− ‖r(t)

k
‖2

2(m
(t)
k

)2

)

exp

(
− ‖r(t)

k
+v

(t)
k

‖2

2(m
(t)
k

)2

)


 ,

where r
(t)
k ∼ N (0, (m

(t)
k )2I) represents the effective noise,

and we set

v
(t)
k = h

(t)
k α

(t)
k

[ ∑

(u,v)∈Dk

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′

k

∇f
(
w(t);u, v

)]

with ‖v(t)
k ‖ = ∆

(t)
k . Following [9, Appendix A], we can then

bound privacy violation probability

Pr

(∣∣∣∣∣
T∑

t=1

2(r
(t)
k )Tv

(t)
k + ‖v(t)

k ‖2

2(m
(t)
k )2

∣∣∣∣∣ > ǫ

)

(a)

≤ Pr

(∣∣∣∣∣
T∑

t=1

(r
(t)
k )Tv

(t)
k

(m
(t)
k )2

∣∣∣∣∣ > ǫ−
T∑

t=1

‖v(t)
k ‖2

2(m
(t)
k )2

)

= 2Pr

(
T∑

t=1

(r
(t)
k )Tv

(t)
k

(m
(t)
k )2

> ǫ−
T∑

t=1

‖v(t)
k ‖2

2(m
(t)
k )2

)

(b)

≤ 2

√∑T
t=1

(
∆

(t)
k

m
(t)
k

)2

√
2π

[
ǫ−∑T

t=1
1
2

(
∆

(t)
k

m
(t)
k

)2]

× exp


−

[
ǫ−∑T

t=1
1
2

(
∆

(t)
k

m
(t)
k

)2]2

2
∑T

t=1

(
∆

(t)
k

m
(t)
k

)2


 , (52)

where (a) is obtained by using Pr(X < −ǫ − b) ≤ Pr(X <
−ǫ + b) for an arbitrary b ≥ 0, and (b) comes from the

following bound on the tail probability of Gaussian distribution

X ∼ N
(
0, σ2

)
: Pr(X > s) = 1

σ
√
2π

∫∞
s exp(− x2

2σ2 )dx ≤
1

σ
√
2π

∫∞
s

x
s exp(− x2

2σ2 )dx = σ
s
√
2π

exp
(
− s2

2σ2

)
.

Letting q =
ǫ−∑

T

t=1
1
2 (∆

(t)
k

/m
(t)
k

)2
√

2
∑

T

t=1(∆
(t)
k

/m
(t)
k

)2
and using (52), the DP

condition is implied by the inequality

Pr(|LD,D′(yk)| > ǫ) ≤ 1

q
√
π
e−q2 < δ. (53)

Finally, defining the function C(x) = √πxex2

and utilizing its

monotonicity yields the desired result.

B. Proof of Lemma 2

Under Assumption 1, we have the following equality

F
(
w(t)

)
≤ F

(
w(t−1)

)
+
[
∇F

(
w(t−1)

)]T [
w(t) −w(t−1)

]

+
L

2

∥∥∥w(t) −w(t−1)
∥∥∥
2

= F
(
w(t−1)

)
−η
[
∇F

(
w(t−1)

)]T
×
[
∇F

(
w(t−1)

)

+
1

Dtot

K∑

k=1

[
n
(t−1)
k +

(
h
(t−1)
k α

(t−1)
k

)−1

z
(t−1)
k

]]

+
Lη2

2

∥∥∥∥∇F
(
w(t−1)

)
+

1

Dtot

K∑

k=1

[
n
(t−1)
k +

(
h
(t−1)
k α

(t−1)
k

)−1
z
(t−1)
k

]∥∥∥∥
2

.

By taking the expectation over the additive noise on both sides

of the above inequality, we obtain

E

[
F
(
w(t)

)]
≤F
(
w(t−1)

)
− η

[(
1− Lη

2

)∥∥∥∇F
(
w(t−1)

)∥∥∥
2
]

+
Lη2d

2D2
tot

K∑

k=1

(σ
(t−1)
k )2 +

( √
N0

h
(t−1)
k α

(t−1)
k

)2

=F
(
w(t−1)

)
− 1

2L

∥∥∥∇F
(
w(t−1)

)∥∥∥
2

+
d

2LD2
tot

K∑

k=1

(
m

(t−1)
k

h
(t−1)
k α

(t−1)
k

)2

,

where the equality follows by Lemma 1 and by setting η =
1/L.

Subtracting the optimal value F ∗ at both sides yields

E

[
F
(
w(t)

)]
− F ∗

≤ F
(
w(t−1)

)
− F ∗ − 1

2L

∥∥∥∇F
(
w(t−1)

)∥∥∥
2

+
d

2LD2
tot

K∑

k=1

(
m

(t−1)
k

h
(t−1)
k α

(t−1)
k

)2

≤
(
1− µ

L

)(
F
(
w(t−1)

)
− F ∗

)
+

d

2LD2
tot

×
K∑

k=1

(
m

(t−1)
k

h
(t−1)
k α

(t−1)
k

)2

, (54)
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where the last step follows from Assumption 2. Then, the

desired result yields by applying above inequality repeatedly

through T iterations and taking expectation over all the addi-

tive noises.

C. Proof of Theorem 1

We start by making the change of variables

a
(t)
k = (σ

(t)
k )2 +N0/(h

(t)
k α

(t)
k )2, b

(t)
k = (α

(t)
k )−2, (55)

so that the original variables can be written as

(σ
(t)
k )2 = a

(t)
k − (

√
N0/h

(t)
k )2b

(t)
k ≥ 0, (α

(t)
k )2 = 1/b

(t)
k > 0.

(56)

By including the constraints (56), we now obtain the equivalent

local problem (OMA Local Opt. 2)

min
{a(t)

k
,b

(t)
k

}

T∑

t=1

(
1− µ

L

)−t

a
(t)
k

s.t.

T∑

t=1

(
√
2γ(t))2/a

(t)
k ≤ Rdp,

(DkG
(t)
k )2 + da

(t)
k −

[
d(
√
N0/h

(t)
k )2 + P

]
b
(t)
k ≤ 0,

∀t,
a
(t)
k − (

√
N0/h

(t)
k )2b

(t)
k ≥ 0, ∀t,

a
(t)
k ≥ 0, b

(t)
k ≥ 0, ∀t,

which is a convex optimization problem. To solve it, the partial

Lagrange function is defined as

L =

T∑

t=1

(
1− µ

L

)−t

a
(t)
k + ζ

(
T∑

t=1

(
√
2γ(t))2

a
(t)
k

−Rdp

)

+

T∑

t=1

ξ(t)
((√

N0/h
(t)
k

)2
b
(t)
k − a

(t)
k

)

+

T∑

t=1

β(t)

(
(DkG

(t)
k )2 + da

(t)
k

−
[
d
(√

N0/h
(t)
k

)2
+ P

]
b
(t)
k

)
, (57)

where ζ ≥ 0, β(t) ≥ 0, and ξ(t) ≥ 0 are the Lagrange

multipliers associated respectively with the DP constraint,

transmit power constraints and non-negative parameter con-

straints. Then applying the KKT conditions leads to the

following necessary and sufficient conditions

∂L
∂(a

(t)
k )opt

=
(
1− µ

L

)−t

− ζopt(
√
2γ(t))2

(
(a

(t)
k )opt

)−2

+ (β(t))optd− (ξ(t))opt = 0, (58a)

∂L
∂(b

(t)
k )opt

= −(β(t))opt

[
d(
√
N0/h

(t)
k )2 + P

]

+ (ξ(t))opt(
√
N0/h

(t)
k )2 = 0, (58b)

ζopt

(
T∑

t=1

(
√
2γ(t))2

(a
(t)
k )opt

−Rdp

)
= 0, (58c)

(β(t))opt

(
(DkG

(t)
k )2 + d(a

(t)
k )opt −

[
d
(√

N0/h
(t)
k

)2
+ P

]

× (b
(t)
k )opt

)
= 0, (58d)

(ξ(t))opt

[(√
N0/h

(t)
k

)2
(b

(t)
k )opt − (a

(t)
k )opt

]
= 0, (58e)

T∑

t=1

(
√
2γ(t))2

(a
(t)
k )opt

−Rdp ≤ 0, (58f)

(DkG
(t)
k )2 + d(a

(t)
k )opt−

[
d
(√

N0/h
(t)
k

)2
+ P

]
(b

(t)
k )opt

≤ 0, (58g)

(
√
N0/h

(t)
k

)2
(b

(t)
k )opt − (a

(t)
k )opt ≤ 0. (58h)

According to (58b), we have the following equality for the

optimal solutions (β(t))opt and (ξ(t))opt

(ξ(t))opt =
d(
√
N0/h

(t)
k )2 + P

(
√
N0/h

(t)
k )2

(β(t))opt. (59)

Plugging the above result into (58a) and (58e), respectively,

we obtain

(
1− µ

L

)−t

− ζopt(
√
2γ(t))2

(
(a

(t)
k )opt

)−2

− (β(t))opt
P (h

(t)
k )2

(
√
N0)2

= 0 (60)

(β(t))opt
d(
√
N0/h

(t)
k )2 + P

(
√
N0/h

(t)
k )2

((√
N0/h

(t)
k

)2
(b

(t)
k )opt

− (a
(t)
k )opt

)
= 0. (61)

Combining (61) and (58d), we get the following equation

(β(t))opt

(
(DkG

(t)
k )2 − P (h

(t)
k /
√
N0)

2(a
(t)
k )opt

)
= 0. (62)

Constraints (58g) and (58h) define the minimum and maxi-

mum values of (b
(t)
k )opt in terms of (a

(t)
k )opt. Accordingly, the

minimum value of (b
(t)
k )opt should be no larger than that of

the maximum value, which yields the following lower bound

on (a
(t)
k )opt:

(a
(t)
k )opt ≥ (DkG

(t)
k )2(

√
N0/h

(t)
k )2/P. (63)

In this case, the power is fully utilized for transmitting the

local gradient
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Furthermore, from (62), we have the equality (β(t))opt = 0

if (a
(t)
k )opt > (DkG

(t)
k )2(

√
N0/h

(t)
k )2/P , thereby the other

solution of (a
(t)
k )opt is obtained by solving (60) as

(a
(t)
k )opt =

√
2ζopt(1− µ/L)t/2γ(t). (64)

Combing (63) and (64), the solution of (a
(t)
k )opt is

(a
(t)
k )opt = max

{√
2ζopt(1− µ/L)t/2γ(t),

(DkG
(t)
k )2(

√
N0/h

(t)
k )2/P

}
, (65)

and the value of ζopt can be obtained by bisection search to

satisfy the equality of (58f). Specifically, we have ζopt = 0 if∑T
t=1(
√
2γ(t)h

(t)
k )2P/(

√
N0DkG

(t)
k )2 < Rdp. With the value

of (a
(t)
k )opt, the solution of (b

(t)
k )opt can be obtained by using

(58g) and (58h), which are satisfied by arbitrary value within

the range

(DkG
(t)
k )2 + d(a

(t)
k )opt

d(
√
N0/h

(t)
k )2 + P

≤ (b
(t)
k )opt ≤

(h
(t)
k )2(a

(t)
k )opt

N0
. (66)

Then, the desired result in the theorem is obtained by reverting

to the original variables using (56). Specifically, the optimal

solution to minimize the transmit power is attained by the

maximum value of (b
(t)
k )opt in (66).
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