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Domain-Independent Gesture Recognition Using 

Single-Channel Time Modulated Array 
 

Lei Guan, Xiaodong Yang, Nan Zhao, Akram Alomainy, Muhammad Ali Imran, Qammer H. Abbasi 

Abstract—In recent years, gesture recognition system based on 

radio frequency (RF) sensing has a wide application prospect and 

attraction in non-contact electronic interaction with its advantages 

of privacy security, lighting independence, and wide sensing range. 

The traditional RF sensing system depends on the environment 

and the subject, and the multi-channel sensing equipment is 

expensive, which brings great challenges to the practical 

application. To address the above issues, a single-channel, low-

cost, and domain-independent gesture recognition system is 

proposed. Specifically, the time modulation technology is adopted 

to expand the number of antennas of the sensing device. The time 

modulation array (TMA) is converted into a traditional array 

through harmonic recovery technology. 2D-FFT, moving target 

indication filter, and data normalization are used to extract 

domain-independent Angle-Doppler Maps (ADMs) gesture 

features. In order to ensure recognition accuracy, we propose a 

lightweight neural network with attention mechanism, which only 

needs one training and can be applied to different data domains. 

The experimental results show that the accuracy of in-domain 

recognition of the proposed system is 98.9%, and the accuracy of 

cross-domain (i.e. new environments, new users, and new 

positions) recognition is 85.6%-97.4% without model retraining. 

 
Index Terms—Gesture Recognition, TMA, Neural Network 

I. INTRODUCTION 

ith the rapid development of the Internet of Things 

and the continuously increasing requirement of 

human-machine interaction (HMI). Hand gesture 

recognition (HGR), as an HCI mode with a high frequency of 

use and strong expression ability, has attracted wide attention. 

HGR provides convenience for human life and has important 

applications in smart home, sign language interaction, virtual 

reality, vehicle-assisted driving, and other fields.  

Currently, several technologies have been used to implement 

gesture recognition systems, e.g., computer vision (CV), 

infrared sensors and wearable devices. CV-based methods [1-

2] support contactless gesture recognition, but these methods 

face the problems of privacy disclosure and light sensitivity. 

The low-cost infrared sensors can obtain more fine-grained 

palm [3] and thumb-tip [4] gestures. The detection range of 

infrared sensors are generally only within 35 cm, and their 

performance is affected by temperature and light. While 

wearable devices such as inertial sensors [5-6] and smart 

watches [7] can achieve very high precision in detail, they limit 
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the flexibility of user gestures and reduce the immersive 

experience. The need for contactless, privacy-preserving 

triggers extensive research on radio frequency (RF) sensing. 

With the development of RF microelectronics technology, 

ubiquitous wireless signals and widely available radio 

frequency sensors are used in sensing tasks. Doppler radar [8-

9] has been widely studied in the field of gesture recognition 

due to its high sensitivity to small-scale motion and its excellent 

ability to distinguish non-stationary objects from static 

backgrounds. In WiSee [10], the authors use universal software 

radio peripheral (USRP) to extract the doppler information of 

orthogonal frequency division multiplexing (OFDM) signals to 

enable whole-home sensing and recognition of human gestures. 

The single channel doppler radar can only measure the radial 

velocity of the target. The single dimensional doppler 

information makes it difficult to distinguish multiple similar 

gestures, which leads to system performance degradation. In 

[11], the dual-antenna doppler radar system improves the 

accuracy of single gesture recognition by combining doppler 

spectrum with angle of arrival (AOA) spectrum. In [12], the 

author uses four continuous wave (CW) radars to form an array, 

which can obtain more doppler in the direction and provide 

more abundant gesture spatial information. Besides, researchers 

try to introduce the information of distance domain and angle 

domain to improve the robustness of the system. In [13], the 

authors input raw data from multi-channel frequency-

modulated continuous-wave (FMCW) radars into a neural 

network to fully extract gesture features. In [14] and [15], the 

authors use time division multiplexing (TDM) multiple-input-

multiple-output (MIMO) FMCW to package features from 

multiple domains into feature blocks to improve the accuracy 

of gesture recognition. Li et al. proposed a virtual array 

configuration strategy to achieve adaptive gesture recognition 

at different distances [16]. However, the high price is a great 

challenge for the practical deployment of MIMO millimeter 

wave radar in the home. The ubiquitous WiFi signal is not only 

used to transmit information, but also has the sensing ability. 

The received signal strength indicator (RSSI) [17-19] and 

channel state information (CSI) are widely used in sensing 

applications. The sensing system based on RSSI will suffer 

from the same frequency interference. Besides, the coarse-

grained RSSI is difficult to handle complex tasks and small-

scale perception. The amplitude [20] and phase difference [21-

22] of fine-grained CSI can describe the influence of gesture on 
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the current channel. Although these studies have achieved high 

recognition accuracy in-domain dataset, they ignore the role of 

signal models, which makes these systems difficult to apply in 

dynamic environments. In other words, when the trained model 

is deployed in a new scenario, the performance of the system 

will decline significantly. In widar3.0 [23] and [24], the authors 

explored the cross-domain generalization ability of WiFi 

signals. By generating domain-independent information 

through doppler, excellent recognition accuracy is achieved in 

different environments, different directions and different 

subjects. However, these studies need to deploy multiple WiFi 

nodes, which makes it difficult to apply in the home scenario. 

Machine learning and deep learning are widely used in 

gesture recognition based on RF sensing. Dynamic time 

warping (DTW) [25], Support vector machine (SVM)[26] 

random forest classifier [27] and Hidden Gauss–Markov model 

[28] are used for gesture recognition. The conventional machine 

learning method has low computational complexity and high 

interpretability. However, traditional machine learning relies on 

artificial feature extraction and are mainly suitable for small-

scale data learning, so the robustness and generalization ability 

of the model hinder its development. Deep learning breaks 

through the above limitations. The convolutional neural 

network (CNN) [11], [29], [30] is used to extract the gesture 

features from the spectrum such as range time maps, doppler 

time maps and angle time maps. In order to extract temporal 

and spatial features, both CNN and Long Short-Term Memory 

(LSTM) are designed to model the dynamic information of 

gesture [31]. In [32], the authors designed a 3D-CNN for short 

spatial-temporal modeling, LSTM for global temporal feature 

extraction, and a CTC layer for classifying hand gestures.  

In recent years, with the performance improvement and cost 

reduction of high-speed RF switches, TMA has attracted the 

attention of researchers again. TMA is designed to generate 

ultra-low sidelobes, but periodic modulation causes the TMA 

to produce unwanted harmonics, which causes spectral 

interference. In order to solve the above problems, the 

researchers adopted differential evolution [33], genetic 

algorithm [34] and particle swarm optimization [35] to optimize 

the switching sequence of RF switches to achieve the 

suppression of sideband level. The convex optimization 

algorithm [36-38], FFT [39], [40] and artifcial neural network 

[41], [42] are employed to accomplish the synthesis of TMA. 

With the change of concept in recent years, harmonic 

components are no longer considered as adverse factors in new 

applications, such as harmonic beam scanning [43], multiuser 

communication [44] and radar-communication integration [45], 

[46]. In addition, TMA is widely used in direction finding [47-

50]. In [47] and [48], the sparse signal recovery was proposed 

in TMA for the AOA estimation. In [50], the authors use l2-

norm approximation method to covert 1bit TMA into 

conventional array, and uses the spatial spectrum estimation 

method to calculate the AOA.  

 We note that in order to obtain rich gesture information, 

previous studies have deployed multiple sensing nodes or used 

radar devices with high cost and complex hardware. Inspired by 

the research of existing gesture recognition systems and TMA-

related applications, we propose a single-channel, low-

complexity gesture recogniton system. To quickly demonstrate 

the feasibility of the technology, the USRP is configured as a 

CW radar. It is worth noting that commercial RF modules can 

replace USRP, making the system low-cost. 

The main contributions of this paper are summarized as 

follows. 

(1) We propose a TMA-based CW radar gesture sensing 

system. The conventional multi-channel array is restored 

by the harmonic components of the single-channel TMA, 

which simplifies the complexity of the multi-channel 

radar. 

(2) We perform 2D-FFT on the recovered multi-channel data 

to acquire ADM to characterize gesture motion, and 

propose a lightweight neural network with an attention 

mechanism for spatiotemporal feature extraction. 

(3) We built a prototype and conducted performance 

evaluation of the system. The experimental results show 

that the accuracy of cross-domain (i.e. new environments, 

new users, and new positions) recognition is 85.6% -

97.4% without model retraining. 

The rest of this paper is organized as follows. Section II 

introduces the signal model of CW radar and the fundamental 

theory for TMA. In Section III, we present the design of our 

system. In Section IV introduces signal processing and gives 

the structure of neural network. Section V shows the 

experimental setup and performance evaluation. Section VI 

extends further discussions. Finally, Section VII draws 

conclusions. 

II. FUNDAMENTAL THEORY 

A. Signal Model 

Consider an N-element uniform linear array and receive the 

echos of L targets from the far-field. The signal received by the nth 

antenna is: 

( )
( )( ),2

1

c i n

L
j f t t

n i

i

x t e
 


+

=

=                      (1) 

where f
c
 denotes the carrier frequency of the transmitted signal, 

𝛼𝑖  is the amplitude of the received signal related to the 𝑖 th 

target’s radar cross section, transmitting power and so on. τi,n(t) 

is the delay of the ith target received by the nth antenna and can 

be rewritten as: 

( )

( ) ( ),

0

2 cos 1 sin

t

0 i i i i

i,n

d v t dt d n

t
c

 



 
+ + − 

 
=


    (2) 

where d0,i is the radial distance of the ith target relative to the 

radar, vi(t) it the speed of the 𝑖th target，c is the speed of light, 

𝜑
𝑖
 is the angle of the target’s velocity vector relative to the radar 

line of sight, d is the distance between adjacent antennas, θi is 

the corresponding incident angle as shown in Fig. 1.  

In the Doppler radar, the 𝑓
𝑑
 is expressed as:  

( )
( )2 cosi

di c

v t
f t f

c


=                         (3) 
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Assuming that the speed of the target remains constant for a 

short time, then: 

 

( )
0

2 cos

t

c i

di

f v t dt

f t
c



=


                        (4) 

substituting (2) and (4) into (1) leads to: 

( ) ( ) ( ),02 2 1 sin

1

c di c i i

L
j f f t j f j n

n i

i

x t e
    


+ + + −

=

=          (5) 

where β=2π/λ is the wavenumber with λ the carrier wavelength. 

   
Fig. 1. Gesture recognition using multi-channel sensing system. 

 

 
(a)                               (b) 

Fig. 2. Structure of receiver. (a)Single channel TMA. (b) Conventional 

multichannel array. 

B. Fundamental Principle of TMA 

As shown in the Fig. 2, compared with the traditional multi-

channel receiver, the TMA-based receiver uses only one RF 

link, which reduces the hardware complexity. In the proposed 

TMACW radar, the received signal is modulated by a periodic 

ON/OFF modulation function Un(t). Then the received signal is: 

 ( ) ( ) ( )
1

N

n n

n

y t U t x t
=

=                             (6) 

Un(t) is a periodic pulse function with modulation period T. In 

each period, Un(t) is expressed as: 

( ) ( )
1

Q
q q

n n n

q

U t U C t
=

=                                (7) 

where Q is the length of the time-coding sequence, Cn
q(t) is a 

pulse period function with modulation period T and is given by: 

( )
( )1, 1

0,

q

n

q t q
C t

others

 −  
= 


                 (8) 

where τ= Tp /Q is the pulse width of Cn
q(t), Un

q∈[0,1] is the 

amplitude of the nth element during the interval (q-1) τ≤t≤qτ. 

Specifically, when the switch is open Un
q  =1, closed Un

q  = 0. 

Next, we decompose Cn
q(t) into a Fourier series 

  ( )
2

,
pj kf tq q

n n k

k

C t r e


=−

= 
∞

∞

                            (9) 

where fp=1/Tp is the modulation frequency. the Fourier 

coefficients rn,k

q
 are given by 

( )
2

,
0

1 p
p

T j kf tq q

n k n

p

r C t e
T

−
=                           (10) 

Thus, the Fourier series coefficients of the periodic function 

Un(t) can can be expressed as 

( )

, ,

1

2

( 1)
1

2 1

1

sinc

p

Q
q q

n k n n k

q

qQ
q j kf tn

q
q p

j k qqQ
Qn

q p

a U r

U
e

T

U k
e

T Q

 






=

−

−
=

− −

=

=

=

 
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

 
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              (11) 

The modulation function Un(t) can be expanded by Fourier 

series 

2

,
pj kf t

n n k

k

U a e


=−

= 
∞

∞

                          (12) 

Inserting (11) and (12) into (6), the single-channel signal after 

time modulation can be written as: 

( ) ( ) ( )

( )

( )

1

2

,

1

2

,

1

p

p

N

n n

n

N
j kf t

n k n

n k

N
j kf t

n k n

k n

y t U t x t

a e x t

e a x t





=

= =−

=− =

=

 
=  

 

 
=  

 



 

 

∞

∞

∞

∞

               (13) 

We can find that the signal received by a single channel is the 

sum of the fundamental component and each order harmonic 

component. In this study, we use a single-pole multi-throw 

(SPMT) RF switch to implement the modulation function. That 

is, only one link is in the on-state at a certain time. In order to 

simplify the control, the TMA units are switched on and off 

successively and the time modulation function is shown in Fig. 

3. 

 
Fig. 3. Periodical modulation function Un(t), n = 1,2, …, N. 

… …
… …

… …

……
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Fig. 4. Signal processing steps for multi-channel array recovery. 

C. Multichannel Array Recovery 

The signal processing diagram of TMA recovering 

conventional multi-channel is shown in the Fig. 4.  

We designed a series of digital down conversion (DDC) to 

obtain harmonic components. For the kth DDC, we mix the 

received signal with the kth harmonic to move the kth harmonic 

to the baseband. Then, the digital baseband signal of the kth 

harmonic is obtained through low-pass filter (LPF). Finally, 

downsampling is used to reduce the complexity and resource 

consumption of storage and processing. The baseband signal of 

the 𝑘th harmonic component at f
0
+kf

p
 in the digital domain can 

be expressed as 

( ) ( ),

1

N

k n k n

n

y m a x' m
=

=                        (14) 

where 𝑥𝑛
′ (𝑚) is the baseband signal received by the nth antenna. 

Add noise to the model and rewrite (14) with vector notation: 

( ) ( ) ( )( )

( ) ( )'

m m m

m m

= +

= +

Y X N

X N




                     (15) 

where 𝒀(m)=[y
-K

(m), y
-K+1

(m)…, y
K

(m)]
T

 is the harmonic 

vector generated by the received signal modulated by the RF 

switch, X(m)=[x1
' (m), x2

' (m)…, xN
' (m)]

T
 is baseband signals 

received by conventional multichannel arrays, where  xn
' (m) can 

be obtained by downconverting (5). 

( ) ( ),02 2 1 sin

1

di c i i

L
j f m j f j n'

n i

i

x m e
    


+ + −

=

=             (16) 

 N'(m)=[n-K(m),n-K+1(m),…,nK(m)]
T
 is the noise vector, [·]T 

denotes the transpose operator and 𝚪 ∈ ℂ(2𝐾+1)×𝑁 is the Fourier 

coefficient matrix corresponding to the modulation function 

and is given by: 

,1 ,2 ,

1,1 1,2 1,

,1 ,2 ,

K K K N

K K K N

K K K N

a a a

a a a

a a a

− − −

− + − + − +

 
 
 =
 
 
  

                 (17) 

It can be found that the harmonic component can be obtained 

by linear transformation of the received signal of the 

conventional linear array, and the transformation matrix is Γ. If 

Γ is full rank, X(m) can be restored by Y(m). 

( )
( ) ( )min

m
m m−

X
ΓX Y                         (18) 

where ‖∙‖ is a norm on ℂ2𝐾+1 . The best-fit solution can be 

obtained applying complex least square： 

( ) ( ) ( )
1

H Hm m
−

=X Y                      (19) 

where [·]H indicates the conjugate transpose operator, X(m) is 

the recovered signal of conventional linear array, which 

contains Doppler and AOA information of the targets. 

III. SYSTEM DESIGN 

A. Antenna Array Design 

In this paper, a standard probe-fed microstrip patch antenna is 

used. The beam width of the transmitting antenna and each 

receiving antenna needs to be wide enough to meet the 

application scenario of gesture recognition. The antenna is 

designed for FR4 substrate with a thickness of 0.508 mm. The 

maximum realized gain is approximately 5.6 dB and the front-

to-back ratio is approximately 10 dB. The Rx array is a uniform 

linear array composed of four microstrip elements, and the 

distance between adjacent antennas is λ/2 to avoid the grating 

lobe issue. The Rx array and Tx antenna of our system are 

shown in Fig. 5: 

 
Fig. 5. Layout of Tx antenna and Rx antenna array. 

 
Fig. 6. Photograph of the TMACW radar system. 

B. TMACW Radar Design 

In the paper, we build a TMACW prototype with commercial 

off-the-shelf (COTS) hardware. The hardware used can be 

easily replaced with other general COTS substitutes of similar 

functionality. 

   We use the open source GNURadio framework to build the 

system flowgraph. The USRP B210 sends the collected data to 

the host through the USB cable. The TMA consists of a single 

pole four throw (SP4T) RF switch, a receiving antenna array 

(cost∼$1) and a STM32F193C8T6 (STM32) microcontroller. 

The SP4T switch used is HMC7992 (cost∼$9) which provides 

fast switching speed, i.e. 150 ns, low insertion loss, i.e. 1dB and 

high isolation at 5GHz, i.e. 30db. STM32 (cost∼$0.9) is used 

as the external MCU, and its GPIO controls the HMC7992 to 

turn on and off the element in turn according to the order shown 

in Fig. 3. The prototype of the system is shown as Fig. 6: 
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IV. SIGNAL PROCESSING 

A. Harmonic components acquisition 

After receiving the signal, we mix the received signal with 

different harmonic components and then pass through a low-

pass filter to obtain the baseband signal. However, the 

modulation frequency generated by the MCU deviates from the 

ideal modulation frequency, which affects the recovery of the 

traditional array. It assumes that the modulation frequency 

offset of the kth harmonic is f
res,k

, the harmonic component is 

expressed as: 

( ) ( ),2

,

1

res k

N
j f m

k n k

n

y m e a x' m


=

=                  (20) 

Rewrite (16) with vector notation: 

( ) ( ) ( ) ( )m 'm m m= +Y B X N                (21) 

where B(m) = diag[ e
j2πfres,-Km, ej2πfres,-K+1m, … , ej2πfres,Km

]T. 

Therefore, the recovered traditional array is expressed as: 

( ) ( ) ( ) ( )
1 1

m BH H m m
− −

=X Y                (22) 

In order to ensure accurate and effective harmonic recovery, it 

is necessary to estimate and eliminate the frequency offset. First, 

we collect 30 s of data in a static environment, then we mix the 

received signal with ideal harmonic components and finally 

obtain a rough harmonic baseband signal through a low-pass 

filter. We use the Filter Designer app of MATLAB to design a 

Butterworth low-pass filter with a passband of 0-200Hz. It can 

be seen from (16) that the f
res,k

 causes the phase of the harmonic 

to change linearly with time. We calculate the slope 𝜔𝑘 of the 

phase of each harmonic component by linear regression，then 

f
res,k

=ωk/2πt. The stable harmonic components can be obtained 

by compensating the f
res,k

 in the mixing stage. The harmonic 

phase comparison before and after carrier offset compensation 

is shown in Fig. 7. 

 

 
       (a)                                              (b) 

Fig. 7 (a) Phase without removing frequency offset. (b) phase after 

compensation. 

 

After the above processing, we can obtain a stable phase and 

accurate frequency of each harmonic component as shown in 

Fig. 7 (b). Then, the calibrated harmonic components are 

substituted into (15) to restore the conventional array. 

B. TMA Synchronization 

In the research of TMA application, many simulation studies 

assume synchronous sampling between switch and ADC. In a 

simple sampling system, the control complexity of synchronous 

sampling is high and difficult to achieve. If the starting point of 

time modulation is not correctly located, different phases are 

introduced into different harmonics [42]. Given the delay Δt in 

(8), the kth harmonic coefficient should be rewrited as: 

2
, ,= pj kf t

n k n ka e a
 

                            (23) 

Then the harmonic coefficient matrix should be rewritten as: 

= D                                    (24) 

where D = diag[e
-j2πKf𝑝Δt

, e
j2π(1-K)f𝑝Δt

, … , e
j2πKf𝑝Δt

]T is the delay 

matrix. If Δt is not considered and Γ is still used to restore the 

array, it will cause errors and affect the AOA estimation. 

Finding the starting position of a modulation period is also the 

key to recover multi-channel. We use sliding window and 

cosine similarity to locate the switching time as shown in the 

Fig. 8. First, the RF switch is not activated for a short period of 

time at the beginning of sampling. Then, we calculate the 

similarity using two sliding windows of length Tp/N, and y
w2

 is 

Tp/N samples ahead of y
w1

. The synchronous indicator can be 

calculated as: 

( )
( ) ( )

( ) ( )

/

1 2

1

/ /

1 2

1 1

y y

1

y y

p

p p

T N

w w

i

T N T N

w w

i i

i i

v i

i i

=

= =



= −





 

                (25) 

At the beginning of sampling, v is close to 0. When the RF 

switch starts to work, v will increase. In our experiment, the 

synchronization threshold is set as 0.1. Assuming that the value 

of the synchronization indicator at n is greater than the 

threshold, the initial sampling point of time modulation is n+ 

Tp/N. 

 
Fig. 8. The signal of the single-channel signal in time-domain. 

 

 
Fig. 9. Signal processing flowchart for constructing ADM. 
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C. Gesture Segmentation 

In order to segment continuous gestures, previous studies 

mostly used the variance of sliding window data to determine 

whether there is a moving gesture in the current time. However, 

the range of variance data is affected by the received signal 

power, and it is difficult to determine the appropriate threshold 

to distinguish the beginning and end of the gesture. At the same 

time, when a hand gesture has round-trip motion, the decision 

indicator may have deep fading, resulting in error in hand 

gesture segmentation. To avoid the above problems, we also use 

two sliding windows and calculate their cosine similarity. 

Compared with the method based on variance, cosine similarity 

can clarify the range of values and help to select the appropriate 

threshold. When the motion occurs, the similarity of the data in 

the two sliding windows begins to decrease. When the motion 

ends, the similarity value is close to 1. The decision indicator 

can be calculated as 

( )
( ) ( )

( ) ( )
1 2 2

1
1

m w

n nN
m

m w m w

n n

m m

x m x m W

m
N

x m x m W



+

+ +

+

= −

+




 

        (26) 

where N is the number of antennas and W is the length of the 

sliding window. In this study, we set the length of the sliding 

window to 0.05s to ensure correct gesture segmentation. The 

decision indicator is as shown in the Fig.9 when the subject 

executes three different gestures in succession. In our 

experiment, the threshold is set as 0.01. Assuming that the 

decision indicator at m is greater than the threshold, the starting 

position of gesture is m+W.    

D. Construct ADMs 

In this part, we will introduce the method of construct ADM 

in detail. The signal processing flow is shown in the Fig.10.  

 
Fig. 10. Signal processing flowchart for constructing ADM. 

1) Background Cancelation 

In the experiment, the CW radar is subject to the stationary 

clutter reflections and the leakage between transmitter and 

receiver. Compared with static clutter, the signal reflected by 

the hand is very weak which will degrade the signal-to-noise 

ratio of the target’s signal. Therefore, it is important to separate 

the target signal from the received signal. In this study, we 

suppress static clutter using the background subtraction method, 

which is based on the exponential average. Each channel needs 

to perform background subtraction processing to obtain 

accurate AOA information. The background mean at time m is 

calculated from the previous background mean Sn(m-1) and the 

signal xn
' (m) 

( ) ( ) ( ) ( )n 1 1'

n nS m x m S m = + − −           (27) 

where 𝜌 is the exponential weighting factor. 𝜌 is set to 0.95 in 

this paper. The signal after eliminating static interference is 

expressed as 

( ) ( ) ( )n 1'
n nx m x m S m= − −                 (28) 

2) 2D-FFT Construct ADM 

Assume that the incident angle of the gesture reflection signal 

is θ, the phase difference of adjacent antennas is ω=dβsinθ. 

Thus, the phase difference can be used to estimate the AOA of 

the target 𝜃 = arcsin
ω

dβ
. We increase the dimension of the 

receive antenna by zero-padding from N to P, to avoid the fence 

effect of FFT. The FFT is performed along the antenna 

dimension to obtain the AOA. The angular resolution φ is given 

by 

( )
1 50.8

cosψ Nd


 =         (29) 

where ψ is the steering angle, N denotes the element number of 

the TMA, d is the distance of two adjacent antennas. 

It is assumed that the speed of hand motion is constant within 

the sampling time Ts, the phase difference of echo should be 

ω=4πvTs/λ . When ω< π can make sure that the measured 

doppler is unambiguous. Therefore, the maximum 

unambiguous speed is 

max
4 s

v
T


=                                 (30) 

the resolution of Doppler-FFT determines the ability to 

distinguish the phase difference in ω1  and 

ω2 ,  |ω1-ω2|=4πΔvTs/λ≥2π/N , where N is the number of 

sampling points. Thus, the velocity resolution is 

2 s

v
NT


=                                 (31) 

The ADM of the gesture is calculate using 2D-FFT  

( ) ( )
2 2

0 0

,
m nP M j a j b
M P

nh

n m

H a b W x m e e
 − −

= =

 
=  

 
    (32) 

where Wh is the Hamming window function,   is an 

elementwise multiplication. To obtain continuous ADM, STFT 

with 0.2 s Hamming window and 80% overlapping between 

successive 2D-FFTs is performed on the signal. We draw a 

circle clockwise as an example and select 4 positions to 

demonstrate the change of ADMs with the movement of 

gestures as shown in Fig. 11. The blue arrows indicate the 

motion trajectory of the gesture. The abscissa and ordinate 

corresponding to the highlighted part of ADM indicate the 

speed and direction of the gesture, respectively. For example, 

when the hand moves to position 2, both the AOA and doppler 

of the gesture reach the maximum value in the opposite 

direction as shown in Fig. 11(c). 

 
(a)                       (b)                    (c)                      (d)                    (e) 

Fig. 11. ADMs of drawing a circle counterclockwise. 

1

2

3

4



7 

 

3) ADM normalization 

In the actual measurement, there are many factors that affect 

the quality of ADM. For example, the reflected signal strength 

of different subjects and the adjustment of transmit and receive 

power will affect the value of ADM. In order to eliminate the 

influence of signal strength, we normalize each frame of ADMs. 

In addition, the speed of gesture execution by different users is 

different, which makes the number of ADM frames of gesture 

different. We fixed the number of frames Nf of ADMs so that 

they can contain complete gestures as much as possible. If the 

number of frames is greater than Nf, the extra frames will be 

discarded. Otherwise, zero padding is performed. After the 

process, the ADM becomes related to gestures only, and is input 

to the deep learning model. 

E. Spatial Feature Extraction 

The input to the network model is a sequence of ADMs, which 

is similar to the video streams. Each frame of ADMs represents 

the speed and direction of the gesture at the current moment. 

The continuous ADMs characterize changes in gestures over 

time. It is very necessary to mine the spatial and temporal 

features of ADM, which determines the robustness of the 

gesture recognition system. 

CNN is widely used in the field of computer vision and has 

achieved great success, with its powerful spatial feature 

extraction ability. We use a shallow neural network consisting 

of two convolutional layers to extract the local features of each 

frame of ADM. After each convolutional layer, the Maxpooling 

layer and activation function are connected. Finally, the output 

of the last pooling layer is flattened into a 1D vector and used 

as the input of the temporal feature extraction. 

 
Fig. 12 Typical structure of LSTM. 

 

In time series modeling, LSTM is widely used to deal with 

complex time dynamic sequences [51]. An LSTM cell consists 

of forgetting gate (ft), input gate (it) and output gate (ot)as show 

in Fig. 12. ft determines how much information of the cell state 

at time t-1 needs to be reserved to the present time. it controls 

how much information of the input at time t will be retained. ot 

determines the output of the LSTM cell. The LSTM cell can be 

expressed as follow 

 ( )

 ( )

 ( )

 ( )
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1

1
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1
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
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                 (33) 

where [ht-1, xt] is a concatenation vector of the previously 

hidden state ht-1 and the current input. 𝐜̃t and ct are cell candidate 

and cell state, respectively. {Wf ,Wi , Wc , Wo , bf , bi , bc , bo } 

are weights and biases. The function of σ(·) and tanh(·) are 

sigmoid and tanh activation functions, respectively. 

Compared with the traditional LSTM, Bi-LSTM can perform 

forward and backward processing on continuous ADM, while 

considering the past and future information of the data to extract 

richer features. Bi-LSTM contains two independent LSTMs as 

shown in the Fig. 13. Bi-LSTM’s forward hidden state 𝐡⃗⃗ 𝑡 ∈ ℝM 

and the backward hidden state 𝐡⃗⃗⃖𝑡 ∈ ℝM concatenate together to 

get output 𝐡𝑡 = [ 𝐡⃗⃗ 𝑡, 𝐡⃗⃗⃖𝑡] ∈ ℝ2M. 

 
Fig. 13. structure of Bi-direction LSTM. 

 

For continuous ADM, different features and time steps have 

different contributions to the final gesture recognition. 

Therefore, a hidden representation is constructed by integrating 

these scores to obtain better classification performance or 

improve the robustness of the model. In this study, the attention 

mechanism assigns appropriate weights to the extracted space-

time features. First, average pooling is performed on the hidden 

layer state of the output of Bi-LSTM, which is equivalent to 

compressing the features of each time step into a scalar ut. Then, 

the ut is input to the activation function tanh to obtain the weight 

of each time step 

( )avgpoolingt tu = h                        (34) 

( )t ts u=                                 (35) 

Thus, the final output hidden state hwt is calculated as a 

weighted sum of all the hidden states ht 

1

N

wt t t

t

s
=

=h h                               (36) 

 
Fig. 14. Network architecture for spatial-temporal feature extraction. 

… …

… …
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The proposed network model is shown in the Fig. 14. 

Specifically, the input ADM series is a tensor with dimension 

as T×M×P, where T is the number of ADM snapshots. For the 

tth sampling ADMt, the ADMt is fed into the CNN with two 

convolutional layers. Each layer of Conv2D contains 4 filters 

with a kernel size of 2×2 to extract the Doppler and AOA 

information of gestures. Each Cov2D is followed by the 

MaxPooling2D layer with a pooling size of 2×2, which halves 

the size of the feature map output by the previous layer of 

convolution filters and prevents overfitting. At the same time, 

the ReLU activation function behind the MaxPooling layer 

increases the nonlinear relationship between the layers of the 

neural network. Inputs output from CNN are fed into Bi-LSTM, 

and 16 neurons are used for each of the two LSTM layers. The 

attention mechanism generates a 1×T weight vector to assign a 

weight to each time step. After the above feature extraction, the 

feature vector with a length of 32T is output and input to the 

output layer with 10 neurons to obtain the probability of each 

gesture. The details of the proposed network are shown in Table 

I. 

   In the training stage, the dropout mechanism is used to avoid 

our model overfitting. We used cross-entropy as the loss 

function. The Adam optimizer with a learning rate of 0.001 is 

chosen as the method of stochastic optimization. The size of a 

mini‐batch is set as 32, and 20 epochs are selected empirically 

as the maximum number of epochs. 
Table I 

DETAILS OF EACH LAYER IN THE PROPOSED NETWORK, “CONV2D” REFERS TO 

THE CONVOLUTION LAYER, “K” DENOTES KERNEL SIZE, “C” DENOTES THE 

NUMBER OF OUTPUT CHANNELS, AND “N” DENOTES THE NUMBER OF NEURONS 

CNN 

Conv2D(k=2×2, C=4) 

Maxpooling(2) 

ReLU 

Conv2D(k=2×2, C=4) 

Maxpooling(2) 

ReLU 

Bi-LSTM 
LSTM(N=16) 

LSTM(N=16) 

Attention 
Global Average Pooling 

Sigmoid 

Output layer FC layer(N=10) 

 
Table II 

SYSTEM PARAMETERS 

Parameters Values 

Carrier frequency 𝐹𝑐 5.8 GHz 

Sampling frequency  𝐹𝑠 200 KHz 

The passband of the LPF in DDC 0~200 Hz 

Modulation Period 0.5 ms 

USRP Tx gain 60 dB 

USRP Rx gain 60 dB 

Number of transmit antenna 4 

Number of receive antenna 1 

Antenna space 𝜆/2 

Frame time 30 ms 

 

V. EXPERIMENT AND ANALYSIS 

The proposed sensing system consists of TMA, transceiver, 

MCU and computer. In order to quickly verify the feasibility of 

the system, we use USRP as the transceiver. It is worth noting 

that the expensive USRP can be replaced by low-cost wireless 

transceiver modules to achieve low-cost deployment. The TMA 

works in receiving mode, so it will not radiate infinite 

harmonics to space and will not interfere with other 

communication systems. We list detailed TMACW radar 

configuration parameters in Table II. After collecting data, we 

use MATLAB to perform the proposed signal processing on the 

received signal to obtain the gesture ADMs dataset. The system 

is implemented using Pytorch1.5 framework on a computer 

with NVIDIA GeForce GTX 1060 GPU and 32 GB RAM. 

A. Dataset 

In this paper, we collected 8 gesture data from 13 volunteers 

(9 male and 4 female) in 4 environments. Fig. 15 shows 

different indoor environments. Specifically, the dataset 

includes gestures commonly used in human-computer 

interaction, such as Pull (PL), Push (PS), Left Swipe (LS), 

Right Swipe (RS), closing of the fist (CF), Push-Pull (PP), Left-

Right (LR), Zigzag (Z) and opening of the fist (OF) as shown 

in Fig. 17. The above gestures are made by full hand and the 

experimental scene is shown in the Fig. 16. We randomly 

selected the gesture data of 8 volunteers in the D region to form 

the in-domain dataset. The in-domain dataset contains 4000 

gesture samples (8 users × 10 gestures × 50 times). We divide 

the in-domain dataset into training set and test set according to 

the ratio of 7:3. It is worth noting that the proposed network 

model is only trained by in-domain dataset. The gesture data of 

the remaining 5 volunteers constitute cross-people dataset 

which contains samples 1000 samples (5 users × 10 gestures 

×20 times). In addition, we collected gesture data in areas A, B 

and C to form a cross-environment dataset, which includes 900 

samples (3 Users ×3 environment ×10 gestures ×10 times). In 

order to reduce the impact of the torso on gestures, the radar 

transmits and receives signals in a vertical direction. In the 

above datasets, the distance between the volunteer’s hand and 

the antenna array is about 20 to 30cm. The AOA of the hand 

relative to the radar is about 0° and allows a slight deviation.  

We collected 1500 samples (2 users×25 times×10 gestures×3) 

at a distance of 30 cm, 40 cm, and 50 cm and 1500 samples (2 

users×25 times×10 gestures×3) at AOA of 15°, 30°, and 45° to 

construct the cross-position dataset as shown in Fig. 23. Each 

dataset is independent of each other. We only use the samples 

from the in-domain dataset to train the proposed neural network 

model. The trained neural network model is used to test 

multiple cross-domain data sets to verify the domain-

independent sensing ability of our system. 

Office 2Office 1

Corridor

B

A

C

D

Sensing area

 
Fig. 15. The layout of four different environments in our gesture dataset. 
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Fig. 16. Experimental scene 

 

 
(a)                     (b)                  (c)                      (d)                   (e) 

 
(f)                     (g)                    (h)                     (i)                    (j) 

Fig. 17. All kinds of gestures. (a) Up (U). (b) Down (D). (c) Left swipe (L). (d) 

Right swipe (R). (e) closing of the fist (CF), (f) Up-Down (UD). (g) Left-Right 

(LR). (h) Zigzag (Z). (i) Circle clockwise (Cir). (j) opening of the fist (OF). 

 
Fig. 18. The Impact of harmonic number on accuracy. 

B. Impact of the harmonic number on gesture recognition 

In section II B, it is known that the number of harmonic 

components and fundamental waves needs to be greater than 

the number of array elements to ensure accurate restoration of 

the conventional array. Most of the energy of the received 

signal is concentrated in the first few harmonic components. It 

is very necessary to explore the influence of harmonic number 

on gesture recognition accuracy. It can be seen from (14) that 

the Fourier coefficient of the harmonic component of integer 

multiples of 4 generated by the modulation method adopted in 

this study is 0, which means that these harmonics do not exist. 

Therefore, we consider and evaluate the recognition accuracy 

when K=1, 2, 3 and 5. Fig. 18 shows the influence of the number 

of harmonic components on the accuracy of gesture recognition. 

It can be found that the accuracy does not change significantly 

with the increase of the number of harmonics. The reason is that 

the energy of higher-order harmonics is relatively small and 

does not affect the harmonic recovery processing. In addition, 

recovering conventional array with more harmonics means that 

more digital down-conversion is required, which will consume 

a lot of CPU time and computing resources. In summary, we 

use the ±2nd harmonic, ± 1st harmonic and the fundamental 

wave to recover the conventional array. 

 
Fig. 19. The influence of non-synchronization and frequency offset on 

recognition accuracy. 

 

  
(a)                                                       (b) 

 
 (c) 

Fig. 20. Confusion matrices of different input.  (a) Confusion matrices of ADM. 

(b) Confusion matrices of Doppler. (c) Confusion matrices of AOA. 

C. Impact of non-synchronization and frequency offset 

As described in Section III A and B, we need to complete 

system synchronization and frequency offset elimination to 

ensure the normal operation of the radar. We evaluated the 

impact of the above factors on the proposed system. In fact, it 

is very easy to use a spectrograph to obtain the modulation 

frequency, but there is a deviation of several hertz. The 

existence of frequency offset is equivalent to the harmonic 

vector multiplied by a time-varying diagonal array, which 

affects the recovery of traditional array. The recognition 

accuracy will be reduced by 2.2% when the system has no 

frequency calibration as shown in Fig. 19. Besides, the time 

delay caused by non-synchronization will lead to phase shift of 

each element in Γ  which also affects the recovery of 

conventional arrays. We compare the recognition accuracy 

under the two conditions of synchronous and random 

determination of initial sampling time as shown in the Fig. 19. 
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The AOA with errors leads to the distortion of the motion track 

of the highlighted part in the ADM. In the case of non-

synchronization, the average recognition accuracy of gesture 

decreases by 4%. In summary, it is very important to calibrate 

the harmonic carrier frequency and synchronization for the 

hand gesture recognition system based on TMA. 

D. Comparison of ADM, Doppler and AOA 

In order to compare the impact of input type on gesture 

recognition accuracy, we extracted the doppler and AOA 

information of TMACW radar respectively. Specifically, the 

doppler spectrum and DOA spectrum are acquired by short-

time Fourier transform (STFT) and multiple signal 

classification (MUSIC) algorithms, respectively. The sliding 

window length for calculating doppler spectrum and AOA 

spectrum is 0.1 s with 80% overlap. We feed the AOA spectrum 

and doppler spectrum to Resnet18 for training and testing, 

respectively. We use confusion matrix, which each column 

represents the instances in a predicted class and each row 

represents the instances in an actual class, to evaluate the 

performance of our system. The average gesture recognition 

accuracy using ADM, doppler and AOA is 98.9%, 96% and 

93.9%, respectively. The confusion matrix for gesture 

recognition using only doppler information is shown in the Fig. 

20(b). It is hard to obtain information about the horizontal 

motion of the hand from the doppler spectrum, which makes it 

difficult to distinguish between Cir and UD gestures. In 

addition, it is difficult to distinguish the motion in the vertical 

direction of the gesture using only AOA information, which 

makes it easy for the model to mistake UD for D as shown in 

Fig. 20(c). The ADM combined with AOA and doppler 

information can make up for the limitations of single domain 

features and effectively solve the above problem that similar 

gestures are difficult to distinguish as show in Fig. 20(a).  

E. Impact of environment 

Gesture recognition based on RF sensing is easily affected by 

the environment. Walls and furniture in the indoor environment 

cause rich multipaths during the propagation of wireless signals. 

In this experiment, we verified the robustness of the system in 

three environments, such as corridor, laboratory and meeting 

room. As shown in Fig. 21(b), our system can achieve 98%, 

97.3%, and 97% average recognition accuracy in the corridor, 

laboratory and meeting room, respectively. The recognition 

accuracy of each gesture is not less than 97% as shown in Fig. 

21(a). In general, the proposed system achieves high accuracy 

for different environments. 

  
(a)                                                        (b) 

Fig. 21. Gesture recognition results cross environments. (a) Confusion matrix 

(b) average recognition accuracy in different environments. 

 

  
(a)                                                (b) 

Fig. 22. Gesture recognition results cross users.   (a) Confusion matrix (b) 

gesture recognition accuracy on new users. 

 
(a)                                 (b) 

Fig. 23. Experimental scene. (a) Different distances. (b) Different incident 

angles. 

F. The impact of new users 

Different people perform gestures in different ways, such as 

speed and range, which leads to large intra-class differences. 

Sample quality varies from person to person. To evaluate the 

performance of the proposed system on new users, we will test 

the trained model on a cross-person dataset containing 5 new 

users. It can be seen from Fig. 22(b) that the average recognition 

accuracy is 96.6%, and the recognition accuracy of the 5 people 

remained above 94.5% as shown in Fig. 22(b). The 

experimental results show that the proposed system has the 

ability of cross-user gesture recognition. 

G. Impact of Position 

In order to evaluate the effect of position on gesture 

recognition, we conducted a large number of experiments at 

different distances and different incident angles. First, the 

gestures with different distances are measured when the 

incident angle is fixed to zero. The distances between the hand 

and the radar are 30, 40, and 50 cm, respectively. The 

experimental scene is shown in Fig. 23 (a). Table III shows the 

classification accuracies for different distances. As the distance 

increases, the power of the hand echo decreases and the signal-

to-noise ratio (SNR) is low, resulting in a decrease in the 

accuracy of gesture recognition. When the distance is 50cm, the 

recognition accuracy drops to 90.3% which can be still 

acceptable. In addition, the gestures with different incident 

angles are measured when the distance between the target hand 

and the antenna plane is fixed at 30 cm. The angles of the hand 

to the antenna plane are 15°, 30°, and 45°, respectively. The 

experimental scene is shown in Fig. 23 (b). Table IV shows the 

classification accuracies for different incident angle.  It can be 

found that with the increase of incidence angles, the recognition 

accuracy decreases significantly. This is because the Doppler 

and AOA of the samples under this experimental setting are 
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quite different from those of the samples in the in-domain 

dataset. When the incident angle of the gesture is greater than 

45 °, there will be significant errors, which cannot be applied to 

HMI in this case.  
Table III 

THE RECOGNITION ACCURACY AT DIFFERENT DISTANCES 

Distance 30 cm 40 cm 50 cm 

Accuracy 98% 93.5% 90.3% 
 

Table IV 

THE RECOGNITION ACCURACY AT DIFFERENT ANGLES 

Angle 15° 30° 45° 

Accuracy 91% 80.2% 63.4% 
 

Table V 

COMPARISON OF DIFFERENT MODELS 

Model 

Model 

size 

(MB) 

In 

domain 

Cross 

people 

Cross 

env. 

Dis. 

within 

50 cm 

AOA 

within 

30 ° 

Widar 3.0 1.001 96.2% 92.4% 93.6% 84.5% 80.5% 

Model 1 0.126 97.3% 96.5% 95.4% 87.4% 82.6% 

Model 2 

(Proposed) 
0.129 98.9% 96.7% 97.4% 93.9% 85.6% 

env. means environment. 

dis. means distance. 

Table VI 

COMPARISON OF DIFFERENT METHODS 
 [12] [23] [13] [16] [29] Ours 

Tx signal CW OFDM FMCW FMCW FMCW CW 

Channel 1T/4R 1T/6R 1T4R 3T4R 3T4R 1T1R 

T/R 

antanna 
1/4 1/6 1/4 3/4 3/4 1/4 

Working 

Frequncy 

10 

GHz 

5.8 

GHz 

24-26 

GHz 

60-64 

GHz 

60-64 

Ghz 

5.8 

GHz 

Range 

res. 
NA NA 7 cm 3 cm 3cm NA 

Max 

range 
0.5 m NA 0.6 m 1 m NA 0.5 m 

Cross-

domain 
NA Yes NA NA NA Yes 

Number 

of 

gestures 

8 6 8 20 10 10 

Acc. (%) 96.6 92.7 98.75 NA 95 98.9 

res. means resolution. 

H. Comparison with different network models 

In order to demonstrate the superior domain-independent 

ability of the proposed system, we compared the proposed 

neural network with Widar 3.0. as shown in Table V. Model 2 

represents the proposed neural network. Model 1 represents 

proposed neural network without the attention mechanism. The 

input of Widar3.0 is the body-coordinate velocity profile (BVP) 

sequence which is a series of two-dimensional matrices similar 

to our ADMs. The backbone of the Widar 3.0 is 2DCNN and 

Gated Recurrent Unit (GRU). We only modified the output 

layer of Widar 3.0 to fit our dataset. Widar3.0 is shallower than 

the proposed model, which makes the output layer output large 

number of features. Therefore, the last layer contains a large 

number of neurons, resulting in a larger model size than our 

models. All three models can achieve high-precision gesture 

recognition in In-domain dataset. In the cross-position scenario, 

we compared the recognition accuracy of all models under two 

conditions: distance within 50 cm and incident angle within 30 °. 

In the cross-domain sensing, it can be observed that the 

recognition accuracy of the proposed network model is higher 

than that of Widar 3.0. To verify the effectiveness of the 

proposed attention mechanism, we conduct ablation 

experiments. It can be found that the attention mechanism can 

focus on more important features and improve the 

generalization ability of the system.  

I. Comparison with different time modulation functions 

The Fourier coefficient matrix of the arbitrary time 

modulation function is derived. It should be noted that if TMA 

is restored to a traditional array, Fourier coefficient matrix Γ 

needs to satisfy the full rank. In order to explore the influence 

of different time modulation functions on the recognition 

accuracy, we generated three kinds of time modulation 

functions as shown in Fig. 23. Γa , Γb, and Γc are the Fourier 

coefficient matrices of Ua, Ub and Uc, respectively. Γa and Γb 

are full rank matrices, while the rank of Γc is 2. We collected 

20 samples for each gesture under each time modulation 

function. The vertical distance between the hand and the radar 

is approximately 30cm. We use the Model 2 neural network to 

test the collected samples. The average recognition accuracy of 

gestures with different time modulation functions is shown in 

the Table VII. It can be found that Γa  and Γb  meet the 

conditions for array recovery, so the proposed method can 

accurately recognize gestures. However, Γc cannot accurately 

recover the array. The estimated AOA of the gesture is incorrect, 

further leading to a significant decrease in recognition accuracy. 

 
Fig. 23. Three kinds of time modulation functions 

 

Table VII 

COMPARISON OF DIFFERENT TIME MODULATION FUNCTIONS 

Modulation 

function 
Ua Ub Uc 

Accuracy 97.5% 97% 66.5% 

VI. DISCUSSION 

A comparison with other similar works is listed in Table VI.  

Compared to multi-channel radar, the proposed system 

achieves the same performance using only a single channel. 

Compared with [12], [13], [16], and [29], our system has the 

ability of cross-domain sensing and high recognition accuracy, 

which benefits from the proposed domain independent feature 

and the designed neural network. In addition, we use TMA as a 

receiving array that does not radiate harmonics into space and 

does not affect communication signals in the same frequency 

band. Compared to radar in [13], [16], and [29] with wideband, 

the proposed system has lower spectrum occupancy.  
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There are two limitations to this study. First, the Tx signal in 

the proposed system is CW, which leads to a lack of ranging 

capability. The reason is that the original signal is repeated on 

the spectral axis with interval fp. To avoid spectral aliasing 

between adjacent harmonic components, the bandwidth of the 

original signal must be less than fp. Thus, we use CW as the Tx 

signal. Second, the efficiency of the proposed system is 

relatively low. The overall time-modulation efficiency is 

defined as η=η
TMA

×η
s

[52], where the efficiency 

η
TMA

=PU/PR represents the harmonic efficiency defined by 

the ratio of the power in useful harmonics to that in all 

harmonics. PR is the total mean power of the TMA and is 

given by [53] 

( ), ,

1

4
N

R off n on n p

n

P t t T
=

= −                (37) 

where  ton,n and toff,n represent the turn-on time and turn-off 

time of the nth channel of the RF switch, respectively. 

PU= ∑ Pk
K
k=-K  is the useful mean power. Pk=4π ∑ |an,k|

2N
n=1 is 

the mean power at the kth harmonic [54]. Then, the η
TMA

 can 

be written as 
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We set K=2 in this study. ηs is the switched feeding network 

efficiency and is given by 

s

1

1 N

n

n

D
N


=

=     (39) 

where 1/ 4nD =  is the duty cycle of the excitation of the nth 

channel of the RF switch in this paper. Therefore, Dn=1/N=1/4 

and TMA s= 0.215   ≈   in this study. The efficiency of the 

constructed TMA is relatively low, which may be the reason for 

the shorter detection distance compared to other multi-channel 

radar schemes. In future work, the SP4T RF switch will be 

replaced by a power splitter equipped with phase shifter to 

improve the efficiency of TMA [54]. 

VII. CONCLUSION 

In this paper, a novel single-channel TMACW radar is 

proposed to enable cross-domain gesture recognition. The 

harmonic generated by time modulation is used to restore the 

TMA to the traditional array, which reduces the hardware 

complexity and cost of multi-channel radar. The 2D-FFT, 

normalization, and clutter suppression are used to obtain robust 

the ADM for gestures. Then we develop a neural network with 

attention mechanism to fully exploit spatial-temporal 

characteristics of ADM for gesture recognition. The 

experimental results show that our system can achieve high 

accuracy gesture recognition across different domains (i.e. 

environments, users, and positions). In the future, we believe 

that the proposed low-cost TMA sensing system can not only 

be applied to gesture recognition, but also promote other 

sensing tasks. 
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