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A B S T R A C T
As concerns about environmental sustainability continue to grow, the demand for effective low-
carbon energy management becomes increasingly pressing. This study presents a novel framework
for multi-temporal multi-energy microgrids (MMGs), integrating advanced low-carbon technologies
to meet this imperative. The framework ensures flexible operations to navigate uncertainties stemming
from renewable energy sources (RES) and fluctuating energy demand. Facilitating multi-energy
transactions, encompassing gas and power exchanges in both markets, the model accommodates
uncertainties from RES and demand fluctuations. Objectives include reducing carbon emissions
and improving economic efficiency. To address uncertainties in the MMG system, a data-driven
distributionally robust optimization (DRO) method is employed. Day-ahead scheduling utilizes a
two-stage three-level approach, deploying the column-and-constraints generation (C&CG) algorithm,
showcasing the efficiency of DRO in minimizing energy waste and carbon emissions while remaining
cost-effective. Practicality is demonstrated through real-time intra-day scheduling using the model
predictive control (MPC) algorithm, building upon hourly day-ahead results. The effectiveness of both
strategies is evaluated using empirical data from an MMG based on the IEEE 33-bus test system. This
cost-saving framework not only achieves a significant carbon reduction of 10.6 % but also provides
reliable and adaptable solutions, effectively addressing real-world variations in renewable energy and
mitigating potential risks.

ntroduction
Background and Motivation
ounting concerns about global warming have prompted

ts in the energy sectors to reduce carbon emissions,
ecarbonization [1]. In this context, renewable energy
es (RESs) and relevant technologies have prevailed,
e wind and solar prove to be two viable alternatives
enerating electricity with reduced carbon emissions [2].
rtheless, as the penetration of RES continues to rise,
ccompanying uncertainties pose the risk of significant,
reseen challenges in effective RES dispatching. At the

time, new ways to consume energy in heating (heat
ps) and transport (electric vehicles) introduce greater
lexity. As a result, these uncertainties could create

ficant challenges in the management and operational
cts of energy systems, potentially putting the overall
bility of critical infrastructure (e.g. the power grid) at
[3].

ulti-energy systems play an important role in decar-
zation, whilst increasing energy conversion efficiency
system integration [4]. One representation of multi-
y systems is based on the energy hub (EH), where
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proficient and flexible advancement is fully exploited as a
promising and strategically sound approach. An EH acts as
a central hub for the smooth integration and efficient man-
agement of different energy demands, including electricity,
heating/cooling, and transportation. Importantly, it can flex-
ibly incorporate critical elements such as demand response,
energy storage, and the seamless exploitation of various
RESs. Such a holistic strategy not only ensures the effective
management and control of multi-energy forms/resources
but also lends itself to the development of a robust frame-
work within the domain of sustainable energy systems [5].

Whilst capable of dealing with them, multi-energy sys-
tems encounter uncertainties associated with intermittent
renewable resources, potentially impeding their ability to
maintain steady operation. In existing research, robust op-
timization (RO) is widely used for optimizing under con-
ditions of uncertainty, the main concept of which involves
establishing a set of potential outcomes for uncertain param-
eters and subsequently optimizing based on the worst out-
come within this set. However, the RO tends to be conserva-
tive as the uncertainty set includes worst-case scenarios [6].
Therefore, the development of an uncertainty optimization
model and methodology becomes crucial in providing low-
carbon multi-energy management solutions that account for
uncertain renewable power generation and load conditions
[7].

In response to these challenges, distributionally robust
optimization (DRO) emerges as a promising approach. It
combines the cost-effectiveness of stochastic optimization

a et al.: Preprint submitted to Elsevier Page 1 of 17
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<Distri-robust decarbonized scheduling with data-driven ambiguity for multi-temporal MMG>

omenclature
ronyms

Battery Storage
Controllable Generator

P Combined Heat and Power
Energy Hub
Energy Turbine
Gas Turbine

G Power to Gas
Photovoltaic
Transformer
Wind Turbine

rameters
ET energy conversion coefficient
GT energy conversion coefficient

G P2G energy conversion coefficient
TF energy conversion coefficient

dis,𝜂𝐵,ch Battery storage discharging and charging
efficiency coefficient
Power conversion coefficient of CHP
Heat conversion coefficient of CHP

𝑡𝑟𝑎
S,𝑡 Cost coefficient for the difference of day-

ahead and intra-day cost of battery storage
O2,𝑡 Cost factor for carbon emission generated by

gas purchase
O2,𝑡 Cost factor for carbon emission generated by

power purchase and CG generation
,𝑡 Gas price
,𝑡 Power transaction price
𝑡𝑟𝑎
,𝑡 Cost coefficient for the difference of day-

ahead and intra-day cost of power transac-
tion
The operation cost factor of the CG and the
energy hub
Start-stop cost of CG

𝑇𝑃
𝑡 , 𝑐𝑃𝑉 𝑃

𝑝,𝑡 Penalty cost factor for wind and solar cur-
tailment

𝑂𝐶,max,𝐸𝑆𝑂𝐶,min
𝐵 The upper limit and lower limit of the energy

that the energy storage facility can store at
time 𝑡

ax
HP, 𝐺

min
CHP The maximum and minimum output of CHP

ax
T , 𝐺min

GT The maximum and minimum output of GT
S The charging and discharging cost factor of

battery storage
𝑖𝑚
,BS The maximum charge and discharge state

transition times of energy storage
ax

G , 𝑃min
CG Maximum and minimum active power of CG

H,𝑡 Power output of the energy hub
ax

T , 𝑃min
ET The maximum and minimum output of ET

ax
2G , 𝑃min

P2G The maximum and minimum output of P2G
ax

UB, 𝐺max
𝑔 The maximum limit of power and gas trans-

action
ax

F , 𝑃min
TF The maximum and minimum output of TF

ax,ch
,BS ,𝑃min,ch

𝐵,BS Upper and lower limits of charging power
ax,dis
,BS ,𝑃min,dis

𝐵,BS Upper and lower limits of discharging power
𝑝, 𝑅𝑑𝑜𝑤𝑛 Upper and lower bounds on ramping rate
,𝑡 Start-stop cost factor
ts

𝐵BS
𝑒 Set of battery storage system

𝑈𝑤, 𝑈𝑝 The uncertainty set of wind and solar energy
Variables
Δ𝐸𝑀,𝑡,Δ𝐸BS,𝑡 The difference of day-ahead and intra-day

power transaction and battery storage at
time t

𝐶BS,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎
BS,𝑡 Day-ahead and intra-day cost of battery

storage systems
𝐶CG,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎

CG,𝑡 Day-ahead and intra-day cost of CG opera-
tion

𝐶CO2,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎
CO2,𝑡 Day-ahead and intra-day carbon cost

𝐶EH,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎
EH,𝑡 Day-ahead and intra-day operation cost of

energy hub
𝐶PV,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎

PV,𝑡 Day-ahead and intra-day cost of solar cur-
tailment

𝐶WT,𝑡, 𝐶PV,𝑡 The cost of wind and solar curtailment at
time 𝑡

𝐶WT,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎
WT,𝑡 Day-ahead and intra-day cost of wind cur-

tailment
𝐶𝐺,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎

𝐺,𝑡 Day-ahead and intra-day cost of gas pur-
chase

𝐶𝑀,𝑡, 𝐶 𝑖𝑛𝑡𝑟𝑎
𝑀,𝑡 Day-ahead and intra-day cost of power

transaction
𝐸𝑖𝑛𝑡𝑟𝑎

BS,𝑡 , 𝐸
𝑎ℎ𝑒𝑎𝑑
BS,𝑡 The intra-day and day-ahead battery storage

energy at time t
𝐸𝑆𝑂𝐶
𝐵,𝑡 The energy stored in the energy storage

device connected to node B at time 𝑡
𝐸𝑖𝑛𝑡𝑟𝑎
𝑀,𝑡 , 𝐸

𝑎ℎ𝑒𝑎𝑑
𝑀,𝑡 The intra-day and day-ahead power transac-

tion at time t
𝐺CHP,𝑡, 𝐺CHP,𝑡−1 The output of CHP at time 𝑡 and 𝑡-1
𝐺GT,𝑡, 𝐺GT,𝑡−1 The output of GT at time 𝑡 and 𝑡-1
𝐺𝑏𝑢𝑦,𝑡 Gas Purchase
𝑃 ,𝑃𝑐𝑝,𝑃𝑐𝑔 Real-time power price, carbon penalty price

of power and gas
𝑃CG,𝑡, 𝑃CG,𝑡−1 Active power output of controllable genera-

tors at time 𝑡 and 𝑡-1
𝑃 𝑖𝑛𝑡𝑟𝑎

CG,𝑡 Intra-day CG generation
𝑃ET,𝑡, 𝑃ET,𝑡−1 The output of ET at time 𝑡 and 𝑡-1
𝑃P2G,𝑡, 𝑃P2G,𝑡−1 The output of P2G at time 𝑡 and 𝑡-1
𝑃 ∗

PV,𝑡, 𝑃PV,𝑡 The predicted and real output power of solar
power at time 𝑡

𝑃SUB,𝑡 Transmission power between the maingrid
and the MMG

𝑃 𝑏𝑢𝑦
SUB,𝑡, 𝑃

𝑠𝑒𝑙𝑙
SUB,𝑡 Purchase and sale of electricity between

microgrid and distribution network
𝑃TF,𝑡, 𝑃TF,𝑡−1 The output of TF at time 𝑡 and 𝑡-1
𝑃 ∗

WT,𝑡, 𝑃WT,𝑡 The predicted and real output power of wind
power at time 𝑡

𝑃 sum,dis
𝐵,𝑡 ,𝑃 sum,ch

𝐵,𝑡 The discharging and charging power of the
battery

𝑢SUB,𝑡 The status of power transaction from mi-
crogrid to distribution network in grid-
connected operation mode

𝑢dis
𝐵,𝑡,𝑢

ch
𝐵,𝑡 Charging and discharging status of energy

storage
𝑢𝐺,𝑡, 𝑢𝐺,𝑡−1 Start-stop status of CG at time 𝑡 and 𝑡-1
𝑣𝑀,𝑡 Operation mode of micro-grid, island mode

or grid-connected mode
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<Distri-robust decarbonized scheduling with data-driven ambiguity for multi-temporal MMG>

and the conservativeness of RO, which seeks to strike
lance between minimizing energy costs and ensuring
m resilience [8]. To address the multi-energy system
uling challenges, this paper presents a novel frame-
based on multi-energy microgrid (MMG). Within this

ework, a day-ahead dispatch model employing the DRO
od is formulated, which is subsequently applied to
MG system, with dual consideration for the essential

tives of decarbonizing and cost-efficiency. To increase
ractical significance of the proposed methodology, the
-day scheduling following the day-ahead scheduling
mes is implemented.
Literature Review
t the microgrid level, the majority of existing research

arily concentrates on the functionality of individual en-
microgrids [9], [10], [11], without discussing the incor-
tion of multiple energy sources. To increase the system
ating efficiency and dispatch flexibility, [12] proposes

prehensive system-wide optimal coordinated dispatch
od for the MMG in both grid-connected and islanding
es. The objectives are to optimize the net operational
of the microgrid in both modes while adhering to the
m’s operational constraints. In [13], a general modeling
oach for the steady-state energy balance equation of
i-energy systems is presented. This approach includes
ncorporation of energy converters, energy storage, and

able energy devices. [14] constructs a multi-scenario
ation optimization model for a park integrated energy
m based on multi-energy demand response (DR), of
h the energy utilization efficiency and net system profit
improvements of 2.30% and 2,652.775$ respectively,
ared to the conventional scenario. A multi-period dis-
model using improved particle swarm optimization

O) is proposed in [15], which takes into account the
tial profit from energy storage systems, the results of

h demonstrate that the dispatch strategy successfully
rs the overall operational costs and provides improved
uling of distributed generation units in grid-connected

Gs.
o consider environmental factors, the objective of [16]
investigate the environmental economic dispatch for

-scale integrated energy systems (IESs), specifically in
ntegrated regional energy systems with coal, gas, com-

heat and power (CHP), and RES systems, taking into
unt the influence of air pollutant control technologies

R programs on the system. [17] proposes a low-carbon
ation method for microgrids with the consideration of
n emission quota trading. [18] presents an optimized
y management strategy to minimize an MMG net-
’s operational expenses. The strategy takes into account
ational constraints and carbon emissions in the decision-
ng process. Additionally, [19] proposes a framework
d at assisting aggregators in the real-time provision of
ork-secure and multi-energy services. This framework

into account the integration of green hydrogen and
ures for carbon reduction.

In the above-mentioned literature [12] to [19], the multi-
energy coordination is based on the deterministic day-ahead
operation. However, they neglect uncertainties related to
RES outputs, power loads, and transaction prices, which
limits practicality for real-world applications. Guan et al.
[20] put forward an alternate method to tackle these un-
certainties. The SO techniques are used to minimize the
power and natural gas expenses at the building level while
considering the uncertain outputs of RES and power loads.
This methodology takes into account the uncertainties, ren-
dering it more feasible for real-world implementations. Ex-
perimental outcomes demonstrate substantial cost reduc-
tions attained in energy expenses by employing integrated
scheduling and control of diverse building energy supply
sources. [21] utilizes the Latin Hypercube Sampling method
to manage uncertainties in energy carriers including power,
heat, and hydrogen. The study introduces a decentralized bi-
level SO method using the progressive hedging algorithm for
multi-agent systems in MMGs, aiming to enhance network
flexibility and improve the system’s overall performance. A
temporally-coordinated optimal operation method for micro-
grids is solved by mixed integer linear programming (MILP)
and a multi-stage stochastic operation method is proposed
to handle the uncertainties [22]. Similarly, MILP is also
applied in [23] to solve the optimal scheduling problem
for microgrids. A hybrid robust/stochastic framework is
also proposed to address high-level uncertainty. Column-
and-constraint generation (C&CG) algorithm is applied in
[24] to solve a DRO model considering the uncertainties of
renewable energy sources.

From the perspective of low-carbon performance in
power systems with uncertainties considered, authors in
[25] propose a dynamic economic dispatch model with
the assistance of the particle swarm optimization (PSO)
algorithm to solve the power dispatching problem with a
dual consideration of wind power uncertainty and carbon
emission rights in a low-carbon setting. [26] focuses on the
integrated energy system and develops a day-ahead low-
carbon two-stage dispatch model applied to a regionally
integrated energy system. Different from those at the mi-
crogrid level, this research considers purchasing electricity
from the main grid and does not involve bi-directional
transactions. This research also quantifies the impacts of
wind/PV penetration, carbon price, and scenario numbers.
1.3. Research Gap

Despite the extensive research in microgrid scheduling
and management, there is a noticeable research gap con-
cerning the development of comprehensive strategies for
low-carbon MMGs. Existing approaches lack in accurately
emulating the operations of real power distribution systems
and responding promptly to dynamic changes in energy
supply and demand, limiting their practicality. Additionally,
the uncertainty associated with renewable energies poses
a significant challenge to achieving robust carbon reduc-
tion goals, requiring precise control at shorter intervals for

a et al.: Preprint submitted to Elsevier Page 3 of 17
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<Distri-robust decarbonized scheduling with data-driven ambiguity for multi-temporal MMG>

e 1
parison among different research work on the management strategies of the MMG.
ences Energy Carriers RES Uncertainty Modelling Algorithm Timescale Carbon Trade

Power Gas Heat Hydro PV WT
[12] " " " $ $ " $ MILP hourly $

[13] " " " " " " $ MINLP hourly $

[14] " " " $ " " $ MILP hourly "

[15] " " " $ " " $ IPSO hourly $

[16] " " " $ $ " $ MILP hourly "

[17] " $ $ $ " " $ MILP hourly "

[18] " " " $ $ " $ MILP and MIQP hourly "

[19] " " " " " $ $ MPC hourly & 20s "

[20] " " " " " " Stochastic MILP hourly $

[21] " " " " " " Latin Hypercube Sampling Bi-Level Stochastic hourly $

[22] " " " $ " " Stochastic MILP hourly & 5-min $

[23] " " " $ $ " Hybrid Robust/Stochastic MILP hourly $

[24] " $ $ $ " " Data-Driven Set Based RO C&CG hourly $

[25] " $ $ $ $ " Random Sampling PSO hourly "

posed Model " " " " " " Data-Driven Set Based RO C&CG and MPC hourly & 15-min "

less integration. The optimization problem for multi-
oral scheduling in low-carbon MMG, considering un-
inties in renewable energies, is insufficiently explored.
losing this gap is pivotal for the development of robust
decarbonizing scheduling strategies for MMGs, and
study aims to contribute by addressing this research
ation. To effectively tackle this research gap, it is im-
ive to advance energy management strategies and tech-
gies. These advancements should possess the capability
amlessly integrate and harness the full potential of
able resources, ensuring both system reliability and

onmental sustainability. Hence, there exists a critical
to formulate an advanced and efficient framework for a
rehensive low-carbon scheduling approach with multi-
oral resolution. This framework will play a pivotal
in optimizing MMG operations and aligning economic
ency with environmental objectives in the context of the
ogrid.
n Table 1, we present a thorough comparison of different
rted pieces of research work on the management strate-
of microgrids, from the aspects of 1) allowed forms of
y carriers, 2) considered types of RES, 3) uncertainty

eling, 4) timescales, 5) enabled carbon trading, and 6)
ng algorithms. It can be found that so far there is little
ture published to fully consider key factors such as 1)-

Contributions of This Paper
herefore, in this paper, we propose a new decarbonizing
driven robust optimal scheduling framework for an
G that consists of wind turbines (WT), photovoltaic

cells, controllable generators (CG), battery storage
ms, and energy hubs. The objective is to minimize the
total cost over a 24-hour horizon, which includes power
as transactions, CG operational costs, battery storage

charging and discharging costs, and carbon costs. As shown
in Table 1, it is so far the most comprehensive work that
allows all key factors to be fully considered, in particular
the integrated energy forms with uncertainties, highlighting
carbon reduction requirements.

In this framework, we employ a two-step approach as
shown in Fig. 1. First, the day-ahead scheduling is formu-
lated into a DRO problem and solved by C&CG. It plans
hourly for energy dispatch considering uncertainties from
the probability distribution generated from clustered data
of renewable energies and load demand. Subsequently, in
the intra-day scheduling phase, adjustments are made to
align with the day-ahead scheduling decisions every 15
minutes solved by model predictive control (MPC), aiming
to minimize discrepancies and reduce scheduling losses.
This approach develops an innovative framework integrat-
ing advanced algorithms for multi-temporal, multi-energy
microgrid scheduling, with a specific focus on uncertainty
modeling and decarbonizing operations. This involves clus-
tering a significant amount of historical data and conducting
a detailed analysis of dispatch results across different time
scales, which distinguishes our work as a practical and
decarbonizing optimal scheduling for MMGs. The specific
contributions of this paper are summarized as follows:

1.A fully considered MMG with operational uncer-
tainty: To enhance the cost-effectiveness of grid dispatch
operations and minimize energy waste, our paper focuses
on a novel approach that rigorously addresses uncertainties
inherent in both day-ahead and real-time grid dynamics.
Specifically, our model incorporates factors such as RES
outputs and load fluctuations and aligns the MMG more
closely with complex real-world scenarios, which not only
contributes to a more reliable MMG but also significantly
improves its practical applicability.

a et al.: Preprint submitted to Elsevier Page 4 of 17
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Uncertainties
Low-Carbon 

Model

Model 

Decomposition

Data-driven 

DRO

RES, Load 

Fluctuation

K-means 

Clustering
Carbon Penalty

C&CG 

Algorithm

Day-Ahead Scheduling

Day-Intra 

Scheduling

MPC Algorithm

Figure 1: Framework of the 2-Step Approach and Research Methodology.

. A carbon penalty (CP), in consideration of the
e uncertainty: Based on considering the uncertainties
e MMG, we introduce the concept of CP. CP is cal-
ed based on carbon factors associated with different
y sources and is optimized as part of the objective

tion. Additionally, we analyze the carbon emissions and
under different carbon prices to achieve an optimal

ion for reducing total costs and carbon emissions.
. A proposed multi-temporal method with adapted
rithms: To implement the model put forth in this ar-
the advanced and efficient DRO method is employed.

tionally, the C&CG algorithm is leveraged to derive the
al solution for hourly day-ahead power grid dispatch-

In a bid to validate its real-time applicability, the intra-
dispatch results in 15-minute intervals are calculated
gh the utilization of the MPC algorithm, achieving
al intra-day scheduling.
he remainder of this paper is organized as follows. Sec-

2 presents the formulation models of components of the
G system. Section 3 illustrates the DRO mathematical
el of the MMG day-ahead scheduling problem with the
rtainty set. Section 4 introduces the 2-step scheduling
ding the C&CG algorithm for day-ahead scheduling
he MPC algorithm for intra-day scheduling. The results
merical calculations are presented in Section 5, while
on 6 concludes this paper.

odel Formulation
Configuration of the MMG
s a microgrid with multi-energy capabilities, the sys-

represented in Fig. 2 should be able to self-sustain in
ding mode or draw electricity from the main grid. The
of this system lies in its energy hubs (EH), which con-
ual energy forms of electricity and gas. The electricity

ork caters to hydrogen, electric-heating, and electrical
while the gas network attends to the hydrogen and

eating requirements. Hydrogen loads can be included
gh a power-to-gas (P2G) process. Heat loads, on the
hand, are fulfilled by an energy turbine (ET), CHP

ms, and a gas turbine (GT). Electrical loads are satisfied
gh a controllable/dispatchable generator (CG), trans-
ns with the main grid, battery storage (BS), and RES
ms. The system’s carbon footprint stems principally
three sources: the primary grid, gas network, and CGs.

2.2. Component Modeling
As this study focuses on the operation of the multi-

energy microgrid, the corresponding cost functions and con-
straints that each component needs to satisfy during the
operation of the microgrid will be introduced and modeled
separately in this section.

(1) Battery Storage
i. Cost Function
The average charging and discharging cost of battery

storage is:

𝐶BS,t =
∑

𝐵∈𝐵BS
𝑒

{𝐾BS
[

1
𝜂𝐵,dis

𝑃 sum,dis
𝐵,𝑡 + 𝜂𝐵,ch𝑃 sum,ch

𝐵,𝑡

]
}Δ𝑡 (1)

where Δt is the scheduling step.
ii. Constraints
The charging and discharging power of energy storage

need to satisfy the maximum and minimum limit constraints:

𝑢ch
𝐵,𝑡𝑃

min,ch
𝐵,BS ≤ 𝑃 sum,ch

𝐵,𝑡 ≤ 𝑢ch
𝐵,𝑡𝑃

max,ch
𝐵,BS (2)

𝑢dis
𝐵,𝑡𝑃

min,dis
𝐵,BS ≤ 𝑃 sum,dis

𝐵,𝑡 ≤ 𝑢dis
𝐵,𝑡𝑃

max,dis
𝐵,BS (3)

Logically, energy storage can only work in one of the
states of charging or discharging. Therefore, the binary vari-
ables indicating the status of charging 𝑢ch

𝐵,𝑡 and discharging
𝑢dis
𝐵,𝑡 cannot both be 1 at the same time:

𝑢ch
𝐵,𝑡 + 𝑢dis

𝐵,𝑡 ≤ 1 (4)
The number of transitions between charge and discharge

states should be less than the maximum transition numbers.

∑
𝑡

|||𝑢
dis
𝐵,𝑡 − 𝑢dis

𝐵,𝑡−1
||| ≤ 𝑁 𝑙𝑖𝑚

𝐵,BS (5)

a et al.: Preprint submitted to Elsevier Page 5 of 17
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Multi-Energy Microgrid

Energy Hub

Energy Hub Multi-Energy Microgrid

Figure 2: A Representative MMG Configuration.

he State-of-Charge (SOC) of battery storage at time 𝑡
e represented as below:
𝑆𝑂𝐶
𝐵,𝑡 = 𝐸𝑆𝑂𝐶

𝐵,𝑡−1−
1

𝜂𝐵,dis
𝑃 sum,dis
𝐵,𝑡 Δt +𝜂𝐵,ch𝑃 sum,ch

𝐵,𝑡 Δt (6)

𝐸𝑆𝑂𝐶,min
𝐵 ≤ 𝐸𝑆𝑂𝐶

𝐵,𝑡 ≤ 𝐸𝑆𝑂𝐶,max
𝐵 ,∀𝑡 ∈ 𝑇 (7)

Controllable Generation
Cost Function

he start-up and shut-down cost of CG can be written as:

𝐶𝑢𝑑 = [max{0, 𝑢𝐺,𝑡 − 𝑢𝐺,𝑡−1}𝑆𝐺,𝑡]Δ𝑡 (8)
he operation cost of a controllable generator is:
𝐶CG,𝑡 = 𝐴𝑃CG,𝑡Δt (9)

e 𝐴 is the price of CG operation, £/kWh.
Constraints

he maximum and minimum output of controllable gen-
rs can be restricted as:

𝑢𝐺,𝑡𝑃
min
CG ≤ 𝑃CG,𝑡 ≤ 𝑢𝐺,𝑡𝑃

max
CG (10)

dditionally, the controllable generators should meet the
ing constraints:

𝑃CG,𝑡 − 𝑃CG,𝑡−1 ≤ 𝑅𝑢𝑝Δt (11)
𝑃CG,𝑡−1 − 𝑃CG,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (12)

(3) Mutual Transactions
i. Cost Function
Power transaction cost between the micro-grid and dis-

tribution grid can be described as:
𝑃SUB,𝑡 = 𝑃 𝑏𝑢𝑦

SUB,𝑡 − 𝑃 𝑠𝑒𝑙𝑙
SUB,𝑡 (13)

𝐶𝑀,𝑡 = [𝜆𝑀,𝑡𝑃SUB,𝑡]Δt (14)
where 𝜆𝑀,𝑡 is the time-varying price of power transaction,
£/kWh.

And the gas purchase can be expressed as:
𝐶𝐺,𝑡 = [𝜆𝐺,𝑡𝑄𝑏𝑢𝑦,𝑡]Δt (15)

where 𝜆𝐺,𝑡 is the time-varying price of gas purchase, £/kWh.
ii. Constraints
The maximum purchase and selling of electricity at time

𝑡 should also be restrained:
0 ≤ 𝑃 𝑏𝑢𝑦

SUB,𝑡 ≤ 𝑣𝑀,𝑡𝑢SUB,𝑡𝑃max
SUB (16)

0 ≤ 𝑃 𝑠𝑒𝑙𝑙
SUB,𝑡 ≤ 𝑣𝑀,𝑡[1 − 𝑢SUB,𝑡]𝑃max

SUB (17)
The maximum purchase and selling of gas at time 𝑡

should be restricted in (18):
0 ≤ 𝐺𝑏𝑢𝑦

𝑔,𝑡 ≤ 𝐺max
𝑔 (18)

(4) Renewable Energy Generation
i. Cost Function
Wind and solar energy curtailment penalties at time 𝑡 can

be expressed as:
𝐶WT,𝑡 =

∑
𝑤∈𝑈𝑤

{𝑐𝑊 𝑇𝑃
𝑤,𝑡 [𝑃 ∗

WT,𝑡 − 𝑃WT,𝑡]}Δt (19)

a et al.: Preprint submitted to Elsevier Page 6 of 17
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𝐶PV,𝑡 =
∑
𝑝∈𝑈𝑝

{𝑐𝑃𝑉 𝑃
𝑝,𝑡 [𝑃 ∗

PV,𝑡 − 𝑃PV,𝑡]}Δt (20)

Energy Hub
Cost Function

ssuming the EH is an integrated system, the start-stop
is constant and included in 𝑆𝐺,𝑡. The operation cost of
an be expressed as a linear function:
𝐶EH,𝑡 = 𝐵𝑃EH,𝑡Δt (21)

e 𝐵 is the operational cost factor of EH equipment.
Constraints

he maximum and minimum limits of EH facilities,
h include CHP, GT, P2G, TF, and ET are defined by
tion (22) to (26):
𝐺min

CHP ≤ 𝐺CHP,𝑡 ≤ 𝐺max
CHP (22)

𝐺min
GT ≤ 𝐺GT,𝑡 ≤ 𝐺max

GT (23)
𝑃min

P2G ≤ 𝑃P2G,𝑡 ≤ 𝑃max
P2G (24)

𝑃min
TF ≤ 𝑃TF,𝑡 ≤ 𝑃max

TF (25)
𝑃min

ET ≤ 𝑃ET,𝑡 ≤ 𝑃max
ET (26)

he corresponding ramping constraints of these facilities
lso defined by equation (27) to (36):

𝐺CHP,𝑡 − 𝐺CHP,𝑡−1 ≤ 𝑅𝑢𝑝Δt (27)
𝐺GT,𝑡 − 𝐺GT,𝑡−1 ≤ 𝑅𝑢𝑝Δt (28)
𝑃P2G,𝑡 − 𝑃P2G,𝑡−1 ≤ 𝑅𝑢𝑝Δt (29)
𝑃TF,𝑡 − 𝑃TF,𝑡−1 ≤ 𝑅𝑢𝑝Δt (30)
𝑃ET,𝑡 − 𝑃ET,𝑡−1 ≤ 𝑅𝑢𝑝Δt (31)

𝐺CHP,𝑡−1 − 𝐺CHP,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (32)
𝐺GT,𝑡−1 − 𝐺GT,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (33)
𝑃P2G,𝑡−1 − 𝑃P2G,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (34)
𝑃TF,𝑡−1 − 𝑃TF,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (35)
𝑃ET,𝑡−1 − 𝑃ET,𝑡 ≤ 𝑅𝑑𝑜𝑤𝑛Δt (36)

Carbon Penalty
Cost Function

he carbon emission is mainly embedded in three parts:
ower purchase, the gas purchase, and the CG output.
carbon emissions of EH are encompassed in the gas
actions. Therefore, the CP cost can be expressed as:

𝐶CO2,𝑡 = [𝜆𝑃CO2,𝑡(𝑃
𝑏𝑢𝑦
SUB,𝑡 + 𝑃CG,𝑡) + 𝜆𝐺CO2,𝑡𝐺

𝑏𝑢𝑦
𝑔,𝑡 ]Δt

(37)

(7) Power Balance
From Figure 2, the power balance can be expressed in

general as below:

𝑃CG,𝑡 + 𝑃PV,𝑡 + 𝑃WT,𝑡 + 𝑃 dis,sum
𝐵,𝑡 + 𝑃SUB,𝑡 =

𝑃P2G,𝑡 + 𝑃TF,𝑡 + 𝑃ET,𝑡 + 𝑃 ch,sum
𝐵,𝑡 (38)

𝐺𝑏𝑢𝑦,𝑡 = 𝐺CHP,𝑡 + 𝐺GT,𝑡 (39)
𝑃LG,𝑡 = 𝜂P2G𝑃P2G,𝑡 (40)

𝑃LE,𝑡 = 𝜂TF𝑃TF,𝑡 + 𝜂𝑐𝑒𝐺CHP,𝑡 (41)
𝑃LH,𝑡 = 𝜂ET𝑃ET,𝑡 + 𝜂ch𝐺CHP,𝑡 + 𝜂GT𝐺GT,𝑡 (42)

3. Proposed Framework of Decarbonizing
Data-driven DRO Mathematical Model

3.1. Mathematical Model of Day-Ahead
Scheduling Problem

In this study, we employ a data-driven DRO approach
for day-ahead scheduling to characterize the uncertainty as-
sociated with load demand and the RES system, specifically
accounting for wind and solar power uncertainties. Utilizing
empirical data, the 𝐾-means clustering algorithm is lever-
aged to generate 𝐾 scenarios with initial probabilities.

Given that the actual distribution often deviates from the
aforementioned distribution, a nuanced approach is adopted.
Instead of solely relying on either the norm-1 or norm-inf
separately to constrain the probability distribution, we simul-
taneously consider both norms. This approach culminates
in the formation of an uncertain probability confidence set,
guided by the constraints imposed by the comprehensive
norm [27].

The overall structure of the data-driven distributionally
robust day-ahead optimal scheduling model can be suc-
cinctly formulated in a two-stage matrix representation, as
articulated in [28]. This study takes the start-stop status
as the first-stage decision variable to instruct the dispatch
scheduling, which cannot be adjusted after the uncertainties
are revealed [27]. The second-stage variables stand for the
operation decisions. The primary objective, as represented
by the equation below, entails the minimization of start-up
and shut-down costs, operational expenditures, and capacity
payment costs, while simultaneously ensuring adherence to
all equality and inequality constraints, where 𝑎𝑇 𝑥 is the start-
up and shunt-down cost, and 𝑏𝑇 𝑦𝑘 represents the operational
cost and CP.

min
𝑥∈𝑋

[𝑎𝑇 𝑥 + max
𝑝𝑘∈Ω

𝐾∑
𝑘=1

𝑝𝑘 min
𝑦𝑘∈𝑌 (𝑥,𝜉𝑘)

𝑏𝑇 𝑦𝑘] (43)

𝑠.𝑡. 𝐴𝑥 ≤ 𝑑 (44)
𝐵𝑥 = 𝑒 (45)

𝐶𝑦𝑘 ≤ 𝐷𝜉𝑘,∀ 𝑘 = 0, … , 𝐾 (46)
𝐺𝑥 +𝐻𝑦𝑘 ≤ 𝑔,∀ 𝑘 = 0, … , 𝐾 (47)

a et al.: Preprint submitted to Elsevier Page 7 of 17
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𝐽𝑥 +𝐾𝑦𝑘 = ℎ, ∀ 𝑘 = 0, … , 𝐾 (48)
Confidence Set of Day-Ahead Scheduling
Model

n the DRO day-ahead scheduling model, there is uncer-
y in the probabilities of various discrete scenarios. To
re that the probability distribution of scenarios fluctu-
within a reasonable range, the probability distributions
recast errors in the output of renewable energy sources
load demand, are defined as sets of uncertainties. The
dence set is constructed as follows [27]:

Ω =

⎧⎪⎪⎨⎪⎪⎩

{
𝑝𝑘
}
||||||||||

𝑝𝑘 ≥ 0, 𝑘 = 1,… , 𝐾∑𝐾
𝑘=1 𝑝𝑘 = 1∑𝐾

𝑘=1
|||𝑝𝑘 − 𝑝0𝑘

||| ≤ 𝜃1
max1≤𝑘≤𝐾 |||𝑝𝑘 − 𝑝0𝑘

||| ≤ 𝜃∞

⎫⎪⎪⎬⎪⎪⎭

(49)

e 𝑝0𝑘 stands for the initial probability of the scenario 𝑘.
norm-1 and norm-inf are used to constrain the confi-
e set of probability distributions.
aking both types of norm constraints into account
s extreme situations. Norm-1 limits the upper bound

e sum of the allowable deviations of all scenario proba-
distributions, while the norm-inf limits each scenario

ability distribution. Assuming there are 𝐾 scenarios
𝑀 historical samples, to construct confidence con-
ts under different values 𝜃 according to the historical

and confidence level [28]:

𝑃𝑟

{ 𝐾∑
𝑘=1

|||𝑝𝑘 − 𝑝0𝑘
||| ≤ 𝜃1

}
≥ 1 − 2𝐾𝑒−2𝑀𝜃1∕𝐾 (50)

𝑃𝑟
{

max
1≤𝑘≤𝐾

|||𝑝𝑘 − 𝑝0𝑘
||| ≤ 𝜃∞

}
≥ 1 − 2𝐾𝑒−2𝑀𝜃∞ (51)

et the right-hand side of the above formula be the
dence degree of uncertainty probability 𝛼1 and 𝛼∞ctively, the tolerance values of norm-1 and norm-inf
e DRO model can be obtained as:

𝜃1 =
𝐾
2𝑀

ln 2𝐾
1 − 𝛼1

(52)

𝜃∞ = 1
2𝑀

ln 2𝐾
1 − 𝛼∞

(53)
o linearize the absolute value constraint, a binary aux-
variable 𝑧+𝑠 ,𝑧−𝑠 is introduced in the norm-1 constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑𝐾
𝑘=1(𝑝

+
𝑘 − 𝑝−𝑘 ) ≤ 𝜃1

𝑝𝑘 = 𝑝0𝑘 + 𝑝+𝑘 − 𝑝−𝑘
𝑧+𝑘 + 𝑧−𝑘 ≤ 1
0 ≤ 𝑝+𝑘 ≤ 𝑧+𝑘 𝜃1
0 ≤ 𝑝−𝑘 ≤ 𝑧−𝑘 𝜃1

(54)

Also, introducing 𝑦+𝑠 ,𝑦−𝑠 in the norm-inf constraints:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝+𝑘 − 𝑝−𝑘 ≤ ∞
𝑝𝑘 = 𝑝0𝑘 + 𝑝+𝑘 − 𝑝−𝑘
𝑦+𝑘 + 𝑦−𝑘 ≤ 1
0 ≤ 𝑝+𝑘 ≤ 𝑦+𝑘 𝜃∞
0 ≤ 𝑝−𝑘 ≤ 𝑦−𝑘 𝜃∞

(55)

4. Mathematical Model of 2-Step Scheduling
4.1. First Step: C&CG Method for Day-Ahead

Scheduling
The C&CG method is a relatively efficient algorithm

[29]. The C&CG algorithm is applied to decompose the
original problem into the main problem (MP) and sub-
problem (SP). Iterative calculations are performed until the
difference in the optimization results between MP and SP
meets the set tolerance to solve the two-stage DRO problem.

(1) Master Problem
The MP is to minimize the optimal scheduling and CP

cost under the condition that the worst-case scenario is
known. It is a two-stage three-level optimization problem,
solved by the C&CG algorithm in this study. The results
of the MP provide the lower bound (LB) to the C&CG
algorithm [29]. Then the first-stage decision variables can
be passed to the SP for iteration calculations.

min
𝑥∈𝑋,𝑦𝑚𝑘∈𝑌 (𝑥,𝜉𝑘),𝐿

𝑎𝑇 𝑥 + 𝐿 (56)

𝐿 ≥ 𝐾∑
𝑘=1

𝑝𝑚𝑘 𝑏
𝑇 𝑦𝑚𝑘 ,∀𝑚 = 1, 2,… , 𝑛 (57)

where 𝑛 is the iteration number.
(2) Sub-Problem

Under the condition that the first-stage decision variables
are known, SP results provide the upper bound (UB) for the
C&CG algorithm.

𝐿(𝑥∗) = max
𝑝𝑘∈Ω

𝑝𝑚𝑘 min
𝑦𝑚𝑘∈𝑌 (𝑥

∗,𝜉𝑘)
𝑏𝑇 𝑦𝑚𝑘 ,∀𝑚 = 1, 2,… , 𝑛 (58)

The inner level can be reformulated into:

𝐿(𝑥∗) = max
𝑝𝑘∈Ω

𝐾∑
𝑘=1

𝑝𝑚𝑘 𝜂𝑘 (59)

𝑠.𝑡. 𝜂𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑏𝑇 𝑦𝑚𝑘 ) (60)
The inner level represents the optimal scheduling result

under scenario 𝑘, while the outer level represents the worst
expectation of each scenario. The inner model should be
solved first, and the outer model is subsequently handled
[29]. Meanwhile, the probability of each scenario under the
worst expectation can be obtained after clustering.

a et al.: Preprint submitted to Elsevier Page 8 of 17
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Second Step: MPC Method for Intra-Day
Scheduling
ased on the results of optimal 24-hour day-ahead
uling, the MPC is applied to obtain intra-day schedul-

MPC includes model prediction, rolling optimization,
eedback correction, which has excellent tracking perfor-
e and anti-interference ability [30]. The scheduling step
interval for predicting the operation decision variables
ld be done in a 15-minute interval in the 2-hour ahead
g horizon [31]. Only the first 15-minute decisions are
ted.
he start-up and shut-down status of CG should follow
ay-ahead scheduling results. Therefore, the cost of CG
stop should stay the same with the day-ahead schedul-
esults. The operational cost is:
𝐶 𝑖𝑛𝑡𝑟𝑎

CG,𝑡 = 𝐴𝑃 𝑖𝑛𝑡𝑟𝑎
CG,𝑡 Δ𝑡 (61)

dditionally, the charging and discharging power of
ry storage during intra-day scheduling should try to
w day-ahead scheduling as well. The intra-day cost of
attery storage system is:

𝐶 𝑖𝑛𝑡𝑟𝑎
BS,𝑡 =

∑
𝐵∈𝐵BS

𝑒

{𝐾BS,𝑖
[

1
𝜂𝐵,dis

𝑃 sum,dis
𝐵,𝑡 + 𝜂𝐵,ch𝑃 sum,ch

𝐵,𝑡

]

+ 𝜆𝑖𝑛𝑡𝑟𝑎BS Δ𝐸BS,𝑡}Δ𝑡 (62)

𝑠.𝑡.Δ𝐸BS,𝑡 ≥ 𝐸𝑖𝑛𝑡𝑟𝑎
BS,𝑡 − 𝐸𝑎ℎ𝑒𝑎𝑑

BS,𝑡 (63)
Δ𝐸BS,𝑡 ≥ −(𝐸𝑖𝑛𝑡𝑟𝑎

BS,𝑡 − 𝐸𝑎ℎ𝑒𝑎𝑑
BS,𝑡 ) (64)

e 𝜆𝑖𝑛𝑡𝑟𝑎BS is the cost coefficient for the difference between
head and intra-day cost of battery storage.
imilar to battery storage, the intra-day power transac-
can be written as:
𝐶 𝑖𝑛𝑡𝑟𝑎
𝑀,𝑡 = [𝜆𝑀,𝑡𝑃SUB,𝑡 + 𝜆𝑖𝑛𝑡𝑟𝑎𝑀,𝑡 Δ𝐸𝑀,𝑡]Δ𝑡 (65)

𝑠.𝑡.Δ𝐸𝑀,𝑡 ≥ 𝐸𝑖𝑛𝑡𝑟𝑎
𝑀,𝑡 − 𝐸𝑎ℎ𝑒𝑎𝑑

𝑀,𝑡 (66)
Δ𝐸𝑀,𝑡 ≥ −(𝐸𝑖𝑛𝑡𝑟𝑎

𝑀,𝑡 − 𝐸𝑎ℎ𝑒𝑎𝑑
𝑀,𝑡 ) (67)

e 𝜆𝑖𝑛𝑡𝑟𝑎𝐸,𝑡 is the cost coefficient for the residual of mutual
r transaction day-ahead and intra-day cost.
he flow chart for day-ahead and intra-day scheduling

lems is shown in Figure 3. The objective function of
-day scheduling is:

𝑚𝑖𝑛
𝑇∑
𝑡=1

(𝐶 𝑖𝑛𝑡𝑟𝑎
CG,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎

EH,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎
𝑀,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎

BS,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎
𝐺,𝑡

+ 𝐶 𝑖𝑛𝑡𝑟𝑎
CO2,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎

WT,𝑡 + 𝐶 𝑖𝑛𝑡𝑟𝑎
PV,𝑡 ) (68)

e 𝐶 𝑖𝑛𝑡𝑟𝑎
WT,𝑡 and 𝐶 𝑖𝑛𝑡𝑟𝑎

PV,𝑡 stand for the curtailment penalty of
and solar energy.

5. Case Study
The proposed method is tested on an MMG, which

is structured based on the IEEE 33-bus radial distribution
system [32]. Fig. 4 consists of 33 load buses, 2 battery
storage systems, 2 controllable generators, 3 wind turbines,
3 photovoltaic generators, and 2 energy hubs, connected
to the main grid and the gas network for power and gas
transactions. The inner structure of the energy hub is shown
in Fig. 5.

The power ratings of CG, WT, and PV are 0.5 MW,
0.8 MW, and 0.8 MW respectively, while the system load-
rated active power is 3.715 MW [33]. The electricity (Elect),
hydrogen (Hydro), and heat load (Heat) of EH are 0.1 MW,
0.05 MW, and 0.05 MW at node 22 and node 33. The ramp-
up and down rates are set in Table 4 and the power ratings
of generation and load can be seen in Table 2.

Given the pronounced time delays and substantial ther-
mal losses inherent in long-distance thermal transmission
[34], [35], this study adopts a strategy of localized thermal
energy supply ignoring the losses. The substation voltage is
12.66 kV and voltage limits Δ𝑉max BUS are set to be ±5% of
the nominal level [32], [36].

To exemplify the feasibility of our proposed model.
We employ a linearized DistFlow model [37] to attain the
optimal voltage profile for the reconstructed IEEE 33-bus
MMG by minimizing generation cost while adhering to
network constraints Eq. (70) to (73). The resulting optimal
voltage profile is visually depicted in Figs. 6, providing a
comprehensive illustration of the feasibility and practical
application of our devised approach in the realm of electric
power systems.

min
∑
𝑡∈𝑇

𝐶𝑡 (69)

𝑃 𝑖,𝑡
CG + 𝑃 𝑖,𝑡

PV + 𝑃 𝑖,𝑡
WT + 𝑃 dis,sum

𝐵,𝑖,𝑡 + 𝑃SUB𝑖,𝑡 =

𝑃 𝑖,𝑡
P2G + 𝑃 𝑖,𝑡

TF + 𝑃 𝑖,𝑡
ET + 𝑃 ch,sum

𝐵,𝑖,𝑡 (70)
𝑉𝑖+1,𝑡 = 𝑉𝑖,𝑡 − (𝑟line

𝑖𝑗 𝑃 line
𝑖𝑗,𝑡 + 𝑥line

𝑖𝑗 𝑄line
𝑖𝑗,𝑡 )∕𝑉0 (71)

𝑉 𝑖 ≤ 𝑉𝑖,𝑡 ≤ 𝑉 𝑖 ∀𝑖 ∈ 𝑁 (72)
𝑃 line
𝑖𝑗 ≤ 𝑃 line

𝑖𝑗,𝑡 ≤ 𝑃
line
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 (73)

Among these, 𝐶𝑡 represents the generation cost at time
𝑡, while Eq. (70) defines the power balance at node 𝑖 during
time 𝑡. The parameters 𝑟line

𝑖𝑗 and 𝑥line
𝑖𝑗 signify the resistance

and reactance of branch 𝑖−𝑗. The variables 𝑉 𝑖 and 𝑉 𝑖 denote
the lower and upper limits of the voltage magnitude at node
𝑖, respectively. Here, 𝑉0 represents the reference voltage. The
terms 𝑃 line

𝑖𝑗,𝑡 and 𝑄line
𝑖𝑗,𝑡 correspond to the active power and

reactive power of branch 𝑖− 𝑗. The quantities 𝑃 line
𝑖𝑗 and 𝑃

line
𝑖𝑗indicate the lower and upper limits of the active power flow

on edge 𝑖− 𝑗, respectively. Additionally, 𝑇 represents the set
of hours. 𝑁 denotes the set of all nodes in the power system,
and 𝐸 represents the set of all edges in the power system.

a et al.: Preprint submitted to Elsevier Page 9 of 17
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Norm Constraints on the Uncertain 
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Figure 3: Flow Chart of Day-ahead and Intra-day Scheduling.
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Figure 4: 33-Bus MMG System.

e 2
ration and Load Power Ratings

WT PV CG Elect Hydro Heat
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DRO Uncertainty Modelling and Settings
t the day-ahead scheduling stage, 24-hour data of 365

arios of wind speed and solar intensity are collected, as

Power

Gas

Electrical 

Load

P2G
Hydrogen 

Load

ET

CHP

GT

Heat 

Load

Electricity Flow Gas FlowHydrogen Flow Heat Flow

Figure 5: Internal Configuration of an EH.

well as load demand. The 𝐾-means method is subsequently
employed to cluster 10 representative scenarios. The selec-
tion of the clustering center number 𝐾 is assessed using the
silhouette coefficient, thereby reinforcing the robustness of
our approach. The silhouette coefficient for a given sample
is calculated as (b - a)/max(a, b), where ’a’ represents the
average distance from the sample to other points within

a et al.: Preprint submitted to Elsevier Page 10 of 17
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Figure 6: Bus Voltage Variation Over 24 Hours.

ame cluster, and ’b’ denotes the average distance to
ts in the nearest neighboring cluster [38]. A silhouette
cient nearing 1 indicates precise sample clustering,
eas proximity to -1 suggests a higher likelihood of
les being inaccurately assigned to the wrong cluster.
houette coefficient close to 0 signifies that samples are
ioned on the boundary of clusters. For our model with

10, the computed average silhouette coefficient is
67, which reflects the effectiveness of our approach.
7 (a) and (b) show the wind and solar power of the 10

ering scenarios. The initial possibility of each scenario
nerated as shown in Table 3. The confidence levels for
rtain probabilities are defined as 𝛼1 = 0.5 and 𝛼∞ =
he power price for bilateral transactions between the
grid and the MMG in the test system, denoted as 𝑃 , are
n in Fig 8. The prices of carbon emissions embedded
e generation of power and gas are defaulted as 0.35
0.21 times the power transaction price separately. The
rice is 0.8 times the power price [39]. Moreover, the

ation price of a controllable generator is 0.1£/kWh,
e the charging and discharging price of battery storage
05£/kWh. The operation cost of the EH is 0.1£/kWh
he start-stop cost is £1000. Details of these parameter
gs are shown in Table 4.
he predicted total renewable energy output can be seen
g. 9 (a). At 11-14h, the output power of the PV keeps
asing and reaches the peak value of about 1600 kW at
nd 14h. However, wind power output stays about 200-
kW all day and reaches peak values at around 8h and
The hydrogen, heat, and electricity loads of the energy
re shown in Fig. 9 (b). The load of the energy hub keeps

          

        

 

  

   

   

   

   

   

   

   

   

 
 
 
 
  
  

 
 

                    

         

         

(a) Wind Power Scenarios with Possibility

          

        

 

  

   

   

   

   

   

   

   

   

 
 
 
 
  
  

 
 

                    

         

         

 
  

   

  

   

 
 
  
 
  
 
  
 
 
 
 
  
  
 
 

  

   

         

   

       

   

  
 

  

(b) Solar Power Scenarios with Possibility

Figure 7: 10 Clustered Scenarios of RES.

Table 4
Setting of Case Study Parameters

Variable £/kWh Variable kW Variable Value

𝐶 𝑖𝑛𝑡𝑟𝑎
𝑊 𝑇 ,𝑡 0.1 𝑃min/max

𝐵,BS 0/80 𝑆𝐺,𝑡 £1000
𝐶 𝑖𝑛𝑡𝑟𝑎

𝑃𝑉 ,𝑡 0.1 𝑅𝑢𝑝∕𝑅𝑑𝑜𝑤𝑛 80/80 𝜂P2G 0.6
𝐾BS 0.005 𝑃min/max

CG 0/300 𝜂TF 0.95
𝐴 0.1 𝑃min/max

P2G 0/300 𝜂ET 0.7
𝐵 0.1 𝑃min/max

TF,ET 0/200 𝜂GB 0.7
𝜆𝑖𝑛𝑡𝑟𝑎𝐵𝑆 0.1 𝐺min/max

CHP,GB 0/200 𝜂𝑐𝑒 0.4
𝜆𝑖𝑛𝑡𝑟𝑎𝑀,𝑡 0.1 𝐸𝑆𝑂𝐶,min/max

𝐵 200/1000 𝜂𝑐ℎ 0.45

a et al.: Preprint submitted to Elsevier Page 11 of 17
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Figure 8: Electricity Price Setting (𝑃 ).

g from 6h and reaches its peak value of about 800 kW
ound 17h, then decreases steadily to 250-300 kW. The
nodal load in the test system is depicted in Fig. 9 (c). It
vious that there are two peaks at around 11h and 21h,
h are both about 2250kW.
Day-Ahead Results and Discussion

n the day-ahead operation, initial worst-case expecta-
are predicated on ten representative scenarios with

sponding probabilities, thereby setting the groundwork
he first iterative application of C&CG to day-ahead
ization. The optimal scheduling, depicted in Fig. 10,
nstrates strategic energy management across different

s of the day. During peak load periods, around 9h and
controllable generators exhibit maximum output, nearly
W, ensuring sufficient power supply. Concurrently, the
ogrid draws electricity from the primary grid during off-
hours, namely between 1-10h and 15-24h, correlating
a relatively high level of carbon emissions.
s Fig. 10 shows, around 9h and 21h, the total output
ntrollable generators reaches the peak value of about
W, providing enough power during the period when
oad reaches its peak value. Also, during 1-10h and 15-
the microgrid draws electricity from the main grid. At
ame time, the amount of carbon emitted is relatively
during the day accordingly. Conversely, the microgrid
electricity to the main grid over 11-15h corresponding
e period that the RES generates the maximum power.
equently, the overall carbon emissions reach the valley
because of the high output of the RES.
onversely, the microgrid exports power back to the
grid from 11-15h, which is the period of peak RES pro-
on. This results in a significant dip in carbon emissions
to the substantial RES output. Meanwhile, the battery
ge system displays two significant charging peaks at
nd 8h and 20h, which are associated with the times

the CG is operating at its highest capacity and the
ogrid purchases a considerable amount of electricity
the main grid. However, the battery discharges during

h and 15-24h, in line with the periods of decreased RES
ut. This behavior demonstrates the critical role of the
ry system in supplementing the CG during high load

demands, ensuring a well-balanced and efficient microgrid
operation.
5.3. Result Comparison with RO/SO Methods

To showcase the advantages of the DRO approach, it
is essential to draw comparisons with both RO and SO
methods. In this context, we consider the worst-case scenario
outcome as the optimal scheduling result for RO, while for
SO, we obtain the optimal scheduling by approximating a
normal distribution for the probability distribution in the
clustered 10 typical scenarios. This comparative analysis
serves as a means to highlight the advantages of the DRO
approach in effectively addressing uncertainties inherent in
optimization problems.

In Fig. 11 (a) and (b), we present the optimal scheduling
results for RO and SO. The trends among the three methods
are observed to be similar, yet notable differences persist.
Specifically, the overall CG output under RO is the lowest,
amounting to 11820 KWh, while its power purchase is
the highest at 14864.71 KWh. In contrast, the overall CG
output under SO is the highest at 12185.49 KWh, and the
corresponding power purchase is the lowest at 14499.25
KWh.

This indicates that the MMG produces less electricity
and relies more on power purchases from the main grid under
RO, whereas it produces more and purchases less under SO.
As DRO results lie between RO and SO, it implies that DRO
achieves greater savings than RO while adopting a more
conservative approach than SO. To enhance the clarity of the
advantages of DRO, we have conducted a quantified cost and
carbon emissions comparison of RO and SO in Table 5. The
results show that RO yields the highest cost, while SO incurs
the lowest expenses. Meanwhile, DRO falls between RO
and SO in terms of cost implications, further signifying that
DRO strikes a balance between the conservative attributes
of RO and the economic efficiency associated with SO.

Table 5
Result Comparison of Solving Methods

Methods Cost with CP (£) Carbon Emissions (kg)
RO 6405.97 21981.73
DRO 6279.81 22053.65
SO 6023.19 22221.65

5.4. Effects of Employing EH
To illustrate the advantages of employing EH, generation

is bifurcated to cater to distinct loads, as highlighted in [40].
In this case, the CHP unit is partitioned into two segments.
Electricity and heat loads are independently provided by gas-
fired power plants and boilers with higher energy conversion
efficiencies, which are 0.53 and 0.8 as mentioned in [40].
The internal configuration of the EH system is modified, as
depicted in Fig. 12. It is assumed that the operational costs
of the CHP unit are equivalent to those of the power plant
and boiler, with the gas price set at 0.8 times the power
transaction price.

a et al.: Preprint submitted to Elsevier Page 12 of 17
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a) RES Power Day-ahead Prediction

 

   

   

   

   

    

    

    

    

    

                                       

 
 
 
  
  
 
 
 

        

    

 

   

    

    

    

    

                                       

 
 
  
  
 
 
 

        

 

   

   

   

   

   

   

   

   

   

                                       

 
 
 
  
  
 
 
 

        
                                                

(b) EH Load Day-ahead Prediction

 

   

   

   

   

    

    

    

    

    

                                       

 
 
 
  
  
 
 
 

        

    

 

   

    

    

    

    

                                      

 
 
  
  
 
 
 

        

(c) Total Nodal Load Day-ahead Prediction

Figure 9: Day-Ahead Prediction Results.

     

    

 

   

    

    

    

   

   

 

   

   

   

   

                                        
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                                     

                             

Figure 10: Day-Ahead DRO Scheduling Results.

he presented findings, as delineated in Table 6, dis-
ly manifest a consequential increase in both total cost
carbon emissions when the CHP system is omitted
the energy framework. Specifically, the absence of
leads to a significant rise of £62 in total costs and an

ase of 950 kg in carbon emissions, notwithstanding the
that the power plant and boiler exhibit higher energy
ersion efficiencies compared to the CHP. This observed
omenon underscores the capacity of CHP to capitalize
sidual energy, converting it into a usable form, thereby

tantially enhancing overall energy utilization within the
r system [41]. In a broader context, the incorporation
P emerges as a potent driver for expediting the critical

avor of decarbonization.
e 6
and Carbon Impacts of CHP

cts of CHP No CHP With CHP
(£) 6341.58 6279.80
on Emissions (kg) 23002.60 22053.65

Impacts of Carbon Penalty
rom Fig. 13 (a), the carbon emissions decrease signif-
ly when considering the CP between 10-18h (hours 10
), a period characterized by relatively high load demand
H in Fig. 9 (b). That is because the operator prefers

to use cleaner energy sources like wind and solar power,
which can be stored in a battery, rather than using energy
sources that produce more carbon emissions to meet the
electricity and heat demands. Therefore, the battery in Fig.
13 (c) would store the excess power instead of selling it to
the main grid, which can be seen in Fig. 13 (d). Accordingly,
the gas purchase in Fig. 13 (b) goes down slightly because
the EH prefers cleaner energies to supply the electricity and
heat loads. Meanwhile, the output of controllable generators
in Fig. 13 (e) decreases greatly even though the demand is
high during that time.

To represent the effects of CP , Table 7 is shown, where
with CP, the total carbon emissions of one day are reduced
by 2.6t while the day cost increases by £1560. Overall, it
underscores the significant potential of CP in facilitating
substantial reductions in carbon emissions.
Table 7
Cost and Carbon Impacts of CP.

Day-Ahead Results Cost (£) Carbon Emissions (kg)
No CP 4719.24 24676.633
With CP 6279.80 22053.653

In addition, it is discernible that alterations in carbon
pricing have contrasting effects on both the total cost and
carbon emissions. To investigate the effects of carbon pric-
ing, we have introduced variations in carbon prices based on
multiples of 𝑃 , leading to distinct outcomes. Table 8 shows
the embedded carbon prices for both power and gas gener-
ation, alongside the ensuing optimal scheduling costs. This
analysis contributes to a more comprehensive understanding
of the dynamics associated with carbon pricing within the
context of our study, by employing the random sampling
methodology [42].

The results among five cases clearly show that the total
cost rises with increasing carbon price in Table 8. In order
to comprehensively assess the effects of varying carbon
prices on additional cost factors, a broader spectrum of data
comparisons is required. Fig. 14 provides an illustrative
representation of the trends in total carbon emissions, power
transactions, CG output, gas purchases, and battery storage
across multiple scenarios over a full day. This analysis

a et al.: Preprint submitted to Elsevier Page 13 of 17
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(a) Robust Optimal Scheduling Results

     

    

 

   

    

    

    

     

    

 

   

    

    

    

                                        
  
 
 
 
  
 
  
  
 
 
  
  
 
 

 
 
 
  
  
 
 
 

        

                                     

                             

     

    

 

   

    

    

    

     

    

 

   

    

    

    

                                                              
  
 
 
 
  
 
  
  
 
 
  
 
 
 

 
 
 
  
  
 
 
 

              

                                     

                                

     

    

 

   

    

    

    

     

    

 

   

    

    

    

                                        
  
 
 
 
  
 
  
  
 
 
  
  
 
 

 
 
 
  
  
 
 
 

        

                                     

                             

     

    

 

   

    

    

    

     

    

 

   

    

    

                                       

 
  
 
 
 
  
 
  
  
 
 
  
  
 
 

 
 
 
  
  
 
 
 

        

                                     

                             

(b) Stochastic Optimal Scheduling Results

Figure 11: Robust and Stochastic Scheduling Results.
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igure 12: Internal Configuration of EH without CHP.

e 8
on Penalty of Power and Gas under Different Cases

Case1 Case2 Case3 Case4 Case5
0.21 0.28 0.35 0.42 0.49
0.07 0.14 0.21 0.28 0.35

(£) 5615.96 5952.15 6279.80 6603.41 6911.46

ibutes to a more comprehensive understanding of the
mics associated with carbon pricing within the context
is study.
n Fig. 14, the observed slight increase in power transac-
is not indicative of the microgrid procuring more elec-

y from the main grid; rather, it results from a reduction
wer sold by the microgrid to the main grid, enabling
energy storage for self-consumption. Consequently,

verall volume of power transactions slightly increases.
ersely, there is a general decline in carbon emissions,
urchases, and CG output. Additionally, the SOC of the
ry diminishes, as it needs to discharge energy to meet
revailing load demands.
nterestingly, the carbon emission stays the same in
s 1 and 2 as well as Cases 4 and 5 even though the

total costs of Cases 2 and 5 are higher than those of Cases
1 and 4. And the same phenomenon happens with power
transactions, gas purchases, and CG output. The reason is
that the total load demand is unchanged among these cases.
Moreover, the CP cost may account for less weight than other
costs. It can be concluded that Case 4 is the overall optimal
carbon price setting that achieves the lowest carbon emission
with less cost than Case 5.

In [26], the carbon price stays the same over the whole
day. To analyze the impact of time-varying versus constant
carbon pricing, a comparison is made using the results from
Case 4, as previously discussed, where the CP price for
power and gas stands at 0.42 and 0.28 times of the transac-
tion price, respectively. The average daily prices for power
and gas, which amount to £0.0520 and £0.0347, respectively,
are considered. Table 9 reveals that the application of time-
varying carbon pricing yields lower carbon emissions at the
expense of higher costs compared to a constant carbon price
in this case study. This analysis offers valuable insights that
can aid utility companies in devising strategies tailored to
specific requirements and objectives.

Table 9
Comparison between Time-Varying and Constant Carbon
Prices.
Carbon Price Cost (£) Carbon Emissions (kg)
Time-Varying 6603.41 21751.75
Constant 6551.68 21766.15

5.6. Intra-Day Results and Discussions
To illustrate the feasibility of real-time intra-day schedul-

ing, the intra-day predictions and results are discussed in
this section. The comparison of day-ahead and intra-day
predictions for solar and wind energy as well as the total
load can be seen in Fig. 15. (a) and (b) represent the forecasts
for PV and WT output, respectively, while (c) indicate the
load predictions. It is evident that there are observable minor
differences between intra-day and day-ahead predictions.
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(a) Day-Ahead Carbon Emissions

 

   

   

   

   

    

    

    

    

                                       

 
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                 

 

   

   

   

   

   

   

                                       

 
  
  
 
  
 
  
  
  

 
 

        

                 

(b) Day-Ahead Gas Purchase

 

   

   

   

   

    

    

    

    

                                       

 
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                 

 

   

   

   

   

   

   

                                       

 
  
  
 
  
 
  
  
  

 
 

        

                 

 

   

   

   

   

    

    

    

    

                                       

 
  
  
  
  
  
  
 
  
  

 
 

        

                 

(c) Day-Ahead Battery Storage

 

   

   

   

   

    

    

    

    

                                       

 
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                 

 

   

   

   

   

   

   

                                       

 
  
  
 
  
 
  
  
  

 
 

        

                 

 

   

   

   

   

    

    

    

    

                                       

 
  
  
  
  
  
  
 
  
  

 
 

        

                 

     

     

     

    

 

   

    

    

                   

 
 
 
  
  
  
 
  
  
  
 
  
 
 
 

        

                 

(d) Day-Ahead Power Transaction

 

   

   

   

   

    

    

    

    

                                       
 
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                 

 

   

   

   

   

   

   

                                       
 
  
  
 
  
 
  
  
  

 
 

        

                 

 

   

   

   

   

    

    

    

    

                                       
 
  
  
  
  
  
  
 
  
  

 
 

        

                 

     

     

     

    

 

   

    

    

                   

 
 
 
  
  
  
 
  
  
  
 
  
 
 
 

        

                 

 

   

   

   

   

    

                                       
 
 
  
 
  
 
  
  

 
 

        

                 

(e) Day-Ahead CG Output

Figure 13: Day-Ahead Scheduling Results Comparison Under Conditions With And Without Carbon Penalty.

 

  

  

  

  

  

  

  

  

                                       

        

                 

 

 

 

 

 

 

 

                                       

        

                 

 

  

  

  

  

  

  

  

  

                                       

        

                 

  

  

  

  

 

  

   

   

                   

        

                 

 

  

  

  

  

  

                                       

        

                 

     

     

     

     

     

     

     

 

    

     

     

     

     

     

     

 
  
 
 
 
  
 
  
  
 
 
  
 
 
 

     

                                        

                          

     

     

     

     

     

     

     

 

    

     

     

     

     

     

     

 
  
 
 
 
  
 
  
  
 
 
  
 
 
 

     

                                        

                          

     

     

     

     

     

 

    

     

     

     

     

     

     

 
  
 
 
 
  
 
  
  
 
 
  
 
 
 

     

                                        

                          

Figure 14: Carbon Penalty Impacts over 5 Cases.

intra-day outputs of renewable energies are slightly
er than day-ahead predictions at around 9h and 18h,
e intra-day load predictions generally show a slightly
r magnitude compared to day-ahead predictions around
nd 21h. This reflects the robustness of the day-ahead
uling.
he optimal intra-day scheduling is shown in Fig. ??.

intra-day results should ideally closely follow the day-
d decision. As seen in the figure, the overall trends of
-day and day-ahead scheduling are generally consistent.
ever, there are some moments where slight differences
due to variations in day-ahead and intra-day renewable
y and load forecasts. During the low RES and high load
nd period around 9h and 21h mentioned in Section 5.2,
tility procures more gas to accommodate the elevated
load. Given that the CP price is lower than the power
action price, the utility’s inclination is to sell surplus
r to the main grid for higher overall revenue, despite
ssociated increase in carbon emissions. In general, the

intra-day scheduling effectively aligns with the preceding
scheduling decisions. With a shorter time scale and swift
response, it can adeptly accommodate dynamic changes in
natural and human-induced uncertainties.

When considering the CP for intra-day scheduling, the
total cost of intra-day scheduling is £6964.36, while the
intra-day cost without CP is £5359.72. Additionally, the
carbon emissions have been reduced by over 1100 kg. Both
cost and carbon emissions data for intra-day scheduling
are presented in Table 10. This observation underscores
the pronounced impact of decarbonizing strategies once
again. From the results of both day-ahead and intraday
scheduling, this multi-timescale scheduling method provides
a decarbonizing and robust optimized scheduling solution
for MMGs.
Table 10
Intra-day Carbon Penalty Impact.

Intra-day Results Cost (£) Carbon Emissions (kg)
No Carbon Penalty 5359.72 22033.13
With Carbon Penalty 6964.36 20136.56

6. Conclusion
This paper introduces a novel operational framework

for MMG that emphasizes low-carbon sustainability and
addresses uncertainties in solar and wind energy gener-
ation, along with demand fluctuations. The framework’s
primary objective is to optimize decarbonization by concur-
rently minimizing operational costs and mitigating carbon
penalty expenses. To address this optimization challenge,
we propose a unique multi-temporal approach grounded
in data-driven DRO. Our key aim is to create an hourly

a et al.: Preprint submitted to Elsevier Page 15 of 17
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(a) PV Output Prediction

          

        

 

  

   

   

   

   

   

   

   

   

 
 
 
 
  
  

 
 

                    

         

         

 
  

   

  

   

 
 
  
 
  
 
  
 
 
 
 
  
  
 
 

  

   

         

   

       

   

  
 

  

(b) WT Output Prediction

          

        

 

  

   

   

   

   

   

   

   

   

 
 
 
 
  
  

 
 

                    

         

         

 
  

   

   

 
 
  
 
  
 
  
 
 
 
 
  
  
 
 

  

   

         

   

       

   

  
 

  

(c) Total Load Prediction

Figure 15: Comparison between Day-ahead and Intra-day Power and Load Prediction.

     

    

 

   

    

    

    

   

   

 

   

   

   

   

                                        
  
 
 
 
  
 
  
  
 
 
  
  
 
 

        

                                     

                             

     

    

 

   

    

    

    

     

    

 

   

    

    

    

                                                              
  
 
 
 
  
 
  
  
 
 
  
 
 
 

              

                                     

                                

Figure 16: Intra-day Optimal Scheduling Results.

head optimal scheduling framework that seamlessly
rates considerations of economic efficiency and robust-
within the context of decarbonization. Furthermore,
emonstrate the practicality of real-time dispatch in 15-
te intervals by presenting intra-day operations within
ase study. To effectively confront the challenges posed
gnificant uncertainties, we adopt a comprehensive ap-
ch. This includes the utilization of clustering techniques
rive representative scenarios from empirical data on
able energies and load demand, all while accounting
e ambiguity set within the probability distribution.
alidation of this model and framework was conducted
gh testing on the IEEE 33-bus distribution network,
which several key findings have emerged: 1) Within

ramework of the multi-energy microgrid featuring CHP
ology, a commendable reduction of 9.5t in carbon

sions is observed, coupled with a lower cost saving
nting to £61.78. 2) Notably, under the CP condition,
nificant reduction in carbon emissions, amounting to

, has been attained. 3) The alignment between intra-
5-minute scheduling and day-ahead hourly scheduling

monstrated, addressing the stochastic nature of renew-
energy sources at various stages through multi-temporal
uling approaches which enhances the integration of
able energy and leads to carbon reduction.

In conclusion, our study uses advanced methods to ad-
dress uncertainties in the MMG, with a focus on reducing
carbon emissions and energy consumption. Key contribu-
tions include the effective use of data-driven DRO for im-
proved energy utilization in the microgrid. The optimiza-
tion framework highlights the efficacy of carbon penalty
pricing mechanisms, and the proposed approach considers
multi-temporal uncertainties, reducing operational costs and
enhancing MMG reliability. Overall, our study provides a
practical framework for achieving low-carbon and energy-
saving outcomes in microgrid management. In future re-
search endeavors, it is essential to explore improvements
that address the dynamic challenges inherent in integrating
renewable energy and managing power grids. This involves a
thorough consideration of intricate details within the power
grid infrastructure to enhance overall system efficiency and
reliability.
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