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Abstract
Identifying factors that are causes of disease progression, especially in neurodegenerative diseases, is of considerable inter-
est. Disease progression can be described as a trajectory of outcome over time—for example, a linear trajectory having both 
an intercept (severity at time zero) and a slope (rate of change). A technique for identifying causal relationships between 
one exposure and one outcome in observational data whilst avoiding bias due to confounding is two sample Mendelian 
Randomisation (2SMR). We consider a multivariate approach to 2SMR using a multilevel model for disease progression 
to estimate the causal effect an exposure has on the intercept and slope. We carry out a simulation study comparing a naïve 
univariate 2SMR approach to a multivariate 2SMR approach with one exposure that effects both the intercept and slope 
of an outcome that changes linearly with time since diagnosis. The simulation study results, across six different scenarios, 
for both approaches were similar with no evidence against a non-zero bias and appropriate coverage of the 95% confidence 
intervals (for intercept 93.4–96.2% and the slope 94.5–96.0%). The multivariate approach gives a better joint coverage of 
both the intercept and slope effects. We also apply our method to two Parkinson’s cohorts to examine the effect body mass 
index has on disease progression. There was no strong evidence that BMI affects disease progression, however the confidence 
intervals for both intercept and slope were wide.
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Introduction

Determining causality in observational cohort studies can be 
difficult due to problems with both measured and unmeas-
ured confounding. Two sample Mendelian Randomisation 
(2SMR) is a technique used to determine causal relation-
ships in observational studies that leverages genetic data 
as instrumental variables. Mendel’s laws state that genes 
are randomly assigned at conception hence they are ideal 

candidates for instrumental variables. Under the three instru-
mental variable assumptions 2SMR allows us to determine 
the causal relationship between an exposure and an outcome 
that is unaffected by confounding and reverse causation. 
This technique has gained popularity in recent years with 
the number of publications per year growing rapidly [1] and 
has mostly been used to determine relationships where the 
outcome is developing a disease (i.e. a binary outcome using 
logistic regression) [2, 3] or a health marker such as blood 
pressure (i.e. a continuous outcome using linear regression) 
[4–6]. Some research has also been carried out where the 
outcome is time to event [7], but to our knowledge not where 
the outcome is the trajectory of disease progression over 
time. We are interested in causal inference where the out-
come is a repeatedly measured trait in individuals with a 
particular condition.

Neurodegenerative diseases like Parkinson’s disease (PD) 
and multiple sclerosis (MS) lead to disability that typically 
worsens over time. Identifying factors that are related to dis-
ease progression could lead to developing new treatments 
and better counselling of patients at diagnosis. Disease 
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progression in observational cohorts has been studied before 
in both PD [8] and MS [9] using multilevel models (also 
called growth models, repeated measures models and ran-
dom slope and intercept models). In these circumstances 
we are interested in the trajectory of some continuous trait 
over time which in the case of PD and MS is usually related 
to the severity of motor disability. When working with a 
multilevel model we are often interested in both the intercept 
(disability at a time of zero) and the slope (rate of change in 
disability over time) and it is important to study the effect of 
the exposure on both the intercept and slope.

An important issue when carrying out 2SMR in a cohort 
of individuals who have a disease is the index event bias 
phenomenon. The bias occurs when the MR instrument/
exposure affects disease incidence and there are confound-
ers of incidence and progression. Incidence is then a col-
lider (common effect) of the MR instrument/exposure and 
the confounders, and restricting to a sample of diseased 
individuals will induce spurious associations between these 
variables, biasing the MR analysis [10]. This “index event 
bias” can affect causes of the disease—risk factors for dis-
ease progression which are not causes of disease (including 
treatment) do not suffer this bias.

The index event bias phenomenon has received atten-
tion for both GWAS and MR studies [10, 11]. Two meth-
ods to address this bias are Dudbridge et al.’s index event 
bias correction [11] and Slope-Hunter [12] which were both 
originally developed for genome wide association studies 
and would also require additional data from a genome-wide 
association study of developing the disease in question. 
Methods for addressing index event bias have been reviewed 
by Mitchell et al. [13] and another method has been devel-
oped for index event bias within MR studies [14]. We do not 
address index event bias in the methodology we develop here 
buts its implication for our applied example is discussed.

This article presents a simulation study for a multivari-
ate method to carry out 2SMR where we are interested 
in the causal effect an exposure that does not vary over 
time on both the intercept and slope in a model of disease 
progression. This method uses multivariate meta-analysis 
which is often used in meta-analysis of diagnostic studies 
when researchers are interested in both the sensitivity and 
specificity of a test [15, 16]. Our aim is to examine bias 
and coverage of both separate and joint confidence inter-
vals using this approach. We also apply this method to two 
cohorts of individuals with PD where we are interested in 
the causal effect of body mass index (BMI) on severity at 
diagnosis (intercept) as well as disease progression (slope) 
using motor symptom severity measured by the Movement 
Disorder Society Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) [17]. BMI has been shown previously to 
be related to disease severity [18] and progression [19] 

in PD and an MR study has shown that lower BMI was 
associated with higher risk of developing PD [2].

Methods

Two sample Mendelian Randomisation

2SMR is a technique to estimate the causal effect ( � ) of an 
exposure on some outcome (y) using genetic data, usually 
single nucleotide polymorphisms (SNPs), as instrumental 
variables. The effect of each SNP on the exposure ( ̂�k for 
the kth SNP) can be obtained from a genome-wide asso-
ciation study (GWAS). In the case of 2SMR the SNPs 
used should be independent. The effect of the SNPs on the 
outcome would come from a completely separate sample, 
hence the name two sample Mendelian Randomisation 
(MR), for example they might come from some regres-
sion model with the following format.

where Gik = The number of effect alleles (0, 1 or 2) for 
the ith individual and kth SNP, yi = Outcome for the ith 
individual.

Using the data from these two samples the causal effect 
can be estimated from a weighted regression of the esti-
mated effects of SNPs on the outcome ( ̂�1k ) against the 
estimated effects of SNPs on the exposure ( ̂�k ). This is 
weighted by the inverse of the variance of the effects of 
SNPs on the outcome ( var(�̂1k)).

This can also be thought of as a meta-regression or 
a meta-analysis of Wald ratios (in this example�̂1k∕�̂k ) 
which are all identical mathematically. There are other 
approaches to 2SMR which relax the assumptions in some 
way the most common being the MR-Egger [20], Median 
[21], and Mode [22] approaches. In one-sample MR analy-
ses correct specification of the exposure model is not a 
requirement. For two-sample approaches (the focus of this 
article) if the two populations are homogenous including 
the sampling distributions of the instruments (in this case 
SNPs) then two-sample MR is asymptotically unbiased 
even if the exposure model is not correctly specified. If the 
two samples are heterogeneous then further assumptions 
are required, e.g. that the SNP-exposure model is linear 
and correctly parameterised [23].

(1)f (yi) = �0 + �1k ⋅ Gik

(2)𝛽1k = 𝛼 ⋅ 𝛾̂k, weighted by
1

var(𝛽1k)
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Disease progression models

We are focussing here on multilevel models (also called 
growth models, random slope and intercept models and hier-
archical models). They are often used to model outcomes 
across time where repeated measurements are available and 
can easily accommodate unbalanced data (number of obser-
vations per individual differs and the time between observa-
tions is not constant). They account for the non-independent 
nature of repeated measurements within an individual by 
incorporating random effects into a standard regression 
model. A simple model with no covariates other than time 
where the relationship with time was linear would have the 
format

i = 1, …, n (number of individuals), j = 1, …,nj (number of 
observations per person), tij = time at the jth time point for 
the ith individual, yij = outcome at the jth time point for the 
ith individual, �ij ∼ N[0, �2]—this is the residual variation, 
also sometimes called level 1 variation in context of multi-
level models, assumed to be normally distributed, 
[

u0i
u1i

]

∼ N

(

0,

[

�2

0
�01

�01 �2

1

])

—these are the patient level ran-

dom effects, assumed to be bivariate normally distributed.
For simplicity in this paper we are assuming models with 

a continuous outcome, only linear time, no complex level 1 
variation, and no informative drop-out however these models 
could easily be adapted as explained later in the discussion. 
Within this paper we are assuming a particular directed acy-
clic graph (DAG), see Fig. 1. That is the intercept does not 
cause the slope but the exposure causes some latent progres-
sion trait that causes both the intercept and slope.

In the context of causal effect modelling and the DAG we 
would be interested in the effect that some exposure had on 
both the intercept and the slope. In this manuscript, we will 
assume that the value of the exposure is fixed for each indi-
vidual and does not change over time. If the exposure had 
an effect on the intercept but not the slope then we could say 
that the exposure was related to disease severity at baseline 
and if there was an effect on the slope that the exposure was 
related to disease progression (or rate of change). If there 

(3)yij = �0 + u0i +
(

�1 + u1i
)

⋅ tij + �ij

was a single confounder of the effect the exposure has on 
the intercept and slope we would have the following longi-
tudinal model

Xi = the exposure for the ith individual, Ci = the con-
founder for the ith individual.

Here �1 is the causal effect of the exposure on the inter-
cept and �4 the causal effect of the exposure on the slope.

In the context of 2SMR we would then be fitting a multi-
level model for each SNP such that

and from the GWAS study we would know (in the case of a 
continuous exposure with linear regression) that for k SNPs

If we insert Eq. 6 into Eq. 4 and compare the with Eq. 5 
we can see that

A naïve approach to 2SMR would be to carry out a 
meta-regression of the �̂1k ’s and �̂1k ’s to estimate �1 the 
causal effect of the exposure on the intercept. In a stand-
ard approach to 2SMR this would be a fixed-effects meta-
regression weighted by the inverse of the variance of the �̂1k
’s. Under the assumption that these SNPs are independent 
then meta-regression would be a valid method to estimate �1.

Then we could carry out a separate meta-regression of 
the �̂3k ’s and �̂1k ’s to estimate �4 the causal effect of the 
exposure on the slope. Again this would be a fixed-effects 
meta-regression weighted by the inverse of the variance of 
the �̂3k’s.

This would be complicated by each SNP having an effect 
on both the intercept and the slope and those estimates could 
be correlated. Hence there is a covariance between the �̂1k ’s 
and the �̂3k ’s whilst �1 and �4 could also be correlated. Using 
multivariate meta-regression [24] we could estimate both �1 
and �4 jointly incorporating the covariance between the �̂1k ’s 
and the �̂3k’s. Multivariate meta-analysis and meta-regres-
sion is a likelihood based method that applies weights to the 

(4)yij = �0 + u0i + �1 ⋅ Xi + �2 ⋅ Ci +
(

�3 + u1i + �4 ⋅ Xi + �5 ⋅ Ci
)

⋅ tij + �ij

(5)
yij = �0k + u0i + �1k ⋅ Gik +

(

�2k + u1i + �3k ⋅ Gik

)

⋅ tij + �ij

(6)Xi = �0k + �1k ⋅ Gik + �i

�1 ⋅ �1k = �1k and �4 ⋅ �1k = �3k

Fig. 1   Assumed Directed 
Acyclic Graph for the effect of 
exposure on disease progression
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likelihood using the covariance matrix of the �̂1k ’s and the 
�̂3k’s. To be consistent with standard 2SMR we have used a 
fixed effects estimation. Doing the estimation jointly allows 
us to estimate not only the effect an exposure has on the 
intercept and on the slope (along with the standard errors) 
but also the covariance between these two estimates.

Application of approach to Parkinson’s cohort

We will motivate this 2SMR approach with a real-data 
application, looking at the causal effect of body mass index 
(BMI) on PD. For our application, we will use 97 SNPs from 
the Locke et al. GWAS [25] as genetic instruments for BMI. 
For PD, we will use two parallel cohorts, namely the Oxford 
Discovery cohort and the Tracking Parkinson’s cohort [26, 
27]. At recruitment individuals had to be within 3.5 years 
of diagnosis and are followed up every 18 months in both 
studies. The Oxford Discovery cohort was recruited from 
11 hospitals in the Thames Valley Region between 2010 
and 2016. The Tracking cohort was recruited from 72 sites 
across the UK between 2012 and 2014. We have previously 
carried out a genome-wide association study of motor and 
cognitive progression in these two cohorts [28]. Our analy-
sis samples will be restricted to those with a probability of 
diagnosis of PD ≥ 90% as rated by a neurologist at the latest 
available visit. This is an attempt to exclude individuals who 
were incorrectly diagnosed with PD as it has been shown 
previously that some individuals diagnosed with PD will 
turn out to have another disorder [29, 30]. More details about 
the individuals are included in the results. Informed consent 
was obtained from all individual participants included in 
both studies.

The outcome (MDS-UPDRS part III) we are using con-
sists of 33 questions rated on a scale of 0–4 giving a total 
score that ranges from 0 to 132 [17]. This is the most com-
mon instrument for motor symptom severity within the field 
of PD and is often used as the primary outcome in RCTs. 
For people with PD it does not exhibit a floor or ceiling 
effect and although technically measured at an ordinal scale, 
its range is large enough that it can be considered approxi-
mately continuous. We are using time since diagnosis as the 
time axis in our multilevel models.

Simulation study

For our simulation study we have used the ADEMP (aim, 
data, estimands, methods, performance) guidelines to inform 
the design and reporting [31].

Aim The aim of this study was to investigate different meth-
ods for two sample Mendelian Randomisation where the 
outcome is a multilevel model of disease progression.

Data generating mechanism We simulated data for 10,000 
individuals. Our simulation was partially informed by the 
real-data application studying the effects of BMI on Parkin-
son’s disease. We generated genetic data based on the Locke 
BMI GWAS paper [25] which reported on 97 GWAS hits. 
The number of effect alleles for each individual was simu-
lated from a binomial distribution with n = 2 and p = effect 
allele frequency from the BMI GWAS paper. Using the beta-
coefficients reported from the BMI GWAS paper we were 
able to create an exposure measurement for each individual 
by multiplying the simulated SNPs by their beta-coefficients 
( ̂�k) and then adding on an additional residual variance term. 
In this example we have simulated a single exposure for each 
individual that does not vary over time. We also simulated 
a continuous confounder (for the exposure and outcome) 
that would describe 50% of this residual variance in the 
exposure. This variance term and confounder were simu-
lated for both an R2 of 2% and 10% to assess whether the 
variance explained by our genetic instruments affected the 
methods performance. To construct this variance term we 
calculated the expected variance of the 97 SNPs by the sum 
of �̂k2*2*p*(1 − p). Note that in the BMI GWAS paper the 
SNPs actually explained 2.7% of the variance of BMI.

We then simulated balanced longitudinal data with 7 vis-
its per person observed at times of 0, 1, … to 6. The data 
was simulated under six different scenarios described below.

After simulating the SNPs, the exposure and the con-
founder the longitudinal data was simulated under the fol-
lowing model with the same definitions as in Eq. 4 above.

Fixed effects
In scenario 1 we used the following parameter values.

In scenario 2 we altered the effect the exposure and con-
founder had on the slope to change the relative effect of 
intercept vs. slope, such that

In scenario 3 we altered the effect the exposure had on 
the slope to be zero

Finally, in scenario 4 we altered the effect the exposure 
had on the intercept to be zero

(7)yij = �0 + u0i + �1 ⋅ Xi + �2 ⋅ Ci +
(

�3 + u1i + �4 ⋅ Xi + �5 ⋅ Ci
)

⋅ tij + �ij

�0 = 24, �1 = 2, �2 = 1, �3 = 2.25, �4 = 0.45, �5 = 0.225

�4 = 0.25, �5 = 0.125

�4 = 0
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Scenarios 5 and 6 used the same fixed effects as scenario 
1.

The effect the exposure and confounder had on the inter-
cept ( �1, �2 ) and the slope ( �4, �5) was based on the expected 
s.d. of the exposure and confounder. This was to ensure 
similarity of effect sizes when R2 was 2% and 10% since 
changing the variance term when simulating the exposure 
would also alter the variance of the exposure. Note the direct 
effect the confounder has on the intercept and slope was 50% 
of the total effect the exposure had (except in scenarios 3 
and 4 where the confounder slope and intercept effects are 
zero), however there is also a substantial indirect effect as 
the confounder described 50% of the residual variance in 
the exposure.

Random effects and residuals
For scenarios 1, 2, 3 and 4 the patient level random effects 

were simulated from

In the fifth and sixth scenarios we altered the covari-
ance of the random effects thus allowing us to alter the esti-
mated covariance between the SNP-intercept and SNP-slope 
effects. In scenario 5 the covariance was adjusted to be posi-
tive (6.0) and in scenario 6 the covariance was adjusted to 
be twice as large as scenario 5 (12.0). The level 1 residuals 
were simulated from

The random effects distribution (for scenarios 1, 2, 3 and 
4) and the level 1 residual term were taken from an analy-
sis on the PD Discovery cohort MDS-UPDRS III data (see 
“Application of approach to Parkinson’s cohort” section 
above).

Finally we carried out a sensitivity analysis with a smaller 
sample size and unbalanced data with fewer observations. 
This used the same approach as scenario 1 with an R2 of 10% 
but only 1,000 individuals (instead of 10,000) and unbal-
anced data. To create the unbalanced data each individual 
had 1 observation with 20% probability, 2 observations 
with 30% probability, 3 observations with 30% probability 
or 4 with 20% probability. The baseline time was simulated 
from a uniform distribution between 0 and 3.5 and the time 
between each observation was simulated from a uniform 
distribution between 1.4 and 1.6.

For each scenario, 1,000 simulations were run. A brief 
description of the scenarios is given below:

1.	 Baseline simulation

�1 = 0

[

u0i
u1i

]

∼ N

(

0,

[

88.9 −6.0

−6.0 4.6

])

�ij ∼ N(0, 51.9).

2.	 Reduced effect on slope
3.	 No effect on slope
4.	 No effect on intercept
5.	 Positive covariance within people
6.	 Large positive covariance within people

Estimands/targets of analysis The estimand of interest is the 
effect the exposure (BMI) has on the intercept ( �1 ) and also 
the slope ( �4 ) in the model of disease progression (Eq. 4).

Methods:
For each SNP we fit a multilevel model of the following 

format

All other variables are as described above in “Disease 
progression models” section.

After fitting one multilevel for each SNP we considered 
two different approaches. The first is a naïve approach doing 
two separate 2SMR’s as described above in “Disease pro-
gression models” section one for the intercept (using �̂1k′s ) 
the other for the slope (using �̂3k′s).

The second approach is a multivariate approach using 
multivariate meta-analysis techniques [24] which allows us 
to also incorporate the estimated covariance between �̂1k 
and �̂3k as described above in “Disease progression mod-
els” section.

Performance metrics We are primarily interested in the 
bias and coverage of the 95% confidence intervals of the 
exposure-intercept and exposure-slope effects and also 
report the empirical SD and the mean of the model based 
standard errors. For this bias we report both the bias with 
Monte Carlo Standard Errors (MSE) and also the mean 
relative bias. We report the joint coverage of the confidence 
intervals for both the exposure-intercept and exposure-slope 
effect estimates. The multivariate approach can be used to 
construct a joint confidence region for the intercept and the 
slope; such a region will have an elliptic shape, as opposed 
to a box-shaped region that is obtained by combining the 
two separate confidence intervals produced by the naïve 
approach. We also report coverage for a confidence ellipse 
using the naïve approach by assuming independence (i.e. 
setting the covariance to be 0).

Computing

This work was carried out using the computational facilities 
of the Advanced Computing Research Centre, University 
of Bristol—http://​www.​brist​ol.​ac.​uk/​acrc/. All the simula-
tions and analyses were carried out within STATA 17 and we 
used the mvmeta package for the multivariate meta-analysis 
[24]. The R library mixmeta can also be used to perform the 

(8)
yij = �0k + u0i + �1k ⋅ Gik +

(

�2k + u1i + �3k ⋅ Gik

)

⋅ tij + �ij

http://www.bristol.ac.uk/acrc/


	 M. Lawton et al.

multivariate meta-analysis [32]. STATA code used for the 
simulations and multivariate meta-analysis is available at 
https://​github.​com/​MLawt​onBris/​MRtra​jecto​ry.

Results

Motivating example in Parkinson’s disease

The Discovery cohort analysis is based on 826 individuals 
with 2,851 observations (average 3.5 ranging from 1 to 7) 
over an average of 4.2 years follow-up. The average age at 
diagnosis was 66.0 years (SD 9.6 years) with 538 (65.1%) 
males. Average disease duration at baseline was 1.2 years 
(SD 0.9). In a multilevel model where the MDS-UPDRS III 
was the outcome the fixed effect for the intercept was 23.5 
(95% CI: 22.6 to 24.3) and the fixed effect for the linear 
slope was 2.36 (95% CI: 2.14 to 2.60).Or equivalently, con-
sidering the population mean trajectory the predicted out-
come at diagnosis was 23.5 and the outcome increases by 
2.36 points per year. Average observed BMI at recruitment 
was 27.4 kg/m2 (SD 4.7).

The Tracking cohort is based on 1,517 individuals with 
5,024 observations (average 3.3 ranging from 1 to 6) over 
an average of 3.8 years of follow-up. The average age at 
diagnosis was 65.9 years (SD 9.2 years) with 987 (65.1%) 
males which is almost identical to the Discovery cohort. 
Average disease duration at baseline was 1.3 years (SD 
0.9). In a multilevel model where the MDS-UPDRS III 
was the outcome the fixed effect for the intercept was 20.4 

(95% CI: 19.6 to 21.1) and the fixed effect for the linear 
slope was 2.24 (95% CI: 2.06 to 2.43). Average observed 
BMI at recruitment was 27.0 kg/m2 (SD 4.7).

In Table 1 we report the MR estimates for the effect 
that BMI has on the intercept and the slope within the 
two Parkinson’s cohorts and a meta-analysis of the two 
cohorts. We also report multilevel model (MLM) esti-
mates of the effect that observed BMI at recruitment has 
on the intercept and slope in the two cohorts and a meta-
analysis of the two cohorts. Within the naïve approach 
to 2SMR the intercept and slope for the two cohorts are 
meta-analysed separately, each with a standard univariate 
approach. For the multivariate approach to the MR and 
also for the MLM estimates the intercept and slope for the 
two cohorts are meta-analysed jointly with a multivariate 
approach accounting for the estimated covariance.

From the MLM estimates there is some evidence 
(p = 0.009) that higher BMI is associated with faster pro-
gression in the Discovery cohort, where a one SD increase 
in BMI is associated with an increased slope of 0.30 (95% 
CI 0.08 to 0.53) points per year. However there is almost 
no evidence of an effect on the slope in the Tracking 
cohort (p = 0.92) with a smaller estimate of 0.01 (95% CI 
− 0.17 to 0.19). There is some modest evidence (p = 0.037) 
in the Tracking cohort that higher BMI is associated with 
higher baseline MDS-UPDRS III at diagnosis where a one 
SD increase is BMI is associated with an increased inter-
cept of 0.77 (95% CI 0.05 to 1.50) although the effect is 
in the opposite direction in the Discovery cohort − 0.22 
(95% CI − 1.08 to 0.64).

Table 1   2SMR analysis on the discovery and tracking cohorts with BMI as the exposure and MDS-UPDRS IIIa as the outcome

Data shown are estimate (95% CI); p value
MR Mendelian Randomisation
a Note that higher scores on the MDS-UPDRS III are worse symptoms. So, for example, a positive association with the intercept would reflect 
higher BMI being associated with worse symptoms at baseline
b Within the naïve approach to 2SMR the intercept and slope for the two cohorts are meta-analysed separately, each with a standard univariate 
approach. For the multivariate approach to the 2SMR the intercept and slope for the two cohorts are meta-analysed jointly with a multivariate 
approach accounting for the estimated covariance
c Correlation is reported rather than covariance as it is easier to interpret

Analysis Discovery cohort Tracking cohort Meta-analysis of two cohortsb

Intercept Slope Intercept Slope Intercept Slope

Naïve MR − 2.43
(− 7.66, 2.79);
p = 0.36

0.385
(− 1.01, 1.78);
p = 0.59

− 0.086
(− 4.41, 4.24);
p = 0.97

− 0.169
(− 1.28, 0.94);
p = 0.77

− 1.04
(− 4.37, 2.29);
p = 0.54

0.045
(− 0.83, 0.92);
p = 0.92

Multivariate MR − 2.47
(− 7.69, 2.75);
p = 0.35

0.389
(− 1.01, 1.79);
p = 0.59

− 0.065
(− 4.39, 4,26);
p = 0.98

− 0.165
(− 1.28, 0.95);
p = 0.77

− 1.04
(− 4.37, 2.29);
p = 0.54

0.054
(− 0.82, 0.92);
p = 0.90

Multilevel model 
estimates

− 0.22
(− 1.08, 0.64);
p = 0.62

0.303
(0.08, 0.53);
p = 0.009

0.77
(0.05, 1.50);
p = 0.037

0.010
(− 0.17, 0.19);
p = 0.92

0.36
(− 0.19, 0.92);
p = 0.20

0.127
(− 0.02, 0.27);
p = 0.081

Estimated (multivariate approach) 
correlationc = − 0.52

Estimated (multivariate approach) 
correlationc = − 0.54

Estimated (multivariate approach) 
correlationc = − 0.53

https://github.com/MLawtonBris/MRtrajectory
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The MR results from the naïve and multivariate 
approaches are very similar. There is a large degree of uncer-
tainty in these estimates (especially when compared to MLM 
estimates) and despite the fact the estimates of the effect of 
BMI on slope are in opposite directions in the two cohorts 
the 95% confidence intervals overlap with each other. Given 
the uncertainty, which is probably due to the limited sam-
ple size (for genetic studies) along with the relatively small 
genetic effects, it is difficult to rule out either a protective or 
detrimental effect of BMI on disease progression. Figure 2 
(meta-analysis) and supplementary Figure 1 (cohort specific 
effects) clearly shows that when plotting the effect that BMI 
has on the outcome across time that using the naïve approach 
(and thus ignoring the covariance) there is a considerable 
difference to the confidence intervals. When comparing 
these MR estimates to the MLM estimates the MR estimates 
have effects that are shifted downwards slightly with slopes 
closer to the null (0.05 vs. 0.13) and intercept effects that are 
negative instead of positive (− 1.04 vs. 0.36).

Simulation study

The results from our simulation with R2 = 10% are displayed 
in Table 2. The results based on the naïve and multivariate 
approach were almost identical in this simulation, with any 
differences generally at the third significant figure. The mean 
bias for the intercept ranged from − 0.006 (MSE: 0.010) in 
scenario 4 to 0.006 (MSE: 0.011) in scenario 2, while the 
bias for the slope ranged from − 0.002 (MSE: 0.003) in 
scenario 4 to 0.003 (MSE: 0.003) in scenario 5. In all six 
simulation scenarios the bias figures were small and there is 
little evidence of bias in our simulation study. Accordingly, 

the mean relative bias was quite small in our simulations, 
ranging from − 0.2 to 0.3% for the intercept and from − 0.5 
to 0.7% for the slope. The coverage of the 95% confidence 
intervals were also at nominal levels: the coverage for the 
intercept ranged from 93.4 to 96.1% and for the slope from 
94.7 to 95.8%.

The results from our simulation with R2 = 2%, displayed 
in Table 3, were similar. The mean bias for the intercept 
ranged from − 0.047 (MSE: 0.023) in scenario 4 to 0.030 
(MSE: 0.023) in scenario 1, while the bias for the slope 
ranged from − 0.006 (MSE: 0.006) in scenario 3 to 0.015 
(MSE: 0.006) in scenario 5. In all six simulation scenarios 
the bias figures were small and there is little evidence of bias 
in our simulation study. Accordingly, the mean relative bias 
was quite small in our simulations, ranging from − 1.6 to 
1.5% for the intercept and − 0.7 to 4.1% for the slope. The 
coverage of the 95% confidence interval for the intercept 
ranged from 94.1 to 96.2% and for the slope from 94.5 to 
96.0%.

Table  4 shows the joint coverage for the different 
approaches. For the naïve approach the joint coverage of the 
confidence rectangle ranged from 89.0 to 91.5% when the 
R2 was 10% and from 89.9 to 92.5% when the R2 was 2%. 
This is not surprising, as the joint coverage of two separate 
95% confidence intervals is approximately 0.952 = 0.9025. 
The joint coverage of the naïve confidence ellipse (assuming 
covariance = 0) ranged from 93.5 to 95.5% when the R2 was 
10% and from 93.7 to 95.9% when the R2 was 2%.Using the 
multivariate approach the joint coverage for the confidence 
ellipses ranged from 94.6 to 95.2% when the R2 was 10% 
and from 93.3 to 96.1% when the R2 was 2%.

Supplementary table 1, shows the estimates of the areas 
for the confidence ellipses using the naïve and multivari-
ate approaches. In all scenarios (except scenario 5 where 
the correlation is small) the average area of the confidence 
ellipses is smaller using the multivariate approach. Both 
the naïve and multivariate confidence ellipses have cover-
age close to the nominal 95% level and in this situation the 
confidence region with the smaller area, the multivariate 
approach, would be preferred.

In our sensitivity analysis, see supplementary table 2, 
with a reduced sample size and unbalanced data the naïve 
and multivariate approach still gave near identical results. 
Not surprisingly the uncertainty in the estimates is much 
larger than observed in Table 2 and 3. The bias was small 
roughly − 0.003 (MSE 0.049) for the intercept and − 0.006 
(MSE 0.014) for the slope and accordingly the mean relative 
bias was small—approximately − 0.15% for the intercept 
and approximately − 1.35% for the slope. The coverage of 
the 95% CI was 94.8% and 95.0% for the intercept (using 
the naïve and multivariate approach respectively) and 94.4% 
and 94.3% for the slope (using the naïve and multivariate 
approach respectively). The joint coverage for the sensitivity 
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Fig. 2   Absolute change in the MDS-UPDRS III for a one point 
increase in the exposure. Estimated model from the meta-analysis of 
the two cohorts including the 95% confidence intervals for both the 
naïve and multivariate Mendelian Randomisation (MR) approach. 
Also includes the Multilevel Model (MLM) estimate from the meta-
analysis of the two cohorts
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analysis was 90.7% for the naïve approach, 93% for the naïve 
ellipse and 93.8% for the multivariate ellipse. The average 
difference in area for these two ellipses is very striking in 
this sensitivity analysis (supplementary table 1) even though 
the coverage is very similar.

Discussion

Our simulations show that 2SMR gives unbiased estimates 
with good coverage when the outcome is generated as a lin-
ear trajectory, with intercept and slope caused by the expo-
sure. If researchers are interested in graphs of the effect that 
an exposure has on an outcome over time then a multivariate 
meta-analysis method that allows the estimation of a covari-
ance term could give substantially different confidence inter-
vals. The multivariate meta-analysis method also provides 
appropriate joint coverage of both the intercept and slope 
effects by drawing a parsimonious confidence ellipse which 
could also provide a joint hypothesis test. However, rate of 
progression is often of greater relevance for individuals who 
have recently been diagnosed with a disease. We have shown 
that a naïve approach will give almost identical estimates 
to a multivariate approach when the slope is the focus of 
interest.

In our simulations and this example we assumed that the 
exposure that did not vary over time, but in the case of BMI 
this is an over-simplification. It is also important to note 
that MR estimates the lifetime effect of an exposure on an 
outcome. It has been shown previously that the effect of the 
fat mass and obesity-associated gene (FTO) has an effect on 
BMI that is not constant with age [33, 34]. Hence the effect 
that BMI has on an outcome may depend on age. Methods 
have been proposed that use time-varying SNP-exposure 
estimates [34] or multivariable MR [35] to account for this 
time-varying nature of the exposure.

Mendelian Randomisation is dependent on the three 
instrumental variable assumptions which are required for 
a valid hypothesis test of a causal effect between exposure 
and outcome [36]. We also make the assumption that there 
is a linear association between the exposure and the outcome 
(in this case the intercept and slope) and that this effect is 
homogenous [36, 37]. This homogeneity assumption means 
there should be no effect modifiers in the confounders of the 
exposure and outcome. If these assumptions are not met then 
bias would be unpredictable. An alternative no simultaneous 
heterogeneity (NOSH) assumption has been proposed that 
allows for heterogeneity in the exposure outcome effect as 
long as this heterogeneity is independent of the IV and any 
heterogeneity in the IV exposure association [38]. A further 
assumption is of monotonicity where the direction of the IV 
exposure effect is the same for all individuals [36].

In some situations progression trajectories might be 
non-linear over time [9] and our multivariate meta-analy-
sis approach could be adapted to have multiple time terms 
using fractional polynomials [9] or splines [39]. In such an 
example we would recommend deriving the difference in 
trajectories per additional copy of the effect allele at some 
time-point. The chosen time-point will depend on both the 
length of follow-up in the data and knowledge of a clini-
cally meaningful time in that particular disease. We would 
also recommend plotting a non-linear graph similar to that 
displayed in Fig. 2. Non-linearity could also be a problem in 
our applied example, but the low number of observations we 
have per-person (on average) is limited so we had insufficient 
data to test and account for non-linear trajectories.

The models we have used assume there is a residual for 
each observed measure of the outcome ( �ij in Eq. 3) where 
these residuals are independent and with constant variance. 
Multilevel models can be modified to allow for autocorrela-
tion or complex measurement error where the variance of the 
level 1 residuals changes over time [9]. If there is an underly-
ing factor affecting measurement error in all measures for an 

Table 4   Joint coverage of the intercept and slope

For the naïve approach we used two approaches: a confidence rectangle using the two confidence intervals and a confidence ellipse where the 
covariance is assumed to be zero. Whilst for the multivariate approach we have drawn a confidence ellipse using the estimated covariance All of 
our confidence regions are estimated at the 95% level

Scenario R2 of 10% R2 of 2%

Coverage of naïve 
confidence rectangle 
(%)

Coverage of naïve 
confidence ellipse 
(%)

Coverage of multi-
variate confidence 
ellipse (%)

Coverage of naïve 
confidence rectangle 
(%)

Coverage of naïve 
confidence ellipse 
(%)

Coverage of multi-
variate confidence 
ellipse (%)

1 91.5 95.2 94.9 92.5 95.9 95.5
2 90.6 94.1 94.9 89.9 94.1 93.3
3 89.6 93.5 94.7 90.0 94.2 95.4
4 90.8 95.3 94.9 91.0 93.7 96.1
5 89.0 94.4 94.6 90.5 94.8 94.5
6 91.3 95.5 95.2 91.5 94.6 95.8
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individual—e.g. if individuals with impaired hearing tend to 
always score lower due to difficulties completing the ques-
tionnaire—then the measurement errors for all the measures 
will be correlated. However, this correlation will be sub-
sumed into the effect of the “latent progression” factor, and 
thus also included in the model-based estimate of correlation 
between intercept and slope. This type of measurement error 
would not bias the MR in this example, because hearing loss 
would be essentially a confounder of different measures of 
outcome [40].

Another potential issue in observational longitudinal data 
occurs when the follow-up data is missing not at random 
(informative drop-out). An example is when an individu-
al’s disability progresses such that clinic visit attendance 
becomes impossible which could bias trajectories towards 
the null. This could be explored using pattern-mixture mod-
els, selection models or other similar approaches [41–44] 
that under some untestable assumptions would be less biased 
than standard multilevel models. We have previously used 
pattern-mixture models to look at disease progression in PD 
which gave us similar results to a standard multilevel model 
providing some evidence that informative drop-out did not 
bias our results [8].

Allowing an exposure to affect both the intercept and 
slope is possibly an over-simplistic way to model progres-
sion in PD. In reality there should be a true time zero where 
the individual has no impairment caused by the disease. 
However in PD there is a long prodromal (prediagnostic) 
period [45] and by the time of diagnosis there is already con-
siderable motor impairment and large variability in motor 
impairment between individuals [46]. Modelling the effect 
of the exposure on the intercept using disease duration from 
diagnosis as the time-axis reflects some period of prodromal 
progression. The current progression data that is available 
for most cohorts of individuals with PD does not allow us 
to observe this prodromal period.

There is some evidence for BMI being a risk factor for PD 
[2] hence our results may be affected by index event bias. We 
would expect confounders to act in the same direction for 
both incidence of PD and progression. That is confounders 
that increase risk of PD would also be expected to increase 
its severity/progression. This would result in a negative 
index event bias and thus if higher BMI reduced severity at 
baseline and progression we would expect that MR effect to 
be shifted upwards in this study. This could be one expla-
nation for the lack of causal of BMI on PD progression in 
our study. Other explanations include that there is in truth 
no causal effect of BMI on PD progression, chance, lack of 
power or selection bias due to competing risks. A negative 
effect of BMI on the intercept such as in our MR estimate 
(albeit with a high p value) would be in agreement with a 
previous meta-analysis showing that higher BMI was associ-
ated with lower disease severity [18].

A 2SMR package in STATA [47] by default forces the 
residual variance to be 1 when residual variance is less 
than one or freely estimates the residual variance when it 
is greater than one, thus allowing for overdispersion but not 
underdispersion. Not allowing for underdispersion is intui-
tive since we are weighting by the inverse of the variance of 
each SNP and it would be strange to allow for an estimator 
that is more precise than the variability in our SNP-outcome 
measures. Our multivariate meta-analysis approach will 
not allow for overdispersion so is equivalent to forcing the 
residual variance to be 1. If there was overdispersion then 
our method could provide an estimate that is overly precise. 
However, it is possible to test and allow for overdispersion in 
a structural equation model framework by first weighting the 
SNP-outcome and SNP-exposure estimates by the Cholesky 
decomposition of the inverse of SNP-outcome covariance 
matrices. This approach is described, along with STATA 
code, in the following article (Sect. 5.1) [48].

Our approach is very similar to a two-stage multivari-
ate MR method for mixed outcomes (called MRMO) [49] 
which studies the effect of an exposure on multiple outcomes 
(which could be mixed such as binary and continuous). 
MRMO also describes a procedure to estimate a p value 
for whether the exposure influences any of the outcomes by 
using a Wald test. We could also estimate a Wald test using 
our estimates for the exposure-intercept and exposure-slope 
along with their covariance matrix. This would be a joint 
hypothesis test for whether the exposure-intercept is zero 
and the exposure-slope is zero and could be interpreted as 
whether the exposure has any effect on progression. In this 
paper we have focussed on confidence intervals and regions 
rather than p values. Other researchers have argued that with 
time-varying exposures it is difficult to define a causal effect 
or that the assumptions behind those causal effects are ques-
tionable. In these situations where the definition of an effect 
size is debatable MR (with valid instruments) can be used 
to test the null hypothesis that exposure at any time does not 
cause the outcome [33, 50].

Using our multivariate meta-analysis method it would 
be possible to carry out the MR-Egger approach by also 
estimating an intercept term allowing us to correct for direc-
tional pleiotropy. In future work we will explore whether 
other methods such as the median and mode approaches 
could be adapted for this purpose. Given the large uncer-
tainty from the analysis presented here, large consortiums 
with many longitudinal PD cohorts will be required to have 
sufficient power to detect whether exposures are related to 
progression.

This paper shows that it is possible to use multivariate 
meta-analysis to carry out two sample Mendelian Randomi-
sation when using an outcome that is repeatedly measured 
over time. The associations between an exposure and the 
intercept and linear slope of the repeatedly measured trait 
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are unbiased with valid confidence intervals. These methods 
enable researchers to use two sample Mendelian Randomi-
sation to test hypotheses about exposures causing disease 
progression in neurodegenerative diseases and other situa-
tions with longitudinal outcome data.
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