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Abstract: The effective identification and mitigation of non-line-of-sight (NLOS) ranging errors
are essential for achieving high-precision positioning and navigation with ultra-wideband (UWB)
technology in harsh indoor environments. In this paper, an efficient UWB ranging-error mitigation
strategy that uses novel channel impulse response parameters based on the results of a two-step NLOS
identification, composed of a decision tree and feedforward neural network, is proposed to realize
indoor locations. NLOS ranging errors are classified into three types, and corresponding mitigation
strategies and recall mechanisms are developed, which are also extended to partial line-of-sight (LOS)
errors. Extensive experiments involving three obstacles (humans, walls, and glass) and two sites show
an average NLOS identification accuracy of 95.05%, with LOS/NLOS recall rates of 95.72%/94.15%.
The mitigated LOS errors are reduced by 50.4%, while the average improvement in the accuracy
of the three types of NLOS ranging errors is 61.8%, reaching up to 76.84%. Overall, this method
achieves a reduction in LOS and NLOS ranging errors of 25.19% and 69.85%, respectively, resulting
in a 54.46% enhancement in positioning accuracy. This performance surpasses that of state-of-the-art
techniques, such as the convolutional neural network (CNN), long short-term memory–extended
Kalman filter (LSTM-EKF), least-squares–support vector machine (LS-SVM), and k-nearest neighbor
(K-NN) algorithms.

Keywords: ultra-wideband (UWB); indoor positioning and navigation; non-line of sight (NLOS);
channel impulse response (CIR); ranging mitigation; deep learning

1. Introduction

Indoor high-precision localization is a rapidly growing field, driven by the increasing
demand for indoor location-based services such as emergency response, navigation systems,
and the Internet of Things (IoT). However, commercial Global Satellite Navigation Systems
(GNSSs) [1] are not designed for indoor location services due to severe interference from
building structures. As a result, researchers have explored various techniques for indoor po-
sitioning, including fingerprint-matching methods based on Wireless Fidelity (Wi-Fi) [2,3],
Bluetooth [4], or geomagnetism [5]; ranging positioning methods based on ultra-wideband
(UWB) [6,7] and pseudo-satellite systems [8]; and angle-positioning methods [9] based on
antenna array technology. Among them, UWB has emerged as a promising technology for
accurate position estimation and synchronization control in harsh indoor environments. Its
attributes of high time resolution, ability to penetrate obstructions, resistance to multipath
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interference, and low power consumption facilitate stable and high-precision ranging and
positioning in line-of-sight (LOS) channel states. Existing UWB ranging-based positioning
systems PlusON [10] and Localizer [11] can achieve centimeter-level positioning accuracy
in LOS environments. With the advent of antenna array technology [12], integrating angle
measurements with ranging results enables UWB single-base-station positioning, but this
approach has a stronger dependency on LOS channel environments. The LOS phenomenon
refers to the scenario where the direct physical path between devices is unobstructed by any
barriers, whereas the non-line-of-sight (NLOS) [13] phenomenon is the opposite. In NLOS
scenarios, obstacles impede the propagation of UWB signals, preventing the hardware from
acquiring the true first-path (TFP) signal corresponding to the actual distance. This results
in positive bias in range measurements based on time of flight (TOF) [14], thereby affect-
ing positioning accuracy. Due to the complexity and variability of indoor environments,
the frequent occurrence of NLOS phenomena restricts the application and development
of UWB positioning. Therefore, precise channel identification to accurately extract LOS
ranging errors and to mitigate or eliminate NLOS ranging errors is crucial for the efficacy
of Indoor Positioning Systems (IPSs) that rely on UWB as their core technology.

NLOS identification algorithms consist of two parts: feature parameter extraction and
classification algorithms. There are various feature parameters, including distance [15–17],
coordinates [18–20], and channel impulse response (CIR) [21–23]. Common classification
algorithms include threshold comparison [16], neural networks [24–26], support vector
machines (SVMs) [27–29], and k-nearest neighbor [30]. Schroeder et al. [16] implemented
a fixed threshold-based mathematical statistical analysis of UWB ranging distances for
NLOS channel identification. Although simple, this method exhibits poor and unstable
identification accuracy. Coordinate features are derived from redundant information or
additional techniques. For instance, real-time positioning results from the Inertial Mea-
surement Unit (IMU) can enhance UWB channel state accuracy, but the cumulative error
inherent in IMUs can constrain the performance of the integrated system [20]. Sequential
CIRs contain information about the channel state, including their energy and timing fea-
tures, which, when combined with machine learning algorithms, can be utilized for channel
identification. Kegen et al. [29] trained a least-square SVM (LS-SVM) to identify NLOS
data using two inputs: maximum CIR amplitude and mean excess delay. This approach
surpassed the first two in both accuracy and timeliness, yet its performance was subject to
fluctuations due to external conditions (environment and obstacles). Sequential CIRs hold
implicit information reflective of external conditions, making them a focal point of current
research. However, a prevailing challenge is the limited variety of CIR features used and
the algorithms’ insufficient exploration of latent information.

Based on the results of NLOS identification, the algorithm deletes or mitigates NLOS
ranging errors to reduce the influence of the NLOS phenomenon on UWB positioning.
Deleting NLOS ranging results can eliminate the impact of its error, but the algorithm needs
to add UWB base stations [31] or introduce additional technologies [32–34] to ensure the
accuracy and continuity of positioning. Chen et al. [18] used weights that were inversely
proportional to the normalized residual to combine the ranging values of multiple UWB
nodes to suppress NLOS errors. The algorithm requires a sufficient density of UWB anchors,
and the computational complexity geometrically doubles with the increase in density. In
contrast, mitigating NLOS errors [35–37] is a more efficient and cost-effective strategy,
reducing the instability introduced by additional techniques. By pre-training the correlation
between the CIR features and ranging errors, the algorithm can accurately and efficiently
mitigate NLOS ranging errors. Marano et al. [21] used five CIR features in combination with
LS-SVM to reduce the standard deviation (STD) of ranging errors by 30.36%. This approach
enhanced the accuracy of ranging and positioning, but its performance was somewhat
unstable, as it is overly reliant on the accuracy of NLOS identification and does not fully
exploit the UWB signal. To address these problems, we propose a novel UWB ranging error
mitigation algorithm using new CIR features and a two-step NLOS identification algorithm.
The main contributions of this paper can be summarized as follows:



Sensors 2024, 24, 1703 3 of 29

1. We divide the entire process of UWB signal collection into three stages based on
the CIR fluctuation trend caused by UWB signal arrival: the environmental noise
stage, CIR steep rise stage, and CIR slow descent stage. To the best of our knowledge,
this innovative classification is the first to be utilized for both UWB NLOS identifi-
cation and ranging error mitigation. Leveraging the unique characteristics of these
stages, we optimize existing CIR features and propose two new CIR features from key
nodes—TFP delay and energy rise—which have much stronger feature representation
and robustness and are first used to cover the leading edge detection algorithm for
UWB signal identification.

2. For channel identification, we propose a two-step NLOS identification algorithm that
leverages a decision tree (DT) to pre-extract typical LOS and NLOS data and then uses
the feedforward neural network (FNN) to fine-tune the remaining data. Moreover, we
introduce fuzzy logic, i.e., the probability of a CIR feature being identified as LOS, to
extract the potential information, ensure the accuracy of the DT, and optimize the initial
state of the FNN. To bolster the robustness of our algorithms, we adopt a dynamic
update policy for the DT threshold, which is based on the final identification results.

3. For ranging error mitigation, we propose a novel method of categorizing NLOS
ranging errors into three types based on the underlying causes of the errors and
their waveform characteristics. For each type of NLOS ranging error, we take first-
path (FP) detection as the core to optimize the corresponding correction strategy. To
fully leverage the capabilities of the UWB signal system, this study implements a
recall mechanism designed to extract high-precision ranging results. Furthermore,
this paper classifies and partially mitigates LOS ranging errors to further reduce
the dependence of positioning performance on the accuracy of NLOS identification.
Finally, we validate the performance of the newly proposed features and algorithms,
as well as their enhancement in dynamic positioning accuracy, through a series of
experimental activities across multiple scenarios.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related works about UWB NLOS identification and ranging error mitigation. Section 3
introduces the extraction of new CIR features and the concept of fuzzy logic. The details
of the two-step NLOS identification algorithm and ranging error mitigation strategy are
described in Section 4. We test the performance of the algorithms through static and
dynamic experiments involving humans, walls, and glass obstacles at two specific test
sites in Section 5. Finally, Section 6 summarizes the work in this paper and suggests
future research.

2. Related Works

Since the Federal Communications Commission (FCC) authorized the use of UWB
for civilian applications in 2002, numerous research teams have developed a variety of
positioning systems based on multi-base-station UWB ranging and intersection positioning
techniques. Among these, the Localizer positioning system, utilizing the Time Difference
of Arrival (TDOA) ranging algorithm, achieves a positioning accuracy of 0.05 m in 30 m
LOS environments. However, the widespread occurrence of NLOS conditions indoors
often introduces a positive bias in ranging measurements, which complicates the accurate
pinpointing of target coordinates. To counteract this, such technologies typically involve
deploying an adequate number of base stations within the positioning area, thus enhancing
the proportion of LOS ranging results. With the advent of antenna array technology, these
systems have evolved to simultaneously capture both the distance and angle between the
target point and known reference points, facilitating single-base-station positioning. This
approach significantly reduces the number of devices required, but it comes with higher
hardware costs and increased complexity in signal processing. Furthermore, the NLOS
phenomenon adversely affects the precision of both range and angle measurements in these
technologies, diminishing the system’s fault tolerance and heightening its reliance on LOS
channel conditions. Consequently, the essence of UWB positioning algorithms is rooted in
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accurately discerning high-precision LOS results through channel identification algorithms
and mitigating the less precise NLOS results, thereby ensuring the reliability and accuracy
of the overall positioning output.

2.1. UWB NLOS Identification

Existing wireless NLOS identification algorithms [3,15] are broadly classified into
three categories based on the nature of their feature parameters. Distance-based methods
utilize the difference in variance or probability density functions [15] of ranging distances
in diverse environments for channel state identification. The threshold [16] for NLOS
identification is derived from repeated prior data. However, they are characterized by
low accuracy and robustness, with their effectiveness significantly diminishing in varying
motion states. Coordinate-based methods ascertain NLOS channel states using positioning
data derived from UWB ranging distances or ancillary techniques. The authors of [18,19]
utilized the coordinate discrepancies of multiple transition points, obtained from assorted
ranging results, to detect NLOS data when the anchor density is sufficient. Although these
methods do not necessitate additional technology, their accuracy is inversely proportional
to the increase in NLOS data. In systems where IMUs and UWB are tightly integrated, the
channel state is determined by the real-time location of the IMU [20,38]. Although this
method does not require the modeling of the channel environment, it is limited by the
cumulative error of the IMU and the inability to pinpoint the source of NLOS errors. A
hybrid strategy that replaces IMUs with high-precision binocular vision [39] has also been
used, which can obtain indoor maps and provide better performance. However, the system
is complex and not portable. Furthermore, the limitations associated with the additional
technology restrict the universality and accuracy stability of the algorithms.

CIR-based methods utilize features from the CIR sequence, which encapsulates in-
formation about the environmental topology and obstacles. The convolutional neural
network (CNN) employed in [24] used the CIR raw data to identify NLOS errors, achieving
an average accuracy of 90% across various architectures, including ResNet and Encoder.
Despite its high sensitivity to extreme NLOS scenarios, this approach is time-intensive due
to redundant information [25]. To address this issue, Jiang et al. [26] introduced a long
short-term memory (LSTM) layer in place of the fully connected layer, and the application
of reversible transformations to de-noised CIR data effectively simplified the network struc-
ture [40]. Nonetheless, the improvement in NLOS identification accuracy was marginal.
Moreover, this method, focusing primarily on the timing aspects of the CIR sequence,
tends to overlook the signal’s energy attenuation. Existing manually extracted CIR fea-
tures derived from CIR sequences include energy features, which are based on obstacle
energy attenuation (total CIR energy, first-path power level, receive power level) and timing
features of multipath delay components (kurtosis, mean excess delay, root-mean-square
delay) [21,22]. When employing the same structural SVM for NLOS identification, the
average LOS and NLOS recall rates for a single CIR feature are 70.54% and 72.02%, respec-
tively [27]. This low LOS recall rate adversely affects the preservation of high-precision
ranging results, with the maximum accuracy gap between parameters reaching approxi-
mately 20%. Under varying external conditions, the LOS recall rate for CIR feature kurtosis
decreased by 6.3%, whereas the NLOS recall rate increased by 1.18% [28]. Cwalina et al. [23]
developed a feedforward neural network (FNN) using two inputs—total CIR energy and
first-path power level—achieving an accuracy of at least 90.1% in mixed-channel environ-
ments. However, this algorithm only considers humans as obstacles and operates in simple
tracks. Guvenc et al. [28] compared the joint likelihood ratio constructed by the probability
density function of kurtosis, mean excess delay, and root-mean-square delay with a fixed
threshold to identify NLOS data. This approach improved the mean LOS/NLOS recall by
6.78%/5.7% compared to a single CIR feature, but it lacked mixed-channel experiments.
Heidari et al. [36] introduced a novel CIR feature for detecting the first-path signal using a
hybrid approach, consisting of the first-path power level and TOF, and established a joint
likelihood ratio based on the mean excess delay and total CIR energy to further categorize
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NLOS into undetected and detected direct paths. However, its threshold is not well-defined
and requires recalibration with changes in external conditions. Marano et al. [21] explored
the impact of different compositions of the CIR feature vector (VCP) on SVM performance.
Increasing the number of CIR features in VCP can cause fluctuations in the algorithm’s
identification performance, as noted in [29]. The accuracy in [29] was 3% higher than
that in [28] under the same VCP conditions. Using the same three CIR features in VCP,
Kolakowski et al. [22] substituted the “mean excess delay” and “root-mean-square delay”
with “the difference between the receive power level and first-path power level” and “total
CIR energy”, enhancing the LOS recall by 51.35% and improving identification accuracy to
93.67%. Clearly, optimizing the structure of VCP for different external conditions is crucial
to maximize SVM performance. On one hand, the current CIR feature types, namely timing
and energy features, fail to adequately distinguish key communication nodes and stages
across various channels. These features are not integrated with signal detection algorithms,
and their scope is confined to differentiating between multipath signals, without consider-
ing environmental noise. On the other hand, identification algorithms solely use the value
of the CIR feature as the input vector, neglecting its potential information and failing to
optimize models.

2.2. NLOS Ranging Suppression

Based on whether NLOS ranging errors are deleted or mitigated, this paper classifies
existing NLOS ranging suppression algorithms into two primary methods: fusion and
mitigation. The fusion method aims to suppress NLOS ranging errors by incorporating
additional data into the positioning calculation [31,41]. Venkatesh et al. [31] used LOS
ranging to estimate the objective function and NLOS ranging to restrict the feasible region
in linear programming. This method outperformed the least-squares approach in mixed-
channel environments but proved ineffective in exclusively NLOS conditions. Based on
weight [18], Jiao et al. [19] further achieved an average 58% reduction in computation time
by selecting combinations with minimal residual error. However, optimizing the anchor
layout is crucial to minimize the proportion of NLOS data and ensure algorithmic efficiency.
Yao et al. [32] combined the IMU with UWB to mitigate NLOS errors, enhancing both
the continuity of the positioning track and the accuracy, which was 2.5 to 5 times greater
than that of the least-squares and trilateration algorithms. However, the system performs
poorly in continuous NLOS environments. Alternatively, a binocular camera can replace
the IMU, eliminating cumulative errors and improving positioning accuracy by 27% on
the Y-axis [33]. Although this system smoothens the track and reduces visual positioning
drift, it compromises portability and increases computational demands. Zheng et al. [34]
employed IMU-assisted visual position matching and integrated the discrepancy between
visual positioning and UWB location results through filter fusion to derive the final outcome,
enhancing the average positioning accuracy by over 20%. However, this method does not
fully exploit IMU data. Fusion methods, bypassing the need for error modeling or extensive
prior data from repeated measurements, are constrained in their ability to consistently
suppress errors due to environmental limitations inherent in auxiliary techniques. The
mitigation methods of NLOS ranging errors require the establishment of a mapping model
between the ranging errors and their features. These errors primarily arise from the system’s
inaccurate detection of the TFP in UWB signals, leading to an overestimation of the TOF
and ranging results. Consequently, such algorithms are often referred to as FP detection
methods. Wu et al. [35] employed maximum likelihood estimation, combining TOF and
a CIR feature (maximum CIR amplitude), to deduce the TFP. They formulated the NLOS
ranging error expression based on the signal-path loss model, reducing the mean ranging
error from within 10 m to less than 0.5 m. However, this approach incurs a delay due
to iterative estimation. The optimal composition of the CIR feature vector (VCP) varies
under different external conditions. For instance, the performance of the VCP with five CIR
features in [21] was 0.019 m less accurate than the VCP (maximum CIR amplitude, mean
excess delay) in [29]. Heidari et al. [36] enhanced pulse waveform identification for different
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path signals by preprocessing the CIR with a finite bandwidth filter, thereby improving
ranging accuracy. However, this method is not time-efficient during post-processing.
Wang et al. [37] developed a generalized maximum likelihood approach based on the
assumption of strong path synchronization at the receiver, reducing the TFP search space.
Incorporating timestamp and amplitude threshold information [42] further narrowed the
search area by 30%. Nonetheless, this method is vulnerable to random non-Gaussian
outliers with high energy. Song et al. [43] converted the signal amplitude into statistical
rank information to suppress heavy-tailed non-Gaussian noise or outliers while effectively
preserving TFP data. The algorithm re-evaluates the TFP by setting a threshold, combining
the row-rank statistical sequence of the signal frame, and integrating a multipath signal
detection algorithm to enhance performance. Although it corrects amplitude outliers more
effectively than CIR averaging, it requires more time to traverse all paths and additional
signal collector hardware. Li et al. [44] used the least-square method to locate the TFP,
ensuring that 80% of the ranging error was less than 1 m. This method sacrifices mitigation
performance but significantly reduces complexity. Mitigation methods are generally stable
and unaffected by environmental variables, yet they are complex and fail to balance
performance with timeliness. Moreover, these algorithms do not adequately mitigate LOS
data or fully exploit UWB’s anti-multipath and obstacle penetration capabilities, leading to
low data utilization and high dependency on the precision of the identification algorithm.

3. Theoretical Framework
3.1. UWB Channel CIR Feature Extraction

UWB technology estimates distances by calculating the time of flight of signals between
devices. In the ranging process, the UWB transmitter emits signals at a predetermined
frequency and logs the transmission time. Concurrently, the UWB receiver continuously
monitors the received signal’s energy level. When this level surpasses a predefined thresh-
old set by the built-in leading-edge detection (LDE) algorithm, the corresponding time
is marked as the signal arrival time. The system then computes the ToF using both the
signal emission and arrival times, which is pivotal for accurate ranging results. The LDE
algorithm plays a critical role in this process by determining the threshold and the precise
signal arrival time based on the CIR. The CIR is a digital measurement of the energy of the
received UWB signal and environmental signal noise by UWB hardware. Within the unit
time (1.0016 ns) of a UWB quartz clock, the hardware estimates the correlation between
the cumulative input sample and the expected potential customer sequence to calculate
the CIR, which is recorded as r(t) [26,45,46]. Figure 1a shows the major effective CIRs
during one communication in typical LOS. The hardware uses the threshold (L) from the
embedded LDE algorithm [47] to identify the FP, and its formula is as follows:

L = S ∗ NTM, (1)

where S is the standard deviation of the CIRs, indicative of the environmental noise level,
and NTM is the noise threshold multiplier, which is set to a constant value of 13 [48].

As illustrated in Figure 1, the UWB system continuously evaluates the CIR, while
the LDE algorithm dynamically calculates the environmental noise level S (represented
by the purple horizontal line) and updates the FP judgment threshold L (depicted as the
red horizontal line) in real time based on the formula. When the CIR first surpasses the
dynamic threshold L, the system records this moment as the arrival time of the Measured
First Path (MFP), as shown in Figure 1. This study categorizes the CIRs (green line in
Figure 1) preceding the MFP, as reported by the LDE, as the environmental noise stage
(ENS). These represent signal noises from the environment and, according to the LOS
theory, do not contain UWB signals. Points F1, F2, and F3 in Figure 1 correspond to the
CIR amplitudes at three distinct moments post-MFP, closely associated with the signal
energy. UWB signals, emitted from the transmitter antenna, reach the receiver through
various paths, causing a gradual increase in the CIR. In indoor environments, where the
dimensions are relatively small compared to the speed of light, some signals may arrive
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within intervals shorter than the quartz clock’s resolution, resulting in their recording as
a superposition. This leads to the formation of a single CIR with maximum amplitude,
identified as the Strongest Path (SP) in Figure 1, marking the culmination of the CIR rise
process due to the UWB signal. As depicted in Figure 1a, this paper classifies the CIRs (red
line in Figure 1) between the MFP and SP as the CIR steep rise stage (SRS). The subsequent
CIRs (blue line in Figure 1) comprise multipath (MP) signals, whose energy progressively
diminishes with increased transmission distance, defining the CIR as the slow descent
stage (SDS).

(a)

(b)

Figure 1. Typical CIR fluctuations and some key nodes in the three communication stages of UWB
(ENS, SRS, and SDS) under different channel environments, and depiction of the LDE algorithm and
new CIR features on the CIR waveform: (a) LOS, (b) NLOS.

In the NLOS scenario depicted in Figure 1b, the TFP signal is attenuated by obstacles
and obscured within the ENS, with its amplitude falling below the dynamic threshold
L set by the LDE algorithm, leading to the misidentification of the TFP. The contrast
between the NLOS (Figure 1b) and LOS (Figure 1a) conditions has prompted researchers
to develop numerous CIR features to differentiate between channel states. However,
the reliance on a substantial portion of the CIRs introduces certain limitations to the
existing CIR features. Firstly, processing a large volume of CIRs generates redundant
information, which can result in the underutilization of the identification capabilities of CIR
features and increased latency. Secondly, the current CIR features, which are independent
of the LDE and critical communication stages, are unidimensional, focusing solely on
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the mathematical characteristics of the entire sequence of CIRs, thereby compromising
environmental robustness. To address these shortcomings, this paper introduces two novel
parameters: TFP delay (TFPdelay) and energy rise (erise), which are formulated in light of the
limitations of the LDE and the distinctions between the TFP signal and signal noise levels.

(1) TFP delay (TFPdelay)

The LDE algorithm dynamically evaluates the signal noise level using the parameter
S in (1). However, as shown in Figure 1, S (purple horizontal line) alone cannot effectively
distinguish signal noise from the TFP for threshold comparison, leading to misjudgment
of the TFP caused by the fluctuation and mutation of signal noise. To address this, the
LDE algorithm introduces NTM to effectively distinguish between signal noise and the
TFP, thus preventing misjudgment. However, the fixed NTM is unsuitable for the variable
external environment, which may result in the incorrect classification of certain UWB
signal CIRs as S, thereby further enhancing L. This creates a vicious cycle and significant
delay between the MFP and TFP. To address this issue, we initially organize the CIRs in
the ENS in ascending order and construct the Cumulative Distribution Function (CDF).
The inverse function of the CDF, denoted as CDF−1

ENS(0.9), is utilized to establish a new
signal noise level. The ‘−1’ in the upper right corner signifies the inverse function. Under
four experimental campaign scenarios, starting with 50% of the CIRs as the baseline for
environmental noise and incrementally increasing this proportion, we observe that the ratio
of the average values of the remaining and utilized CIRs predominantly ranges between
2.5 and 3.5. As the proportion escalates from 80% to 86%, it stabilizes approximately
between 2.91 and 2.92. Continuing this increase, the ratio reaches an average of 2.98 at 90%,
with a growth rate of 0.01. Beyond this point, further escalation in the CIR ratio results in
an increased growth rate of 0.02 to 0.05. This indicates that the amplitude of the residual
CIRs in the sequence is significantly higher than that of the earlier CIRs, suggesting their
origin from either the UWB CIR or anomalous signal noise. Consequently, to accurately
gauge the real environmental noise, this study considers 90% of the CIR as representative
of environmental noise. Additionally, a new multiplier similar (=3) to NTM is chosen to
offset the signal noise mutation. The value 3 was chosen based on the four experimental
campaign scenarios that were each repeated 20 times to give rise to the highest LOS/NLOS
differentiation with a TFPdelay accuracy of around 60% to 73%. Consequently, the new
threshold (LN) used to identify the UWB signal is given by:

LN = CDF−1
ENS(0.9) ∗ 3, (2)

This paper used LN (the blue horizontal line in Figure 1) to rejudge the true FP (TFPR). The
positive delay between the TFPR and MFP, which is defined as TFPdelay, can be calculated
as follows:

TFPdelay = MFP− TFPR = MFP− argmin(r(t) ≥ LN) (3)

where t is the time of the CIR value that exceeds the threshold LN . In theory, the CIR in
the LOS ENS is stable, with only natural fluctuations and no UWB signal. Hence, both S
and CDF−1

ENS(0.9) can accurately evaluate the signal noise level. Since the CIR rises sharply
and approaches a vertical line under LOS conditions, TFPdelay is very small at 0.1289, as
shown in Figure 1a. In NLOS, the fixed NTM value is too large and can cause L to increase,
leading to a wrongly classified weakened TFP and high-energy MPs as the ENS, resulting
in a vicious circle of increasing S and L. At this point, there is a large difference between
the MFP identified by the LDE and the TFP. In this paper, we use CDF−1

ENS(0.9) of LN to
evaluate the real signal noise level and avoid the high-energy TFP and MP from UWB,
along with a multiplier of 3 to avoid signal noise mutation. Moreover, the weakened TFP
slowly increases the CIR, leading to a further enlarging of TFPdelay under NLOS conditions
with a value of 4.4059, as shown in Figure 1b. Figure 2a shows the distribution of TFPdelay
in different channel environments. The total data of the CDF is 33,000, derived from the
actual measurements of four static experiments consisting of two experimental scenarios
and three obstacles. Overall, TFPdelay in NLOS is higher than in LOS, with a maximum
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value of 63.24 in the multiscene dataset, which is much higher than the 16.22 in LOS. In
LOS, 95.8% of TFPdelay is concentrated at 0.5 and below, whereas this number decreases
to 75% in NLOS. When the range of TFPdelay extends to 1, the proportion of NLOS is only
84%, which is still much lower than the 96% in LOS. Combining the principle analysis
and data distribution, the proposed new CIR feature, TFPdelay, can be effectively used to
distinguish the channel state.

(a)

(b)

Figure 2. The data distributions of the new parameters: (a) TFPdelay, (b) erise. The red * is the
discrete value and the left box is the data distribution of erise under LOS, and the right box is the data
distribution of erise under NLOS.

(2) Energy Rise (erise)

The typical energy-based CIR features are statistical characteristics of the CIR sequence
that correspond to different UWB signal types or according to the correlation between the
energy and rapid rise of individual CIR features, such as MFP and SP. However, these
parameters do not take into account the channel information contained in the signal noise
energy from the environment. To address this, we propose a new parameter called energy
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rise (erise), which considers the energy difference between the UWB’s FP signal and signal
noise level, as follows:

erise = F2− S (4)

where F2 is the CIR of the second index after the MFP, as shown in Figure 1, and S is
the same as in (1). In LOS, the CIR rises rapidly and reaches maximum amplitude within
three units after the MFP. Empirically, the maximum amplitude is likely to be F2 in LOS,
as shown in Figure 1a, which is highly distinguishable from the signal noise level [48].
However, in NLOS, due to the high delay in the SRS caused by obstacle interference with the
UWB signal, the energy cannot reach its maximum value at F2, as shown in Figure 1b. The
difference between F2 and S under NLOS conditions is much smaller than that under LOS
conditions. As shown in Figure 1a, the erise value in LOS is 14,627, which is 10,964 higher
than that in NLOS (3663). Moreover, Figure 2b and Table 1 show that the erise values in LOS
under multiple scenarios (same as TFPdelay) are significantly higher than those in NLOS.
Under LOS, the erise values are mostly clustered between 12.3× 104 and 13.6× 104, whereas
under NLOS, they are clustered between 7.5× 104 and 11.1× 104. The average (median)
erise value in NLOS is 8848 (9856), which is much lower than 12,939 (13,005) in LOS. Data
with erise values below ×105 mostly correspond to the NLOS channel.

Table 1. Comparison of erise values under LOS and NLOS scenarios.

Mean Median 25% 75%

LOS 12,939 13,005 12,308 13,639
NLOS 8848 8848 7544 11,021

3.2. Fuzzy Credibility Evaluation

In different scenarios, the same CIR feature value may indicate an opposite channel
state under different external conditions. This is mainly because obstacles with different
materials and thicknesses attenuate signals in different ways, causing fluctuations in
the numerical values of CIR features. This phenomenon is one of the reasons why the
classification accuracy of CIR features fluctuates with changes in external conditions. To
improve the environmental robustness of CIR features and identification algorithms, this
paper introduces the concept of fuzziness and employs fuzzy theory to extract channel
information from the parameters. Rather than ultimately attributing the CIR feature
with a specific value (S = s1, s2, · · · , sI) to LOS or NLOS, this paper assigns a new result
( flos(si), i = 1, 2, · · · , I) to measure the probability of the data’s channel environment being
identified as LOS. flos(si) is determined by the membership function (MSF), which is
defined using statistical information or experience and consists of three steps. First, the CIR
feature values are compressed to [0, 1] to obtain the normalized s′i from si by leveraging large
amounts of off-line data. This can reduce the influence of varying parameter dimensions
on the defuzzification operation. Second, the statistical probability method is used to
determine the ambiguity of s′i by counting the number of occurrences of the same value in
the LOS (Ns′i

los) and NLOS (Ns′i
nlos) channels. The ambiguity of s′i is Ns′i

los/(Ns′i
los + Ns′i

nlos).
Third, as more data are collected and parameter intervals are refined, a larger number of
discrete points can be obtained, as illustrated in Figure 3. This paper employs Gaussian
fitting to determine the MSF of new CIR features, as depicted by the red curve in Figure 3.
More information on the MSF and other parameters can be found in [49,50].



Sensors 2024, 24, 1703 11 of 29

(a)

(b)

Figure 3. The MSFs of the new CIR features: (a) TFPdelay, (b) erise.

The above operations are fuzzy operations for a single CIR feature. The operation to
obtain the fuzziness of the feature vector set is as follows, which is called defuzzification:

F = CP′ ◦ R (5)

where F and CP′ are two fuzzy sets of the credibility evaluation domain and normalized
parameter domain, respectively; R represents the above fuzzy sets’ relationship; and ‘◦’
is the fuzzy operator used to obtain the evaluation results according to the information
of the fuzzy sets. Suppose there are m kinds of data, and each combination gm has J CP′,
as follows:

CP′m = cp
′
m,j, j = 1, 2, · · · , J (6)

where cp′j is the normalized value of cpj. The correlation matrix R is defined as Rm =

{rm,j}(M,J)
m=1,j=1, and the credibility evaluation of the CIR feature vector is evaluated using Fm,

as follows:

Fm = CP′m ◦ Rm = [cp
′
m,1, cp

′
m,2, · · · , cp

′
m,J ] ◦ [rm,1, rm,2, · · · , rm,J ] (7)
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where rm,j is calculated differently according to different fuzzy operators. This paper
uses the average (Fa) and weighted-average (Fw−a) values of CIR features to evaluate the
ambiguity of the vector, as follows:

Fa
m = CP′m ◦ Rm =

J

∑
j=1

cp
′
m,j ∗ rm,j =

J

∑
j=1

cp
′
m,j ∗ flos(cp

′
m,j) (8)

Fw−a
m = CP′m ◦ Rm =

J

∑
j=1

cp
′
m,j ∗ rm,j =

J

∑
j=1

cp
′
m,j ∗ flos(cp

′
m,j)/

J

∑
j=1

flos(cp
′
m,j) (9)

4. Proposed Method

To precisely determine the coordinates of unknown locations, the accurate identifica-
tion of channel states is essential for achieving exceptionally high-precision LOS ranging
results. High-precision channel identification can leverage the advantages of UWB and
ensure effective ranging error mitigation. In addition, this paper refines the classification of
LOS and NLOS ranging errors and develops corresponding error mitigation algorithms
and recall mechanisms. The overall architecture is illustrated in Figure 4a.

(a)

(b)

Figure 4. The complete process of UWB channel identification and error correction: (a) the two-step
channel identification algorithm for UWB data via the DT and FNN, as well as the error correction
process based on the channel identification results; (b) the DT process in Figure (a), including the CIR
features used and the thresholds.

In the process of NLOS identification, this study employs the DT and FNN to ascertain
the channel state. Initially, data exhibiting characteristic LOS and NLOS CIR waveform
features across all three communication stages are pre-extracted. Additionally, the fuzzy
credibility evaluation of the vector VCP is integrated into the DT to augment identification
accuracy. As illustrated in Figure 4b, the data are segmented into three categories: identified
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LOS (I-LOS), identified NLOS (I-NLOS), and ambiguous LOS/NLOS. Both the I-LOS
and I-NLOS datasets undergo direct optimization through the ranging error mitigation
algorithm, bypassing the need for granular identification via the FNN. For ambiguous
LOS/NLOS data, an FNN equipped with self-learning capabilities is utilized to finalize the
identification outcome. In the realm of ranging error mitigation, this paper introduces novel
definitions for LOS and NLOS errors, grounded in channel characteristics and innovative
CIR features. Correction strategies are refined for various I-NLOS error datasets, and a
ranging recall mechanism is established. Furthermore, by classifying ranging outcomes,
this study precisely corrects misclassified NLOS errors and certain genuine LOS errors
within the I-LOS dataset. This approach minimizes the impact of channel identification
accuracy on location performance and guarantees the precision of data directly employed
for positioning.

4.1. Channel State Identification Algorithm

(1) Step 1: Decision tree for pre-extraction

In the LOS environment, there are no obstacles between devices, and the receiver
can accurately identify UWB signals with the shortest path and highest link quality. By
analyzing the typical difference features in three stages in LOS and NLOS environments,
we select the false crest number (FCN), TFPdelay, CIR rise time (trise = SP−MFP), energy
saturation (ES), and the difference between the receive and FP power levels (DRF) to form
the vector (VDT

CP ) of the DT. As shown in Figure 1, we record the number of CIRs in the ENS
that exceed the FCN threshold (black horizontal line) as the FCN [51], which may include
misjudged UWB signals. The threshold (0.6 ∗ L) [52] can effectively distinguish between
UWB signals and abrupt signal noise. In most environments, the FCN is lower (FCN = 0
in Figure 1a) and much smaller than that in NLOS environments (FCN = 3 in Figure 1b).

DTs [7] offer interpretability, handle non-linearity, require no feature scaling, accom-
modate both numerical and categorical data, and provide feature importance, making them
advantageous for classification tasks. As shown in Figure 4b, in this paper, combining the
DT with the time domain, energy, and proposed new CIR features extracted from the key
UWB communication stages (ENS, SRS) can quickly and accurately identify and pre-extract
data with typical LOS or NLOS channel characteristics. Given that CIR fluctuations are
theoretically stable without significant energy anomalies in the LOS ENS, the initial state of
FCN is set to 0. Taking into account the system error of the LDE [46] and the acceptable
ranging error of the trilateral positioning algorithm [19], the initial threshold for TFPdelay
is established at 0.5. Based on experience and existing references [48,52], instances where
trise < 3.3 are classified as LOS, and those where trise > 3.3 are classified as NLOS. Ad-
ditionally, DRF < 6 indicates LOS, whereas DRF > 10 suggests NLOS. Moreover, the
LOS/NLOS boundary for ES is 0.9. To improve the reliability of the pre-extracted data, we
introduce the ambiguity of Fa(VDT

CP,2:5) to ensure accuracy. Following pre-extraction, the
FNN algorithm processes the data labeled as LOS/NLOS to ascertain the channel state.
As illustrated in Figure 4, to enhance the algorithm’s robustness to external conditions,
every 30 data points with the final determined channel states are added to the respective
threshold datasets. The thresholds are then updated by calculating the average. Data that
do not meet the initial thresholds are removed from the dataset and not used for updating.

(2) Step 2: FNN for identification of remaining data

FNNs [53] model, analyze, and solve nonlinear problems by simulating the learning
process of the human brain using interconnected artificial neurons. In this paper, we
construct a three-layer, fully connected feedforward neural network with ten neurons in
each layer. The input parameter feature set is VFNN

CP = [FCN; TFPdelay; erise; trise; ES; root-
mean-square delay (τrms); kurtosis (k) [28]; mean excess delay (τmed); DRP; the standard
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deviation of CIRs (σr)]. Unlike the traditional FNN, we initialize the model with the
ambiguity of the training dataset as the initial weight, as follows:

yn = F (
K

∑
k=1

ωk ∗ xk + b) (10)

where xk is the kth input of the nth neuron; K is the number of inputs; yn is the correspond-
ing output of vector X = [x1, x2, · · · , xK]; b is the bias value; ωk is the input weight, which
controls the influence of the last neuron on the output function; and F is the activation func-
tion used in the neuron. The activation function computes the output from the weighted
sum of inputs and can be a sigmoid function, hyperbolic tangent function, softmax function,
or rectifier function. The supervised FNN improves its performance by ‘learning’ from
a known dataset. Each element is defined as the derivative of the error measure with
respect to a parameter by backpropagating the gradient vector to update the weights of
the synaptic network. The error cost function is expressed in this paper as the difference
between the target output (t) and y, using the cross-entropy loss, as follows:

Cost = − 1
N

N

∑
n=1

(ynlogtn + (1− yn)log(1− tn)) (11)

where n = 1, 2, · · · , N is the number of output neurons, and Cost is the cost of the training
dataset. The purpose of ‘learning’ is to update parameters, such as the weight and deviation
from the minimum (local minimum) parameters. During neural network training, we use
the gradient descent (GD) method to iteratively update the initial weight, which is defined
as follows:

ω(l+1) = ωl − η∇Cost(ω(l)) (12)

where η is the learning rate, that is, the speed at which the neural network approaches
the local minimum of the cost function. The initialization of model weights is crucial for
training the network, as improper initialization can lead to a large variance of hidden
layer data, causing gradients to vanish prematurely when passing through the nonlinear
sigmoid layer (where the derivative is close to 0). Standard initial weight methods include
zeros, ones, Xavier, He, narrow-normal, and orthogonal [54,55]. To enhance the relevance
between the initial thresholds and the classification purpose and to reduce dependence on
the distribution of the training set data, this paper proposes using the centroid fuzziness of
a single CIR feature in the training set as the initial weight, defined as follows:

ω
(0)
k =


F(w−a)(VFNN

CP,1 (1 : P))

F(w−a)(VFNN
CP,2 (1 : P))
· · ·

F(w−a)(VFNN
CP,10(1 : P))


T

(13)

where P is the number of off-line datasets, and VFNN
CP,i (1 : P) is all data in the off-line dataset

for the ith CP in VFNN
CP,i . This paper uses the stochastic gradient descent (SGD) method by

randomly selecting samples to update parameters and iterate over others repeatedly. It can
accelerate the convergence speed, reduce the computational power consumption of similar
samples, and minimize memory consumption. Each weight is updated based on the partial
derivative of the cost function, as follows:

ω
(l+1)
k,n = ω

(l)
k,n − η(∂Costp/∂ω

(l)
k,n) (14)
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where ωk,n is the weight of the nth neuron for the kth input. Based on the chain rule, we can
calculate the weight update rules for all layers of the FNN as follows:

ωl+1
k,n = ωl

k,n − η[Enyn(1− yn)xk] (15)

where En = ∂Costp/∂yn = yn − tn is the error term of the nth neuron in the output layer.

4.2. Classification and Correction of Ranging Errors

Figure 4a illustrates the application of the two-step NLOS channel identification al-
gorithm introduced in this study, which categorizes UWB data into two groups: I-LOS
and I-NLOS. The key difference between these categories and traditional LOS and NLOS
data is that the channel identification algorithm does not fully and accurately discern the
UWB channel environment. This leads to a certain degree of misclassification in both I-LOS
and I-NLOS data. Traditional error correction algorithms exclusively utilize I-LOS data
for positioning, but this approach is flawed due to the inclusion of incorrectly identified
NLOS data, which compromises positioning accuracy. Moreover, the I-LOS dataset also
encompasses some data with substantial errors. Regarding I-NLOS data, traditional algo-
rithms attempt complete correction, which presents several issues. Firstly, the inclusion
of some LOS data in I-NLOS means that their full correction can inadvertently reduce
ranging accuracy. Secondly, given the inherent capabilities of UWB signals, certain NLOS
conditions still yield ranging results that satisfy accuracy requirements for positioning;
correcting these data can result in a loss of both accuracy and the inherent benefits of UWB
signals. Thirdly, existing error correction algorithms fail to integrate with UWB waveforms,
relying instead on a uniform model for ranging correction, which significantly diminishes
the effectiveness of error correction. In response to these challenges, this paper proposes a
novel approach involving the classification of ranging errors and a model for the recall and
correction of ranging errors, which also incorporates I-LOS ranging results.

As shown in Figure 5, based on the characteristics of theoretically stable LOS ENS
signals with almost no high-energy CIR, this paper classifies I-LOS data using FCN and
the new proposed CIR feature (TFPdelay) as the threshold criteria. When I-LOS data satisfy
the threshold parameters, as depicted in Figure 5, the relevant results are retained for
direct use in positioning. Data not meeting these criteria are defined as ∆dLOS and require
correction prior to their use in positioning. For I-NLOS data, this paper selects four
feature parameters—FCN, PNlos, DRF, and εr—and employs a step-by-step classification
approach to approximate theoretical LOS data. Initially, if the FCN value of I-NLOS data
exceeds 0, it suggests the presence of high-energy CIRs, such as UWB signals, in the ENS.
This data subset, labeled as ∆dFCN>0, necessitates correction, whereas the remaining data
align with the characteristics of the LOS ENS. The subsequent parameter, PNlos, relates
to the UWB’s SRS. Under LOS conditions, a marked increase in the SRS results in PNlos
being 0, and NLOS otherwise. Data falling into this category, termed ∆dSRS, also require
correction, whereas the rest conform to the characteristics of the LOS SRS. Finally, the
energy features, DRF and εr, are utilized for the ultimate differentiation. If the energy
features of I-NLOS data align with the criteria shown in Figure 5, the ENS, SRS, and energy
aspects of such data collectively meet LOS characteristics, warranting their recall and use
in positioning without further correction. Data not meeting these criteria are classified
as ∆dF−LOS and necessitate correction before their use in positioning applications. In the
process of ranging error mitigation, we employ LS-SVM [21,29], a supervised learning
technique used for classification and regression, with the estimated TFP as a core parameter.
The following are mitigation algorithms for different types of ranging errors:

(1) I-LOS Ranging Errors

To improve the accuracy and stability of positioning, it is essential to identify and
correct ranging errors in I-LOS data, which include misjudged NLOS ranging and partial
LOS data with high ranging errors due to environmental factors or the movement of people.
I-LOS data with FCN = 0 indicate no energy outlier in the ENS, and the UWB TFP signal is
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identified accurately, so no mitigation is required. Data with FCN > 0 and TFPdelay ≤ 0.5
indicate signal noise mutation, and the TFP is still higher than the dynamic threshold
L. Therefore, they do not need to be mitigated. For the remaining data with FCN > 0
and TFPdelay > 0.5, this paper mitigates the ranging error due to TFPdelay and the first
FCN(FCN1). ∆d represents the amount of error correction, and the lower-right corner
indicates the type of error that it belongs to. For instance, ∆dLOS denotes the ranging
distance correction for I-LOS ranging errors, and its model is as follows:

∆dLOS = LF (TFPdelay, FCN1) ∗ c ∗ time (16)

where time = 1/499.20/1000000/128 is the UWB hardware time and real-time conversion
parameters, and LF denotes LS-SVM, which is used to fit the planned inputs and outputs.

Figure 5. The overall framework for UWB ranging error correction, including the recall of I-LOS and
I-NLOS ranging results, the mitigation process, and the corresponding CIR features and thresholds.

(2) I-NLOS Ranging Errors

The typical LOS CIR waveform is characterized by stable ENS fluctuations and fast-
rising SRS values, which correspond to the FCN and the probability of NLOS (PNLOS)
parameters [52], respectively. As shown in Figure 5, this paper divides the NLOS ranging
errors into three categories, where d̂ and d represent the mitigated and original ranging
distances, respectively.

(i) NLOSENS

The NLOS ranging error with FCN > 0 is identified as NLOSENS. This type of error
arises from a weakened UWB signal that fails to meet the dynamic L. The LDE algorithm
incorrectly identifies a high-energy MP signal as an FP signal. This paper calculates the
mean value of the parameter TFPdelay and all FCNs (FCNall) and combines them with the
total CIR energy (εr) and maximum CIR amplitude (rmax) to construct the ranging distance
correction for NLOSENS, ∆dFCN>0, as follows:

∆dFCN>0 = LF (mean(TFPdelay, FCNall) ∗ c ∗ time, εr, rmax) (17)

(ii) NLOSSRS

NLOSSRS indicates that the data do not exhibit typical NLOS characteristics in the
ENS (FCN = 0) but instead have a high delay in the SRS (PNLOS > 0). This scenario
is characterized by a severe multipath effect, resulting in the LDE algorithm incorrectly
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identifying an MP signal as an FP signal. This paper performs error mitigation based on
the energy and LDE parameters. The correction mode (∆dSRS) for NLOSSRS ranging errors
is as follows:

∆dSRS = LF (TFPdelay ∗ c ∗ time, τmed, RPL) (18)

(iii) NLOSF−LOS

These NLOS ranging errors exhibit apparent characteristics of the LOS ENS (FCN = 0)
and SRS (PNLOS = 0), thus classified as NLOSF−LOS. When combined with the channel
environment identified as NLOS, we can conclude the following two phenomena. First,
the TFP is entirely blocked, and the hardware only receives the reflections of the UWB
signal over the delay. Second, the LDE can still accurately identify UWB signals, which are
misjudged LOS data or due to the weak attenuation of signals occluded by obstacles. The
accuracy of these ranging results still meets the requirements of positioning. As shown
in Figure 1, the CIR between the 500 and 700 unit-time intervals generally only contains
environmental noise and is closer to the TFP, which has a greater impact on the LDE
algorithm and results in notable differences between the LOS and NLOS channels. This
paper segments the threshold εF−LOS = 2× 105, based on εr of the CIR in the ENS between
500 and 700, as well as DRF, to distinguish between the above two phenomena. The value
of the threshold εF−LOS is based on the actual measurements of four static experiments
consisting of two experimental scenarios and three obstacles. Data exceeding εF−LOS are not
within the mitigation range, and the model ∆dF−LOS mitigates the remaining NLOSF−LOS
ranging errors by combining TFPdelay, trise, and FPPL as follows:

∆dF−LOS = LF (TFPdelay ∗ c ∗ time, trise, FPPL) (19)

5. Experiments

In this paper, we designed four static experiments, denoted as STA, to test the accuracy
of the NLOS identification algorithm and the performance of the ranging error mitigation
strategy. Additionally, three dynamic experiments, denoted as DYN, were set up to assess
the improvements in the final positioning results achieved by the aforementioned algorithm.
The hardware employed in these experiments was the DW1000 UWB module, based on
IEEE 802.15.4-2011 [56]. The experiments were conducted in two different environments:
the UWB test site of the School of Environment and Spatial Informatics, China University of
Mining and Technology, denoted as CUMT, and the State Key Laboratory of Satellite Navi-
gation Systems and Equipment Technology, 54th Research Institute of China Electronics
Technology Group Corporation, denoted as LAB.

As shown in Figure 6a, there was an obstacle (wall) between the red fixed anchor
and the blue mobile tag in STA-1. For the seven groups of static experiments at different
distances, as shown in Table 1, we ensured that the anchor’s position remained unchanged
and moved the tag to collect NLOS data. To collect LOS data simultaneously in each group
for STA-1, we set up another LOS tag in the corridor, as shown in Figure 6b, to ensure that
the distance between the LOS tag and the anchor was the same as that between the NLOS
tag and the anchor. The hardware collected 50 data points per minute, and each set of
experiments lasted ten minutes. In STA-2 and STA-3, the obstacle was a human. Therefore,
for each group, we first collected LOS data. The anchor and tag positions are shown in
Figure 6b,d, respectively. Then, we arranged for the experimenter to stand between the
anchor and the tag to block the LOS signal and collected NLOS data without moving the tag
and anchor. The anchor and tag positions are shown in Figure 6a,c. After collecting one set
of LOS and NLOS data, we retained the position of the red anchor, moved the blue tag to
the next position, and repeated the above collection steps. In STA-4, the red fixed anchor
was on the second floor, and a glass obstacle always existed. The collection strategy was
the same as that in STA-1. The UWB’s positions in the LOS and NLOS scenarios are shown
in Figure 6c,d, respectively. To ensure consistency with the comparison algorithm [29,30],
the training and testing data were split into a 70:30 ratio from the acquired data. This split
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was utilized to obtain the existing and proposed CIR features (TFPdelay, erise) and to train
the NLOS identification and ranging error mitigation model. The experimental details are
shown in Table 2.

Table 2. The distances between the anchor and tag in the four STAs.

Location Obstacle Distances

STA-1 CUMT Wall 3.09, 4.95, 7.03, 9.10, 11.00, 13.01, 15.08
STA-2 CUMT Human 1.01, 3.21, 5.10, 6.08, 7.15, 8.14, 9.18, 10.22
STA-3 LAB Human 1.10, 2.29, 3.56, 4.80, 6.01, 7.14, 8.50, 9.56, 10.68
STA-4 LAB Glass 1.60, 3.04, 4.10, 5.21, 6.38, 7.56, 8.64, 9.49, 10.86

(a) (b)

(c) (d)

Figure 6. The layout of the anchors at the different test sites: (a) the anchor layout of NLOS for the
STA and DYN experiments at CUMT, (b) the anchor layout of LOS for the STA experiments at CUMT,
(c) the anchor layout of NLOS for the STA and DYN experiments at LAB, (d) the anchor layout of
LOS for the STA experiments at LAB.
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5.1. LOS/NLOS Identification Performance

This paper used TL/TN to represent the number of data correctly identified as
LOS/NLOS and FL/FN to represent the corresponding misjudged data. The accuracy and
recall rates were used as the evaluation metrics for the algorithm and are defined as follows:

Accuracy = (TL + TN)/(TL + FL + TN + FN) (20)

RecallLOS = TL/(TL + FL) (21)

RecallNLOS = TN/(TN + FN) (22)

(i) The New CIR Features and Optimization of the Existing CIR Features

Based on the previous analysis, the number of CIRs used to calculate the existing
CIR features and their communication stages can affect their performance. This paper
used LS-SVM to evaluate the performance of each CIR feature. In the ENS, the number
of CIRs used to calculate each CIR feature started from the MFP and gradually increased
to 500 indexes. In the SDS, the number of CIRs used to calculate the CIR features started
from the SP and gradually increased to 500 indexes. We optimized the existing CIR features
(the receive energy (εr); the sum of the CIRs (sumr); the standard deviation of the CIRs (σr);
τmed; τrms; the mean of the CIRs (meanr); k; and skewness (ske)), as shown in Table 3.

Table 3. Optimization of the numbers and sources of CIRs utilized for existing parameter calculations.

CP Stage Number CP Stage Number

εr ENS 180 τrms SDS 25
sumr ENS 463 meanr ENS 402

σr SDS 96 k SDS 220
τmed SRS - ske SDS 96

As shown in Figure 7, the newly proposed features, TFPdelay and erise, achieved average
accuracies of 71.06% and 74.45%, respectively, across different scenarios, with the lowest
accuracy recorded as 69.18% for TFPdelay in STA-4, and the highest accuracy recorded as
80.20% for erise in STA-3. The accuracies of the newly proposed features surpassed those
of most optimized existing features in each scenario. The feature TFPdelay was optimal
in STA-2 and STA-4, but its accuracy was close to that of τrms and k in STA-1 and close
to that of meanr in STA-3, all of which were superior to the remaining existing features.
However, the accuracies of τrms, k, and meanr were significantly lower than that of the new
feature TFPdelay in both STA-2 and STA-4, with a maximum difference of 10.14%. Although
the accuracy of feature erise was lower in STA-4, it was the best across the remaining
scenarios, leading by up to 9.52% compared to the highest value among the remaining
feature parameters. Compared to the existing features, the accuracies achieved by the newly
proposed features in this paper were mainly around 70%, whereas some existing features
achieved accuracies below 60% and exhibited poorer environmental robustness. The novel
feature TFPdelay assessed the channel status by leveraging the LDE algorithm’s output,
enabling more precise acquisition and filtration of abnormal CIR amid environmental noise.
In contrast, the existing timing characteristics (τmed, τrms, k, and ske) merely represented
the mathematical statistics of a subset of the CIR sequence, lacking integration with the
LDE algorithm and environmental noise considerations. The novel feature erise enhanced
the distinction between UWB signals and environmental noise at the energy level. This
was in contrast with the other energy characteristics (εr, sumr, σr, and meanr), which
remained merely statistical analyses of a portion of the CIR, without any association with
environmental conditions.
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Figure 7. The accuracy of channel identification using the new CIR features (TFPdelay, erise) and the
optimized existing CIR features.

(ii) Two-Step Channel Identification Algorithm

This study validated the efficacy of the two-step NLOS identification algorithm across
four STAs with three obstacles, with the findings detailed in Table 4. The algorithm at-
tained an average accuracy of 95.05%, peaking at 98.17%, and consistently maintained
accuracies above 93% in challenging environments, such as the narrow corridor in STA-2,
which was characterized by severe multipath conditions. The RecallLOS rate averaged
95.72%, marginally surpassing the RecallNLOS rate of 94.15%. This difference is crucial for
attaining high-precision ranging outcomes and improving positioning accuracy. Notably,
the algorithm exhibited stability and delivered satisfactory performance in STA-4, despite
the presence of low signal attenuation coefficients and glass obstacles. Across the four sce-
narios, compared to LS-SVM and K-NN, which achieved average accuracies of 84.85%
and 77.20%, respectively, the proposed two-step algorithm showed significant improve-
ments of 10.20% and 16.25%. Transitioning between scenes diminished the efficacy of the
LS-SVM feature vector set due to variations in the layout and obstacle types across the dif-
ferent environments. However, the proposed algorithm enhanced environmental resilience
through the integration of scene fuzziness and dynamic update mechanisms, facilitating
swift adaptation to new settings. In contrast, K-NN required the continuous addition of
reference points to maintain precision, yet the variability of characteristic fingerprint values
over time compromised its effectiveness, lacking an adaptive update mechanism. The
two-step algorithm’s lowest accuracy of 93.32% was still higher than the CNN’s average
accuracy of 92.13%. Conversely, the CNN predominantly focused on estimating the CIR
sequence’s timing information, neglecting the impact of energy attenuation from UWB
signal obstruction by obstacles. The proposed algorithm adeptly estimated both timing
and energy attributes, optimizing the utilization of information across diverse channel
conditions. It is noteworthy that the two-step algorithm showed a maximum improvement
of 12.67% over LS-SVM in STA-3, and for K-NN, the maximum improvement was 16.21%
in STA-1. For RecallLOS, which attained high-precision ranging results in STA-1 and STA-2,
the CNN and LS-SVM algorithms exhibited similar performance to the two-step algorithm,
but in STA-3 and STA-4, the average RecallLOS was lower by 4.13%, with a maximum of
5.60%. The RecallLOS for K-NN was significantly lower, leading to a noticeable loss in
high-precision LOS ranging. Regarding the specific NLOS recall metric (RecallNLOS), the
algorithm presented in this study consistently achieved stable performance, maintaining a
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rate of 93% and above. In contrast, the performance of the existing algorithms generally
fell below 90%, with the lowest recorded at 79.89% for K-NN in STA-4. This represents a
significant 13.23% deficit compared to our algorithm. Additionally, the CNN attained a
RecallNLOS of 92.62% in STA-3, yet it still trailed our algorithm by 4.72%. Consequently,
our algorithm demonstrated superior precision in NLOS identification (recall rate for LOS)
compared to the other algorithms. In summary, the proposed algorithm demonstrates
superior performance compared to the CNN, LS-SVM, and K-NN algorithms.

Figure 8 illustrates a comparison between the proposed initial weights and existing
methods. Under the same external conditions, Fw−a converged to the optimal solution faster
and reduced time consumption by 22.15% compared to the average performance of the
other algorithms. In terms of accuracy, Fw−a exhibited higher precision in most scenarios.
Compared to the narrow-normal method, although the precision of Fw−a decreased by
1.44% in STA-2 and STA-4, it increased by 10.25% in the other scenarios. Compared to
existing methods, our algorithm reduced data loss by an average of 8.5%, with a maximum
reduction of 25.82%. In summary, the proposed algorithm achieves lower time consumption
and higher accuracy, maximizes data utilization, and exhibits better robustness compared
to existing methods.

Table 4. The UWB NLOS identification performance.

Scene Method Accuracy RecallLOS RecallNLOS Scene Method Accuracy RecallLOS RecallNLOS

STA-1 Two-Step 93.32 92.82 93.63 STA-3 Two-Step 98.17 98.98 96.94
K-NN [30] 77.11 74.81 81.61 K-NN 81.97 77.60 82.78

LS-SVM [21] 83.00 89.90 81.70 LS-SVM 85.50 93.38 81.60
CNN [24] 89.01 91.20 87.43 CNN 94.13 95.60 92.62

STA-2 Two-Step 93.44 94.18 92.91 STA-4 Two-Step 95.28 96.88 93.12
K-NN 80.65 73.72 86.87 K-NN 75.48 73.56 79.89

LS-SVM 84.00 92.85 83.20 LS-SVM 86.90 93.20 80.50
CNN 90.51 93.60 88.72 CNN 92.37 93.03 89.09

Figure 8. The performance of the FNN using different initial weight methods.

5.2. Ranging Error Mitigation Evaluation

This paper classified ranging errors based on the waveform and selected corresponding
CIR feature vectors for different error types. In addition to traditional I-NLOS data, this
paper also included part of the I-LOS data in the mitigation scope to improve performance.
We used the mean absolute error (mean), standard deviation (STD), and root-mean-square
error (RMSE) to measure performance improvements.

Table 5 shows that the mean mitigated I-LOS error was 0.065, representing an average
reduction of 25.19%. Both the STD and RMSE experienced decreases of 18.02% and 29.23%,
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respectively. Even in the STA-3 and 4 scenarios with higher errors, the mitigated I-LOS
average ranging error remained less than 0.10 m. The CDF depicted in Figure 9 indicates an
improved distribution of mitigated ranging errors for I-LOS compared to its original state.
The percentage of errors within the centimeter range, denoted as Cm-error, for mitigated
ranging averaged 91.37%, which is an increase of 1.89% from the original value, reaching
as high as 94.4%. By aggregating the data across the various scenarios, the mean ranging
errors for the two types of I-LOS data that did not necessitate mitigation were 0.051 m
and 0.056 m, respectively. Ranging errors of around 0.05 m are deemed sufficient for
positioning purposes, thereby validating the I-LOS ranging error classification algorithm
proposed in this study. The mean error for the remaining ranging errors (∆dLOS) saw a
significant decrease from 1.377 m to 0.683 m, amounting to a 50.4% reduction. Additionally,
the algorithm contributed to reductions in the STD and RMSE of 0.165 m and 0.464 m,
respectively. It can be seen that the algorithm in this paper has a very significant correction
effect on misjudged NLOS data and LOS data with poor original accuracy in I-LOS.

Table 5. Error correction effect across different scenarios of I-NLOS (m).

I-LOS I-NLOS
Mean STD RMSE Mean STD RMSE

STA-1 Original 0.0566 0.2131 0.0454 STA-1 Original 1.2615 1.7035 2.9014
Mitigated 0.0513 0.2085 0.0435 Mitigated 0.4850 0.6658 0.4432

STA-2 Original 0.0546 0.2028 0.0411 STA-2 Original 1.1315 1.6692 2.7859
Mitigated 0.0476 0.1746 0.0305 Mitigated 0.2524 0.8736 0.7630

STA-3 Original 0.1571 0.4814 0.2319 STA-3 Original 2.6189 4.4700 5.9747
Mitigated 0.0595 0.2244 0.0503 Mitigated 0.5988 1.4471 2.0936

STA-4 Original 0.1209 0.4095 0.1677 STA-4 Original 0.7854 1.9021 3.6174
Mitigated 0.1010 0.3987 0.1532 Mitigated 0.2904 0.7557 0.5709

Figure 9. The cumulative distribution functions of the original and mitigated ranging errors across
four scenarios.

Table 5 demonstrates that the mean mitigated I-NLOS error was 0.407 m, with an
STD and RMSE of 0.936 m and 0.968 m, respectively, all lower than 1 m. Notably, even in
the challenging environment of STA-3, the mean ranging error post-mitigation was under
0.60 m, with reductions in the STD and RMSE of 67.62% and 64.96%, respectively. The
distribution of mitigated I-NLOS errors, as depicted in Figure 9, shows improvement over
the original distribution. In the majority of scenarios, it was possible to maintain 90% of the
mitigated ranging errors within 1 m. The average percentage of errors within Cm-error
was 53.88%, marking an increase of 1.65 times. The ranging error mitigation algorithm
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ensured that the mitigated ranging accuracy of most NLOS errors was better than 1 m and
greatly increased the proportion of high-precision ranging results, which is very beneficial
for subsequent positioning. Even in STA-4, characterized by glass obstacles and weak
interference signals, the algorithm presented in this study successfully reduced 90% of
the ranging errors to 0.70 m. This represents a decrease from the initial average error of
0.7854 m and elevates the proportion of high-precision centimeter-level ranging outcomes
to 55.91%.

Figure 10 shows the performance indicators of different types of NLOS ranging errors
across multiple scenarios. The initial mean ranging errors for NLOSENS, NLOSSRS, and
NLOSF−LOS were 3.419 m, 0.716 m, and 0.278 m, respectively, ranked according to their
LOS characteristics from least to most. After mitigation, the mean error for NLOSENS data
was reduced to 0.792 m (76.84%). The STD and RMSE of NLOSENS decreased by 60.66%
and 66.77%, respectively. For the NLOSSRS data, the mitigated mean, STD, and RMSE were
better than 1 m, at 0.287 m (59.83%), 0.561 m (33.69%), and 0.630 m (43.12%), respectively.
For the fully mitigated NLOS ranging results, the algorithm in this paper significantly
reduced the ranging error, ensuring it was less than 1 m. Regarding NLOSF−LOS, charac-
terized by the highest similarity to the LOS channel, the mean ranging error of the recall
data directly utilized for positioning was 0.118 m, satisfying the requirements for position-
ing. The mean, STD, and RMSE of the remaining data exhibited improvements of 48.73%,
49.13%, and 49.00%, respectively, after mitigation. Overall, the algorithm presented in this
study effectively differentiates various types of NLOS ranging errors, precisely identifies
high-precision ranging outcomes, and efficiently corrects the remaining ranging errors.

Figure 10. The correction effect of different types of NLOS errors.

Figure 11 demonstrates that the performance and stability of the proposed ranging
mitigation (RM) algorithm surpassed those of the CNN, LS-SVM, and K-NN algorithms.
The three algorithms reduced the mean ranging errors by 0.599 m, 0.435 m, and 0.450 m,
respectively, which is lower than the 1.043 m in this paper. Only in STA-1 was the correction
effect of K-NN close to that of the RM strategy, which was 0.08 m higher. However, the
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STD of K-NN was 1.23 m and 0.44 m higher than that of ours and the original in STA-1,
respectively. The correction of ranging errors in K-NN was predicated upon fingerprint
similarity, which linked the ranging outcomes with the outcomes at the reference points.
Effective correction occurred only when the ranging device was proximate to a reference
point. Furthermore, while enhancing the density of reference points marginally improved
K-NN’s performance, it significantly escalated the expenditure of human and material
resources. Compared with LS-SVM, our algorithm achieved higher mean, STD, and RMSE
values by 43.35%, 26.46%, and 25.83%, respectively. Additionally, the correction effect of
LS-SVM was not prominent in STA-4 due to glass obstacles. In comparison to traditional LS-
SVM, this study enhanced correction accuracy by refining error categorization and defining
specific error correction models. Additionally, a recall mechanism was implemented to
retrieve high-precision ranging outcomes, thereby minimizing the risk of inaccurately cor-
recting data and exacerbating errors. On average across the four scenarios, our algorithm’s
mean, STD, and RMSE were higher than those of the CNN by 32.51%, 14.06%, and 12.66%,
respectively. The overall performance rate of the CNN was higher than that of LS-SVM and
K-NN, but it needed to read the full amount of the CIR, which caused a large delay and
required more computing power support. The LS-SVM and CNN algorithms are capable
of effectively correcting ranging errors; however, they may inadvertently compromise the
accuracy of high-precision UWB ranging outcomes that satisfy the criteria for positioning.
This issue arises due to their failure to pre-segregate high-precision ranging results, a fea-
ture that distinguishes the algorithm discussed in this article. They employ a unified model
for error correction, which lacks the necessary precision to identify the TFP signal across
various error types, unlike the algorithm presented in this paper that tailors error correction
to specific error characteristics. Moreover, the CNN algorithm does not accommodate
variations in the actual first-path signal energy. Overall, the error mitigation algorithm
presented in this study outperforms existing algorithms in performance, accuracy, and
effective utilization of UWB technology’s benefits.

Figure 11. The mitigation performance of the proposed ranging mitigation strategy, denoted as RM,
and the K-NN, LS-SVM, and CNN algorithms.

5.3. Positioning Experiment

This paper conducted three dynamic experiments, denoted as DYN, to assess the
efficacy of the proposed NLOS identification algorithm and ranging error mitigation strat-
egy in enhancing positioning accuracy. DYN-1 was executed in a corridor on the fourth
floor at the CUMT, featuring a wall obstacle. The participant navigated a round-trip path
aligned with the reference trajectory, holding the tag aloft to minimize human-related
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interference. In Figure 12, the blue points indicate the original trajectory (OT), the orange
triangles denote the mitigated trajectory (MT), and the black line represents the reference
trajectory (RT). Figure 12a shows the trajectory consisting of two NLOS segments and
one LOS segment, with the MT of NLOS more closely aligning with the RT, demonstrating
the algorithm’s corrective impact on some LOS points. Despite the high initial positioning
accuracy of DYN-1, attributed to a predominance of LOS results, the algorithm introduced
in this study further reduced the positioning error from 0.0953 m to 0.0424 m (a 58.58%
improvement) and enhanced the centimeter-level positioning accuracy, as shown in the
CDF in Figure 12d, by 16.48%. This demonstrates that the algorithm presented in this
study effectively differentiated between LOS and NLOS data and further refined the LOS
ranging outcomes, thereby significantly enhancing positioning accuracy. DYN-2 involved
one anchor positioned on the second floor behind glass in the LAB, with the remaining two
anchors on the first floor. The RT was a straight line, traversed by the participant in two
round-trip paths. Figure 12b highlights the significant error mitigation, aligning closely
with the RT. Figure 12d shows the error reduction from 0.2014 m to 0.0834 m (58.59%) and
the rise in the centimeter-level error points from 33.54% to 65.30%. DYN-3, conducted
on the LAB’s first floor with a human obstacle, featured a circular RT. The participant’s
two round trips are shown in Figure 12c, where the corrected positioning closely follows
the RT, albeit with some overcorrection. The CDF in Figure 12d shows an error reduction
from 1.0329 m to 0.5237 m (49.30%) and an increase in the meter-level error from 73.03% to
94.83%. Table 6 summarizes the specific ranging errors before and after mitigation, indi-
cating an average decrease in the mean by 54.46%, STD by 54.69%, and RMSE by 52.63%.
The positioning results for DYN-2 and DYN-3 do not include scenarios where the ranging
results were both LOS. In DYN-3, given that the UWB was positioned at the human-chest
level, two out of three ranging results may represent NLOS at certain angles, resulting
in a higher proportion of NLOS outcomes compared to DYN-2, and consequently, lower
initial positioning accuracy. Nevertheless, in such scenarios, the algorithm presented in this
study enhanced meter-level positioning accuracy by over 20%, nearing 95%. The proposed
algorithm effectively differentiated between LOS and NLOS ranging results. Through
the classification and recall mechanism of ranging errors, it leveraged the capabilities of
UWB technology to preserve high-precision ranging outcomes, thereby elevating overall
ranging and positioning accuracy. This approach is applicable in both exclusive NLOS and
mixed LOS/NLOS environments. The K-NN algorithm enhanced positioning accuracy
through the establishment of preset reference points. However, its accuracy fell short of
the algorithm presented in this study, attributed to limitations in cost and the quantity of
reference points. It merely adjusted the positioning outcome to approximate proximity
to the closest reference point, instead of implementing effective corrections. As shown
in Table 6, this study’s algorithm surpassed K-NN by 16.32% in RMSE performance, and
its advantage in both the mean and STD metrics exceeded 20%. The LS-SVM and CNN
algorithms enhanced positioning accuracy by identifying channels and correcting NLOS
ranging errors. Regarding the mean accuracy metric, the algorithm discussed in this study
outperformed the LS-SVM and CNN algorithms by 17.06% and 13.90%, respectively. For
the STD and RMSE metrics, this algorithm surpassed LS-SVM by over 15% and the CNN
by more than 8%. However, due to their failure to adjust I-LOS results, their performance
in DYN-1 significantly lagged behind the algorithm presented in this study. The LSTM and
CNN algorithms effectively mitigated ranging errors and enhanced positioning accuracy.
However, unlike the algorithm discussed in this article, they directly utilized I-LOS ranging
for positioning. This approach led to significant inaccuracies due to the misclassification of
NLOS results and the utilization of low-precision LOS data, thereby making the enhance-
ment of positioning accuracy and error correction heavily reliant on the precision of channel
identification. The LSTM–Extended Kalman Filter (EKF) algorithm detected NLOS results
using LSTM and employed the EKF to refine the ranging and positioning outcomes. Across
three performance metrics, this algorithm exhibited improvements of 8.58%, 6.48%, and
6.39%, with a peak in the average accuracy improvement at 9.04%. The EKF’s smoothing
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capability enabled the use of LOS results to enhance the NLOS ranging outcomes. Con-
sequently, the enhanced positioning accuracy of LSTM-EKF in DYN-1, characterized by
a high prevalence of LOS results, significantly surpassed that of the LS-SVM, CNN, and
K-NN algorithms, closely approximating the performance of the algorithm discussed in
this study. Nonetheless, as the ratio of LOS diminished, its contribution to positioning
accuracy in DYN-2 and DYN-3 declined, and the disparity with the algorithm presented in
this paper became more pronounced. The absence of a need for ranging error correction
rendered LSTM-EKF more efficient in operation compared to the algorithm discussed in
this paper. Yet, its applicability in positioning scenarios was constrained in comparison.
For instance, an increase in the NLOS ratio within the test results led to a swift decline in
positioning accuracy. Moreover, the outright deletion of NLOS ranging outcomes neglected
the unique advantages offered by UWB signals. This observation underscores the high
accuracy and environmental adaptability of the algorithm introduced in this study, high-
lighting its minimal reliance on the proportion of LOS ranging outcomes. In comparison to
existing advanced algorithms, the algorithm presented in this study demonstrates superior
performance and enhanced environmental robustness.

(a) (b)

(c) (d)

Figure 12. The original trajectory and modified trajectory of the three groups of dynamic positioning
experiments. The obstacles are (a) walls, (b) glass, and (c) humans. The position error distributions of
the three DYN experiments are shown in (d).
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Table 6. Positioning performance of the algorithms in the three DYN experiments with different
obstacles (m).

DYN-1 DYN-2 DYN-3
Method Mean STD RMSE Mean STD RMSE Mean STD RMSE

Original 0.0953 0.1563 0.0244 0.2014 0.2166 0.0469 1.0329 1.9864 3.9425
Mitigated 0.0424 0.0774 0.0110 0.0834 0.0999 0.0260 0.5237 0.8001 1.6396

K-NN 0.0638 0.1036 0.0169 0.1418 0.1405 0.0301 0.7218 1.2940 2.2721
LS-SVM 0.0607 0.0946 0.0152 0.1225 0.1310 0.0325 0.6535 1.2264 2.1731

CNN 0.0551 0.0847 0.0139 0.1201 0.1207 0.0292 0.6287 1.0112 1.9799
LSTM-EKF [14] 0.0509 0.0907 0.0128 0.1016 0.1101 0.0285 0.6041 0.9239 1.8953

6. Conclusions

This study segments the UWB signal communication process into three stages, opti-
mizes the existing CIR features, and proposes two new CIR features with stronger robust-
ness. By pre-classifying data with typical LOS/NLOS features using a low-computational
DT, subsequent algorithms can reduce their computational load while improving accuracy
and stability. Furthermore, the integration of fuzzy logic bolsters the DT’s reliability and
optimizes the initial weights of the FNN, thereby augmenting the final accuracy. Addition-
ally, the DT threshold is adjusted based on definitive outcomes within specific constraints,
improving the efficacy and robustness of the two-step NLOS identification process. This
NLOS identification process achieves an accuracy of 95.05%, with a peak at 98.17%. Both
RecallLOS and RecallNLOS surpass 92.5%, with an average RecallLOS of 95.71% across vari-
ous scenarios, aiding in the preservation of high-precision ranging outcomes. In the UWB
ranging error mitigation strategy, the system uses CIR features to classify the ranging
errors, extract the high-precision ranging results, and formulate error-specific strategies.
The mean errors of mitigated ranging for I-NLOS and I-LOS are less than 0.6 m and 0.1 m,
respectively, ensuring that more than 90% of the data are better than 1 m. In mitigated
I-NLOS, centimeter-level data represent more than 50% of the data, whereas in I-LOS,
they exceed 94%. Coupled with the aforementioned algorithm, the system significantly
enhances dynamic positioning accuracy across multiple scenarios by an average of 54.47%
and reduces the STD and RMSE by more than 52%.
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