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A single locus determines praziquantel response in 
Schistosoma mansoni
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ABSTRACT We previously performed a genome-wide association study (GWAS) to 
identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two 
quantitative trait loci situated on chromosomes 2 and 3. We reanalyzed this GWAS using 
the latest (version 10) genome assembly showing that a single locus on chromosome 3, 
rather than two independent loci, determines drug response. These results reveal that 
PZQ response is monogenic and demonstrates the importance of high-quality genomic 
information.
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I n a recent research article (1), we performed a genome-wide association study (GWAS) 
to identify the genetic basis of praziquantel (PZQ) response in schistosomes. This study 

leveraged a mixed population of PZQ-resistant and PZQ-sensitive Schistosoma mansoni 
generated by laboratory selection (SmLE-PZQ-R) (2), and we compared genome-wide 
allele frequencies in adult worms that recovered or failed to recover from PZQ treat­
ment to determine the genetic basis of PZQ response. We identified two quantitative 
trait loci (QTL) associated with drug response situated on chromosomes 2 and 3 (Fig. 
1A). On chromosome 3, we determined that the Sm.TRPMPZQ gene, which encodes 
a transient potential receptor channel, was the cause of variation in PZQ response. 
This conclusion was further supported by an independent study using pharmacological 
approaches (3). In addition, we showed lower Sm.TRPMPZQ gene and isoform expression 
in PZQ-resistant (PZQ-R) worms, suggesting that expression level may determine the PZQ 
response phenotype. However, we were unable to identify a causative gene within the 
chromosome 2 QTL. In this note, we revisit the published data set using an updated 
and improved genome assembly to further investigate the chromosome 2 QTL, to try to 
resolve the inconsistencies observed in Le Clec’h et al. (1), and to better understand the 
genetic architecture of PZQ response.

We used the version 7 of the S. mansoni genome to map our genomic data in Le 
Clec’h et al. (1). This version contained 312 unassembled scaffolds, many of which 
represented alternative haplotypes for regions across the genome, in addition to the 
near complete assembly of the seven autosomes and ZW sex chromosomes. However, 
the most recent of the S. mansoni reference genome assemblies [versions 9 (4) and 10] 
have been substantially improved. The latest version 10 of the genome [available on 
WormBase ParaSite (5)] is now assembled in full-length chromosomes. The unassembled 
scaffolds have been either incorporated into the main chromosomal assemblies or 
removed as haplotypic alternatives for many regions. Importantly, some chromosomal 
regions have been reassigned to their correct chromosomal locations (either on the 
same chromosome or on a different chromosome). These assembly changes have 
particularly affected not only the contiguity of the sex chromosomes but also the regions 
of chromosome 2. In parallel with the assembly revision, gene models have been further 
improved in version 10 to better reflect experimental evidence; predicted transcript 
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isoforms are now only included when alternative intron:exon boundaries are supported 
by ≥10% alignment depth from a single RNA sequencing library. This gene model 
curation has resulted in a global reduction in transcript isoforms predicted: while 27.58% 
of gene models encoded more than one isoform in version 7, this number fell to 8.65% in 
version 10. The Sm.TRPMPZQ is one of the genes affected, with a reduction in number of 
major annotated isoforms from 7 to 3. With the release of this revised and improved 
reference genome, we took the opportunity to revisit our genetic mapping experiments 
to re-evaluate the genetic architecture of PZQ response in schistosomes. We also 
reanalyzed our transcriptomic data to determine whether Sm.TRPMPZQ gene expression 
remains associated with differences in PZQ response.

FIG 1 Comparison of the genome-wide association mapping of PZQ response against versions 7 and 10 of the S. mansoni reference genome. The Manhattan 

plot identifies genome regions that differ in allele frequency between PZQ-sensitive and PZQ-resistant worm pools. While the mapping done with the version 

7 of the reference genome revealed two QTL peaks on chromosomes 2 and 3 (A), mapping against the version 10 of the genome highlighted a single peak 

on chromosome 3 (B). The QTL on chromosome 2 was actually an artifact due to misplaced sections of the chromosome 3 (orange box) (C). Blue dotted line 

refers to the Bonferroni significance threshold; red and black dots represent association of individual single nucleotide polymorphisms (SNPs) for assembled and 

unassembled scaffolds, respectively; green box marks the position of the Sm.TPRMPZQ gene.
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Our revised genetic mapping using the latest version of the S. mansoni reference 
genome revealed a single QTL on chromosome 3 associated with PZQ response. The 
chromosome 2 QTL is no longer present (Fig. 1B). This change is a direct consequence 
of the relocation of sections of chromosome 2 to chromosome 3 (Fig. 1C). This is 
reflected by the size of the new QTL (5,723,424 bp), which is approximately the sum 
of the two previous QTLs (chromosome 2: 1,166,271 bp; chromosome 3: 3,990,733 bp; 
total: 5,157,004 bp). The chromosome 2 QTL is now located, in three segments, on the 
boundary of the chromosome 3 QTL, near the beginning of the p-arm of the chromo­
some. The location on the boundary of the chromosome 3 QTL is likely to explain 
the absence of correlation between phenotype and genotype previously shown using 
individual worms (1). The relocation of chromosome 2 QTL increased the total number of 
genes under the updated chromosome 3 QTL from 91 to 137, of which 125 are expressed 
in adults (Table S1). The strongest associated SNP marker (position 3,010,821T > C) 
was still located in the SOX13 transcription factor gene (Smp_345310). In addition, the 
two deletions previously identified close to the Sm.TRPMPZQ and the SOX13 genes and 
associated with the resistant phenotype were confirmed by remapping to the version 10 
genome (positions 2,775,001–2,900,000 and 3,175,001–3,300,000, respectively).

We revisited our transcriptomic analysis using the updated annotation produced 
alongside the version 10 of the reference genome. This updated annotation included a 
revised Sm.TRPMPZQ gene model with minor changes in number of exons but extensive 
alterations in number of isoforms (Fig. 2A). The total number of exons was reduced from 
41 to 38, with modifications to the boundaries of some exons. As expected, these minor 
changes had a limited impact on the overall gene expression. Our revised transcriptomic 
analysis confirmed the reduced expression of Sm.TRPMPZQ gene in the SmLE-PZQ-ER 
parasites (enriched for PZQ-R allele) (Fig. 2B and C) in adult and juvenile worms of both 
sexes. We confirmed that the Sm.TRPMPZQ gene is the only gene under the QTL with a 
significant change in expression (Fig. 2B). The gene has a lower expression in SmLE-PZQ-
ER adult male and female worms compared to their SmLE-PZQ-ES counterparts (Fig. 
2C). We also confirmed very low expression in adult females of both SmLE-PZQ-ER and 
SmLE-PZQ-ES and the higher gene expression pattern in SmLE-PZQ-ES juvenile worms.

However, the updated analysis of isoform expression differed in several ways from 
that previously observed. The revised gene models resulted in reduction of annotated 
isoforms from 7 (version 7) to 3 (version 10) (Fig. 2A). Specifically, isoforms 3, 4, 6, and 7 
from version 7 are no longer present. Isoform 1 is the most abundant of the three 
isoforms, accounting for the majority (88.32–100%) of Sm.TRPMPZQ transcripts in adults. 
We detected reduced expression of isoform 1 (formerly isoform 5) in SmLE-PZQ-ER adult 
males compared to SmLE-PZQ-ES adult males. SmLE-PZQ-ER adult males show compara­
ble expression of isoform 1 to SmLE-PZQ-ES juvenile females that are naturally resistant. 
The new annotation of the version 10 genome does not exclude the possibility of rarer 
exon combinations, but the simplified isoform profile, and the predominance of isoform 
1, now allows us to focus on this isoform for future analyses. We previously hypothesized 
that isoform 6 expression might be associated with PZQ sensitivity because of its high 
expression only in SmLE-PZQ-ES adult males (1). Isoform 6 corresponded to the terminal 
15 exons of the gene model but, from existing short-read data, there is insufficient 
evidence to infer an appropriate transcriptional start for this truncated isoform. The 
isoform, therefore, no longer exists in the version 10 assembly and the association is 
likely to be spurious and allowing us to reject this hypothesis.

Our reanalysis now clearly shows that PZQ response is a single gene recessive trait in 
the laboratory populations studied and does not involve two independent loci as 
previously indicated (1). This is consistent with the observation that drug resistance 
typically has a simple genetic basis and is often monogenic (6). If PZQ resistance is also 
monogenic in natural parasite populations, this will greatly simplify molecular monitor­
ing in control programs. Sequencing exons of Sm.TRPMPZQ from miracidia larvae or worm 
pools by either direct PCR amplification or targeted capture libraries will reveal possible 
PZQ resistance mutations and their frequencies. Putative resistance mutations could then 
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FIG 2 Gene expression differences between SmLE-PZQ-ES and SmLE-PZQ-ER parasites. (A) The gene and isoform annotations 

were revised with the version 10 of the reference genome, which led to an updated Sm.TRPMPZQ gene model. The number 

of predicted isoforms changed from 7 to 3: isoforms 3, 4, 6, and 7 were discarded; isoforms 2 (now 3) and 5 (now 1) were 

updated. Changes in exons (either removal or updates of their boundaries) are highlighted with gray boxes. Exons encoding 

major protein domains are highlighted on the gene model: the TRPM homology region (MHR) domain (brown), the four 

transmembrane-spanning helices (S1–S4) (blue) and TRP box (purple), which are key in the interaction between the channel 

and PZQ, and the NUDT9H domain (green). (B) The Sm.TRPMPZQ gene is the only gene under the chromosome 3 QTL to 

show differential expression between adult male PZQ-ES and PZQ-ER. (C) Sm.TRPMPZQ gene showed reduced expression in 

(Continued on next page)
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be validated using in vitro assays (3). Reanalysis of the transcript data using version 10 
annotation also simplifies our understanding of this system, showing that just isoform 1 
(of three isoforms) predominates and shows differential expression between resistant 
and sensitive parasites. Future work can focus on how expression of isoform 1 impacts 
drug response. These updated results, utilizing the latest high-quality S. mansoni 
reference genome, underscore the importance of a robust reference genome for precise 
genetic mapping of critical biomedical traits, such as drug resistance in pathogens. 
Similar efforts to enhance genome assemblies have also been recently undertaken for 
the two other major schistosome species, Schistosoma haematobium and Schistosoma 
japonicum (7, 8). High-quality genomes have also improved our understanding of drug 
resistance in Haemonchus contortus, a major gastrointestinal nematode of small rumi­
nants (9). Our present results serve as a compelling illustration of the ongoing need for 
continuous improvements in genome assembly, after the initial publication (10).
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FIG 2 (Continued)

PZQ-ER parasites at all stages and for both sexes. Gene expression is overall higher in juveniles than adults, while gene 

expression in adult females is very low, likely explaining their natural resistance to PZQ. (D) Among the three isoforms of the 

Sm.TRPMPZQ gene, only isoform 1 showed differential expression. (E) The expression pattern of this isoform is very similar 

to the gene expression pattern, with high expression in naturally resistant juveniles. On the volcano plots, black dots show 

genes or isoforms with significant differential expression genome-wide, blue dots show genes or isoforms located under the 

chromosome 3 QTL, red dots show Sm.TRPMPZQ gene or isoforms, vertical brown lines show a twofold threshold in differential 

expression, horizontal brown line shows a threshold of 0.95 posterior probably in differential expression.
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