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Abstract: The intricate optical distortions that occur when light interacts with complex media,
such as few- or multi-mode optical fiber, often appear random in origin and are a fundamental
source of error for communication and sensing systems. We propose the use of orbital angular
momentum (OAM) feature extraction to mitigate phase-noise and allow for the use of intermodal-
coupling as an effective tool for fiber sensing. OAM feature extraction is achieved by passive
all-optical OAM demultiplexing, and we demonstrate fiber bend tracking with 94.1% accuracy.
Conversely, an accuracy of only 14% was achieved for determining the same bend positions when
using a convolutional-neural-network trained with intensity measurements of the output of the
fiber. Further, OAM feature extraction used 120 times less information for training compared to
intensity image based measurements. This work indicates that structured light enhanced machine
learning could be used in a wide range of future sensing technologies.
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1. Introduction

Complex optical interactions with media have captured the imagination of many researchers,
becoming a rapidly growing field of cross disciplinary research [1]. When light interacts
with complex media, the optical field is distorted by cascaded interactions with spatially
distributed scatters or variations in refractive index [2,3]. Specifically within multi-mode fibers,
manufacturing errors, bends in the fiber, and material impurities can result in distortions that
lead to mode-mixing. Mode-mixing will commonly produce intricate interference between the
optical modes supported by the fiber that result in output intensity profiles that resemble random
behaviour rather than ordered, predictable interactions [4]. These interactions are commonly
referred to as speckles, due to their complex patterning. Monitoring changes in the speckle
structure has been demonstrated as a method for sensing applications [5,6]. In addition, changes
in temperature and strain in the fiber lead to the intensity profile continually evolving over time,
therefore it is difficult to determine explicit external environmental factors that create a particular
output intensity or phase profile. This creates challenges for the use of multi-mode fibers in
communications, imaging or entangled quantum systems [7].

Overcoming disorder in complex media, including but not exclusive to fiber, has led to many
interesting research discoveries in communication [4,8–11], imaging [12–15], quantum optics
[16–18], and optical sensors [19–24]. However, the continuous changes in relative phase between
the optical modes create phase-noise that limits the accuracy of sensors based on few-mode
or multi-mode fibers [24]. Intermodal coupling can be a reliable fiber property for sensing,
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however a technical challenge is the development of measurement schemes that are less sensitive
to changes in phase associated with thermal and mechanical effects on optical modes guided by a
fiber. Low complexity, high accuracy shape sensing techniques hold significant potential for the
development of fiber sensors for a wide range of novel sensing applications and would allow
these sensors to be more widely deployed.

Rayleigh scattering and Bragg-grating techniques are currently the leading approach to shape
sensing in fiber [25–28], where optical time domain reflectometry (OTDR) is commonly used for
bend or damage location. Some bends in a fiber result in back reflections, therefore accurate
measurement of the time a back reflected signal is received can reveal the location of a bend.
Improvements in laser sources, interferometric techniques, and timing electronics have provided
a potential road map for cm-scale bend location to be achieved. Recent demonstrations of
technologies such as phase sensitive or chirped pulse OTDR, and optical frequency domain
reflectometry (OFDR) have received notable interest from the community. The use of multi-mode
fibers has become an emerging research avenue, with promise to increase the resolution of
the bend location to around 20 m over 2 km of multi-mode optical fiber [29]. Short-distance
implementations have become commercially available, with 20 cm resolution, based on multi-
mode optical fiber deployed in aeroplanes and submarines [30–33]. Bragg-grating technology
are use periodic grating structures are introduced into the fiber, that, when perturbed, change
their period and subsequently reflect light of a specific wavelength depending on the strain or
temperature change near these gratings [34–36]. Bespoke fibers have been shown to provide
high accuracy shape detection, where the sensor accuracy is primarily limited by the frequency
resolution of the optical spectrum analyser used for measuring frequency shifts in the back
reflected signal. Although accurate, both OTDR and Bragg-grating technology are non-trivial
to implement for high accuracy shape sensing, especially at mm scale resolution and shallow
bend radii. Recent investigations have indicated that coherent detectors can be used in deployed
single-mode fiber to retrieve environmental information [37]. Additionally, combinations of
traditional OTDR or Bragg-grating technology with machine learning methods can improve the
resolution of sensors based on few-mode fibers, but intermodal coupling and phase noise are both
major limitations to accuracy of these systems [24]. Optical elements have been successfully
used as all optical pre-processors for machine or deep learning to assist computational efficiency
and accuracy [38–41]. Therefore, a combination of bespoke optical elements and machine
learning could allow for the development of low complexity fiber shape sensors that could be
transformative for consumer electronics, such as wearable technology or vehicle sensors.

In this paper, an approach which we refer to as “structured light enhanced machine learning”
is demonstrated for millimeter scale bend sensing in up to a 1 km of few-mode optical fiber;
an approach that specifically uses intermodal coupling as a measurement technique. Modal
decomposition, commonly referred to as mode sorting or mode de-multiplexing [42–44], are
optical methods for determining the linear superposition of orthogonal modes that can be used to
represent any structured optical field, such as the output from a bent few- or multi-mode optical
fiber, see conceptual drawing in Fig. 1. These approaches, in effect, perform an all-optical feature
extraction to sort complex spatial information into a discrete set of classes, similar in concept to
the use of principal component analysis of large data-sets [45]. When bends occur in fiber, light
is coupled into neighbouring spatial modes. This intermodal coupling will yield a distinctive
power distribution at the output of the de-multiplexer that can be used to train a machine learning
algorithm. Based on statistical analysis of the power distribution, we revealed a continuously
varying physical trend that can be used for accurate bend location detection. This structured light
enhanced machine learning approach could also be applied to other complex systems to identify
physical trends that could be used for novel sensor technologies.
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Fig. 1. When high order optical beams, such as those that carry OAM, are
coupled in optical fibers, intermodal coupling occurs that distorts the beam.
This can be measured using a mode demultiplexer to quantify the distribution
of power between OAM modes that results from intermodal coupling. When
used as trainable features for machine learning, their power distributions can
provide accurate information identifying the positions or degree of bending in
a few- or multi-mode optical fiber.
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Fig. 1. When high order optical beams, such as those that carry OAM, are coupled in optical
fibers, intermodal coupling occurs that distorts the beam. This can be measured using a
mode de-multiplexer to quantify the distribution of power between OAM modes that results
from intermodal coupling. When used as trainable features for machine learning, their power
distributions can provide accurate information identifying the positions or degree of bending
in a few- or multi-mode optical fiber.

2. Mode mixing in fiber

Modes in step index optical fiber are commonly considered as linear polarised (LP) modes;
however, one is free to measure the light emitted from the fiber in any alternative complete
modal basis. As noted above, small changes in temperature or position of the fiber usually
result in chaotic changes to the relative phase noise between the modes in optical fiber, and
more importantly, in a different power distribution within the supported modal bandwidth. In
our experimental implementation, an orbital angular momentum (OAM) mode de-multiplexer
performs an all-optical linear transformation between OAM modes and spatially separated spots
on the back focal plane of a camera, [43]. This transformation is largely unaffected by relative
phase, where each of the separated modes maintain their relative phase, but have only minimal
levels of interference at the detector plane. Therefore, decomposing the light emitted from the
fiber using an OAM de-multiplexer provides a method to monitor intermodal coupling with
reduced sensitivity to undesired phase noise.

The specific mode mixing that occurs in a fiber can be represented as a transfer matrix (T).
Manufactured fibers have small variations in diameter, refractive index, mechanical twisting, and
continual micro-bends along the length of the fiber. Therefore, the optical field is continually
being aberrated over the full length of the fiber. This means that a transfer matrix is not valid at
all length scales or positions and can be separated into distinct sections along the fiber, see Fig. 2,
where each section has a ransfer matrix Tp±i, where subscript variable i indicates the sections
either before or after the bend position, indicated by subscript p. When the position of a bend is
moved, the Tp before the bend, Tp−1, and after the bend, Tp+1, will change depending on any
volumetric changes in the fiber’s internal structure, or the mechanical support for the fiber, and
the effective T for the fiber as a whole will not be the same. This is mathematically represented as

Tp+1 · Tp · Tp−1 ≠ Tp∗+1 · Tp∗ · Tp∗−1, (1)
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when the T are not an identity matrix. This can be more generally expressed for arbitrarily long
fibers with N segments as

↷
N−1∏︂
i=1

Ti ≠

↷
N−1∏︂
i=1

T∗
i . (2)

Therefore, as a bend position is moved, a unique distortion to the output beam profile is
induced that can be used for sensing bend position. Similarly, the degree of bending will change
the Tp for the bent region of the fiber allowing for the determination of the degree of bending. It
should be noted that a straight fiber, free of micro-bend or strain would not exhibit this behaviour
as T would not spatially change over the length of the fiber. As this behaviour requires natural
variation in the fiber, a universal T for every fiber does not exist. Therefore, fitted, calibrated, or
trained systems are required to build a sensor based on this principle.

Input Beam

Output Beam
Fiber Bend

Bend Position
Input Beam

Output Beam*Fiber Bend

A

B

Fig. 2. (A) The transmission matrix, T, can be separated into several sections
depending on the local fiber parameters. For the case of a single bend in the
fiber, with two straight sections located before and after the bend, each zone
will have its own well-defined Tp±i. In real world fiber, the straight sections
will perturb the propagating optical mode. (B) Therefore, if the bend is
moved this will lead to a change in T𝑝−1 and T𝑝+1, becoming T∗

𝑝+1 and T∗
𝑝−1,

respectively. This will subsequently change the shape of the output beam due
to different mode mixing during propagation, which can be used to determine
the position of the bend.
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Fig. 2. (A) The transmission matrix, T, can be separated into several sections depending on
the local fiber parameters. For the case of a single bend in the fiber, with two straight sections
located before and after the bend, each zone will have its own well-defined Tp±i. In real
world fiber, the straight sections will perturb the propagating optical mode. (B) Therefore, if
the bend is moved this will lead to a change in Tp−1 and Tp+1, becoming T∗

p+1 and T∗
p−1,

respectively. This will subsequently change the shape of the output beam due to different
mode mixing during propagation, which can be used to determine the position of the bend.

A simplified fiber model is the matrix product of a series of Ti that represent the bent, B, and
straight, Sz, regions of the fiber, where z is each arbitrary longitudinal partition. To compute the
expected modal distribution from the model, the straight section of the fiber is considered to have
low modal mixing. This matrix is written as

Sz =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

s1,1 s∆1,2 · · · s∆1,m

s∆2,1 s2,2 · · · s∆2,m
...

...
. . .

...

s∆n,1 s∆n,2 · · · sn,m

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
, (3)
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where sn,m represents the power maintained in input mode when n = m, and s∆n,m is the partial
optical power coupled in neighbouring fiber modes when n ≠ m. For the case of an ideal fiber,
where no mode mixing occurs in the straight fiber sn,m = 1 ∀ n = m and s∆n,m = 0 ∀ n ≠ m. Each
column in Sz will sum to 1, with the assumption that no power loss occurs in this length of fiber.
The bend in the fiber can be represented as a single, randomly mixed matrix, that can be written
as

B =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

b1,1 b1,2 · · · b1,m

b2,1 b2,2 · · · b2,m
...

...
. . .

...

bn,1 bn,2 · · · bn,m

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
, (4)

where bn,m is a random real valued number that can be described by normal distribution, as was
the case for Sz, each row in B will sum to 1, with the assumption that no power loss occurs at
the bend. We determine the expected measured output mode as vector, Vn. To mathematically
represent a fiber with a moving bend, the fiber is segmented into 14 straight sections, Sz, and one
B bend location. To determine the expected output matrix, Vn, we calculate the matrix product of
all 15 Ti. To represent the 11 bend position we considered in this work to test the principle by
changing the position of B with respect to the other Ti for the same input mode. Therefore, Vn
can be sequentially computed as

V1 =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

1

0
...

0

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
· S1 · B · S2 · S3· · · · Sz,

V2 =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

1

0
...

0

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
· S1 · S2 · B · S3· · · · Sz,

...

Vn =

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

1

0
...

0

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
· S1 · S2· · · · Sz−1 · B · Sz.

(5)

With each change in position, the effective transmission matrix of the fiber is different, yielding
a change in the output modal distribution, Vn, when Sz is not an identity matrix. To numerically
compute the expected result, eleven effective bend positions are defined with the same real valued
Sz and B transmission matrices. As each of these Ti will have some level of random variation,
1000 random matrices are computed for each bend, where the mean center of mass, COM, and
variance is calculated. Presented in Fig. 3, is a plot of the change in average COM, ∆COM, where
a clear change is observed for a change in the bend position. This result indicates that for an ideal
fiber, which is well supported with little or no micro-bends, no change in ∆COM is calculated.
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This result is consistent with the work by Loterie et al. [46]. The results indicate that increased
intermodal coupling from non-ideal fiber effects result in a clear change in |∆COM| is expected.
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Fig. 3. Calculated magnitude change in center of mass, |ΔCOM| for ideal fiber
with no intermodal coupling and therefore no power is transferred to any 𝑠Δ𝑛,𝑚

terms in Eqn. 3 and yields
∑

𝑠Δ𝑛,𝑚 = 0. Intermodal coupling occurs in straight
sections of fiber with small defects, therefore

∑
𝑗𝑛,𝑚 ≠ 0. We consider a ratio,
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1
∑𝑛

1 𝑠Δ𝑛,𝑚)/(
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1
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1 𝑠𝑛,𝑚), between the total power in all 𝑠Δ𝑛,𝑚 terms
with relation to the total power in all 𝑖𝑛 terms, to calculate the expected
|ΔCOM| in the cases where 𝐶 = {0.001, 0.1 and 0.2}, respectively.
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yielding a change in the output modal distribution, V𝑛, when S𝑧 is not an identity matrix.142

Fig. 3. Calculated magnitude change in center of mass, |∆COM| for ideal fiber with no
intermodal coupling and therefore no power is transferred to any s∆n,m terms in Eqn. (3) and
yields

∑︁
s∆n,m = 0. Intermodal coupling occurs in straight sections of fiber with small defects,

therefore
∑︁

jn,m ≠ 0. We consider a ratio, C = (∑︁m
1
∑︁n

1 s∆n,m)/(
∑︁n

1
∑︁m

1 sn,m), between the
total power in all s∆n,m terms with relation to the total power in all in terms, to calculate the
expected |∆COM| in the cases where C = {0.001, 0.1 and 0.2}, respectively.

3. Simulation

The spatial profile of any beam can be considered as a linear superposition of any complete basis
set of spatial modes. For a coherent paraxial beam, an orthogonal set can be determined based
on the particular constraints, such as Cartesian coordinates that define Hermite-Gaussian (HG),
and polar coordinates that define Laguerre-Gaussian (LG) beams. Both HG and LG modes have
been used to decompose optical fields from fiber [44,47], however selection of the wrong basis
set could lead to additional errors due to inter-channel crosstalk [44]. LG beams are commonly
used for expressing spatial modes bound by circular apertures. Linear-polarised (LP) modes,
commonly considered in step index fiber, can be readily expressed as linear super-positions of
LGp,ℓ modes, where spatial modes are described by two integers, p and ℓ, that correspond to
radial and azimuthal components, respectively. a linear superposition can be expressed as:

Ψ(r, ρ) =
NB∑︂
η=1
αη exp(iϕη) · Ψη(r, ρ), (6)

where η is an integer assigned to a radial–azimuthal pair as η = (p, ℓ), thus Ψη(r, ρ) is the
complex spatial field of each LGℓ

p mode supported by the optical system given by NB, αη is the
amplitude weighting of each mode, and ϕη is the relative phase between each mode. When
intermodal coupling occurs at a bend in a fiber, power in one particular spatial mode is distributed
between neighbouring spatial modes. The relative phase noise is largely affected by even small
temperature changes or strain on the optical fiber. These relative phase shifts will continually
vary with respect to time and environmental conditions. Therefore, it can be approximated to
a random variation in time. As our modal decomposition method allows us to minimise the
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Fig. 4. The measurement of bend location from intermodal coupling was
simulated to compare different machine learning approaches for the detection
of intermodal coupling when relative phase will naturally evolve. (A) a series
of sample intensity profiles with a change in COM, with random relative
phase noise between modes used for training. (B) a neural network trained
using direct intensity measurement of intensity is considered as the bench
mark for traditional approaches using machine learning. The use of modal
decomposition in both the (C) HG and (D) LG basis sets are considered, indi-
cating OAM is the preferred basis set for accurate identification of intermodal
coupling.

systems [48]. Therefore, we utilise a neural network as a bench mark to compare mode188

structured light enhanced machine learning, see Fig. 4B, where we image the output of189

the fiber directly onto a CCD camera. Our simulated modal decomposition is achieved190

by computing the overlap integral of the output with HG and OAM modes, as all-optical191

mode sorting techniques exist for these mode types [44,49], Fig. 4C and D, respectively.192

These results indicate that OAM decomposition performs substantially better than either193

direct intensity measurement 14 % or using HG modes 58.2 %, yielding 98.9 % accuracy194

for the identification of intermodal coupling. We note training can also be completed195

using both phase and intensity information of the output optical beam from the fiber,196

however our simulations indicate an 11%±7 accuracy with a loss of 2.76±0.15. This lower197

accuracy is related to the large potential variations in phase that occur from random198

phase-noise, leading to additional error during training for a given training set.199

4. Experimental implementation200

Experimentally, a loosely supported fiber was bent at a series of positions and with201

bends of different radius of curvature, where the spatial mode decomposition into the202

OAM basis was recorded. Two types of fiber configurations were considered in these203

Fig. 4. The measurement of bend location from intermodal coupling was simulated to
compare different machine learning approaches for the detection of intermodal coupling
when relative phase will naturally evolve. (A) a series of sample intensity profiles with a
change in COM, with random relative phase noise between modes used for training. (B)
a neural network trained using direct intensity measurement of intensity is considered
as the bench mark for traditional approaches using machine learning. The use of modal
decomposition in both the (C) HG and (D) LG basis sets are considered, indicating OAM is
the preferred basis set for accurate identification of intermodal coupling.

influence of relative phase noise on the measure of intermodal coupling, it can improve the
overall accuracy of our proposed sensing technique. We note, bend or movement of the fiber that
do not introduce changes in intermodal coupling and relative phase shifts only, would not be
detectable in our current approach.

In our experimental implementation we utilise a step index fiber with a core size of 8.2 µm
(SMF28) and couple in light from a laser of wavelength 660 nm. At this wavelength, the fiber
will support multiple modes and can be considered a few-mode optical fiber. LP modes are
commonly considered the orthogonal mode set of step index bounded waveguides. We estimate
our fiber can support 6 spatial LP modes, where the intermodal coupling results in the output
mode after bending being a linear superposition of these modes. Therefore, to replicate this
intermodal coupling, 11 unique, but non-orthogonal, superpositions of LP modes were generated
with random relative phases between each spatial mode.

A common approach for spatial modal analysis using machine learning is based on trained
neural networks and has shown promise for communication and sensing systems [48]. Therefore,
we utilise a neural network as a bench mark to compare mode structured light enhanced machine
learning, see Fig. 4B, where we image the output of the fiber directly onto a CCD camera. Our
simulated modal decomposition is achieved by computing the overlap integral of the output
with HG and OAM modes, as all-optical mode sorting techniques exist for these mode types
[44,49], Fig. 4C and D, respectively. These results indicate that OAM decomposition performs
substantially better than either direct intensity measurement 14% or using HG modes 58.2%,
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yielding 98.9% accuracy for the identification of intermodal coupling. We note training can also
be completed using both phase and intensity information of the output optical beam from the
fiber, however our simulations indicate an 11%±7 accuracy with a loss of 2.76±0.15. This lower
accuracy is related to the large potential variations in phase that occur from random phase-noise,
leading to additional error during training for a given training set.

4. Experimental implementation

Experimentally, a loosely supported fiber was bent at a series of positions and with bends of
different radius of curvature, where the spatial mode decomposition into the OAM basis was
recorded. Two types of fiber configurations were considered in these experiments, a laser with
a wavelength of 660 nm was used in conjunction with 8.2 µm core few-mode fiber (SMF28,
which is commonly used as single-mode fiber for 1550 nm) and 50 µm core step index fiber
(M14L, Thorlabs). Through structured illumination and controlled coupling to the optical fiber,
both fundamental and higher order LP modes could be excited. A spatial light modulator
(SLM) (Cambridge Correlator SDE1024n) screen is imaged onto the back focal plane of a 10×
microscope objective (Olympus RMS10x) such that the fiber facet is in the farfield of the SLM.
Free-space optical to fiber coupling is controlled with a three-axis stage (Thorlabs MBT616D/M).
The output of the optical fiber is then either directly imaged onto a CCD camera (Imaging Source
Skyris) for the intensity retrieval results, see Fig. 5A, or de-multiplexed into OAM modes for
further increase of the accuracy, as shown in Fig. 5B and C. We utilise a passive optical device
designed for the sorting of beams that carry OAM to perform a modal decomposition of the light
emanating from the fiber. This device performs a log-polar transformation, which subsequently
allows a spherical lens to convert beams that carry angular momentum into a series of separated
spots at the back focal plane of a lens [49]. The sorter utilised in our experiment comprised
two free-form optical surfaces to perform the required transformation, where the optical profiles
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Fig. 5. To determine the usefulness of our modal decomposition approach we
investigated three setup configurations to measure the output from the fiber.
(A) First, the directly measured intensity of the output mode to train the
CNN, for the results shown in Fig. 7A. (B) a log-polar optical transformer
was used to perform OAM de-multiplexing of the output from the both few-
and multi-mode optical fiber, for the results shown in Fig. 7 B and C. (C)
To explore the use of the technology for remote sensing, a 1 km delay line
of few-mode fiber was introduced. For each realisation, the fiber was bent
at 11 fixed locations using a computer controlled translation stage. (D)
a picture of the experimental setup, showing the loose support for the fiber,
the mode-sorter and moving bend position.
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transformation, which subsequently allows a spherical lens to convert beams that carry217

angular momentum into a series of separated spots at the back focal plane of a lens [49].218

The sorter utilised in our experiment comprised two free-form optical surfaces to perform219

the required transformation, were the optical profiles for each of the surfaces are fully220

outlined in [50]. The surfaces used had an aperture diameter of 12.5mm, which were221

directly machined on each side of a 10 cm long bar of polymethyl methacrylate (PMMA),222

utilising the same machining method as outlined in [50].223

The bends are induced by pressing down on the fiber with a 5 mm diameter bar that224

is mounted with a low drag ball bearing to prevent torsion on the fiber. The fiber225

is supported by memory foam with a channel to prevent bending in locations other226

Fig. 5. To determine the usefulness of our modal decomposition approach we investigated
three setup configurations to measure the output from the fiber. (A) First, the directly
measured intensity of the output mode to train the CNN, for the results shown in Fig. 7A.
(B) a log-polar optical transformer was used to perform OAM de-multiplexing of the output
from the both few- and multi-mode optical fiber, for the results shown in Fig. 7 B and C.
(C) To explore the use of the technology for remote sensing, a 1 km delay line of few-mode
fiber was introduced. For each realisation, the fiber was bent at 11 fixed locations using a
computer controlled translation stage. (D) a picture of the experimental setup, showing the
loose support for the fiber, the mode-sorter and moving bend position.
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for each of the surfaces are fully outlined in [50]. The surfaces used had an aperture diameter
of 12.5 mm, which were directly machined on each side of a 10 cm long bar of polymethyl
methacrylate (PMMA), utilising the same machining method as outlined in [50].

The bends are induced by pressing down on the fiber with a 5 mm diameter bar that is mounted
with a low drag ball bearing to prevent torsion on the fiber. The fiber is supported by memory
foam with a channel to prevent bending in locations other than those specifically induced, see
inset of Fig. 5D. Although supported, the fiber will naturally change shape slightly in other
positions; however, resembles real-world scenarios that would be experienced in applications such
as wearable fiber sensors. This bar is mounted to a linear translation stage (Thorlabs LTs300/M)
to allow for repeatable bending. The radius of curvature was altered by varying the height of the
bar inducing the bend in the fiber. For the experimental simulation of remote sensing applications,
we introduce 1 km of SMF-28 fiber delay line and repeat these same measurements.

5. Results

Each bend position and radius was recorded 100 times, to record changes in laser power or
optical coupling. The process was repeated 10 times so that experimental variation in the support,
temperature, and strain on the fiber were fully recorded, see Fig. 6. Selected distributions from
one data set are presented in Fig. 6A, where a small variation in the weighting of the normalised
power distribution can be observed with a change in position of the bend. A common method of
analyzing power distribution of OAM is calculating the center of mass (COM), [51]. As this
distribution will vary slightly over time or repeated relocation of the bend conditions, the average
and standard deviation of the COM was calculated for all 1000 distributions measured for both
few- and multi-mode fiber, see Fig. 6B.
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COM was calculated for all 1000 distributions measured for both few- and multi-mode243

fiber, see Fig. 6B.244

As the bend position is moved, the propagation length within the fiber after the245

bend is increased, this creates further intermodal coupling due to the change in effective246

transmission matrix of the straight region after the bend. As a result, the COM varies247

linearly when the bend is positioned further away from the receiver, as predicted in the248

simulations from Fig. 3. We further observe a difference in the gradient when there is249

a change in radius of curvature of the bend. The increased bend radius will result in250

increased intermodal coupling in the fiber and will accelerate coupling to other modes,251

see Fig. 6B.252

These physical features confirm that machine learning can provide a useful tool for253

Fig. 6. A modal decomposition of the output of a few-mode optical fiber was measured for
a range of position and radius of curvatures, utilising an all-optical log-polar transformer.
The unique distribution was recorded at each position, which depended on the input mode
and accumulative transfer matrix of the fiber. (A) When a LG0,ℓ=2 mode is coupled into the
fiber and a change in bend position is made, it can be seen that there is a subtle change in
power distribution. (B) When analyzed, on average, a continuous change in center of mass
(COM) was observed in both few- (yellow curve) and multi-mode fiber (blue curve).

As the bend position is moved, the propagation length within the fiber after the bend is
increased, this creates further intermodal coupling due to the change in effective transmission
matrix of the straight region after the bend. As a result, the COM varies linearly when the bend
is positioned further away from the receiver, as predicted in the simulations from Fig. 3. We
further observe a difference in the gradient when there is a change in radius of curvature of the
bend. The increased bend radius will result in increased intermodal coupling in the fiber and will
accelerate coupling to other modes, see Fig. 6B.
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These physical features confirm that machine learning can provide a useful tool for classifying
the bend positions within the data. The experimental data was processed using a convolutional
neural network (CNN) for images of the directly recorded optical field intensity, showing low
accuracy in the recognition of bend locations in the fiber, see Fig. 7A. Given the non-standard
nature of the images we wish to process from the optical fiber, we developed a simple CNN
comprising five layers; a convolution layer (20 outputs and 4×4 kernel size), pooling layer, flatten
layer, linear layer and softmax layer. We note, the purpose of this investigation is not to obtain
the best possible accuracy CNN model, but simply to give a benchmark that we can directly
compare our modal decomposition approach with the same physical parameters. Our training set
comprised of data from three independent measurement data sets from the experimental system
and our verification was from a fourth independently measured data-set. This approach was to
ensure we do not train for random fluctuations in the fiber that occur from temperature, small
mechanical changes, or fiber mounting. The memory requirement for images used in this training
was approximately 5Gb, comprising 50×50 8-bit images. The computer used was an Apple M1
MacMini, with 8 CPU cores, 7 core neural engine, and 16GB of physical memory. The neural
network was implemented in Mathematica, utilizing the NetTrain tools to develop our network.
Training took approximately 4 hours. The 100 images connected with each position were labeled
with the position and input mode only, the network was not aware of the specific measurement
data set that each image was recorded within.
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Fig. 7. (A) The output from a few-mode optical fiber was directly recorded
for a range of different bend locations, indicating low accuracy in training
based on a CNN. (B) Using the same few-mode fiber, training was completed
on model de-multiplexed into the OAM modal basis showing high accuracy
in bend location. (C). The experiment was repeated using 50 µm core step
index multi-mode fiber, again showing high accuracy in bend location. For
all plots, verification was completed using dedicated measurement completed
later in the day.
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Fig. 7. (A) The output from a few-mode optical fiber was directly recorded for a range of
different bend locations, indicating low accuracy in training based on a CNN. (B) Using
the same few-mode fiber, training was completed on model de-multiplexed into the OAM
modal basis showing high accuracy in bend location. (C). The experiment was repeated
using 50 µm core step index multi-mode fiber, again showing high accuracy in bend location.
For all plots, verification was completed using dedicated measurement completed later in
the day.

We implemented support vector machine (SVM) training on the OAM spectrum for both few-
and multi-mode fibers, showing greater accuracy in classification, up to 94.1%, as shown in
Fig. 7B and C. A further advantage of this form of machine learning training is the reduction in
training time required; where over 4 hours is required for image based CNN and only 3 minutes
for OAM spectrum based implementations. Our verification in both cases utilises data collected
from a different experimental realisation approximately 3 hours after the initial training data is
recorded, therefore no data in the training set is used for verification. This confirms that the
data is robust to the natural changes throughout the day. Due to the reduced processing time we
could increase the number of samples to 200 samples at each position used for training to capture
more variation from environmental effects. This is increase in samples lowered our accuracy by
approximately 2% due to increased thermal drift. Experimental studies were conducted in an
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environment with a temperature variation of 2-3 degrees Celsius over the length of the day. To
explore the use of the technology for remote sensing, a 1 km delay line of few-mode fiber was
introduced and the accuracy of bend location measured. Table 1 shows the combined results
for few-mode fiber measurements for different distances and steps between the locations of the
bends.

Table 1. Accuracy results for different
fiber lengths of few-mode for a

measurement based on OAM sorting
and trained network using SVM, similar
to the results shown in Fig. 7B and C.

Fiber Length 1 mm Step 10 mm Step

1 m 86.5% 94.1%

1 km 84.2% 90.5%

6. Discussion

Reducing the sensitivity to relative phase noise through the use of modal decomposition reveals
features within the intermodal coupling that can provide accurate information about the shape or
position of bends in the fiber. For convenience, our initial investigation used an SLM to excite
specific modes in the fiber. However, a simpler approach to induce these same higher order modes
is to illuminate the fiber using an off axis Gaussian laser [4]. Our current experimental approach,
is a proof of concept bench top experiment, however physical size and complexity could be
reduced through the implementation of compact mode sorters that directly attached to fiber such
as those demonstrated by Lightman et al [53]. Our current demonstration is limited to bends in a
single direction and over known fiber lengths, where future work will investigate the viability to
detect multiple bends with modifications to the system training or illumination modes. We note in
our current implementation, that bends in multiple directions, or over longer or shorter fiber could
result in errors in classification. Retraining will be required for substantive changes in system,
such as the laser source, optical coupling components or fiber type; however, once fully trained,
retraining is not generally required for weeks to months, under normal heat cycling. Further
investigation for extreme changes in temperature, such as those for aeroplanes, would be required
for the development of prototype systems. For sensitivity to multiple directions, we suggest
multi-core fibers could be used to measure the differential in bend state at each fiber, similar to
that done with bespoke Bragg grating fibers. In addition to the reduced training complexity, an
implementation advantage to using mode de-multiplexing based sensing, is it will be directly
compatible with space division multiplexing systems, where sensing could be implemented along
side communications without the requirement for the addition of high resolution cameras. We
propose one could develop systems for fiber shape sensing in a range of applications, including
movement sensors for wearable technologies, flexure hinge monitoring, or aeroplane wing shape
sensing. Further investigation for extreme changes in temperature, such as those for aeroplanes,
would be required for the development of prototype systems.

Previously demonstrated speckle-based sensors could potentially address the challenges of
phase noise by increased complexity in machine learning approaches and using larger data sets
to sample the potential variation in the speckle from non-mechanical environmental factors.
We expect this would dramatically increase the required training for speckle-based approaches
compared to mode-demultiplexing approaches we have presented. Our all-optical processing,
using modal decomposition, optimizes the amount of information that is required to be collected
when analyzing spatial information due to geometrical similarities between particular modes.
For example, in order to perform a phase and intensity reconstruction of an OAM mode, we will
require an array of complex values to record the profile in both phase and intensity across a system
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aperture. The Nyquist sampling imposes a strict limit on the minimum number of spatial samples
that are required to be taken to fully resolve an optical field, which requires 2 sample points
per phase change of 2π. Therefore, for an OAM mode with ℓ = 10 any measurement system
would require at least 20 sample points around the annulus of the beam, plus one additional pixel
to identify the direction of the twisted phase front. Usually, optical information is recorded on
a camera, therefore these 21 sample points mapped onto a square grid will require each side
of the grid to have d = 21π−1 ≈ 7 therefore requiring a grid of at least 49 pixels. However,
when partnered with a mode-sorter, the same OAM mode can be recorded as a single complex
number. When complex data is recorded as two 8-bit values for intensity and phase, 16 bits
per pixel are required. Our experimental implementation utilises 21 OAM modes, and after
de-multiplexing we only record intensity information, which corresponds to 8-bits per mode.
Therefore, a reduction factor, β fundamentally required information of

β =

b1

(︃
2ℓmax + 1
π

)︃2

b2 (2ℓmax + 1) =
b1
b2

(2ℓmax + 1)
π2 , (7)

where ℓmax is the maximum OAM mode, and bi is the bit depth for the recorded data in both
measurements being compared. In our approach we sample 21 modes, covering the range
ℓ = ±(1, 2, . . . , 10), which is oversampling modal bandwidth of the fiber. For our system, this
means utilising modal decomposition compared to training in a pixel basis comprising both phase
and intensity reduces the information required for training by a factor of β = 4.25. Utilizing solely
intensity information, the required information results in a reduction factor of β = 2.25. However,
we recorded our data with much higher resolution to reduce error from camera centering, pixel
edge effects, and noise (we recorded 640 by 480 pixel images, reduced to 50 by 50 pixels for
training). To confirm the optimal resolution, images were subsequently down-sampled to 5 by 5,
10 by 10, 25 by 25, and 50 by 50, resulting in a training accuracy of 6.0 ± 0.7%, 7.6 ± 0.8%,
9.5 ± 0.9% and 13.1 ± 1% respectively for a baseline accuracy of 9.1%. Our OAM sorter (that
records 210 by 100 pixels on a camera, down sampled to 21 values) achieved 94.1% for the same
bend spacing. Our experimental results show a 120 times reduction in the amount of training
information required for training by decomposing 2D spatial information, into only 21 8-bit
values. We note the reduction in training information required in our demonstration are due to the
specifics of measurement approaches outlined and the geometric similarity between OAM modes
and LP modes in step-index fibers. The fundamental information capacity limits of different
spatial basis are discussed in detail by Zhao et al. [52].

In conclusion, we have developed a robust, novel fiber bend sensor that can reveal the location
of bends using the intermodal coupling induced by this bend. A mode de-multiplexing approach
is used to perform efficient all optical pre-processing of the observed intermodal coupling,
simultaneously increase measurement accuracy, from 13% accuracy to over 80%, and reduce
the training information required for the machine learning algorithms used for bend position
recognition by a factor of 120. More generally, mode de-multiplexing combined with machine
learning is a potentially powerful technique that could be deployed for a wide range of applications,
where the constant evolution in relative phase between modes can be considered as noise within
the system. These applications could include monitoring atmospheric conditions or retrieving
information from dense scattering environments. Similar mode-demultiplexing approaches could
be used to analyze statistical variations in relative phase to further increase system sensitivity.
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