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A B S T R A C T   

Streets are a crucial part of the built environment, and their layouts, the street patterns, are widely researched 
and contribute to a quantitative understanding of urban morphology. However, traditional street pattern analysis 
only considers a few broadly defined characteristics. It uses administrative boundaries and grids as units of 
analysis that fail to encompass the diversity and complexity of street networks. To address these challenges, this 
research proposes a machine learning-based approach to automatically recognise street patterns that employs an 
adaptive analysis unit based on street-based local areas (SLAs). SLAs use a network partitioning technique that 
can adapt to distinct street networks, making it particularly suitable for different urban contexts. By calculating 
several streets’ network metrics and performing a hierarchical clustering method, streets with similar characters 
are grouped under the same street pattern. A case study is carried out in six cities worldwide. The results show 
that street pattern types are rather diverse and hierarchical, and categorising them into clearly demarcated 
taxonomy is challenging. The study derives a set of new morphometrics-based street patterns with four major 
types that resemble conventional street patterns and eleven sub-types to significantly increase their diversity for 
broader coverage of urban morphology. The new patterns capture urban structural differences across cities, such 
as the urban-suburban division and the number of urban centres present. In conclusion, the proposed machine 
learning-based morphometric street pattern to characterise urban morphology has an enhanced ability to 
encompass more information from the built environment while maintaining the intuitiveness of using patterns.   

1. Introduction 

In the rapidly urbanising world, creating inclusive, safe, resilient, 
and sustainable cities, as outlined in the United Nations Sustainable 
Development Goals (SDGs) 9 and 11, is more critical than ever. A key 
aspect of achieving these goals lies in understanding the urban built 
environment, which is a reflection of the inherent urban socioeconomic 
activities of a city (Jacobs, 1961; Li, Li, Zhu, Song, & Wu, 2013; Lynch, 
1960; Venerandi, Zanella, Romice, Dibble, & Porta, 2017; Wu, Smith, & 
Wang, 2021). Many scholars and practitioners believe in a mutual in-
fluence between tangible urban space and intangible human activities. 
Therefore, a better understanding of the urban built environment could 
inform potential interventions for enhanced urban activities and living 
(Batty et al., 2013; Çalişkan & Marshall, 2011; Cheng & Shaw, 2018). 
The morphological study of the physical urban environment involves 
analysing the forms of basic urban elements, such as streets, buildings, 
and plots (Moudon, 1997). This study chooses the street as the focus to 

tap into the morphological study of urban forms, as streets are one 
fundamental element of a city where human activities are concentrated 
(Wang & Vermeulen, 2021). 

In the study of street forms, street patterns are introduced to ease 
understanding of the complex street network in the urban built envi-
ronment. Street patterns refer to the types of planar street layouts in an 
urban area (Southworth, 1997). Each street pattern stimulates unique 
urban activities while suppressing others (Alexander, 1977; Jacobs, 
1961). Hence, urban planners use them to create urban spaces for 
different functions. These patterns are defined mainly by conventions 
and are easily distinguishable with a few unique characters. For 
example, their visual identity based on the planar imprint, such as grid, 
radial, and organic appearance, primarily distinguishes these street 
patterns. This study refers to these street patterns as conventional street 
patterns. However, using predefined conventional patterns in urban 
morphology also comes with demerits, as the high degree of abstraction 
may lead to overgeneralisation and rigidity in depicting reality. 
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Analysing street patterns also comes with the challenge of arbitrarily 
choosing units of analysis, such as administrative boundaries or grids 
that are not optimised for streets with their network structure (Law, 
2017). Thus, its universal application and transferability are not 
guaranteed. 

With technological advancement, the study of urban morphology has 
entered an ethos with new data and methods (Fleischmann, Feliciotti, & 
Kerr, 2022). Given the large amount of data available nowadays, the 
quantitative depiction of streets with a graph structure, together with 
machine learning-based analysis, allows for the extraction of more in-
telligence to derive insights into many aspects of cities. Instead of pre-
defining urban types in terms of street forms/patterns, the methods 
allow a somewhat automated data-driven exploration of urban types 
given enough data representing the diverse built environment (Wang 
et al., 2023). They greatly enhanced the ability to carry out large-scale 
studies, and their reproducibility and transferability. 

Nevertheless, there are still limited attempts to use these new metrics 
and methods for a more comprehensive depiction of the urban street 
form while maintaining the simplicity of using conventional street pat-
terns. Drawing merits from the simplicity of street patterns and the 
comprehensiveness of street metrics, this study proposes a new method 
for the morphometric-based street pattern: clustering based on quanti-
tative characters. The method allows a data-driven manner for exploring 
potential street patterns instead of conventional ones. The core of the 
method is measuring and clustering street network characters. For the 
unit of analysis, this study also adopted a network-based technique to 
divide the study area to suit the network character of the street and 
ensure a consistently derived unit of analysis across different study 
areas. Hence, this method’s resulting morphometric-based street pat-
terns could be flexible to accommodate the different urban contexts for 
large-scale studies while maintaining comparability. 

2. Background 

Streets have long been recognised as an essential urban element to 
understanding different urban phenomena. Street network, which refers 
to streets’ topological configuration and connectivity (Jiang & Clar-
amunt, 2004), is a vital aspect of the built environment that influences 
how people interact with their surroundings, move around, and engage 
in various activities (Gehl, 2011). Since urban design and planning 
began, people have intuitively used street patterns to describe and un-
derstand street morphology. However, these conventional street pat-
terns have their limits. 

Over the years, scholars have proposed many different street patterns 
to categorise the characters in street networks. These diverse catego-
risations were introduced for different purposes like transportation 
studies, urban design and planning, and urban vitality studies (Barthe-
lemy, 2017; Chen, Wu, & Biljecki, 2021; Rifaat, Tay, & De Barros, 2011; 
Wheeler, 2015). Some also use quantitative metrics, like network met-
rics, to distinguish different street patterns and explore their implica-
tions for urban form and function. For example, Marshall (2004) has 
summarised the classified street networks based on their configurations. 
He also suggests different classifications based on street metrics, such as 

connectivity and complexity. These classifications of street patterns 
have been focused on the street characters for their specific applications. 
Some common terminology appears constantly across these different 
street pattern categories. Patterns such as grid, organic, deformed, and 
cul-de-sacs, shown in Fig. 1, were widely adopted across different 
studies (Asami & Istek, 2001; Chen et al., 2021; Dill, 2004; Marshall, 
2004). These commonalities show that conventional patterns are based 
mainly on selected metrics that are visually distinguishable: the streets’ 
curvature, direction, the number of dead-end streets, and the number of 
streets connected by junctions. Another observation is that most of these 
street patterns were predefined before the actual study. These street 
patterns are highly specialised for specific studies. Many more street 
characters were not covered due to the nature of predefined and highly 
simplified conventional street patterns. As a result, they only capture 
limited aspects of streets, which may not reflect diverse street 
morphology in different parts of the world. Hence, a more holistic rep-
resentation of street morphology requires a street pattern based on more 
than just a few visually identifiable metrics. 

With the introduction of network science and computing tools, 
quantitative research on street networks has become increasingly pop-
ular (Boeing, 2021; Law et al., 2019; Zhou et al., 2022). One of the 
influential quantitative methods for analysing street networks is space 
syntax, proposed by Hillier, Leaman, Stansall, and Bedford (1976). 
Space syntax developed axial maps to represent street networks and 
calculate the accessibility and centrality of streets. Similar to Space 
syntax, other quantitative methods analyse street networks by repre-
senting them as a graph, also called network analysis in GIS. Network 
analysis uses edges and nodes, which are the street segment and street 
junction (Marshall, Gil, Kropf, Tomko, & Figueiredo, 2018; Porta, Cru-
citti, & Latora, 2006; Wang, Chen, Mu, & Zhang, 2020), respectively, to 
represent street networks and examine their network metrics. The 
application of network analysis in GIS includes the evaluation of urban 
road network connectivity and its impact on travel demand, safety, and 
efficiency (Cervero & Kockelman, 1997a; Cooper & Chiaradia, 2020; 
Jenelius, Petersen, & Mattsson, 2006; Steenberghen, Aerts, & Thomas, 
2010). Another application is to explore street networks’ relation to land 
use, socioeconomic activity, and urban form. This can help explain the 
spatial distribution of urban activities and functions in different parts of 
the city and how they interact. The network metrics play a vital role in 
these studies with much software developed. For example, the City Form 
Lab (Sevtsuk & Mekonnen, 2012) developed a toolbox for urban 
network analysis that can compute centrality. Boeing (2017a, 2017b) 
developed OSMnx, a Python package that allows you to download, 
analyse, and visualise street networks from OpenStreetMap (OSM). 
Users can use OSMnx to create network graphs and calculate metrics 
such as orientation entropy and centrality. These new metrics provide 
more information on street networks and greatly enhance scholars’ 
ability to explore various aspects of urban morphology at a large scale. 
However, these diverse quantitative methods also raised the bar to 
comprehend and utilise streets in urban studies and planning. 

So far, this paper has reviewed the quantitative studies of street 
networks and the use of street patterns. Current work combining both 
fields concentrates on recognising existing conventional patterns or 

Fig. 1. Some common conventional predefined patterns in existing studies. (Produced by the author with Open Street Map).  
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global scale studies with the selected metrics and city as the smallest 
study unit. The former still uses the conventional street pattern, which 
urban designers and planners widely adopt. However, their classifica-
tion is largely based on visual identities and leaves out valuable infor-
mation, as mentioned earlier. This work is exemplified by Chen et al. 
(2021) deep-leaning approach to mapping street patterns and studying 
their relationship with urban vitality. For the global-scale study with the 
city as the unit of analysis, although it generates street network typology 
with various quantitative methods, it has a granularity that is too large. 
Hence, it is not the notion of street patterns that urban planners and 
designers adopted and is not ideal to reveal the city’s internal structure. 
These works are exemplified by Louf and Barthelemy (2014) classifi-
cation of the city’s street network typology using street blocks and 
Boeing’s work Boeing (2018), where he conducted street network 
analysis on American cities at multiple scales. On the one hand, finding 
the right balance between using too little or too much of the street 
metrics is not easy. Although many quantitative street metrics were 
introduced to depict the street network, a handful of metrics are insuf-
ficient to capture the street morphology holistically. At the same time, 
too many could be elusive and not intuitive to understand and analyse. 
On the other hand, conventional street patterns are intuitive, but their 
predefined classification limits their ability to reflect the diversity of 
street morphology. Consequently, it has confined the application of 
street patterns to large-scale multidisciplinary research. 

This article also acknowledges a common challenge of choosing a 
unit of analysis when investigating street networks. Some use the city as 
the unit of analysis, which is too coarse for analysing urban morphology. 
Currently, most studies adopt a grid-based partition or administrative as 
the unit of analysis. There is no consensus on defining and delimiting a 
unit of analysis consistently and meaningfully (Zhang & Kukadia, 2005). 
Moreover, the effectiveness of these units in capturing the intricate 
structure of street networks has been a subject of debate. While the grid- 
based approach generates a universal unit of analysis for multi-city 
studies, it can be rather rigid for the arbitrary division of the network. 
On the other hand, using administrative boundaries in urban planning 
and study is undoubtedly a well-established practice, as they provide a 
clear framework for governance, policymaking, and project imple-
mentation. However, the effectiveness of administrative boundaries 
depends on how well they align with the actual urban dynamics and 
characteristics on the ground, in this case, the morphological patterns of 
streets, which have little rationale to follow administrative limits 
strictly. Additionally, the administrative boundary lacks universality 
when studying cities adopting different division systems with different 
spatial scales. In light of this, Law (2017) explored using a street network 
to generate adaptive units of analysis to study housing prices that have 
not been tested for street morphology. 

Given the constraints, the existing studies presented an opportunity 
to amalgamate the abundance of street metrics and patterns for a data- 
driven morphometric-based street pattern in a cross-city urban 
morphological study. We apply an unsupervised machine learning 
method to generate street patterns: the morphometric-based street 
pattern. It does not require a labelled training dataset and generates 
network typology automatically. With the new quantitative method, our 
method aims to explore street patterns’ potential to character urban 
morphology from diverse urban contexts. The resulting morphometric- 
based patterns could potentially, first, resemble conventional pre-
defined street patterns and maintain the simplicity of using patterns to 
characterise urban morphology; second, utilise morphometrics, which 
shows the morphological character intuitively compared to conven-
tional patterns; third, cover the diverse urban environments and cap-
tures morphological distinctions in different cities compared to 
conventional street pattern; Fourth, adopts a suitable scale and unit of 
analysis which is more suitable for urban scholars, planners, and de-
signers to work with for both inter- and intra-city comparison. The new 
street pattern depends on the features input with minimum parameter 
adjustment. This study mapped the new street patterns and performed 

some initial analysis to determine how they characterise the urban 
morphology across cities. 

3. Methodology 

This study proposes an approach for characterising urban 
morphology based on street patterns using unsupervised machine 
learning. As illustrated in Fig. 2, the proposed approach consists of three 
major steps: First, this study represents streets as networks to generate 
the adaptive unit of analysis; second, it quantifies the street morphology 
through street metrics; third, it generates morphometric-based patterns 
through unsupervised hierarchical clustering on top of the measured 
metrics. The three steps are further elaborated in Sections 3.1, 3.2, and 
3.3. The result is the morphometric-based pattern and their mapping in 
the case study. Mapping the street pattern provides an initial exploration 
or validity test to see whether it can reveal the internal urban structure 
of the city and further show the difference across cities. 

To test the validity of the proposed method, case study cities are 
selected based on two principles: the diversity of street networks pre-
sented in the cities and the potential for future research. This research 
has deliberately selected distinct cosmopolitan cities with different 
historical, economic, cultural, and political backgrounds worldwide, 
namely Amsterdam, Chengdu, London, Seoul, Houston, and New York 
City. They are metropolitan cities where changing transportation modes 
and urban development stages have led to distinct street morphology. 
The case study selected also has a relatively good amount of research 
using different data and better open data access with quality, which 
provides opportunities for future research. As the investigation covers a 
range of scales, from a broader intercity/urban structure to a more 
refined district/neighbourhood scale, each study area is set as a 25 km ×
25 km square for better comparability between cities. Our proposed 
method utilised open data and open-source tools to ensure trans-
ferability and reproducibility. Street network data is extracted from 
OpenStreetMap using the open-source Python package OSMnx. Addi-
tionally, Python libraries of NetworkX and scikit-learn, along with the 
open-source GIS tool QGIS, were applied. 

3.1. Street-based local area (SLA) as the unit of analysis 

In urban studies, the common units of analysis are often based on a 
grid or an administrative boundary. However, as mentioned earlier, they 
may not be optimised for studying street morphology. Additionally, the 
variability in administrative boundary definitions across different re-
gions challenges consistent data organisation and comparative analysis. 
The Street-based local areas (SLAs), with their standardised process for 
defining local areas based on actual street networks, offer a universal 
framework that facilitates comparison and extrapolation of insights 
across various urban settings. SLAs are defined by four key character-
istics (Law, 2017) and optimised for studying street patterns across 
different cities: 1) street-based, which means they are generated from the 
street network. Hence, all cities have a single unified input; 2) topolog-
ical/configurational, which means the generation of SLA takes into 
consideration network and layout properties; 3) discrete means each SLA 
is independent of each other and the original street network so that the 
metrics can be calculated independently; 4) suitable size as it is large 
enough to capture the street networks characteristics but small enough 
to distinguish the morphological and socioeconomic differences within a 
city. 

The effectiveness of SLAs compared to administrative boundaries is 
evident when considering urban sprawl and areas with dense street 
networks that do not conform to administrative demarcations. Taking 
London as an example, in Law’s work (2017), the proponents of the SLA 
approach have demonstrated that it offers a more innovative and precise 
framework for capturing the unique attributes of areas such as Isle of 
Dogs in Fig. 3a, which may not align neatly with administrative 
boundaries indicated in red. Our research has reproduced similar 
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findings, indicating that SLAs can provide a more accurate representa-
tion of urban areas for planning purposes. This is particularly relevant in 
metropolises like our case study cities, where urban sprawl has extended 
beyond traditional administrative boundaries. In such scenarios, a ho-
listic approach to planning that transcends these boundaries is essential. 
For instance, in cities like Amsterdam (Fig. 3b), the urban fabric is so 

interwoven with neighbouring areas that they appear continuous. 
Relying solely on administrative boundaries for planning in these con-
texts could obscure the broader urban landscape, which the SLA more 
effectively captures in Fig. 4. 

We use OSMnx to extract the street network for all six case study 
cities from the Open Street Map. The resulting network is a weighted 

Fig. 2. Three major steps of the proposed method. A more detailed explanation of each specific step will be provided in detail in this section.  
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directed graph with street length as the weight. Streets and street 
junctions become edges and nodes, respectively. These graphs preserved 
the most information and can be transformed into other kinds of graphs 
(directed/undirected, weighted/unweighted) for later research needs. 

To divide the street network into SLAs, the study first transforms the 
street network into an unweighted and undirected line graph, where the 
streets become nodes and street junctions become edges. We then 
perform a community detection technique, specifically modularity 
maximisation clustering, so streets as nodes can be assigned to different 
communities to generate the SLAs as subgraphs. The modularity max-
imisation technique begins with each node in its own community and 
repeatedly joins the pair of communities that lead to the largest modu-
larity until no further increase in modularity is possible. More details 
regarding the modularity maximisation technique can be referred to in 
the work by Clauset, Newman, and Moore (2004). After the SLA sub-
graphs are generated, QGIS and ArcMap are applied to create and clean 

the polygons covering the SLA. These polygons are used as the inputs for 
the OSMnx to recapture the street networks for the metric calculation in 
the next step. A total of 1054 SLAs are generated across six cities in this 
research. Fig. 4 shows the street network partitioning and SLA generated 
in Chengdu and Amsterdam. The different colours distinguish the 
neighbouring SLAs. As shown, the SLAs can adapt to the street network 
in different cities and produce comparable units of analysis with similar 
scales. 

3.2. Metrics for street network 

This study proposes to use various metrics to capture different 
characters of the street network in SLA. Different metrics require 
different graph inputs; hence, this study transforms the original graph 
into the graph needed. The SLA only provides the boundary for the 
calculation. These metrics are generated using the Python network 

Fig. 3. 3a The ward division in London did not capture the Isle of Dogs. The streets coloured by SLA show clearly how SLA better defines the Isle. 
3b Amsterdam’s urban sprawl extends beyond the administrative boundary (indicated in red). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. The coloured networks show the street network extracted from OSMnx and divided by community detection. The thickened boundary shows the polygons 
generated as SLAs. 
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package OSMnx and NetworkX. Since many of these metrics are highly 
correlated and may require extensive computing power, catering to the 
needs of this study, 13 metrics were preserved after reviewing. 

As shown in Table 1, these thirteen metrics can be generalised into 
three categories: one measures the basic spatial attribute/appearance of 
the network, including Street Length, Diameter, Circuity, and Orientation 

Entropy; these are Composition metrics. The second category associates 
the street network’s fundamental properties, including k_avg, Self-loop, 
L-junction, T-junction, and X-junction, referred to as the configuration 
metrics. Lastly, this study proposes explanatory metrics, which inform 
the more sophisticated network properties, including Degree Pearson, 
Transitivity, Global reaching Centrality, and Global Efficiency. 

In General, the three dimensions of these metrics are adapted from 
Marshall’s work (2004), where he originally proposed composition and 
configuration to denote the geometry and topology properties. By 
employing this tripartite framework, we aim to offer a more compre-
hensive analysis that can inform urban design and policymaking. The 
composition metrics collectively describe the street network’s physical 
appearance and foundational layout. Configuration metrics help us un-
derstand the network’s potential for connectivity and movement within 
the urban fabric. Lastly, Explanatory metrics are designed to interpret 
more sophisticated properties of the network that explain its broader 
implications for urban dynamics. These metrics provide insights into the 
network’s efficiency, hierarchy, and the potential for community for-
mation within the urban environment. The conceptual underpinnings of 
this framework are rooted in the need to understand urban streets 
beyond their physical form, considering their role in urban dynamics 
and their impact on urban planning and social interactions by consid-
ering different facets of the street properties. 

The metrics are adapted from the foundational work on network 
analysis provided by OSMnx1 (Boeing, 2017b, 2019) and NetworkX2 

(Hagberg, Swart, & Chult, 2008), with specific references marked in 
Table 1. Readers are directed to the cited literature for a more detailed 
explanation of the metrics and their computational equations, accessible 
via the provided links. 

3.3. Clustering 

The final step is to use the machine learning method to derive the 
morphometric-based street patterns from the metrics generated from the 
previous step. This study adopted the hierarchical clustering method. 
Hierarchical clustering is an unsupervised classification algorithm with 
a wide range of applications in various fields (Xu & Wunsch, 2005). It 
hierarchically groups similar data points to form larger clusters. Similar 
to other common clustering algorithms, such as K-means, the basic 
formula for hierarchical clustering is based on a distance measure be-
tween the data points in feature space. The algorithm is flexible enough 
to be adapted to handle different research granularity and different 
clustering objectives, making it a versatile tool for generating 
morphometric-based street patterns in this study (Sarle, Jain, & Dubes, 
1990). In this study, the data points are the SLAs, and the input features 
for each data point are calculated in the previous step. 

The malleability in choosing the number of clusters enhances the 
flexibility of the proposed method. Researchers can decide on this 
number based on the needs of their study. By choosing different cluster 
quantities, the algorithm can reveal varying granularity of street pat-
terns. Hierarchical clustering enables the exploration of the relation-
ships between these different street patterns. The ideal number of 
clusters in this study will be determined using traditional methods such 
as the silhouette score, which measures how similar an object is to its 
own cluster compared to other clusters. It should be noted, though, that 
silhouette scores often serve only as weak references, given their un-
derlying assumptions and the inherent complexity of the data. Never-
theless, they can help gauge the amount of city-specific information that 
can be gleaned. Fig. 5 demonstrates a higher silhouette score when the 
number of clusters is between 3 and 11. As depicted in Fig. 6, fewer 

Table 1 
List of metrics.   

Metric Definition Value remark 

Composition Street Length1 Calculate the graph’s 
average edge length. 

In meters 

Diameter1 It is the shortest 
distance between the 
two most distant nodes 
in the network. 

In meters 
higher value implies 
slower movement 
through the 
network. 

Circuity1 Circuity is the sum of 
edge lengths divided by 
the sum of straight-line 
distances between edge 
endpoints. 

1 to ½π 
higher value implies 
the street is more 
circular 

Orientation 
Entropy1 

Orientation entropy is 
the entropy of its edges’ 
bidirectional bearings 
across evenly spaced 
bins. 

1.386 to 3.584 
higher value implies 
the streets are more 
ordered. 

Configuration k_avg1 graph’s average node 
degree (in-degree and 
out-degree) 

higher value implies 
better connectivity 
with more route 
choices. 

Self-loop11 Calculate the 
percentage of edges 
that are self-loops in a 
graph. 

0 to 1 

L-junction1 The proportion of nodes 
with two streets 
connected 

0 to 1 

T-junction1 The proportion of nodes 
with three streets 
connected 

0 to 1 

X-junction1 The proportion of nodes 
with four streets 
connected 

0 to 1 

Explanatory Degree 
Pearson2 

Compute the degree 
assortativity, which is 
the similarity of 
connections in the 
graph concerning the 
node degree, which 
means the number of 
streets connected to a 
street junction. 

− 1 to 1 
higher value implies 
the streets are more 
ordered. 

Transitivity2 The ratio between the 
observed number of 
triangles and the 
number of closed 
triplets in the graph 

0 to 1 
Higher value implies 
the network contains 
internal 
communities. 

Global 
Reaching 
Centrality2 

The global reaching 
centrality of a weighted 
directed graph is the 
average over all nodes 
of the difference 
between the local 
reaching centrality of 
the node and the 
greatest local reaching 
centrality of any node 
in the graph. 

0 to 1 
A higher value 
means the network 
shows a more 
hierarchical 
structure. 

Global 
Efficiency2 

The average efficiency 
of all pairs of nodes in a 
graph is the average 
multiplicative inverse 
of the shortest path 
distance between the 
nodes. 

0 to 1 
A higher value 
means the network 
shows better 
accessibility.  

1 Internals Reference - OSMnx 1.6.0 documentation: https://osmnx.readth 
edocs.io/en/stable/internals-reference.html#osmnx-stats-module.  

2 Algorithms — NetworkX 3.1 documentation: https://networkx.org/doc 
umentation/stable/reference/algorithms/index.html. 
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clusters can successfully capture more general differences between the 
street patterns in Chengdu and Amsterdam for straightforward inter-
pretation. Conversely, a larger cluster number can reveal more subtle 
differences. If the number is too small, like 2 clusters, major differences 
are bypassed; when the number is excessively large, like 18 clusters, 
mapping changes become negligible. As such, an overabundance of 
clusters tends to increase complexity without offering extra information. 
By referring to the data from Figs. 5 and 6, this study has determined to 
set the number of clusters at four major types and eleven subtypes. 

4. Results 

4.1. Major morphometrics-based patterns 

Four major types of street patterns are identified at a broader scale 
which resembles the conventional patterns, and a further eleven sub- 
types are introduced for more subtle analysis. The street patterns iden-
tified are shown in Table 2, and their average metrics values are shown 
in Table 3. By visually examining Table 2, Type I has a clear identity as 
the gridiron typology; Type II and Type II appear more organic or 
hybrid. Type IV is distinguishable primarily with street networks that 

Fig. 5. Silhouette score for clustering.  

Fig. 6. Different mapping of morphometric-based street patterns when selecting different numbers of clusters. The mapping shows a spectrum from simplicity 
to complexity. 
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are affiliated with an artillery road. Within the types, there are diverse 
appearances of street patterns that are not directly separatable from a 
visual aspect. Hence, it cannot directly respond to any earlier predefined 
street patterns. From a metric perspective, the four types have very 
distinctive mean values for almost all metrics. 

Type I can be visually identified as the ‘Grid’ type, reflected in the 
streets’ low curvature of 1.03 in circularity and uniformed direction 
with a low orientation entropy of 2.74 and the highest proportion of X- 
Junction of 0.37. It also has the largest degree Pearson value of 0.32, 
meaning most street junctions have very similar four streets connected 
throughout the network. The lowest value in the transitivity of 0.03 
means the network is uniform and does not contain smaller 
communities. 

Type II could be considered ‘Organic’ as it does not have a uniform 
visual identity. In contrast, it has a diverse appearance across different 
cities. In terms of configuration, its roads are circular, with the largest 
circuity of 1.09. The orientation entropy of 3.22 is also significantly 
higher than type I, which means a more varied street direction. 
Composition-wise, it has the most prominent global efficiency of 0.12. 

This means this street pattern makes the travel between the road junc-
tions relatively fast. The low degree Pearson correlation of 0.03 means 
the node degree distribution in street junctions is more random, leading 
to a more disordered street form. This is also reflected in the proportion 
of junctions with the highest self-loop of 0.0076, L-junction of 0.013, 
and lowest X-junctions of 0.1. Type II is a somewhat chaotic pattern that 
differentiates itself with diversities in street junction’s node degree and 
visual appearance. The lack of uniformity makes it somewhat organic in 
a conventional sense. 

Type III, the ‘Hybrid’, is a pattern that falls between Type I and Type 
II by visual appearance. While it clearly shows a degree of formality and 
uniformity compared to Type II, it is way less rigid than Type I. This is 
reflected in the metrics with a high orientation entropy of 3.29 and 
medium curvature of 1.05. It is also less grid with the highest proportion 
of T-junctions of 0.68 present and a relatively low Degree Pearson value 
of 0.22 in the street network. The low global reaching centrality of 0.021 
means it has the most miniature hierarchical network structure. It also 
has the lowest self-loop proportion of 0.0018 but is not directly 
observable. 

Table 2 
Identified patterns in case study cities. (Empty cell means the street pattern is not 
present or not prominent in the city). 
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Type IV is the ‘Tree’, a network pattern with smaller communities 
affiliated with an artillery road. Besides its visual identity, this character 
is reflected in the highest global reaching centrality, which shows a 
hierarchical network structure. It also distinguished itself from the 
others with a low k_avg of 4.48 and the longest average street length of 
211.35 m. Meanwhile, the global efficiency is high at 0.12, and the 
network’s diameter is low at 32.64, meaning relatively good connec-
tivity. The higher transitivity value of 0.046 also means the pattern is 
more fractured than the other patterns: communities of more densely 
connected street junctions are present. 

To conclude, the morphometric-based street pattern shows a certain 
degree of similarity but not a direct fit with the conventional patterns. 
Traditional patterns could be identified relatively quickly based on vi-
sual distinction, which is not the case here. Some critical metrics in the 
classification, such as self-loop proportion and global reaching central-
ity, are not directly identifiable visually. Nevertheless, the 
morphometric-based street pattern captured the distinctions of the 
different pattern types from different perspectives. As exemplified by the 
mirage and diverse appearance of the different patterns across different 
cities, neither conventional nor the four major morphometric-based 
patterns are sufficient to describe the street network. This research 
further divides the four major types into 11 subtypes for more thorough 
investigation and mapping. Type I and Type IV were further divided into 
two subtypes, Type II with six subtypes, while Type III remains a single 
pattern. Due to time constraints, this paper will skip the general intro-
duction of the specific subtypes and discuss them in relation to their 
distribution in cities. 

4.2. Detailed morphometric-based pattern across cities 

The distribution of the street patterns in Fig. 7 is analysed from 
within and between the cities. Within the cities, the urban spatial 
structure can be identified from the spatial distribution of the different 
patterns. Between the cities, it is clear that the composition of street 
patterns is distinctive, and their spatial distribution also shows struc-
tural differences. The four colours, red, blue, yellow, and green, repre-
sent the four major morphometric-based street patterns identified, while 
the different tones denote the different subtypes. With the help of the 

metrics, this study also digs deeper into the different characteristics of 
the street pattern and what it means for the city. 

The difference between cities is identifiable from the distribution of 
the major types. North American cities show a majority of Type I 
pattern, which means most of the cities’ street networks follow a grid 
pattern; London and Amsterdam show a majority of Type II pattern, 
whilst Seoul uniquely has a Type III majority. Their street network thus 
shows a more organic or hybrid pattern. Chengdu has a Type IV presence 
predominance, which means the street network follows a more hierar-
chical structure. Regarding diversity, Seoul, Chengdu, and London are 
visually unitary, with a single pattern type covering almost the entire 
study area. In contrast, Amsterdam, New York, and Houston are more 
diverse, with different street patterns in different city regions. This 
shows the inherent difference in the nature of the cities. For example, the 
planning of North American cities has a clear ring structure showing the 
urban expansion from a single urban core (Clark, 2008). Chengdu and 
Seoul have similar monocentric structures. In contrast, Amsterdam and 
London show a more polycentric urban spatial structure. 

Looking at a smaller scale, with the help of the finer sub-types, the 
mapping of the street patterns revealed more stories about the cities. 
Firstly, New York and Houston show a clear urban and suburban divide 
from the street pattern. The urban core, the oldest part of the city, is 
covered by the most rigorous grid pattern, Type I-1. Surrounding the 
urban core is the street network of Type II, which breaks free from the 
rigid plan but still retains a grid formation. Further away from the urban 
core, it is permeated with more ‘organic’ street patterns such as different 
variants of Type II and ‘hybrid’ Type III. Among them, Type III is more 
often overserved in our study area in New York and Type II – 4 in the 
fringe of Houston. This coincides with the difference in the scale and the 
degree of urbanisation between the cities, as New York has a longer 
history and a larger urbanised area and population compared to Hous-
ton. Hence, it is possible to deduct that Type III shows a higher degree of 
planning than Type II – 4 with a higher degree Pearson’s correlation of 
0.22 compared to 0.048. 

Amsterdam also shows a clear urban structure from street pattern 
mapping. Unlike other case study cities, the scale of Amsterdam is much 
smaller; hence, the study area also covered surrounding cities like 
Almere and Haarlem and captured the urban and rural divisions. Type I 

Table 3 
Average metrics values for major type and sub-type morphometric-based street patterns identified. 
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-2 pattern is noticeably present in the centre of Amsterdam as the urban 
core. It is also in the centre of Haarlem, a neighbouring satellite city in 
the North-west. Type II-2 and Type III are common street patterns in 
Amsterdam’s denser urbanised areas. Type II-2 is similar to Type I with 
uniform street directions, except it has a lower X-node proportion of 

0.17. While the smaller built-up areas and settlements scattered between 
the cities mostly show Type II-4 and Type IV street patterns. Hence, this 
study could conclude that in Amsterdam, the street pattern follows a 
grid pattern in the city centre and grows more organic into the fringe. It 
is worth noticing that Amsterdam shows a different urban structure than 

Fig. 7. The mapping of morphometric-based pattern with the eleven subtypes.  
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American cities, and the same patterns appear in very different 
locations. 

As mentioned earlier, London appeared to be unitary. It shows no 
clear singular urban core in the study area. Rather than a single urban 
core with Type II -4 street patterns, some SLAs scattered in the study 
area also have the same street pattern, given London a less monocentric 
urban spatial structure. Type II - 6 is another dominant street pattern in 
the city, with occasional Type I and Type III. Type II – 6 shows the 
‘organic’ character with a high orientation entropy of 3.46 and a low 
degree Pearson correlation of − 0.014. It also has the lowest global ef-
ficiency of 0.082 and the longest diameter of 47.99 in all the subtypes, 
meaning that commuting in streets of such a pattern requires more effort 
than in other patterns. Seoul has a unique Type III dominant street 
network, with some Type IVs appearing in the mountainous region. 
These two cities are more organic and show less structural identity than 
American cities and Amsterdam. 

Finally, as the only Chinese city in the case study, Chengdu shows a 
unique street pattern composition. It has a type IV dominant street 
pattern across the city. Type IV is a street pattern showing a hierarchical 
structure like a tree where the major road branches out into more minor 
roads. In the case of Chengdu, the centre and peripheral of the case study 
area are occupied by Type IV-2 and Type IV–1, respectively. The sig-
nificant difference between them is that Type IV -1 is more organic with 
higher orientation entropy and lower degree Pearson. It also has a longer 
average street length. This means Chengdu has more rigorous planning 
at the centre. Some Type I and Type II patterns are also present along the 
vertical central axis, especially in the south, where new development is 
carried out. These patterns together told the unique urban settings of 
Chengdu. 

These variations in street forms from one city reflect each city’s 
unique historical, cultural, economic, and environmental contexts. 
Furthermore, they influence how residents and visitors experience and 
interact with the urban environment. By studying these differences, we 
can derive insights into the successes and challenges of different urban 
designs and apply these lessons to create more liveable, sustainable, and 
vibrant cities. 

5. Discussion 

This research demonstrated the possibility of reaching a compre-
hensive, systematic and consistent description of street form for better 
urban morphological study. Street patterns play a vital role in shaping 
the urban experience, acting as the blueprint upon which cities function 
and evolve. At its core, the layout of streets shapes not just movement, 
but also the very fabric of socioeconomic interactions. For example, 
Busy intersections often burgeon into commercial hubs, while tranquil 
cul-de-sacs might become coveted residential spaces (Cervero & Kock-
elman, 1997b). Using street patterns to predict these economic trajec-
tories can guide zoning and infrastructure decisions, optimising urban 
growth. Street patterns also influence cognitive behaviours. Predictable 
grid-like structures can ease navigation, reducing mental strain, whereas 
intricate patterns might stimulate curiosity and exploration (Jacobs, 
1961). Such nuances are critical for urban planners aiming to nurture 
specific urban activities. Furthermore, the street pattern often encap-
sulates historical and cultural narratives, reflecting ancient trade dy-
namics, colonial impositions, or indigenous planning philosophies 
(Andrews, 1942). These patterns serve as silent storytellers, offering 
glimpses into a city’s past and cultural ethos. Our morphometric-based 
street pattern offers new opportunities for more large-scale explain-
able applications in similar fields. Here, we would like to further elab-
orate on the potential and challenges raised using quantitative 
identification of street patterns in large-scale urban studies. 

First, conventional predefined street patterns rely on visual distinc-
tions that need to be further investigated before application in general 
quantitative large-scale urban studies. The four major morphometric- 
based street patterns indeed resembled conventional street patterns. 

This consistency suggests that the traditional street pattern captures a 
portion of the essence of the street network. However, Table 2 shows 
diverse visual appearances within each pattern considering different 
cities. Another relevant observation is that some visually similar SLAs, 
which may belong to the same conventional patterns, are grouped under 
different morphometric-based patterns, like Type I and Type III in Seoul, 
which comes from the same city, others like Type II-2 from London and 
Type I-2 from Houston which are visually similar SLAs from different 
cities. This suggests that morphometric-based patterns, unlike their 
conventional counterpart, may capture street network properties that 
are not apparent visually. The difference in the dominant types across 
the cities suggests that conventional predefined street patterns may 
falsely assume that street networks in different cities could be cat-
egorised under the same set of street patterns. Recently, computer vision 
(CV) techniques based on visual characters have been more frequently 
observed in urban studies. Some sought to use CV methods to map street 
patterns from a visual perspective (Chen et al., 2021), and some use 
street view images to assess the built environment (Kang, Zhang, Gao, 
Lin, & Liu, 2020; Wang & Vermeulen, 2021; Zhang, Chapple, Cao, 
Dennett, & Smith, 2020). Similar to conventional street patterns, the 
missing information resulting from neglected non-visual metrics in 
computer vision methods may lead to inclusive results depending on the 
research scope. Hence, the proposed morphometric-based street pat-
terns provide an alternative for preliminary explorations of using street 
patterns in urban studies and data-driven urban planning. This is 
because of its adaptivity to accommodate diverse street properties and 
urban contexts, leading to the second point of discussion: the double- 
edged sword of flexibility. 

Second, the quantitative method proposed in this research has two 
merits, flexibility and reproducibility, but it is also subject to limitations 
(Yap, Janssen, & Biljecki, 2022). For flexibility, this research employs 
SLA as the unit of analysis and hierarchical clustering to produce 
morphometric-based street patterns at different granularities. For the 
unit of analysis, SLA presents a more standardised and adaptable 
framework that can capture the continuity and characteristics of the 
urban environments, facilitating cross-study comparisons and poten-
tially leading to more universally applicable insights in urban planning. 
In hierarchical clustering, when fewer clusters are selected, the most 
common types, such as the grid and organic types, can be identified. 
When more clusters are selected, the morphometric-based street pattern 
can provide a range of patterns to represent the complex urban envi-
ronment worldwide. This allows researchers to modify the number of 
clusters to suit their research needs. To handle the complexity of the 
built environment, this study also proposes additional street metrics to 
provide more information for clustering algorithms. While these 
methods are convenient and powerful and increase flexibility, it is 
essential to note that the resulting morphometric-based patterns may be 
susceptible to input features and settings. Different features, clustering 
methods, and numbers of clusters may result in different categorisations 
of street patterns. Therefore, increasing the number of metrics does not 
necessarily lead to better results, and their effects require further 
investigation (Ron-Ferguson, Chin, & Kwon, 2021; Zhang & Kukadia, 
2005). Another advantage of using a quantitative method to identify 
such patterns is its enhanced reproducibility. Given the same input, the 
user can always count on consistent results. The process and the result of 
the morphometric-based street pattern are relatively straightforward 
and objective. However, it always depends on the people to interpret the 
results based on the research interest and background information. For 
instance, Type I-2 represents Amsterdam’s city centres, which is not the 
case in Chengdu. Scholars need to interpret the mapped patterns with 
prior knowledge about the city. Hence, as Batty has pointed out, in cross- 
disciplinary urban studies, the results cannot be interpreted lightly 
(Batty, 2001, 2020a, 2020b). A profound understanding of the local 
context and knowledge of urban phenomena is required. It is where 
potential subjectivity and uncertainty are introduced. Nevertheless, 
these two merits allow cross-comparison of street morphology through 

C. Wu et al.                                                                                                                                                                                                                                      



Computers, Environment and Urban Systems xxx (xxxx) xxx

12

multiple dimensions. 
Lastly, this paper would like to discuss streets’ ability as an urban 

morphological element to reveal information for urban studies. Mapping 
morphometric-based patterns primarily reflects the urban spatial 
structure and patterns at a higher level. Differences in street morphology 
between cities were noticeable first, followed by the urban spatial 
structure within a city, where basic functional patterns such as urban- 
rural division were revealed. The study concludes that the proposed 
method of morphometric-based street patterns offers advantages for 
urban studies across multiple cities compared to conventional street 
patterns. It can reflect different street patterns between cities and reveal 
a city’s spatial structure. However, street patterns cannot reflect subtle 
urban phenomena and short-term changes. For example, the change in 
land use and urban gentrification (Jacobs, 1961; Venerandi et al., 2017; 
Zhang et al., 2020) may not change the street network. Although the 
street network can reflect some long-term and broader-scale trends in 
the city, such as the urban expansion history (Huang et al., 2022; Zhao 
et al., 2017), its longevity also limits it from being a good indicator of 
recent, fast-paced development in the city (Kandt & Batty, 2021). 
Another criticism of the street network’s ability to depict urban 
morphology is that it is planar and does not consider the vertical 
dimension of the urban space (Boeing, 2020; Bruyns, Higgins, & Nel, 
2021; Harris, 2015). The building block is another important urban 
element that is intensely researched (Biljecki, Chow, & Lee, 2023; 
Labetski, Vitalis, Biljecki, Arroyo Ohori, & Stoter, 2023). Therefore, a 
more holistic description of the physical environment requires other 
complementary urban elements. Hence, the proposed method of 
morphometric-based street patterns may be more suitable for a universal 
study of street morphology at a broader level. 

6. Conclusion 

This study introduces a new approach to urban morphology studies 
by proposing morphometric-based street patterns by utilising unsuper-
vised clustering machine-learning methods and designating the SLA as 
the adaptive unit of analysis. The motivation behind this research is the 
urgent need to improve urban planning practices by providing a more 
comprehensive, flexible, and metric-based method to analyse street 
morphologies. As urban areas worldwide face unprecedented challenges 
related to rapid urbanisation, population growth, and climate change, 
there is a pressing need for innovative tools that can help urban planners 
and policymakers make informed decisions. This research is crucial as it 
addresses this gap by offering a novel method that not only accurately 
depicts urban environments but also holds the potential to reveal 
intricate morphological distinctions between cities, which can ulti-
mately contribute to creating more sustainable and liveable urban 
spaces. This aligns with Sustainable Development Goals 9 and 11, which 
call for building resilient infrastructure, promoting inclusive and sus-
tainable industrialisation, and making cities and human settlements 
inclusive, safe, resilient, and sustainable. 

In urban studies and urban planning, there is an increasing trend 
toward using quantitative methods to describe the physical urban 
environment and study the relationship between form and function 
(Arribas-Bel & Fleischmann, 2022). This research contributes to such a 
trend four-fold. First, the SLA and hierarchy clustering method deployed 
in the method ensured an adaptive application for large-scale quanti-
tative studies. Second, this research also exemplified the effectiveness of 
this method by identifying hierarchical patterns in terms of major and 
subtypes of street patterns and showing their capability to depict the 
diverse urban environment. Third, this study compared and discussed 
the different characteristics of urban morphology with street patterns 
between the case study cities by suggesting there may be more differ-
ences than similarities. Fourth, this study also completed the exploration 
by discussing potential challenges for such a quantitative method. It is 
crucial to choose models and metrics depending on the research scope, 
especially for studies that span multiple cities with distinct 

characteristics or smaller-scale studies. In such cases, subtle details may 
be overlooked, leading to vague descriptions of smaller-scale physical 
forms of cities. 

Despite the challenges, this research represents a pioneering effort to 
apply unsupervised machine-learning techniques to map urban 
morphology with street patterns. The real-world significance of this 
work lies in its potential to enhance the credibility and applicability of 
quantitative approaches in urban studies, ultimately contributing to 
sustainable urban development. Future work will focus on improving 
street data quality, broadening the application of morphometric-based 
street patterns in diverse urban studies, and examining their correla-
tion with various urban phenomena, such as socioeconomic activities. 
This will provide deeper insights into the complex dynamics of urban 
built environments, ultimately fostering the creation of more sustainable 
and liveable urban spaces. 
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