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Data-driven forecasting techniques have been widely used for building load forecasting due to their accu-
racy and wide availability of operational data. Recent advances have been underpinned by the increased
capability of machine learning (ML) algorithms; however, most studies only tested ML techniques on a
single or a small number of buildings over short periods, lacking reliable tests. Moreover, few studies
focused on the effects of characteristics of building load profiles on forecast accuracy, lacking the inter-
pretation of ML-based prediction results. In this study, we investigate the impacts of building load dis-
persion level on its best load forecasting accuracy, which is obtained by comparing the forecasting
performances of 11 prediction models over 9 weeks for 56 British non-domestic buildings. We find that
conventional shallowMLmodels still outperform the increasingly popular deep learning models for time-
series load forecasting, and ensemble learning can help improve forecast accuracy by integrating diverse
individual models. We demonstrate that each building’s best forecasting performance is largely influ-
enced by the load dispersion level. In practice, the proposed dispersion metrics are recommended to
quantify load dispersion levels before model development. For a building with a low dispersion level,
the simple persistence model has satisfactory performance and could be directly used for design, control,
and fault diagnosis of building energy systems for energy efficiency and energy flexibility.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Building operations and construction account for 35 % of total
final energy consumption and 38 % of total energy-related carbon
dioxide (CO2) emissions worldwide in 2019 [1]. Electricity con-
sumption in building operations is responsible for nearly 55 % of
global electricity consumption [2] and 59 % of electricity consump-
tion in the UK [3]. To reduce energy consumption and CO2 emis-
sions, energy efficiency measures are needed for buildings
throughout all phases, from design, through construction and oper-
ations to maintenance. Accurate building load forecasting is essen-
tial to support decisions that impact energy efficiency, including
design [4], management & control [5,6], and fault detection & diag-
nosis (FDD) [7]. It can also assist in power management by improv-
ing understanding of the balance between demand and supply to
improve the power reliability [8,9].

Existing approaches for building load forecasting can be classi-
fied into three categories: physics-based (white-box), purely data-
driven (black-box), and hybrid (grey-box), i.e., partially data-driven
approaches [6]. The development of physics-based models requires
extensive domain expertise and in-depth understanding of build-
ing thermal dynamics and building energy systems. Detailed infor-
mation about the building to be studied is needed for model inputs,
such as thermophysical and geometric parameters of building
envelopes, which are difficult to obtain even for newly constructed
buildings [5]. Physics-based modelling becomes more labour-
intensive, computationally inefficient, and time-consuming when
the scale and complexity of buildings increase [10]. With the wide
availability of operational data in today’s buildings, data-driven
modelling approaches, especially black-box models, have attracted
increasing research interests in the field of load forecasting for
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buildings [7]. Two major advantages of black-box models are their
simplicity and ease of automation. In particular, the process of
black-box modelling doesn’t require any physical building infor-
mation. Instead, they use statistical tools and ML techniques to
produce predictions based on historical operational data, which
can be fully automated and readily implemented for engineering
use [11].

In addition to the increased data availability in buildings, the
rise of artificial intelligence and machine learning (ML) techniques
is another driving force behind the success of the data-driven
building load forecasting [7,12,13]. In response, a considerable
amount of literature has been published onML-based building load
forecasting over the last decade. In general, the ML techniques for
building load forecasting can be categorized into conventional ML
techniques [7,10,12] and deep learning techniques [14,15]. A deep
learning architecture consists of a series of simple learning mod-
ules. In each module, the input is transformed in a linear or nonlin-
ear manner to improve the selectivity and invariance of the
representation [16]. In contrast, conventional ML techniques adopt
‘shallow’ architectures and input data are only transformed once or
twice [14].

1.1. Conventional ML techniques

Artificial Neural Networks (ANNs), Support Vector Regression
(SVR), and Decision Trees (DTs) are common and powerful conven-
tional ML approaches that have been widely used in the area of
building load forecasting due to their capability of handling com-
plex and nonlinear relationships [17]. ANNs and SVR were reported
to represent 47 % and 25 % of the total studies on data-driven
building load forecasting, respectively [11]. Seyedzadeh et al. [18]
and Ahmad et al. [17] have comprehensively reviewed the applica-
tions of ANNs and SVR for building electricity use forecasting. Sev-
eral studies have focused on comparing the prediction
performance of the SVR model with different ANN models [19–
23], and in general SVR model was found to have a higher predic-
tion accuracy than ANN models.

DTs use a tree-like structure to classify historical data into var-
ious target classes (i.e., classification problems) or continuous val-
ues (i.e., regression problems). One of the most popular decision
tree-based techniques for building load forecasting is random for-
est (RF) [24]. Its prediction performance has been compared with
other algorithms, including ANNs [25,26] and SVR [24,27,28]. In
recent years, there has been an increasing interest in the combina-
tion of DTs and gradient boosting techniques, including extreme
gradient boosting trees (XGB, first proposed in 2016) [29], light
gradient boosting machine (LightGBM, first proposed in 2017)
[30], and categorical boosting (CatBoost, first proposed in 2017)
[31]. In the ASHRAE Great Energy Predictor III competition [32],
gradient boosted decision trees outperformed other prediction
algorithms and dominated the energy prediction competition.

1.2. Deep learning techniques

As defined by LeCun et al. in 2015 [16], ‘‘deep learning is a tech-
nique which allows computational models that are composed of
multiple processing layers to learn representations of data with
multiple levels of abstraction.” As opposed to conventional ANNs
(‘shallow’ neural networks), which typically have 1 hidden layer
together with 1 input layer and 1 output layer, deep learning mod-
els could have a number of hidden layers, where each layer trans-
forms the representation from one level (starting with the initial
raw input) to a higher and more abstract level. In the area of deep
learning, recurrent neural networks (RNNs) and convolutional neu-
ral networks (CNNs) are two of the most widely used deep neural
networks. RNNs have been successfully applied to natural language
2

processing and speech recognition due to their ability to handle
sequential inputs, while CNNs gain many successes in the field of
computer vision due to their good performance in feature
extraction.

Among different RNN architectures, the long short-term mem-
ory (LSTM) network [33] has been recognized as the most success-
ful since it can learn long-term temporal correlations compared
with conventional RNNs. Several studies have applied LSTM to pre-
dict the building energy consumption [34–36]. Gao et al. [37] even
integrated the LSTM model into transfer learning frameworks to
increase the prediction performance for buildings with poor infor-
mation. To integrate the ability of CNNs in terms of feature extrac-
tion, some studies have attempted to combine CNNs with LSTM,
forming hybrid CNN-LSTM models [15,38,39]. Fan et al. developed
a transfer learning methodology based on the CNN-LSTM model
structure to improve the load forecast accuracy for buildings with
limited observation data [40].

1.3. Interpretability of machine learning techniques

Although ML techniques have been widely used for building
load forecasting and other fields, it is of great challenge for end
users to understand and trust them due to their ‘‘black-boxness”
[41,42]. Therefore, researchers have shown an increasing interest
in the interpretability of machine learning in recent years. Inter-
pretable ML techniques can be classified into ante-hoc and post-
hoc approaches according to when the interpretable measures
are adopted [43]. Ante-hoc and post-hoc interpretable techniques
are applied during and after the model training process, respec-
tively. For ante-hoc interpretable techniques in building load fore-
casting, Gao and Ruan [44] integrated the attention mechanism
into encoder and decoder models based on LSTM to improve the
interpretability of deep learning models. Test results for an office
building showed that the features of daily maximum temperature,
mean temperature, minimum temperature, and dew point temper-
ature were the most important features in terms of the improve-
ment of interpretability. Li and Xiao et al. [45] applied the
attention mechanism to RNNs for a 24-hour ahead building cooling
load prediction. Results showed that the RNNs with attention
mechanisms can improve prediction accuracy and interpretability
compared with the RNNs without attention mechanisms. For
post-hoc interpretable techniques, Local Interpretable Model-
agnostic Explanations (LIME) [46] and Shapley Additive exPlana-
tions (SHAP) [47] are the most commonly-used model-agnostic
tools to interpret individual predictions. Wastensteiner et al. [48]
applied LIME to interpret the classification results of time-series
building energy consumption data and evaluated the reliability of
the interpretation. Zdravkovic et al. [49] employed LIME to gener-
ate the feature importances for the local forecasts for the district
heating demand. Jin et al. [50] developed an interpretable building
energy benchmarking framework based on the LIME method to
make the results more understandable. Chang and Li. et al. [51]
used the SHAP method to improve the interpretability of PV power
generation models, including XGBoost, SVR, and LSTM, by measur-
ing the feature importance. Results showed that global horizontal
irradiance was the most influential feature based on SHAP values.
Bellahsen and Dagdougui [52] employed SHAP to rank the impor-
tance of various features for the building-level and district-level
electrical load predictions. Results indicated that the historical load
right before the present forecasting time was the most important
feature.

1.4. Research questions, objectives, and contributions

Although conventional ML techniques and deep learning tech-
niques for building load forecasting have been extensively studied,
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two major issues remain to be addressed: 1) Inconclusive forecast
evaluation and benchmarking involving ML techniques. Most
existing studies tested the performance of prediction algorithms
on a single or a small number of buildings over short periods. In
the building load forecasting area, a technique is desired to have
a reliable and robust performance under different weather condi-
tions and occupants’ behaviours for different buildings. Moreover,
some studies claimed they developed a more accurate model over
simple benchmarks but lacked justifying the increase in model
complexity. 2) A lack of interpretation of the prediction results
achieved by ML techniques from the perspective of the building
load characteristics. The prior studies on interpretable ML tech-
niques improved the interpretability by improving the structure
of the individual models during the model training process
[44,45] or measuring the feature importance after training [48–
52]. Few studies have tried to explain the prediction performance
of ML techniques based on the characteristics of building load pro-
files. In summary, the essential research questions of this study
are:

� What algorithms? Specifically, what algorithms are more likely to
outperform others in the field of building load forecasting? Do deep
learning models outperform conventional machine learning mod-
els? What model is the feasible model for benchmarking?

� Why that building? Specifically, why does Building X have higher
forecast accuracy than Building Y? what is the major factor con-
tributing to the high forecast accuracy of Building X? Data (i.e.,
load profile dispersion) or algorithms? Moreover, how we can
quantify the influential load profile dispersion level?

To bridge the research gaps and improve the reliability and
interpretability of ML techniques, we conduct a comparative study
on building load forecasting, in which 56 British non-domestic
buildings with different primary usage types are used to test the
performances of 11 different prediction models with different
mechanisms over a time period of 9 weeks. Following the perfor-
mance comparison, we investigate the influences of building load
dispersion level on its best forecasting performance using correla-
tion analysis. In summary, our paper makes the following
contributions:

1) We propose novel metrics to quantify the dispersion level of
building intraday load profiles based on a new load visual-
ization method. The new load visualization method enables
us to quickly capture some intuitive and useful insights,
including intraday load shape, intraweek load discrepancy,
and intraday load dispersion.

2) By a large-scale and long-period comparative study, we find
that conventional ML models still outperform deep learning
models, despite their increasing application for building load
forecasting in recent years. Ensemble learning can help to
improve the forecast accuracy and provide better forecasting
performance than using individual base models alone. We
also demonstrate that the naive persistent model (same-
day-previous-week) is not naive at all but has close forecast
accuracy with some ML models after a long period of testing.
It is feasible to use it as the benchmarking model in the
building load forecasting problem due to its simplicity and
computational efficiency.

3) We find that the best achievable forecasting performance is
largely influenced by its load dispersion level by correlation
analysis. Buildings with higher dispersion levels are more
likely to have lower forecast accuracy.

The paper is organized as follows: Section 3 presents the full
methodology, beginning with an overview of the proposed
3

approach (Section 3.1), development of load dispersion metrics
based on a better load profile visualization method (Section 3.2),
descriptions and choices of different categories of prediction tech-
niques (Section 3.3), and correlation analysis to be used (Sec-
tion 3.4). In Section 3, the datasets of target buildings are first
introduced and visualized based on the proposed approach. The
prediction performance comparison and correlation analysis are
then performed. In Section 4, the in-depth discussion is presented
based on the results in Section 3. Finally, concluding remarks are
provided in Section 5.
2. Methodology

2.1. Overview of the proposed approach

As shown in Fig. 1, to investigate the effects of load dispersion
level on load forecast accuracy, the proposed approach consists
of three steps. In Step 1, a new approach to visualizing building
load profiles is first proposed to gain some intuitive insights
directly from the plots. Based on the newly proposed visualization
method, we then develop new metrics to quantify the building
intraday load dispersion for the correlation analysis. In Step 2, dif-
ferent categories of prediction techniques are developed and
applied to a 24-hour ahead short-term load forecasting at time
intervals of 30 mins, including naive persistence models, conven-
tional ML models, deep learning models, and an ensemble model.
In Step 3, the performances of these previously listed models are
evaluated and compared. Finally, a correlation analysis is con-
ducted to investigate the effects of building load dispersion level
on its load forecast accuracy.
2.2. Load dispersion quantification based on a new visualization
method

2.2.1. Load profile visualization
Data visualization is a crucial step of the data analytics process

[53]. Its goal is to transform data into a visual context to provide
the data users with a better understanding of information, such
as clear patterns and relationships, trends, and outliers. In the
domain of energy data analytics, initial data visualization before
further data analytics such as energy forecasting is desirable and
necessary to provide hidden insights into energy use behaviours
and lifestyles of customers. In this study, we propose an approach
to improving the visualisation of building electricity consumption
data to gain some intuitive insights directly from the plots.

The time-series electricity consumption data of two example
buildings (Building #1 and Building #2) are plotted against the
time of the year in Fig. 2-a and Fig. 2-c, respectively. It can be found
that both buildings have a dynamic energy consumption pattern
throughout the whole year, and the patterns are different from
each other. However, no other useful information such as frequent
trends and patterns can be found from these representations. To
explore the intraday load patterns, the electricity consumption
data of Building #1 and Building #2 are plotted against the time
of the day in Fig. 2-b and Fig. 2-d, respectively. By plotting intraday
load profiles together, we can observe the load trend over a day. To
make the intraday trend clearer, 5 different levels of percentiles
(i.e., 5th, 25th, 50th, 75th, and 95th percentiles) are used to illus-
trate the distributions of observations. The 5th percentile is, for
example, the score below which 5 % of the observations may be
found. To show the load pattern discrepancy between weekdays
and weekends, the average load profiles on weekdays and at week-
ends are plotted together with the percentiles. In summary, the fol-
lowing insights can be captured directly from the proposed plots
(Fig. 2-b and Fig. 2-d):



Fig. 1. Overview of the proposed approach.

Fig. 2. Two examples of plotting building load profiles: (a and c) building load profile against the time of the year, and (b and d) building load profile against the time of the
day with percentiles plotted.
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1) Intraday load shape: by looking at the percentiles, we can
quickly and clearly identify the intraday trends and the load
peaks during a day. For example, compared with Building #1
which has one noon peak and one evening peak, Building #2
has a morning peak and an evening peak.
4

2) Intraweek load discrepancy: by comparing the average load
profiles on weekdays and at weekends, we can know
whether the building occupiers have similar energy use
behaviours throughout the week. For example, Building #1
has a larger load pattern discrepancy between weekdays



M. Hu, B. Stephen, J. Browell et al. Energy & Buildings 285 (2023) 112896
and weekends than Building #2. This may also allow some
inference to the types of occupants and their energy-
related behaviours.

3) Intraday load dispersion: Apart from the intraday load
shape, the percentile set can also help indicate the disper-
sion level of the load profiles, i.e., widely or densely dis-
tributed. The load dispersion level has two dimensions:
dispersion at a specific time (e.g., hourly and sub-hourly)
and dispersion over a whole day. For the dispersion at a
specific time, the load profiles of Building #1 at 18:00 are
more dispersed than the profiles at 06:00. For the overall
dispersion, Building #2 has a lower overall relative disper-
sion than Building #1, since the percentiles of Building #2
overlap and are indistinguishable during some periods, and
they are less widespread than Building #1.

2.2.2. Quantifying load dispersion based on visualization
Based on the newly proposed visualization method for building

energy load data, the intraday load dispersion level can be
observed. To support correlation analysis, the dispersion level
needs to be quantified. Two metrics are therefore proposed in this
subsection to quantify the intraday dispersion level of building
energy load.

Fig. 3 illustrates the scheme of quantifying the load dispersions
at a specific time and over the whole day. The load dispersion at a
specific time t can be determined using the coefficient of variation,
CVt , and the coefficient of quartile variation, CQVt , as shown in Eq.
(1) and Eq.(2), respectively. CVt is a standardized measure of the
dispersion of a probability distribution; CQVt is a measure of rela-
tive dispersion that is based on interquartile range, i.e., Q3;t � Q1;t .
For the load dispersion over a whole day, it can be described by
CVoverall in Eq. (3) and CQVoverall in Eq. (4), respectively, in which
N is the number of the time slots within one day. Note that CV is
useful for comparing datasets with different units or scales of mea-
Fig. 3. Scheme of quantifying load dispersions at a specific time and over the whole day. E
(CQV).
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surement, while CQV is more useful when comparing datasets with
extreme outliers.

CVt ¼ rt

lt
ð1Þ

CQVt ¼
Q3; t � Q1;t

Q3;t þ Q1;t
ð2Þ

CVoverall ¼ 1
N

XN
t¼0

CVt ð3Þ

CQVoverall ¼
1
N

XN
t¼0

CQVt ð4Þ
2.3. Prediction techniques

2.3.1. Individual models
Different categories of prediction techniques are analysed in

this study to predict building load profiles, including two naive
persistence models, five conventional ML models (ANNs, SVR, RF,
XGB, and LightGBM), and three deep learning models (classic LSTM
model, LSTM encoder-decoder model, and hybrid CNN-LSTM
model). In addition, ensemble learning techniques are used to inte-
grate the performances of the individual base models. The detailed
description of the prediction models is as follows:

� Naive models. Two naive models are used as benchmarking
models: 1) to use the load profile of the previous day as the
forecasted profile (noted as ‘previous-day’), and 2) to use the
load profile of the same day in the previous week as the fore-
casted profile (noted as ‘same-day-previous-week’). It is worth
mentioning that although the two naive models are simple, it
ach has two metrics: coefficient of variance (CV) and coefficient of quartile variance
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can be challenging for other prediction techniques to outper-
form them due to the daily and weekly time-dependent pat-
terns [40].

� ANNs [54]. The simplest andmost popular feedforward network
consists of an input layer, a hidden layer, and an output layer.
The training of ANNs is a process of determining the best
weights on the inputs, and the backpropagation algorithm is
the most common method for computing the error gradient
for a feedforward network.

� SVR [55]. In contrast to conventional neural networks which are
based on empirical risk minimization, SVM is based on the
structural risk minimization principle, which aims to minimize
an upper bound of the generalization error.

� Decision tree-based techniques, including RF, XGB, and
LightGBM. RF, first proposed by Breiman in 2001 [56], is an
ensemble learning technique consisting of a set of numerous
regression trees. Compared with a single regression tree, RF
can address instability issues by creating a diverse collection
of trees, which are trained through bagging and random input
variable selection [24]. Both XGB [29] and LightGBM [30] are
extensions to gradient boosting frameworks based on decision
trees. The major difference between XGB and LightGBM is that
XGB uses the horizontal layer-wise tree growth strategy, and
LightGBM uses the vertical leaf-wise tree growth strategy.

� Classic LSTM model. The LSTM architecture, an advanced ver-
sion of RNNs, was first proposed by Hochreiter and Schmidhu-
ber [33] and has received enormous attention due to its
competence in processing long sequences than traditional
RNNs. As shown in Fig. 4-b, a complete LTSM block consists of
a forget gate (f t), an input gate (it), an update gate (ut), an out-
put gate (ot) and a memory unit called a cell. The operations of
all nodes at time step t can be found in [36,37].

� LSTM encoder-decoder model. The encoder-decoder model is
also known as the sequence-to-sequence model, which has
been successfully used to translate one sequence into another
in the field of machine translation. In this study, the LSTM tech-
nique is integrated into the encoder-decoder model framework
to form the LSTM encoder-decoder model. As shown in Fig. 4-c,
the LSTM encoder-decoder model consists of two components:
LSTM encoder and LSTM decoder.

� Hybrid CNN-LSTM model. CNN is an effective technique for
automatic feature extraction, which has been successfully
applied to text, speech, and image recognition. To combine
the advantages of CNN and LSTM, a hybrid CNN-LSTM model
is used in this study to predict energy load profiles. As shown
in Fig. 4-d, the architecture of a typical CNN consists of a convo-
lution layer and a pooling layer. A pooling layer is employed to
reduce the number of parameters and network computation
costs by calculating the maximum value of a given area in a fea-
ture map. A flattening layer is added to transform the data into
the format accepted by the LSTM layer.

Hyperparameter tuning plays a significant role in the forecast
accuracy for both deep learning models and conventional ML mod-
els. However, overfitting is more common in deep learning models
compared to conventional machine learning models. This is due to
the large number of parameters that can be adjusted, increasing
the risk of fitting noise into the training data. To address this issue
for deep learning models, the dropout technique is adopted in this
study, which is a popular regularization technique. It refers to the
process of randomly dropping some units based on a certain prob-
ability (i.e., dropout ratio) from the neural network during training
[57]. In addition to the dropout ratio, other hyperparameters,
which have a large influence on the model performance of deep
learning models, also need to be optimized. The grid-search tech-
6

nique is used in this study to optimize critical hyperparameters
for the three deep learning models based on the training datasets.
The search ranges of the hyperparameters in each prediction
model when using the grid-search technique will be introduced
in Appendix A.

2.3.2. Ensemble model
In addition to the above AI-based models, the ensemble learn-

ing technique is adopted in this study which generates the final
prediction output by integrating multiple base models. Ensemble
models have gained increasing popularity due to the capability of
providing improved accuracy and better generalization than indi-
vidual forecasting models [58]. The major reasons behind this
include 1) the single most accurate model might be biased due
to inadequate training data; 2) each forecasting model has its
strengths and weaknesses, the ensemble learning enables the base
models to complement each other [27,58]. In this study, a simple
ensemble model is adopted, i.e., averaging the prediction outputs
of the above ten base models.

2.3.3. Inputs and output for different categories of models
As shown in Fig. 5, different categories of models used in this

study have different model inputs. For the two naive models, the
input is simply the load profile of the previous day or the load pro-
file of the same day in the previous week. For the five conventional
ML models, the inputs include the historical features in the last
7 days, including meter readings and weather conditions, and fea-
tures in the next 24 h, including predictions of weather conditions
and temporal features. The air dry-bulb temperature, air dew
point, and wind speed are selected in this study to describe
weather conditions since they are likely to influence the building
energy consumption behaviour. For the three deep learning mod-
els, the inputs include the historical features in the last 7 days,
including meter readings, weather conditions, and temporal fea-
tures, and the features in the next 24 h, including weather condi-
tions and temporal features.

The categorical temporal features consist of the hour (i.e., 00:00
to 23:00), day type (i.e., Monday to Sunday), and month (i.e., Jan-
uary to December), which are used as indicators for seasonality
and indoor occupancy. They need to be transformed into numerical
formats to be accepted by the deep learning models. One-hot
encoding, a commonly used approach, is used in this study to gen-
erate the feature matrix for each categorical temporal variable.
After one-hot encoding, the columns of the hour, day type, and
month matrices are 24, 7, and 12, respectively.

Note that deep learning models in our study have two cate-
gories of features with different window sizes. The features, there-
fore, need to be included in deep neural networks by using two
separate input heads (i.e., input matrices) and each head has a cor-
responding group of temporal features. In contrast, there is only
one input head for conventional ML models, and only the temporal
features in the next 24 h are adopted as temporal inputs to label
the input matrix, which helps to avoid the repeated temporal infor-
mation, reduce the dimension of the input matrix, and save train-
ing time. More details on multi-headed deep learning models will
be introduced in Appendix A.

2.3.4. Prediction evaluation metrics
In our study, prediction models are evaluated using a rolling

walk-forward test approach. As shown in Fig. 6, it is an approach
where a model is used to make a 24-hour ahead load forecasting
on a day. After each forecast, the actual observation for that day
is made available to the model so that it can be used for predicting
the next-day load profile. The rolling walk-forward testing process
is how one model may be used in practice and allows the model to
make full use of the available historical data.



Fig. 4. Architectures of conventional RNN and LSTM-based techniques: a) conventional RNN; b) classic LSTM model; c) LSTM encoder-decoder model; d) hybrid CNN-LSTM
model.
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After the rolling walk-forward test, three different metrics, as
defined in Eqs. (5-a) - (5-c), are used in this study to evaluate the
overall model prediction performance during the entire test ses-
sion, including overall mean absolute error (MAEoverall), overall root
mean square error (RMSEoverall), and overall coefficient of variation
of the root mean square error (CV � RMSEoverall). In the context of
the rolling walk-forward test approach, the number of the observa-
tion points, N in Eq. (5), is the total number of the observation
points during the whole test session (i.e., N = Number of test
days � Observation points within one day). Note that MAE and
RMSE are scale-dependent metrics, while CV � RMSE is a scale-
independent one, which is feasible for the performance compar-
isons among different buildings. When the CV � RMSE is around
30 %, it means the developed model is calibrated and acceptable
for engineering purposes [14,59].
7

MAEoverall ¼
PN

k¼1 yk � byk

�� ��
N

ð5-aÞ

RMSEoverall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
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2.4. Correlation analysis: Best forecasting performance vs Load
dispersion level

Themajor goal of our study is to investigate the effects of loaddis-
persion level on its best load forecasting performance. The dimen-



Fig. 5. Comparison of model inputs for different categories of models.

Fig. 6. Schematic diagram of rolling walk-forward testing process for prediction models.
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sionless metric of CV � RMSE is used to quantify the forecast accu-
racy in the correlation analysis for the building-to-building compar-
ison. To achieve that goal, the commonly used Pearson correlation
coefficient is used in this study to measure the correlation between
the best achievable forecasting performance (i.e., CV � RMSE�

i , the
minimumvalue of CV � RMSE achieved by allmodels) and the intra-
day load dispersion level (i.e., CVoverall in Eq. (3)). The processing of
the correlation analysis is given by Eqs. (6-a) and (6-b).

CV � RMSE�
i ¼ min

k2 1;N½ �
CV � RMSEi;1; � � � ;CV � RMSEi;k; � � � ;CV � RMSEi;N

� �
ð6-aÞ
rCV�RMSE� ;CVoverall ¼
cov CV � RMSE�;CVoverallð Þ

rCV�RMSE�rCVoverall

ð6-bÞ

where rCV�RMSE� ;CVoverall denotes the Pearson correlation coefficient
between the dataset of the best achievable forecasting perfor-
mance CV � RMSE� and the dataset of intraday load dispersion
8

level CVoverall; CV � RMSE�
i denotes the best achievable forecasting

performance of Building i; CV � RMSEi;k denotes the coefficient of
variation of the root mean square error of model k for Building i;
N denotes the total number of prediction models for each building;
cov and r refer to the covariance and standard deviation, respec-
tively. Note that variables can be considered highly correlated
when the magnitude of their correlation coefficient is larger than
0.7 [60].
3. Target buildings and results

3.1. Dataset description and experimental settings

The target buildings used in this study are 56 non-domestic
buildings with various primary usage types across the UK, as
shown in Fig. 7. The dataset to be analysed for each building
includes:
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� Electricity meter readings: the electricity meter readings are at
the time interval of 30 min and span from 05 January 2009 to
26 September 2010 (630 days, 90 weeks, and around
1.73 years).

� Building metadata: the building metadata provides the general
building information, including geographical location (longi-
tude and latitude) and primary usage type. The 56 buildings
are categorized into 7 primary usage types, and they are 3 farm-
ing buildings, 5 hotels, 5 manufacturing buildings, 4 offices, 30
pubs, 4 restaurants, and 5 supermarkets.

� Outdoor weather conditions: outdoor weather conditions are the
key influential factors for building electricity usage. In this
study, the corresponding weather data were collected from
the Integrated Surface Database (ISD), National Centres for
Environmental Information [61]. The weather data from 40
meteorological stations across the UK, as shown in Fig. 7, were
first retrieved from the ISD. By calculating the Euclidean dis-
tance, the nearest meteorological station was then selected for
each building. The coincident meteorological variables used in
this study include wind speed (m/s), air dry-bulb temperature
(℃), and air dew point (℃).

All prediction models are developed in the Python program-
ming language. Specifically, SVR and RF are developed using the
Scikit-learn ML library [62]. XGB and LightGBM are developed
using XGBoost [63] and LightGBM [30] software libraries, respec-
tively. Neural network models, including ANN and three deep
learning models, are developed based on Keras [64], which is an
open-source library for artificial neural networks. Regarding com-
putation tools, the two naive models and five conventional ML
models are developed and performed on a desktop computer (Dell
Optiplex 7070) with Intel Core i7-9700 (3.00 GHz) and 16 GB of
memory under the Windows 10 64-bit operating system. The three
Fig. 7. Target non-domestic buildings with various primary usage types across the UK. T
brackets.
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deep learning models are implemented on the Google Colab Pro
platform [65] to use the high-performance GPUs (NVIDIA Tesla
P100 PCIe 16G) for GPU-accelerated parallel computing.

3.2. Load profile visualization and dispersion quantification

Before short-term load forecasting using different prediction
models, the load profiles of 56 non-domestic buildings are first
visualized based on the newly proposed visualization method.
Fig. 8 shows the load profiles for selected 14 buildings and for each
type of building, two buildings with different levels of dispersion
are selected for comparison purposes. As discussed in Section 3.2,
three dimensions of knowledge can be directly observed from
the plots, including intraday load shape, intraday load discrepancy,
and intraday load dispersion. First, it can be found that buildings
with different primary usage types have evident differences in
intraday load shapes. For example, farming buildings (Fig. 8-a
and Fig. 8-b) have two short-time demand peaks in the morning
and evening, while office buildings (Fig. 8-g and Fig. 8-h) have
long-lasting demand peaks during the common working day. For
buildings with the same type of primary usage type, their intraday
load shapes might differ significantly. For example, Restaurant #01
(Fig. 8-k) has one demand peak at noon and one demand peak at
late night, while Restaurant #00 (Fig. 8-l) only has one demand
peak before noon. This might be caused by the different opening
hours of different restaurants. Second, we can find that different
buildings have different levels of intraweek load discrepancy by
comparing the average load profiles on weekdays and at weekends.
For example, Pub #15 (Fig. 8-j) has a larger load pattern discrep-
ancy between weekdays and weekends than Pub #11 (Fig. 8-i),
which indicates the owner of Pub #15 has a larger difference in
energy use behaviours through the week. Last, it can be found
buildings have different levels of intraday load dispersion (widely
he numbers of buildings in each group and weather stations are indicated in square



Fig. 8. Visualization of load profiles for selected 14 buildings (90 weeks). For each type of building, one low-dispersion building and one high-dispersion building are selected
for comparison purposes.
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or densely distributed) by observing the percentile set, even for the
same type of buildings. For each type of building, one low-
dispersion building and one high-dispersion building are given in
Fig. 8 for comparison. Taking hotel buildings for example, Hotel
#4 has a lower overall dispersion than Hotel #3 since its per-
centiles are less widespread than Hotel #3.

Apart from developing a method to better visualize the intraday
load dispersion, twometrics are developed in this study to quantify
the load dispersion level as defined in Eqs. (3) - (4). After applying
the metrics to 56 non-domestic buildings in the UK, their intraday
load dispersion levels can be obtained as shown in Fig. 9. Two
buildings of the same type but with different dispersion levels
are marked as well in Fig. 9-a for comparison purposes. It can be
found that the dispersion levels greatly differ among all buildings
and within the same type of buildings. As shown in Fig. 9-b, the
two metrics for intraday load dispersion, i.e., overall CV and CQV,
have a similar trend, indicating both metrics can be used to effec-
tively describe the load dispersion level and capture the dispersion
difference between buildings in a quantitative way.

3.3. Model performance evaluation and comparison

The entire dataset for each building (90 weeks) is divided into
training, validation, and test data with proportions of 72 %
(65 weeks), 18 % (16 weeks), and 10 % (9 weeks), as shown in
Fig. 10. The detailed process of model development is introduced
in Appendix A. After training out the optimal hyperparameters in
10
the conventional ML models and deep learning models based on
the training (65 weeks) and validation (16 weeks) datasets, 24-
hour ahead load profiles during the test session (9 weeks) are fore-
casted using the developed 11 models and evaluated using three
metrics, i.e., MAEoverall, RMSEoverall, and CV � RMSEoverall. The total
number of observation points, N in Eq. (6), equals 3,024 (63 test
days � 48 observation points in each day).

Figs. 11–13 show the forecasting performances of 11 prediction
models for 56 buildings based on different performance metrics.
Three types of statistical features, including mean, median, and
the count of being the best (i.e., times of having the minimum
value of one specific metric), are used to evaluate the overall model
performance over 56 buildings, as shown in Table 1. The forecast-
ing performance distributions are also shown in Fig. 14 using a vio-
lin plot, which is a combination of KDE (kernel density estimation)
and box plot.

Two types of comparisons are made in this section: 1) cross-
model comparison, by which we attempt to answer what model
is the best in general; and 2) cross-building comparison, by which
we attempt to investigate the performance differences across dif-
ferent buildings. It is worth mentioning two points: 1) all three
metrics, i.e., MAEoverall, RMSEoverall, and CV � RMSEoverall, can be used
for cross-model comparison, while only CV � RMSEoverall can be
used for cross-building comparison since the other two are scale-
dependent metrics and not suitable for building-to-building com-
parison; and 2) based on different combinations of performance
metric and statistical feature (performance metric � statistical fea-



Fig. 9. Dispersion levels of intraday load profiles (90 weeks) for 56 non-domestic British buildings: a) dispersion level ordered by building ID. For each type of building, one
low-dispersion building and one high-dispersion building are marked in different colours for comparison. b) dispersion level ordered by ascending overall CV.

Fig. 10. Data split for each building.
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ture), the rankings of the best forecasting models might slightly
differ as shown below.
3.3.1. Cross-model comparison
For the cross-model comparison, both the performance of the

same category of models and the performance across different cat-
egories of models are compared in this subsection.
11
� Comparison among the same category of models.

For the category of naive models, it is found that Naive model 2
(same-day-previous-week) outperforms Naive model 1 (Previous-
day), regardless of what type of performance metric is used. It is
because the energy use behaviour of occupants and energy load
profiles have not only the daily seasonality but also the weekly sea-
sonality. Among the five conventional ML models (ML 1–5), the



Fig. 11. Forecasting performance (MAE) during the test session (56 buildings � 11 models � 63 test days).
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best forecasting performance is achieved by either XGB or
LightGBM, depending on the chosen performance metric. Either
RF or ANN is in third place, and SVR is the model with the least
accuracy in all cases. To some extent, the finding is consistent with
the results of the ASHRAE Great Energy Predictor III competition
[32], in which gradient boosted decision trees, including XGB and
LightGBM, dominate this energy prediction competition. In the cat-
egory of deep learning model (DL 1–3), the best forecasting perfor-
mance is achieved by the classic LSTM model in most cases except
when in order of the median of MAEoverall and the count of having
the minimum MAEoverall. The least accurate DL model is the hybrid
CNN-LSTM model in most cases except when the count of having
the minimum MAEoverall is used as performance metric.

� Comparison across different categories of models.

As listed in Table 1, under 9 different ranking criteria, the best
forecasting performance is achieved by ensemble model 6 times,
and by ML 4 (XGB) 3 times. The top 3 most accurate models (in
no particular order) are ensemble model, ML 4 (XGB), and ML 5
(LightGBM) in most cases, except when in order of the median
value of MAEoverall. Naive model 1 (Previous-day) is the least accu-
rate in most cases except when the median value of MAEoverall is
chosen as the ranking criterion, in which the least accurate model
is DL 3 (Hybrid CNN-LSTM).

In summary, by the cross-model comparison of the test results
(56 buildings � 11 models � 63 test days), the following findings
can be observed: 1) Naive model 2 (same-day-previous-week),
ML 4 (XGB), and DL 1 (Classic LSTM model) are the best of its kind,
respectively; 2) among all categories of models, the best forecast-
12
ing performance is achieved by either ensemble model or ML 4
(XGB), depending on the selected performance metric and statisti-
cal feature; 3) Naive model 2 (same-day-previous-week) is not
naive. Overall, it has close forecast accuracy with ML models but
has better performances than deep learning models after a 9-
week-long test.
3.3.2. Cross-building comparison
In addition to the cross-model comparison, a cross-building

comparison is conducted to analyse the performance differences
across different buildings based on the scale-independent forecast-
ing performance metric CV � RMSEoverall. To investigate the link
between the load profile dispersion and load forecasting perfor-
mance, the load profiles of selected buildings with a relatively
low or high dispersion level are also visualized in Fig. 13 for com-
parison convenience.

It can be observed from Fig. 13 that the best forecasting perfor-
mances (i.e., minimum CV � RMSEoverall achieved by 11 prediction
models) of 56 buildings significantly differ and each building has
its best forecasting performance. For example, the highest achiev-
able forecast accuracy of Farming #00, Hotel #3, Manufacturing #
1, Office #00, Pub #15, Restaurant #0, and Supermarket #4 is lower
than the other buildings with the same primary usage type. More
importantly, a significant link can be found between the best fore-
casting performances of buildings and their load dispersion levels.
Buildings with higher dispersion levels are more likely to have
lower forecasting performance. For example, the high-dispersion
buildings in Fig. 13, including Hotel #3, Office #00, Pub #15, and
Restaurant #00, have lower forecasting performance compared
with the low-dispersion buildings with the same primary usage



Fig. 12. Forecasting performance (RMSE) during the test session (56 buildings � 11 models � 63 test days).
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type, i.e., Hotel #04, Office #03, Pub #11, and Restaurant #01. To
quantitatively investigate the relation between load dispersion
level and best achievable forecasting performance, correlation
analysis is conducted in the following subsection.
3.4. Correlation analysis

Correlation analysis is conducted in this subsection to investi-
gate the effects of load dispersion level on the best achievable fore-
casting performance. To have an intuitive sense of the link between
these two variables, the forecast accuracy (CV � RMSEmin) and dis-
persion level (CVoverall and CQVoverall) are first plotted against the
building IDs in the order of ascending CV � RMSEmin, as shown in
Fig. 15. Dispersion levels on all datasets (90 weeks, Fig. 15-a) and
on the test dataset (9 weeks, Fig. 15-b) are both calculated and
plotted against building IDs. The correlations between the best
achievable forecasting performances and different types of disper-
sion levels are shown in Fig. 16 using the scatterplot matrix.

The two dispersion level metrics (CVoverall and CQVoverall) on all
datasets (Fig. 15-a) and test dataset (Fig. 15-b) are found to have
identical trends and the correlation coefficients between them on
all datasets and test dataset are 0.92 and 0.9, respectively, as
shown in Fig. 16, which means the two metrics are very highly cor-
related and both can play the same role in characterizing the dis-
persion levels of load profiles. Moreover, the dispersion level on
all datasets and the dispersion level on the test dataset differ but
are related, which can be indicated by the correlation coefficient
between CVoverall;alldatasets and CVoverall;testdataset (i.e., 0.83) and the cor-
relation coefficient between CQVoverall;alldatasets and CQVoverall;testdataset
13
(i.e., 0.78). Most importantly, it can be found that the best forecast-
ing performance (CV � RMSEmin) has the same trend with both dis-
persion level metrics (CVoverall and CQVoverall). The dispersion level
metrics on different datasets, including CVoverall;alldatasets,
CQVoverall;alldatasets, CVoverall;testdataset , and CQVoverall;testdataset , are all corre-
lated with the best forecasting performance, CV � RMSEmin, with
the correlation coefficients of 0.78, 0.76, 0.86, and 0.78, respec-
tively. Compared with the dispersion level on all datasets, the dis-
persion level on the test dataset has a slightly higher correlation
with the best forecasting performance.
4. Discussion

Reliability and interpretability play a key role in the develop-
ment and practical application of artificial intelligence and ML
techniques in power and energy systems. For building load fore-
casting, a forecasting technique will ideally have reliable and
robust performance under different weather conditions and occu-
pant behaviours across different buildings. It is also expected that
the success of one forecasting technique, especially a black-box ML
model, can be interpreted in terms of domain knowledge to assist
with operational decision support. However, without applying dif-
ferent forecasting techniques to numerous buildings at a large
scale over a long period, it’s difficult to evaluate the reliability of
prediction models and to interpret the prediction results with
domain knowledge alone. In this section, we explain how the test
results answer the two major research questions with an emphasis
on the reliability and interpretability of artificial intelligence in the
field of building energy forecasting.



Fig. 13. Forecasting performance (CV-RMSE) during the test session (56 buildings � 11 models � 63 test days) and load profiles of selected buildings with a relatively low or
high dispersion (LD or HD) level.

Table 1
Statistical features of different performance metrics of 11 prediction models for 56 buildings. (***, **, and * denote the top 3 most accurate models when using the corresponding
statistical feature).

Performance
metrics

Statistical features
(N = 56)

Naive
1
(Prev-
day)

Naive 2
(Same-
day-prev-
week)

ML 1
(ANN)

ML 2
(SVR)

ML 3
(RF)

ML 4
(XGB)

ML 5
(LightGBM)

DL 1
(Classic
LSTM)

DL 2
(LSTM
encoder-
decoder)

DL 3
(Hybrid
CNN-
LSTM)

Ensemble

MAEoverall(kW) Mean of MAEoverall 0.967 0.754 0.720 0.741 0.694 0.670*** 0.673** 0.865 0.894 0.938 0.686*
Median of MAEoverall 0.727 0.664 0.603 0.615 0.572* 0.562*** 0.567** 0.736 0.731 0.742 0.595
Count of having the
min.MAEoverall

0 3 3 1 4 20*** 9* 0 0 1 15**

RMSEoverall(kW) Mean of RMSEoverall 1.563 1.169 1.053 1.075 1.033 1.007* 1** 1.199 1.238 1.287 0.982***

Median of
RMSEoverall

1.184 0.926 0.796 0.826 0.811 0.771** 0.772* 0.948 0.977 1.023 0.767***

Count of having the
min.RMSEoverall

0 3 5 0 3 7** 7** 1 1 0 29***

CV � RMSEoverall

Mean of
CV � RMSEoverall

42.5 % 31.6 % 28.1 % 28.8 % 27.5 % 26.8 %* 26.6 %** 33.4 % 34.0 % 35.8 % 26.5 %***

Median of
CV � RMSEoverall

32.4 % 26.3 % 23.3 % 23.8 % 22.6 % 22.5 %* 22.3 %** 26.0 % 26.7 % 27.0 % 21.7 %***

Count of having the
min.CV � RMSEoverall

0 3 5 0 3 7** 7** 1 1 0 29***
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4.1. Load dispersion quantification based on better visualization

Better visualization of building electricity consumption data
can help to provide intuitive insights into the energy use
behaviours of customers. By using the newly developed visu-
alization method, the following insights into load profiles
can be quickly captured, including intraday load shape (i.e.,
the trends and load peaks during a day), intraweek load
14
discrepancy (i.e., load pattern discrepancy between weekdays
and weekends), and intraday load dispersion (the dispersion
level of the load profiles, i.e., widely or densely distributed).
Two dispersion level metrics (CVoverall and CQVoverall) are devel-
oped to quantify the intraday load dispersion levels, and test
results show that the two metrics are very highly correlated,
and both can play the same role in characterizing the disper-
sion levels of load profiles.



Fig. 14. Violin plots of forecasting performance distributions of 11 prediction models for 56 buildings: a) MAE; b) RMSE; c) CV-RMSE. The violin plot is a combination of KDE
(kernel density estimation) and box plot. For each violin plot, the violin width reflects the relative frequency; the inner white point and black box indicate the median and
interquartile range, respectively. The distribution plots here are ordered by ascending mean.
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4.2. Effects of algorithms on forecast accuracy

Prediction techniques used in this study include two naive
models, five conventional ML models, and three deep learning
models. Moreover, the ensemble learning technique is used to inte-
grate the performances of the individual base models. 9 different
ranking criteria are used to evaluate and rank the forecasting per-
formances of 11 models based on a 9-week-long test (56
buildings � 11 models � 63 test days). The ranking criteria are
the combinations of performance metrics (MAEoverall, RMSEoverall,
or CV � RMSEoverall) and statistical features (mean, median, or the
count of being the best). Test results show that overall, ensemble
15
learning can help to improve the forecast accuracy and provide
better forecasting performance than using individual base models
alone. Even though the performances of some individual models
are poor, the ensemble model can achieve satisfactory perfor-
mance. This is because ensemble learning can take the most advan-
tage of the individual base models and make robust predictions.

In addition, although deep learning techniques have been
increasingly used for building load forecasting in recent years
[15,34–39], we find that conventional ML models still provide
more accurate forecasting performances than complex deep learn-
ing models. Likewise, a recent study by Elsayed et al. [66] demon-
strated that conventional ML approaches such as gradient boosting



Fig. 15. Best forecasting performance vs load dispersion level based on a) all datasets or b) test dataset.

M. Energy & Buildings 285 (2023) 112896
tree models outperformed deep learning approaches in the time
series forecasting context.

Another unforeseen finding from this study is that the naive
persistent model 2 (i.e., using the load profile of the same day in
the previous week as the forecasted profile) is not naive at all
but has close forecast accuracy with some ML models and outper-
forms all deep learning models after a 9-week-long test. To some
extent, this finding is consistent with the finding in a day-ahead
electricity demand forecasting competition [67], in which the
benchmarking persistent model outperformed most teams after
30 rounds of day-ahead prediction. The reason why Naive model
2 (same-day-previous-week) outperforms some complicated AI-
based models in our study is that building load profiles are by nat-
ure time-series data and contain hidden temporal dependences
(e.g., daily and weekly seasonality) between observations. The
essence of the prediction problem in this study is a multivariate
multi-step time series forecasting problem. In addition, the
energy-related behaviours are variable, and statistical learning
based on a long period of historical data sometimes is less robust
to the changes in such behaviours than the naive approach.

4.3. Effects of load dispersion level on forecast accuracy

After the cross-building comparison, we found that each build-
ing has its best achievable forecasting performance; and more
importantly, a strong link can be observed between the best fore-
casting performances of buildings and their load dispersion levels.
As shown in Fig. 13, buildings with higher dispersion levels are
16
found more likely to have lower forecasting performance. To quan-
titively assess the relation between the two variables, a correlation
analysis is further conducted to investigate the effects of load dis-
persion level on the best load forecasting performance. Results
show the dispersion level metrics are highly correlated with the
best achievable forecasting performance. This means the disper-
sion level of load profiles has a large influence on forecasting per-
formance. Compared with the algorithms (i.e., prediction models),
the load dispersion level, might contribute more to the forecast
accuracy when testing over a long period of time.

5. Conclusions

In this paper, we examined the impacts of building load disper-
sion level on its best load forecasting accuracy. This was accom-
plished by comparing the performances of 11 different prediction
models over 9 weeks of operation for 56 non-domestic buildings
with different primary usage types in the UK. The major conclu-
sions and suggestions for the researchers and engineers in the area
of building load forecasting are given as follows:

1) Load dispersion quantification based on better visualiza-
tion. Better visualization gives better insights. Before devel-
oping prediction models for a specific building, it is
recommended to plot the building load profiles using our
proposed visualization method, which can help to quickly
capture some intuitive and useful insights, including intra-



Fig. 16. Scatterplot matrix for the correlations between best achievable forecasting performance and different types of dispersion levels. r denotes the Pearson correlation
coefficient.
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day load shape, intraweek load discrepancy, and intraday
load dispersion. Based on the newly proposed visualization
method, we propose novel metrics to quantify the dispersion
level of building intraday load profiles.

2) Prediction techniques. There is not a panacea-like individ-
ual model for all building load forecasting problems. Com-
parisons among different categories of models based on
different mechanisms are needed to determine the best
model for a specific building. Specifically, the following find-
ings and suggestions are given for prediction model develop-
ment: i) A complex model structure does not guarantee a
higher forecasting performance, and the models with simple
structures could outperform other complicated ones. We
find that conventional ML models still outperform complex
deep learning models, despite the increasing application of
deep learning techniques for building load forecasting in
recent years. We also demonstrate that the naive persistent
model (i.e., using the load profile of the same day in the pre-
vious week as the forecasted profile) is not naive at all but
has close forecast accuracy with some ML models after a
long period of testing. We conclude that it is feasible to
use the naive persistent model as the benchmarking model
17
in the building load forecasting problem due to its simplicity
and computational efficiency. ii) Individual prediction mod-
els have their strengths and weaknesses, and their predic-
tion results might be poor due to inadequate training data.
To solve this problem, ensemble learning is recommended
to take the most advantage of individual base models and
make robust predictions. Moreover, it is key to diversify
the categories of the base models to guarantee the perfor-
mance of the ensemble model.

3) Data or algorithm? We find that each building has its best
achievable forecasting performance and most importantly,
it is largely influenced by its load dispersion level. Buildings
with higher dispersion levels are more likely to have lower
forecast accuracy. For a specific building, it’s recommended
to quantify the dispersion levels using the proposed disper-
sion metrics of building load profiles. When its load profiles
have a low dispersion level, the naive model (same-day-
previous-week) is more likely to have a satisfactory forecast-
ing performance and could be directly used for engineering
purposes, which helps to save a large amount of time for
model development.



Table A1
Search ranges of the hyperparameters when using the grid-search technique for each
prediction model.

Prediction model Hyperparameters in
each model

Search ranges

ANNs Number of hidden layers 2
Units in each layer 12, 24, 36, 48
Activation function ReLU, Sigmoid,

Tanh
Optimizer Adam

SVR Kernel rbf (radial basis
function)

Regularization parameter
C

0.1, 1, 10

Kernel coefficient, c 0.001, 0.01, 0.1
RF Number of trees 50, 100
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Our study is a fundamental starting point to understand the
relationship between the building load forecast accuracy and the
influential factors coming from the load characteristics. Comple-
mentary to the proposed load dispersion level, we will explore
other metrics to characterize the building load profiles in the
future. Also, since the building energy use data in our study were
collected around 2010, we need to test our methodology again
when the up-to-date energy consumption data are collected con-
sidering the energy consumption patterns might be affected by
the occupants’ behavioral changes. Moreover, the energy con-
sumption data of more consumers will be collected, so that we
can categorize the load profiles using clustering techniques such
as k-means. Last, we will improve the ensemble learning perfor-
mance by optimizing the weights of individual base models.
Maximum depth of each
tree

4, 5, 6, 7

Bootstrap True, False
XGB/LightGBM Maximum depth of each

tree
4, 5, 6, 7

Learning rate 0.01, 0.025, 0.05,
Data availability

Data will be made available on request.

0.075, 0.1, 0.2

Classic LSTM model/LSTM
encoder-decoder model

Units in each LSTM layer 12, 24, 36, 48
Activation function in
each LSTM layer

ReLU, Sigmoid,
Tanh

Dropout ratio in each
LSTM layer

0, 0.1, 0.2, 0.3

Units in each Dense layer 12, 24, 36, 48
Activation function in ReLU, Sigmoid,
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each Dense layer Tanh
Hybrid CNN-LSTM model Filter number in each 1D

convolution layer
12, 24, 36, 48

Activation function in
each convolution layer

ReLU, Sigmoid,
Tanh

Kernel size in each
convolution layer

4, 6, 8

Stride size in each
convolution layer

1, 2

Units in each LSTM layer 12, 24, 36, 48
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Appendix A. Development of prediction models

For conventional ML models and deep learning models, the
hyperparameters of each model need to be optimized with the
assistance of cross-validation and grid-search techniques. The
hyperparameters to be optimized and their search ranges in each
prediction model are listed in Table A1. In addition, the early stop-
ping training technique is used to avoid the overfitting of training
data, in which the training process is terminated when the result-
ing accuracy on validation data stops increasing after a certain
number of epochs.

For ANNs, considering the volume of the dataset for each build-
ing, a common four-layer back propagation neural network model
is adopted in this study, which consists of an input layer, two hid-
den layers, and an output layer. Adam algorithm is selected as the
optimizer which aims to find the optimal learning rate for each
parameter [68]. Other parameters to be optimized in ANNs consists
of the units in each layer (ranging from 12 to 48 with an increment
of 12) and activation functions (including Tanh, Sigmoid, and ReLU).
For SVM, a Gaussian radial basis function (RBF) kernel is used in
this study and other major parameters to be determined are the
regularization parameter C (ranging from 0.1 to 10) and the kernel
efficient c (ranging from 0.001 to 0.1). RF, XGB, and LightGBM are
all decision tree-based techniques. The major tuned hyperparame-
ters of RF models include the total number of trees (ranging from
50 to 100) and the maximum depth of each tree (ranging from 4
to 7). XGB and LightGBM have the same parameters to be tuned,
including the maximum depth of each tree (ranging from 4 to 7)
and the learning rate (ranging from 0.01 to 0.2). The learning rate
18
indicates how quickly a tree model adjusts the errors in the previ-
ous iteration.

In our study, the three deep learning models, including the clas-
sic LSTM model, LSTM encoder-decoder model, and hybrid CNN-
LSTM model, are developed based on Keras [64], which is an
open-source library for artificial neural networks. Taking farming
building #00 for example, the detailed network structures of the
three multi-headed deep learning models based on Keras platform
are shown in Figs. A1 - A3. As shown in Table A, the classic LSTM
model and LSTM encoder-decoder model includes two types of
neural network layers: LSTM layer and fully connected layer (i.e.,
Dense layer). For the LSTM layers, the optimized hyperparameters
consist of the units in each layer (ranging from 12 to 48 with an
increment of 12), activation functions (including Tanh, Sigmoid,
and ReLU), and dropout ratio (ranging from 0 to 0.3). For the Dense
layers, the units in each layer and activation functions are the
major parameters. In the hybrid CNN-LSTM model, along with
the LSTM and Dense layers, convolution layers are included for fea-
ture extraction. The parameters in the convolution layers include
filter number (ranging from 12 to 48 with an increment of 12),
activation function, kernel size (ranging from 4 to 8), and stride
size (including 1 and 2).

http://www.opusenergy.com/
http://www.opusenergy.com/


Fig. A1. Network structure of multi-headed classic LSTM model based on the Keras platform.

Fig. A2. Network structure of multi-headed LSTM encoder-decoder model based on the Keras platform.
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Fig. A3. Network structure of multi-headed hybrid CNN-LSTM model based on the Keras platform.
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