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Achieving net zero in the UK requires radical improvements in energy efficiency 
in housing combined with the decarbonisation of domestic heating. Achieving 
the energy efficiency goals requires a systems approach which takes account of 
variations at the level of individual properties but also the levels of neighbourhood 
and the local governance context. Our study provides insights into the scale of 
the challenge and how this varies by spatial context using property-level energy 
efficiency measures from Energy Performance Certificates data between 
2008–22 and covering approximately half of the residential stock in England 
and Wales. We use a series of multi-level models to provide insights into how 
differences in energy efficiency are related to factors at each scale. Our findings 
show that, while the great majority of variation lies at the property level, there 
is some variation at the neighbourhood (output area—OA) level. Controlling for 
property characteristics, energy efficiency is slightly higher in neighbourhoods 
characterised by more disadvantaged populations. There is little evidence, 
therefore, that more affluent groups are either choosing to move into more 
energy-efficient housing or making a significant effort to invest in energy 
efficiency. While government support has been targeted at more disadvantaged 
groups, this suggests that more will need to be  done to motivate or require 
more widespread action if the UK is to meet its net zero targets. There is only 
small variation at the local authority (LA) level suggesting little difference in the 
range or effectiveness of strategies by that tier of governance, but also that all 
households face similar challenges going forwards.
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1 Introduction

The UK’s commitment to a net-zero future by 2050 requires, 
effectively, net-zero emissions (or very close to) from residential 
property (BEIS, 2021). To achieve this will require a combination of 
radical improvements in energy efficiency combined with the 
decarbonisation of domestic energy consumption—in practice this 
means a transition from fossil-fuel boilers to electric heating—most 
likely involving heat pumps or similar technology—and an 
improvement in insulation. In this paper, we  focus on the energy 
efficiency challenge. By better understanding domestic building 
energy efficiency and how this varies by local socio-spatial context, 
we can reimagine sustainability interventions and develop appropriate 
policies at relevant scales. In the context of a national location data 
framework by 2025 (Geospatial Commission, 2020), location will 
be critical in unlocking valuable insights, opportunities, and services 
that improve energy efficiency and reduce consumption. Therefore, a 
geographic systems approach recognising the interconnectedness of 
physical, socioeconomic, cultural and legislative environments is vital 
for any holistic understanding.

A comprehensive building-level energy performance analysis 
must account for the local socio-spatial context to achieve the net-zero 
transition. We have previously examined spatial variations in energy 
efficiency across England using Energy Performance Certificates 
(EPC) data, covering approximately half of the residential stock 
(Buyuklieva et al., 2023). Our preliminary analysis shows that property 
characteristics are the main driver: older properties, detached houses, 
private ownership and small size are all associated with lower energy 
efficiency. This points policy towards the need to think about the 
individual property and that is indeed where many efforts are 
currently targeted: through the household. Even after we  have 
controlled for variations at the property scale, however, significant 
spatial variations remain. At the local authority level, we observed 
variations using simple fixed-effects. We now extend this work to use 
a multilevel modelling framework for energy efficiency which 
provides insights into how factors at three different spatial scales—
from the property to the neighbourhood (output area) to the local 
government level (local authority)—impact performance. This 
approach is designed to shed new light on the differing systems which 
may be at work.

This paper shows how the variance in energy efficiency observed 
across the housing stock can be partitioned between property, output 
area and local authority levels and how characteristics at each level can 
be used to understand these variations. In particular, we use a range 
of geodemographic classifications at the two spatial scales to 
understand potential drivers of energy efficiency across different types 
of places. This setup allows us to assess the relative importance of area-
level and building-level factors for understanding the challenges of 
achieving energy efficiency in the residential housing stock. 
We address how different area types across the UK—delineated as 
classifications, such as rural, suburban or variations of urban—capture 
variations in residential energy performance. At which scale do 
we  find most variations in energy efficiency—at property, 
neighbourhood or local authority level (where local planning 
decisions are made)? How much of this variation can be explained by 
relevant characteristics such as property, neighbourhood or local 
authority type? After controlling for these characteristics, is there 
evidence of significant variation between local authorities which 

might indicate particularly positive or negative performance in 
relation to improving domestic energy efficiency?

2 Literature

Transitioning the UK’s residential environment to net zero relies 
on two pillars. Firstly, maximising the energy efficiency of the housing 
stock, i.e., consuming less energy; and secondly, decarbonising heating 
systems, i.e., moving from fossil fuels to renewable electric sources 
(e.g., heat pumps). There is currently some commitment to improving 
energy efficiency through “[building] fabric-first” approaches (Hurst 
and O’Donovan, 2019) following a series of patchwork incentives for 
improving domestic energy efficiency (Mallaburn and Eyre, 2014; 
Bergman and Foxon, 2020). However, many have criticised the pace 
of progress (Dowson et al., 2012; Gazze, 2023), and the impact of these 
on energy efficiency will vary by the local socio-spatial context 
(Buyuklieva et al., 2023; Huaccha, 2023).

2.1 Challenges and promotion of energy 
efficiency

Although energy efficiency is a property-level concern, the fabric-
first approach to net-zero transitioning the residential built 
environment is a community issue that must acknowledge local 
affordances and variations to the ability of residents to affect change. 
Using data from the English House Condition Survey (EHCS), the 
Building Research Establishment (BRE Housing, 2008) provides four 
categories of hard-to-treat (HTT) housing stock. Their definition 
includes properties with solid walls, dwellings lacking a loft, high-rise 
flats, and those not connected to the gas network. The classification of 
dwellings without a mains gas system as HTT illustrates the direct 
significance of geographic considerations.

From a European standpoint, Brito (2023) argues that the 
shortcomings of energy performance measured by EPCs—for historic 
areas in particular—stem from a bureaucratic focus on individualism, 
resulting in excessive costs and overlooking holistic solutions that 
extend beyond energy considerations. The alternative to this is 
location-specific collective engagement at the local level, which, in 
turn, can pave ways forward for a comprehensive array of strategies 
that account for the unique historical, contextual, and communal 
aspects of each locality. Examining total annual energy use and EPCs 
at the local (lower layer super output area—LSOA—between 400 and 
1,200 households) level in Bicester (England), Gupta and Gregg (2018) 
find that a spatial approach, which pinpoints neighbourhoods for 
focused outreach efforts, is effective in engaging the local community 
for energy-saving measures.

Although financial incentives may play a potential role in 
retrofitting buildings, local and regional initiatives may provide more 
anecdotal evidence of efficacy (Beillan et al., 2011; Gazze, 2023), as 
different places may have distinct communication patterns and 
preferences, making localised strategies crucial for effective housing 
upgrades. Case study research on British communities regarding the 
adoption of household energy efficiency measures recognised that 
community-specific communication channels can increase the 
likelihood of adopting energy efficient measures compared to standard 
campaigns (McMichael and Shipworth, 2013). Owen et al. (2023) 
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challenge prevailing perceptions of ethnic minority individuals as 
“hard to reach” to argue for a localised, relational approach where 
households apply for and then recommend upgrade schemes to their 
family, friends, and neighbours.

In the UK, national and devolved governments have developed a 
range of schemes which target individual properties but often with a 
focus on specific tenures or sub-groups. For example, there have been 
efforts to raise standards for those in social housing through the 
development of the Decent Homes standard in England, which 
includes aspects of thermal comfort and places the onus on local 
authorities and Registered Social Landlords to provide the necessary 
investments to achieve this. Similarly, targeting vulnerable or 
disadvantaged groups (such as owner occupiers or private renters on 
low-income or disability benefits), the Warm Front scheme in England 
(and its equivalents in Wales and Scotland) placed obligations on 
domestic energy suppliers to raise energy efficiency (Dowson et al., 
2012). By comparison, relatively little funding has been channelled 
through local authorities (HCLG Committee, 2021), nonetheless, 
we might expect these to have spatially uneven impacts given the 
spatial concentration of both social housing and disadvantaged groups 
with particular over-representation in more urban locations (Bailey 
and Gannon, 2018; Bailey et al., 2023).

2.2 Socio-spatial patterns and dimensions

In this paper, we focus on the indirect, socio-spatial dimensions 
of energy efficiency challenges. We know from previous work that 
there are spatial patterns to EPC ratings (Tingey and Webb, 2020; 
Buyuklieva et  al., 2023; Huaccha, 2023) and socio-demographic 
patterns to energy consumption and retrofit uptake, which are linked 
to the underlying energy efficiency of the residential housing stock 
(Druckman and Jackson, 2008; Owen et al., 2023). Building on this 
knowledge, we motivate why spatial heterogeneity requires a multi-
level systems approach to spatial variation which focuses on scale to 
inform local and community-level interventions.

Within the UK and beyond, Piao and Managi’s (2023) cross-
sectional survey finds that general energy consumption rises with 
wealth, but energy-saving behaviours are also associated with higher 
levels of education (and resources). Wenninger et al. (2022) use a 
selection of single-dimensional UK census data to conclude that areas 
with a concentration of families with children under 15—who might 
be time and resource-constrained—are less likely to correlate with 
retrofits that would improve energy efficiency ratings. This is 
consistent with work examining a large sample of Dutch homes, where 
Brounen et al. (2012) show that residential gas consumption (used 
mainly for heating) is principally related to the characteristics of the 
home, whilst electricity usage is more variable by household 
composition and income. They also find that the households which 
use most gas for heating and, therefore, would benefit most from 
higher energy efficiency are families with children and elderly 
households. Similarly, when constructing an index of vulnerability to 
energy poverty for England, Robinson et al. (2019) include households 
with at least one person over 75 and those with children below 4 at the 
top of their indicator set, along other variables including 
unemployment and occupation, ethnicity and English proficiency, 
occupancy and household size and private renting. Using variants of 
a principal component analysis on their 21 indicator set, Robinson 

et  al. (2019) argue against a simple measure of deprivation for 
understanding energy vulnerability (which is largely embodied in 
housing energy inefficiencies) and show social patterns based on age, 
disability and private renting.

Druckman and Jackson (2008) examine spatial variations in 
energy consumption, using the multivariate geodemographic ONS 
output area classification (OAC). Stratifying by supergroups in 
England and Wales, they look at mean household energy consumption 
and associated carbon emissions to find that increases in both 
correlate strongly to high-income area types. However they also 
suggest that high energy use is not just a factor of wealth but a 
combination of local building stock and social fabric including the 
type of dwelling, tenure, household composition and broad geographic 
location (rural/urban). At the LSOA level, Huaccha (2023) observes a 
persistence of aggregate, regional variables, such as population density, 
median age, education and employment rates that contribute to 
energy efficiency disparities. Education, employment and density rates 
correlate positively with properties with higher energy efficiency, 
whereas older age and higher unemployment were inversely 
associated. Chaudhuri and Huaccha (2023) take a slightly different 
focus on the “energy efficiency gap” for properties—the difference 
between current energy efficiency and the level which could 
be reasonably achieved for the same property using existing and cost-
effective technologies—another output of the EPC process. Using data 
for England and Wales and controlling for property characteristics, 
they find that the energy efficiency gap is greater in more deprived 
areas, i.e., there is greater scope for improvement there. However, the 
ONS and our own previous work (Bowers et  al., 2022, p.  11; 
Buyuklieva et al., 2023, p. 1) raises exception to the claim in the case 
of social housing, where the relationship between deprivation and 
poor energy efficiency would be a function of councils’ commitment 
to maintenance and upgrade on the housing stock.

In this paper, we  propose to capture such contextual spatial 
heterogeneity with multi-variate area classifications. Area 
classifications are useful for capturing associations amongst a mass of 
heterogeneous information about the underlying nature and structure 
of populations and places. For example, Corcoran et al. (2013) find the 
same classification useful for capturing the complexity of social 
circumstances to model primary (dwelling) fire risks; Dennett and 
Stillwell (2009) use area classifications to simply complex internal 
migration patterns and Moon et al. (2019) use OAC and multi-level 
approaches to improve small area estimations in the context of health 
inequalities. Most directly related to our work, Owen et al. (2023) use 
the OAC (26 subgroups) with a close focus on Bradford to observe 
that less wealthy, Asian households, in terraces have a higher 
propensity for applying for the ECO and GreenDeal schemes. 
However, they also acknowledge that the single largest factor for 
upgrade uptake is low energy performance ratings, as households 
would have high energy expenditures in most energy-
inefficient homes.

2.3 Capturing random variance and spatial 
heterogeneity

Legislation across Europe and in the UK requires Energy 
Performance Certificates (EPCs) to be issued for all buildings—both 
residential and non-residential—when these are sold or rented, with 

https://doi.org/10.3389/frsus.2024.1329034
https://www.frontiersin.org/Sustainability
https://www.frontiersin.org


Buyuklieva et al. 10.3389/frsus.2024.1329034

Frontiers in Sustainability 04 frontiersin.org

the UK system starting in 2008 (Watson, 2010). In England and Wales, 
data related to these certificates are collated and managed by the 
Department for Levelling Up, Housing and Communities (DLUHC). 
EPCs provide headline ratings which measure the theoretical cost of 
energy consumption. A focus on costs is unhelpful here since these 
vary depending on factors such as access to the main gas grid. Instead, 
we focus on estimated energy consumption, which is standardised by 
floor area and assumes a standard level of occupancy and 
external environment.

There is variability in EPC ratings driven by the human aspect of 
the assessment, including both unintentional oversights and 
intentional distortion (Gledhill et al., 2023). The latter occurs in cases 
where a higher rating might benefit a rental or sales transaction, for 
example. Similarly, the Department of Energy and Climate Change—
based on a uniquely conducted mystery shopper review of 29 Green 
Deal candidate properties across England and Wales—found that 
across five EPC assessments on the same property, most properties 
were given letter ratings in different bands (DECC, 2014). Lacking a 
representative sample, these large variations are tentatively explained 
by building complexity, proxied by the building age band and form 
type: the oldest homes and those that are ambiguously contingent to 
neighbouring heated walls show the highest difference in estimated 
energy efficiency results (DECC, 2014, p. 40). Further to variation at 
the level of estimation, there is also uncertainty of energy consumption 
post-occupancy. Using a sample of over a thousand gas-heated British 
households, Few et al. (2023) illustrate the common conception that 
EPC ratings and actual energy use diverge, and most markedly so for 
properties with EPC ratings below B. Despite these shortcomings, 
EPC records are nonetheless a valuable source for aligning economic, 
climate and sustainability goals. For example, their existence can 
encourage energy performance upgrades (Comerford et al., 2021).

Multilevel models offer a robust framework for the analysis of 
EPC rating variation because they allow for the identification of 
similarities at various spatial scales and within different groupings 
of properties, while controlling for property specific variables (e.g., 
age, floor area, etc.). For example, we  might find examples of 
properties in certain areas that have higher or lower than expected 
energy efficiency relative to their construction characteristics (age, 
etc.). In these cases, the location of these extreme examples might 
be  a function of some locally-administered policy popular in a 
particular part of the country or in some way associated with the 
types of people in these areas. In such cases, location can 
be  leveraged as hierarchical levels in a multilevel model design. 
We can thus apportion variations in energy efficiency across the 
housing stock into those parts common to each local authority, to 
each output area within the authority, and to differences between 
properties in each output area. We can also see the extent to which 
the characteristics of properties, output areas and local authorities 
provide some understanding of these variations. To the authors’ 
knowledge, this is the first project to apply geodemographic and 
multi-level modelling together to understand variations in building 
energy efficiency across space.

We extend previous work on EPC data with a different focus and 
modelling approach to investigate how neighbourhood and local 
authority socio-demographic characteristics are simultaneously 
related to energy efficiency. We  use estimated total energy 
consumption for a property in a 12 month period (kWh/m2 year), 
which is standardised for size of property and does not include any 
assumption on fuel costs. This is a more straightforward measure that 

is part of the calculation of the standard EPC, which is described in 
more detail in the next section.

3 Materials and methods

3.1 Data sources

3.1.1 Property characteristics
EPC ratings are generated using manual inputs software programs 

that implement the UK government-approved methodology of 
measuring energy performance for building regulation compliance. 
The most recent standard assessment procedure (SAP) specification 
is V10.2, published on 15 December 2021 by the Building Research 
Establishment (BRE). SAP V10 is also known as SAP 2012. There are 
two versions of the procedure, the full SAP for new dwellings, 
including those that are produced through change of use; and reduced 
data SAP (RdSAP) for existing ones. RdSAP allows assumptions about 
the building based on when it was constructed. The SAP calculation 
is particularly sensitive to how the building envelope is defined, as a 
proxy for where surfaces lose thermal energy to the outside 
environment. This means that for domestic EPCs, the judgement calls 
on the type of building form could yield very different EPC letter 
ratings. EPCs cannot measure actual costs or emissions, and they can 
diverge quite significantly in practice (Few et al., 2023). However, 
different versions of the calculation methodologies do not translate 
into large differences in the distribution of EPC energy efficiency 
ratings over time (Crawley et al., 2019, p. 1).

This paper uses version 10 of the EPC dataset, which consists of 
over 22 million rows up to January, with some properties having 
multiple entries. We remove earlier records where there is more than 
one for a property to only keep the latest entry and use postcodes to 
link properties to output areas and local authorities, and hence to the 
classifications at each of these levels (i.e., the output area and the local 
authority classifications, discussed in section 3.1.2). Following an 
iterative process of variable vetting, harmonisation and geolocation 
using the OS AddressBase + database (epoch 90), we produced a 
cross-sectional sample of EPCs between 2008–2022. After 
de-duplication and removal of records with missing values, we have 
data on 14 million of 26.7 million residential properties in England 
and Wales (DLUHC, 2023); or just over half the total dwellings stock 
in England and Wales. For the rest of this paper, we focus on the 
estimated annual energy consumption per square metre as a proxy for 
gross energy requirement, which is not available in the published 
dataset or openly available at the same granular level. Estimated 
annual energy consumption is net of any energy produced by local 
generation (e.g., through photovoltaic (PV) panels).

EPCs record a number of building attributes which we use to 
control for property-level characteristics. These include property age 
(nine ordered bands), type, tenure and floor area. We drop records 
which are missing one of these variables. We also drop “Park home” 
properties (i.e., static caravans) since there are very few of them, and 
they are built using atypical construction methods. The final set of 
variables for modelling and their descriptive statistics are shown in 
section 4.1.

3.1.2 Geodemographic area classifications
Geodemographic area classification is a method used to categorise 

spatial units such as neighbourhoods or administrative zones, based 
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on the clustering of similar multivariate demographic and geographic 
characteristics. This allows for populations with similar characteristics 
in different places, to be grouped together. Similar areas are usually 
identified by a short illustrative title (e.g., “London Cosmopolitan” or 
“Established Farming Communities”) to aid interpretation. While 
we  should be  cautious of ecological claims, these descriptions 
nonetheless serve as a helpful framework to broadly capture how 
places and their populations differ and what they generally have 
in common.

In this study, we employ geographical area classifications including 
the ONS output area classification (OAC) (Gale et al., 2016) and the 
ONS local authority classification (LAC) (ONS, 2018), as tools for 
analysing the socio-spatial context of residential energy efficiency (see 
Appendix for a more detailed description). These two classifications 
come with three levels of detail: supergroups, groups and subgroups. 
We use all three in the models below at different times.

The OAC allows for granular insights into localised characteristics 
of resident types in particular neighbourhoods. It assigns small 
geographic areas into distinct groups based on local socio-economic 
and demographic comparisons (for example, higher or lower rates) 
with the UK as a whole. For example a “Rural Residents” area will have 
a relatively low population density compared to most places in the UK, 
and include residents who are more likely to own their own homes 
and for these homes to be  detached. These areas will also have 
relatively well-educated populations, but they will likely own multiple 
motor vehicles—all characteristics which might influence both the 
prospects for and level of impact of energy efficiency interventions. By 
contrast, the LAC groups cover larger administrative areas. They tend 
to reveal more general characteristics; for example relative affluence 
in the home counties or metropolitan demographic diversity. These 
may also be useful proxies for important factors such as attitudes 
towards energy efficiency shifts or the economic potential for what are 
often expensive housing stock upgrades, the main cost of which has 
historically been borne overwhelmingly by homeowners and 
landlords. They may also be associated with different propensities to 
promote energy efficiency programmes although, as noted above, 
most of the UK efforts to date have focussed through individual or 
group-level measures, not local authorities.

Both area classifications consist of categories that nest 
hierarchically into three levels—supergroups, groups, and subgroups. 
For example, there are 8 supergroups forming the top tier of the OAC 
hierarchy, 26 groups and 67 subgroups, each with distinct 
characteristics across 60 dimensions based on census variables (Gale 
et al., 2016). In this paper, we use the classifications as characteristics 
of output areas or local authorities (excluding those that are related to 
Scotland and Northern Ireland) as factors to help explain variations 
between units at each level.

3.2 Multilevel models

3.2.1 Overview
Multilevel models are statistical tools for analysing data with a 

hierarchical structure. These models involve a number of nested 
“levels” of data (or grouping factors such as neighbourhoods or 
regions); variations across which are represented as “random effects.” 
These models simultaneously accommodate systematic relationships 

between explanatory (e.g., age or building type) and dependent (e.g., 
energy consumption) variables, represented as “fixed effects.” 
Multilevel models are therefore effective for modelling detailed 
systems of dependencies, such as homes within output areas, each of 
which is nested within a local authority. A wide variety of different 
multilevel models can be created to capture the variation in energy 
efficiency of individual properties (as our dependent variable). In our 
case, the property is the lowest level in our multilevel hierarchy, but 
sits within the two higher, nested geographic levels because each 
property belongs to an OA, which in turn belongs to an LA. Properties 
can also be grouped or classified relative to area classifications, where 
each property in an OA belongs to one of the supergroups, groups and 
subgroups at OA and LA levels. In this analysis we  treat these 
classifications as characteristics of each level (fixed effects), in the 
same way that we treat age, property type or tenure as characteristics 
at the property level, not as levels themselves (random effects).

3.2.2 Variance components models
Multilevel models with no fixed effects, where each level is 

represented by a random intercept effect, are known as variance 
components models (VCMs). These models do not provide a direct 
functional relationship between explanatory variables and the 
dependent variable, but instead serve to decompose the variance of 
the dependent variable across the different levels of the random 
effects hierarchy. For example, considering the geographical 
hierarchy above, we  could ask: what proportion of the overall 
variance in energy consumption per m2 between properties is 
accounted for by variance between LAs (i.e., in terms of their 
means)? What proportion is accounted for by variance between OAs, 
and what proportion remains at the property level, between 
individual homes (i.e., is unexplained)?

The main outputs of a VCM are:

 • ϵn
2, the variance at each level n;

 • c, the intercept.

Note that the first of the above bullet points includes ϵ0
2, the 

variance at the individual level (property level, in this case), which 
might also be described as the residual variance, or the variance that 
is not explained by the model.

The intercept—also called the “grand mean”—is a measure of the 
average value of the dependent variable (e.g., energy consumption), 
accounting for the hierarchical structure of the data (and, in more 
detailed models, also for the reference classes of categorical variables, 
if any are included). Similar averages can be determined for every 
individual group in the data. Continuing the previous example, while 
the intercept is a measure of the average energy consumption per m2 
across the whole of England and Wales, a variance components model 
could also report a similar average for any OA or LA.

3.2.3 Notation
In all that follows, subscripts i, j, k are used to represent 

the following:

 • i: a particular property
 • j: a particular OA
 • k: a particular LA
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y will be used to represent the dependent variable, the predicted 
energy consumption in kilowatt hours per m2 (kWh/m2) of a property; 
c is the y-intercept, as previously discussed.

Combining the above notation, yijk will represent the energy 
consumption per m2 of property i, within OA j, within LA k. Similarly, 
the specific intercepts for entities at each level of the model hierarchy 
can be indicated by c with the appropriate subscripts. For example, cjk 
would represent the modelled mean energy consumption per m2 for 
OA j, within LA k, and so on.

Where relevant, depending on the model, ϵOA and ϵLA represent 
the standard deviation of a random (intercept) effect at the OA and 
LA levels, respectively. ϵ0 represents the standard deviation of the 
variation at the property level, equivalent to the standard deviation of 
the error term in a standard linear regression.

3.2.4 Model specifications

3.2.4.1 Model 0: variance components model
The first model (Model 0) relates purely to the geographical 

location of a property. This is a VCM, with no explanatory variables.
Model 0 is defined by Equation 1:

 
y z z z cijk k jk ijk= + + +∈ ∈ ∈LA AO 0  (1)

Here, zk, zjk and zijk (and all similar variables z that follow below, 
regardless of subscript) are considered to be expressions of a standard 
normal random variable, Z N~ 01,( ) , and these distributions are 
assumed to be independent (unless otherwise stated).

The theoretical interpretation of this model is that the energy 
consumption per m2 of a particular property (yijk) may be found by 
adding a term for its particular LA (ϵLAzk), a term for its OA (ϵOAzjk) and 
an individual error term (ϵ0zijk) to a fixed intercept (c), where the terms 
at each of the three levels are considered to have been drawn from 
independent centred normal distributions with (in general) different 
variances. In this context, for example, two properties in the same OA 
j would have the same values of zk and zjk, but different values of zijk.

The output of this model are “best fit” values of ϵOA, ϵLA, ϵ0 and c, 
given data on a set of properties’ energy consumptions per m2 and 
their locations within OAs and LAs. The model will also provide 
estimated residuals for every group at every level, which indicate the 
offset between that group and its higher level mean. For example, the 
residual rk of a particular LA k is given by rk = ck − c = ϵLAzk. Similarly, 
we have rjk = cjk − ck = ϵOAzjk and rijk = cijk − cjk = ϵ0zijk.

Note that, in this model, the estimated mean of an LA will not 
generally be  equal to the mean of the data points (energy 
consumptions) within it, because the estimation process accounts for 
the lower level hierarchical structure of properties within OAs.

3.2.4.2 Model 1: introducing property level characteristics
Following on from the VCM described above, we introduce a 

model that incorporates additional data at the property level. As 
described in section 3.1.1, this includes information on year of 
construction (discretised into nine bands), property type (flat/
maisonette; terraced; semi-detached; detached; bungalow; park 
home), tenure (private rental; social rental; owner occupied) and 
floor area (in square metres). All of this information will 
be incorporated into new models in the form of variables x0 to x15, 
defined as follows:

 • x0 to x8: Dummy variables relating to building age. xa = 1 if a 
property’s year of construction is in band a; 0 otherwise. Note 
that there is no reference class, since these variables will 
be transformed before their inclusion in any models (see below). 
x0 relates to the newest properties; x8 to the oldest.

 • x9 to x10: Dummy variables relating to building tenure. x9 
corresponds to private rental; x10 corresponds to social rental. 
Owner occupation is the reference class.

 • x11 to x14: Dummy variables relating to building type. x11 
corresponds to terraced housing; x12 corresponds to semi-
detached housing; x13 corresponds to detached housing; x14 
corresponds to bungalows. Flats/maisonettes is the reference 
class. The park home class has been removed (see section 3.1.1).

 • x15: A continuous numerical variable, equal to the floor area of a 
property in square metres.

The first model incorporating these variables is defined as follows:
Model 1 is defined by Equation 2:

 
y z z z cijk ijk k jk ijk= ⋅ + + + +′m x ∈ ∈ ∈LA AO 0  (2)

Note that this model is identical to Model 0, save for an additional 
term, m·x′ijk. That is to say that it involves an intercept (c) and random 
effects at the OA and LA levels. The additional term is the dot product 
of a vector of transformed explanatory variables x′ijk and a vector of 
coefficients m.

These vectors are defined as follows in Equations 3, 4 (note that 
subscripts ijk on all x variables have been omitted for clarity):

 m = …[ ]m m1 15, ,  (3)

 
′ = …





′ ′x x x1 15, ,
 

(4)

where x′1 to x′8 relate to the building age variables x0 to x8 as 
follows as defined in Equations 5–7:

 ′ =∗ ∗x xP T (5)

 x∗ = …[ ]x x0 8, ,  (6)

 
′ = …





∗ ′ ′x x x1 8, ,
 

(7)

Given its discretisation, year of construction is an ordinal 
categorical variable. Rather than include the nine age bands as eight 
dummy variables and a reference band, we  instead choose to 
represent the age categories with a polynomial coding, represented 
by the 8 × 9 matrix P, ranging from a linear component (corresponding 
to x′1) to an eighth power component (corresponding to x′8). This 
approach for handling ordinal variables follows the default method 
in R described by UCLA: Statistical Consulting Group, and will allow 
for the identification of linear or non-linear trends between property 
age and energy consumption per m2, despite the fact that the variable 
is not continuous and that the bands are not of equal size.
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x′9 and x′10 relate to the building tenure variables, while x′11 to x′14 
relate to the building type variables. All of these are unchanged 
between the original x variables and the transformed x′ variables, as 
defined in Equation 8:

 x x x x9 14 9 14
′ ′… = …, , , ,  (8)

Finally, x′15 is a logarithmic transformation of the floor area 
variable x15, as defined in Equation 9:

 x x15 10 15
′ = log  (9)

3.2.4.3 Models 2–4: introducing area classifications as 
fixed effects

Models 2–4 build upon Model 1, by introducing the OA and LA 
area classifications as OA and LA level explanatory variables. 
Conceptually, this will allow us to understand how much of the 
variation at the respective OA and LA levels can be accounted for by 
the characteristics represented in these classifications.

The three models are identical, except that they use different 
versions of the classifications. Model 2 uses the highest level 
“supergroups”, of which there are 8 LA classes and 8 OA classes; Model 
3 uses the middle level groups (subdivided from the supergroups), of 
which there are 13 LA classes and 26 OA classes; Model 4 uses the 
lowest level “subgroups” (subdivided from the groups), of which there 
are 21 LA classes and 76 OA classes.

For simplicity, the three models are represented by the 
following equation:

Models 2–4 are defined by Equation 10:

 
y z z z cijk ijk jk k jk ijk= ⋅ + ⋅ + + + +′m x m x0 1 0∈ ∈ ∈LA AO  (10)

Here, m0·x′ijk is the same as m·x′ijk from Model 1, while a new term 
m1·xjk has also now been added. xjk is simply a vector of dummy 
variables relating to the LA and OA classifications, and m1 is the 
corresponding vector of coefficients, defined as follows (note that the 
subscript jk has been omitted from all x variables here for clarity), as 
defined in Equations 11, 12:

 m1 1 1 1 1= … … − −m m m mQ qLA LA OA OA, , , , ,, , , ,  (11)

 x = … … − −x x x xQ qLA LA OA OA, , , , ,, , , ,1 1 1 1  (12)

Here, Q is used to represent the number of LA classes to 
be considered, while q is the number of OA classes to be considered. 
Variables xLA,1 to xLA,Q−1 are dummy variables representing each LA class, 
while xOA,1 to xOA,q − 1 are dummy variables representing each OA class. 
The use of Q − 1 and q − 1 is due to the inclusion of a dummy class in 
each case. So, for a particular OA j in a particular LA k, at most one of 
the variables xLA,1 to xLA,Q − 1 will be non-zero, equal to one, indicating the 
relevant LA class of k, and at most one of the variables xOA,1 to xOA,q − 1 will 
be non-zero, equal to one, indicating the relevant OA class.

The effect of modelling the classifications as fixed effects in this 
way is to apply a particular offset to all properties in a particular LA 

or OA class. This will allow us to determine, which classes have 
atypically high or atypically low energy consumption per metre 
squared, after accounting for the property level variables and for 
geographical location, as defined by OA and LA membership.

3.2.5 Multilevel model statistics

3.2.5.1 Overview
Though related to linear regression models, multilevel models do 

not share the same goodness of fit statistics. For example, there is no 
single R2 value to assess the explanatory power of a model. In addition, 
there are multilevel model-specific metrics to analyse the way that 
data is distributed across and between the levels. Three quantities that 
may be derived from multilevel models: variance partition coefficients, 
conditional R2, and marginal R2. All of these are simply ratios of 
variances or sums of variances of the different effects in the model.

3.2.5.2 Variance partition coefficients
For a multilevel model with N levels, plus the individual level 

(level 0), the variance partition coefficient (VPC) at a particular level 
n, denoted VPCn, is equal to the variance between units at that level 
(ϵn

2) divided by the sum of the variances at all levels, as defined in 
Equation 13:

 

VPCn
n

m
N

m
=

=∑
∈

∈

2

0

2

 

(13)

By “units” here, we refer to either groups (for levels 1 and above) 
or individual data points (for level 0). Note that the VPC always lies 
in the interval [0, 1].

The VPC measures the proportion of the variance in the dependent 
variable that is accounted for by a particular level of the model, 
compared to all levels combined. For example, in Model 0 (see above), 
in which properties are nested within OAs, which are nested within 
LAs, VPC2 would denote the proportion of variance related to 
differences in predicted energy consumption per m2 between LAs, 
VPC1 would denote the proportion of variance related to differences in 
energy consumption between OAs within an LA, and VPC0 would 
denote the proportion of variance related to differences in EPC rating 
between individual properties within an OA.

3.2.5.3 Conditional and marginal R2

In the multilevel setting, the closest analogue to the well-known 
R2 value of simple linear regression is the conditional R2. For a 
multilevel model with N levels, plus the individual level (level 0), the 
conditional R2 is equal to the sum of the variances at all levels except 
the individual level (ϵ0

2), plus the variance associated with the fixed 
effects (ϵfix

2), all divided by the same quantity but including the 
variance at the individual level, as defined in Equation 14:

 

R m
N

m

m
N

m
cond

2

2

1

2

2

0

2
=

+

+
=

=

∑
∑

∈ ∈

∈ ∈

fix

fix  

(14)

The variance associated with the fixed effects, ϵfix
2, is the equal to 

the variance of the fitted values of the dependent variable (i.e., 
ignoring residual variance ϵ0

2), based only on the fixed effects, 
disregarding all other terms of the model equation.
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In VCMs and their corresponding multilevel models 
incorporating fixed effects, the conditional R2 can be interpreted as 
representing the overall proportion of variance that is explained by 
the model, since the only term that appears in the denominator but 
not the numerator is ϵ0

2, which is precisely the variance that is not 
explained by the model.

An alternative R2 measure for multilevel models is the marginal 
R2. This is equal to the variance associated with the fixed effects, 
divided by the sum of the variances at all levels and the variance 
associated with the fixed effects, as defined in Equation 15:

 

R
m
N

m
marg
2

2

2

0

2
=

+
=∑

∈

∈ ∈
fix

fix  

(15)

In other words, for multilevel models incorporating fixed effects 
(without random slopes), this is the proportion of the overall variance 
that can be attributed to those fixed effects (while in a VCM, the 
marginal R2 is equal to zero).

These definitions were adapted from those of Nakagawa and 
Schielzeth (2013).

4 Results

4.1 Descriptive statistics

Histogram showing distribution of estimated total energy 
consumption for the property in a 12 month period (kWh/m²) with 
breakdowns by OAC and LAC supergroups shown in Figure  1. 
Descriptive statistics of our dwelling sample characteristics shown in 
Figure 2.

4.2 Models

Multilevel model for energy consumption per square metre shown 
in Table 1.

4.3 Classification fixed effects

Area classification fixed effects of Model 2 shown in Table 2.

4.4 Output area class fixed effects

Output area classification fixed effects of Model 3 (left) and 4 
(right) shown in Figure 3.

5 Discussion

5.1 Persistent high variance at the property 
level

Our descriptive statistics in Figure 1 set the expectation that there 
is some difference between output area and local authority classes. At 

the local authority class level, there is negligible difference between 
groups. Only London cosmopolitans (LAC 5) homes are expected to 
have slightly lower energy consumption, likely reflecting their over-
representation in more energy efficient flats. At a finer scale, we do not 
observe a strong social gradient. However, these descriptive 
observations do not control for variance at the property-level, 
immediate neighbourhood or specific local authority effects.

Model 0 examines the partition of variance in energy performance 
between three levels: the specific LA level, OA level, and property 
level. The conditional R2 indicates that geographical location alone—
as defined by a property’s OA and LA—can explain about 15% of the 
variance in predicted energy consumption per m2. The VPC scores for 
this model show that the vast majority of this variance (85%) is 
between individual properties at the lowest level. Of the variance 
accounted for by the higher levels, much more can be attributed to 
differences between OAs (13%) than to differences between LAs (2%). 
This suggests that the at this time, the LA level is of limited value for 
understanding differences in energy performance, perhaps because 
local authorities, through local councils, have not yet played the role 
envisaged for them in the future by central government in delivering 
net-zero commitments (Rankl et al., 2023). Our observation of only 
minor differences at LA level is consistent with previous work 
examining (a lack of) differences in retrofit needs in the UK at this 
level (Ahlrichs et al., 2022). The high variance at the property level is 
a reminder of the heterogeneity in housing, even within small 
neighbourhoods such as output areas.

Model 1 extends Model 0 by adding various property-level 
characteristics (type, tenure, floor area, and building age). The aim of 
Model 1 is to determine how much of the variance at each level can 
be  explained by these additional property-level features. All the 
included property features are significant and these together account 
for about 23% of the overall variance in the estimated energy 
consumption per property, as indicated by the marginal R2 of Model 1. 
We also note, as would be expected, that the variances at all three levels 
previously discussed—specifically LA level, OA level, and property 
level—have all been substantially reduced, indicating that a 
considerable proportion of the variance between OAs and LAs was 
related to the difference mix of properties found in those areas. In 
addition, Model 1 indicates that the inclusion of property level features 
increases the proportion of variance explained by the model as a whole 
from 15% to 31%, based on the conditional R2. In other words, much 
of the variance in energy performance (69%) remains unexplained by 
any of the features of the model. This variation may be attributed to 
measurement errors such as inconsistencies in measures between 
surveyors or biases in the surveys, as discussed earlier in this paper.

5.2 Similarities in privately rented and 
owner-occupied homes

Taking a closer look at the coefficients of the property-level 
explanatory variables, we see our results broadly align with previous 
research. The differences related to age are far greater than those 
related to type, size or tenure. Newer properties are substantially 
more efficient (lower energy consumption per square metre), 
reflecting the increased standards set by Building Regulations over 
time (Dowson et al., 2012). We also see how properties with fewer 
external surfaces (flats, then terraced houses, then semi-detached) 
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have higher energy efficiency for reasons of basic physics as they 
have fewer thermal bridges. Larger properties, likewise, are more 
efficient (i.e., require less energy per square metre) as volume to 
surface area ratios increase (but note that the coefficient here is for 
the log10 of size, so this is showing the effect of making a property 
10 times larger).

Private rented properties have been the subject of heavy policy 
and regulatory focus because of the split incentive issue, where 
residential upgrades would cost but not directly benefit landlords 
when only tenants stand to benefit from lower energy consumption 
bills directly. Supporting this, Petrov and Ryan (2021) find that 
privately rented properties in Ireland tend to be slightly less efficient 
than comparable stock. By contrast, data from the ONS suggests a 
more complex relationship, where new owner-occupied homes are 
slightly more efficient than their rental counterparts with this reversed 
for existing dwellings (Bowers et al., 2022, p. 5). We find that once 
we control for age and type, the energy efficiency of privately rented 
homes appears to be  practically indistinguishable from that of 

owner-occupied properties (the reference class), with a modelled 
difference of just −0.5 kWh/m2 year. The low average for private 
renting likely reflects the concentration of the stock in well-connected 
and established areas, which tend to older, inner urban housing 
(Bailey et al., 2023) rather than the behaviour of landlords (Miu and 
Hawkes, 2020), i.e., their failure to invest in energy efficiency measures 
in the same way as social landlords have. However, because EPCs are 
only issued at the point of a transaction or in response to some specific 
upgrade scheme that requires it, some owner-occupied fabric 
upgrades will not be captured over extensive periods. Socially rented 
stock is markedly more efficient than either private tenure. This may 
reflect the more systematic approach to property maintenance and 
upgrading from large social landlords with a long-term asset 
management approach as well as regulatory requirements on the 
sector, for example under the Clean Growth strategy (HM 
Government, 2019). There may also be  a policy factor here as 
significant efforts have been focussed on this sector through initiatives 
such as the Decent Homes standard in the early 2000s and, more 

FIGURE 1

Histogram showing distribution of estimated total energy consumption for the property in a 12 month period (kWh/m2) with breakdowns by OAC and 
LAC supergroups.
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recently, the Social Housing Decarbonisation Fund (HCLG 
Committee, 2021).

5.3 Co-occurence of disadvantage and 
lower energy consumption homes

In Models 2–4, we  introduce increasingly fine-grained socio-
demographic classifications as fixed effects at OA and LA levels. At the 
local authority level, the most striking feature is the higher levels of 
energy efficiency in “London Cosmopolitan,” which really sits apart 
from the other supergroups. This covers 11 inner London boroughs, 
including several with high levels of social deprivation and good 
transport connectivity. One explanation for this might lie in actions 
by the relevant authorities, but there is little evidence in policy 
discussions to suggest they have been preferentially funded or more 
active in relation to this area. An alternative explanation might lie in 
the London housing market, where the exceptionally high property 
values may make reinvestment in properties, including works to raise 
energy efficiency, a more commercially attractive proposition. In 
addition, the dominant property type in this area will be flats, which 
for physical reasons already mentioned are more energy efficient.

From the descriptive statistics in Figure 1, we expect, that knowing 
nothing else, less well-off neighbourhoods, such as those in 
constrained city dwellers (OAC 7) and ethnicity central (OAC 3) 
output areas, have a lower estimated residential energy consumption 
and therefore more energy efficient homes, possibly reflecting 
concentrations of social housing in these areas. By contrast, rural 
residents (OAC 1) and metropolitan residents (OAC 4) occupy 
neighbourhoods with mildly energy-leakier homes. Models 2–4 
confirm that even after controlling for property mix, more 
disadvantaged areas seem to have more efficient housing. Table 2 
shows higher energy efficiency is associated with areas of hard-pressed 
living (OAC 8) or constrained city dwellers (OAC 7), while the lowest 
are rural residents (OAC 1) then urbanites (OAC 5), and 
cosmopolitans (OAC 2). Model 3 shows that constrained city dwellers, 
especially white communities (7c) and hard-pressed living, especially 
characterised by migration and churn (8d) tend to have the lowest 
estimated energy consumption on their dwellings, even when 
controlling for social rent and property age. A closer look at the most 
energy-efficient homes—i.e. those with the lowest expected energy 
consumption (e.g., 7c2, 8d1, 3c2 in Figure 3) we see that these tend to 
be working families. This is interesting and contrasts with previous 
work by Wenninger et al. (2022), who note that retrofit improvements 

FIGURE 2

Descriptive statistics of our dwelling sample characteristics.
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are less common in areas with high concentrations of families with 
children under 15.

At the output area level, we can think of the systematic differences 
as arising from two processes: the selection of different kinds of 
housing by different social groups; and differential abilities or interests 

in improving energy efficiency between social groups. Our main 
finding is that we see little evidence that more affluent groups are 
preferentially selecting more efficient properties or that they are taking 
action at higher rates—quite the opposite. One policy factor which 
may underlie this finding is that many of the national energy efficiency 

TABLE 1 Computational notation: multilevel models for energy consumption per square metre.

Model ID 0 1 2 3 4

Random effects

σ2 8405.62 6855.33 6854.78 6854.7 6854.58

τ00 OA11CD 1300.39 657.46 620.05 609.46 592.94

τ00 LAD11NM 213.62 165.1 104.41 99.1 96.27

VPC—property level 0.85 0.89 0.90 0.91 0.91

VPC—OA 0.13 0.09 0.08 0.08 0.08

VPC—LA 0.02 0.02 0.01 0.01 0.01

R2: marginal/conditional 0.000/0.153 0.231/0.314 0.237/0.310 0.239/0.310 0.242/0.311

Fixed effects

Intercept 266.41 565.05 577.07 576.38 574.3

Dwelling type (β2), reference: flat/maisonette (highest scoring EPC)

Bungalow 33.34 32.84 32.86 33.03

Detached house 35.63 35.22 35.23 35.36

Semi-detached house 17.99 18.02 18.22 18.4

Terrace house 5.81 6.06 6.3 6.41

Tenure (β3), reference: owner occupied (majority group)

Privately rented −0.5 −0.52 −0.51 −0.54

Socially rented −33.22 −32.53 −32.43 −32.23

Floor area (log10) −177.95 −178.68 −178.69 −179.08

Construction age (β1), ordered factor

From 2012 onward? −88.36 −88.50 −88.49 −88.52

From 2007 onwards −81.89 −82.02 −82.00 −82.03

New (1996–2006) −63.91 −64.06 −64.03 −64.06

Post modern (1983–95) −24.20 −24.26 −24.24 −24.22

Modern (1967–82) 8.51 8.63 8.62 8.70

Post WW2 (1950–66) 35.71 36.13 36.15 36.35

Circa WW2 (1930–49) 53.24 53.51 53.51 53.56

Edwardian (1900–29) 73.36 73.32 73.28 73.14

Victorian and earlier (pre 

1900s)

87.55 87.25 87.21 87.07

Fitted component

Linear 188.95 189.08 189.02 188.96

Quadratic −6.89 −7.33 −7.36 −7.58

Cubic −21.80 −22.21 −22.21 −22.31

4th degree 12.11 12.14 12.14 12.24

5th degree 0.17† 0.37† 0.38† 0.51

6th degree −5.66 −5.62 −5.59 −5.55

7th degree 1.56 1.51 1.5 1.48

8th degree −2.47 −2.54 −2.56 −2.6

All values are given to two decimal places. Variances and estimates are in units of kWh/m2 year. Total number of properties: 1,41,41,764, across 348 LAs and 181,317 OAs. †p > 0.001.
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programmes have been targeted wholly or in part at more 
disadvantaged groups, including low-income households and 
households containing a person with disabilities, and we would expect 
high concentrations of both groups in the hard-pressed living (OAC 
8) and constrained city dwellers (OAC 7) areas.

5.4 Energy efficiency drivers: hidden at the 
finest scales

Since the classification features are associated with the higher levels 
of Model 1, they cannot meaningfully improve its explanatory power, as 
modelled by the conditional R2. Instead, they could explain variance that 
was attributed to the OA and LA level random effects in the previous 
models. If the classifications were strongly associated with energy 
performance, after controlling for our other variables, we would expect 
to see substantial reductions in the variances reported at the OA and LA 
levels (as compared with Model 1), decreases in the OA and LA level 
VPCs and an increase in the marginal R2. We would also expect these 
changes to be greater for the models with more classes since these have 
the capacity to explain more of the higher-level variance.

While we do observe changes of this nature, their scale is limited. 
Variance at OA level drops from 657  in Model 1 (without 

classifications), to 620  in Model 2 (highest level classifications), 
through to 593  in Model 4 (lowest level, i.e., most granular 
classifications), while the variance at LA level drops from 165  in 
Model 1, to 104 in Model 2, through to 96 in Model 3. The drop in 
variance at LA level is clearly proportionally much greater, but the 
overall proportion of variance associated with this level is so low that 
the practical significance of any observations at this scale is 
questionable. Marginal R2 increases from 23.1% for Model 1, to 23.7% 
for Model 2, through to 24.2% for Model 4, suggesting that OA and 
LA classifications, even at the most detailed level, can explain only just 
over 1% of the overall variance in predicted energy consumption per 
m2. Using finer-grained area classifications (the groups and sub-groups 
of Models 3 and 4) does not do a great deal to increase explanatory 
power in the fixed part of the models. The bulk of unexplained 
variance remains at the property level. This aligns with previous work 
that had found socio-demographic characteristics less potent than 
dwelling-related characteristics for capturing retrofit investments that 
would lower a home’s energy consumption (Trotta, 2018).

Two broad conclusions can be drawn here. Firstly, while geography—
at least, down to the scale of output areas—explains some of the variance 
in EPC rating, a majority of the variance is unexplained. This implies that 
other differences between individual properties are responsible for the 
majority of variation in energy efficiency. Secondly, the proportion of 
variance in estimated energy consumption per m2 that is explained by 
geography, is mostly at the finer scale of OAs, rather than the larger scale 
of LAs. In other words, there is very little large geographic scale variation 
in EPC ratings across England and Wales; the largest part of geographic 
variations are at a much finer neighbourhood-to-neighbourhood, street-
to-street or even property-to-property level.

6 Conclusion

Our analysis produces three main conclusions. First, at the highest 
geographic scale, residential energy efficiency varies comparatively 
little between local authorities. All face broadly similar challenges. 
This is perhaps surprising given that local authorities have been given 
a central role for coordinating efforts in this area for some time 
(Morris et al., 2017) thus we might expect a degree of divergence. The 
fact that our work cannot show evidence of this is perhaps indicative 
of the enormous constraints on local government which have arisen 
from years of austerity (Hastings et al., 2017; Morris et al., 2017). The 
House of Commons HCLG Committee (2021) recently called for 
greater use of local authorities within the national retrofit policy but 
this is unlikely to prove successful unless these basic resource 
constraints are addressed.

Second, at the neighbourhood scale, we  do not see strong 
relationships between the social composition or socio-economic 
status of neighbourhoods (output areas) and energy efficiency, 
contrary to what we might have expected. Despite extensive coverage 
of the climate crisis in general and some discussion of domestic 
energy efficiency issues in particular, it appears that more socially 
advantaged groups are not choosing or able to use their resources to 
achieve more sustainable housing. Possible explanations can be found 
in recent qualitative research in Scotland on homeowner attitudes to 
this issue (Energy Savings Trust and Taylor McKenzie, 2023). This 
reveals a striking “disconnect” in homeowner thinking (p2): on the 
one hand, a general awareness of and support for the “net zero” goal 

TABLE 2 Area classification fixed effects of Model 2.

Model 2

Output area class 
fixed effect

Estimate CI

Reference: [1] rural 

residents

0

—

[2] Cosmopolitans −9.78 −10.58 to −8.98

[3] Ethnicity central −16.08 −16.94 to −15.21

[4] Multicultural metropolitans −13.32 −13.97 to −12.67

[5] Urbanites −7.37 −7.89 to −6.85

[6] Suburbanites −13.09 −13.60 to −12.57

[7] Constrained city dwellers −22.46 −23.10 to −21.83

[8] Hard-pressed living −23.08 −23.60 to −22.56

Model 2

Local authority class 
fixed effect

Estimate CI

Reference: [1] affluent England 0 —

[2] Business, education and heritage 

centres

−5.79† −10.43 to −1.14

[3] Countryside living 6.4 2.69–10.11

[4] Ethnically diverse metropolitan 

living

−4.64† −10.07 to 0.78

[5] London cosmopolitan −26.84 −33.36 to −20.32

[6] Services and industrial legacy 4.98† 0.79–9.16

[7] Town and country living 4.88† 1.11–8.65

[8] Urban settlements 3.85† −0.08 to 7.78

Estimated coefficients and intercepts are given to two decimal places; p-values are given to 
three decimal places. Total number of properties: 14,141,764, across 348 LAs and 181,317 
OAs. †p > 0.001.
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but, on the other, limited awareness of what this might mean for them 
or any sense that they were responsible for acting in relation to their 
own homes. Barriers cited by homeowners included costs but also a 
sense that, without “a clear, personal financial benefit from 
upgrading,” it was for Government or business to lead the way. Policy 
may be  quite correctly targeting initial support on the more 
disadvantaged or vulnerable groups but more will clearly need to 
be done to encourage, enable and/or require those with greater means 

to apply these to their own energy efficiency if we are to meet “net 
zero” targets. Despite the lack of strong variations at a neighbourhood 
level, small area targeting may still have an important role to play. 
Other justifications include the possible reduced coordination costs 
from concentrating interventions, the gains in owner motivation 
from seeing neighbours taking action and the supply chain benefits 
of concentrated demand reducing costs and increasing trust. 
Localised action can also work effectively with support services such 

FIGURE 3

Output area classification fixed effects of Model 3 (left) and 4 (right). Estimated coefficients and intercepts are given to two decimal places; p-values 
are given to three decimal places.
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as “One Stop Shops” to support action by owners (Bertoldi et al., 
2021a,b).

Given owners’ focus on the financial returns of energy efficiency, 
one important area for research would be to provide evidence on the 
scale of any such returns. The key questions for future research in this 
direction would include: whether there is evidence that energy 
efficiency is becoming more important over time as debates about 
pathways to net zero become more prominent; whether this matters 
more in home purchase decisions or renting; and whether it is energy 
cost measures or carbon emissions which weigh most in consumer 
valuations of properties. Further research is also required to ascertain 
whether carrot or stick incentives may affect changes in attitude more 
readily. In the UK context, linking taxes such as stamp duty (paid when 
purchasing property) to energy efficiency with significantly lower rates 
for more efficient properties, might incentivise sellers to improve their 
properties before sale. Alternative progressive taxes associated, for 
example, with Council Tax, could be  further imagined, as well as 
mortgage or borrowing benefits for energy efficient upgrades.

Third, our work produces a novel finding in relation to housing 
tenure. Once we allow for the fact that private landlords tend to own 
smaller, older properties, the energy efficiency levels reported appear no 
lower than those for owner-occupiers. With the minor caveat that tenure 
is only recorded at the time of the survey, we do not observe a particular 
energy efficiency problem with private renting. There has been much 
discussion of the reasons why private landlords may be less likely to 
invest in energy efficiency since it is tenants rather than landlords who 
get the direct benefit from improvements in terms of lower bills. 
However, our data do not support the underlying premise that energy 
efficiency is therefore lower in the private rented sector. This policy focus 
on private renting can possibly be justified in other ways. For example, 
the Scottish Government’s (2023) proposals to set an earlier deadline for 
private landlords to meet a new energy efficiency standard is justified in 
part by reference to higher levels of fuel poverty in the sector. As it stands, 
however, our finding suggests less need to focus efforts specifically by 
tenure and rather more need to encourage, enable or require private 
owners to make the necessary changes across the board.
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Output Area Classifications

At the finest-grained geographic scale, the UK Office for National 
Statistics (ONS) output area classification (OAC) The latest iteration 
of OAC was released after and based on data from the 2011 Census. 
These dimensions fall broadly into five domains: demographic 
structure, household composition, housing, socio-economic and 
employment; or, for our purposesṣ—three types: socio-demographic 
(including concentrations of groups based on age, household types, 
ethnicity and location birth categories), education and employment 
(including qualification types and employment industries), and 
residential setup (including commute type, car ownership and housing 
information such as tenure and property type). The OAC can be used 
to think about the energy efficiency of homes in different 
neighbourhoods by enabling clusters of dwellings to be  grouped 
according to similar types of local characteristics.

Local Authority

The output area classification assigns small geographic areas 
into distinct groups based on socio-economic and demographic 
attributes, allowing for granular insights into localised 
characteristics. On the other hand, the local authority area 
classification groups larger administrative areas to uncover 
broader patterns across municipalities. The classifications each 
consist of three levels, each nested within the other. At higher 
levels of spatial granularity, such as at the local authority level, 
area classifications can be useful for contextualising the overall 
patterns observed at the policy levels. Specifically, the output 
areas and their classification can serve as the lower level, 
capturing localised variations, while the local authorities and 
their area classification can act as the higher level, encompassing 
broader planning or sub-regional trends.

Appendix

TABLE 1 Multilevel model for energy consumption per square metre.

Model 0: (1|LAD11NM) + (1|OA11NM)

Model 1: year + tenure + type + log10(area) + (1|LAD11NM) + (1|OA11NM)

Model 2: year + tenure + type + log10(area) + (1|LAD11NM) + (1|OA11NM) + LAclass [8] + OAclass [8]

Model 3: year + tenure + type + log10(area) + (1|LAD11NM) + (1|OA11NM) + LAclass [13] + OAclass [26]

Model 4: year + tenure + type + log10(area) + (1|LAD11NM) + (1|OA11NM) + LAclass [21] + OAclass [76]
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