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Abstract—Monitoring of trackside weather is a critical aspect
of railway operations, mainly for safety and efficiency reasons.
Unfortunately, current cellular networks, including the fourth-
generation and fifth-generation (5G) cellular networks, do not
provide ubiquitous coverage for rail lines mainly due to an
unfavorable cost-benefit realization. In this paper, we propose
a Long Range (LoRa) mesh-5G integrated network that tackles
this problem by utilizing a 5G network for backhaul, computing
and storage, and LoRa mesh to extend coverage. We design a
LoRa mesh server that runs on a private cloud of the 5G network
to manage the LoRa mesh network. We integrate edge computing
into the network and design a cloud-edge-terminal collaborative
architecture with three algorithms for timely significant-change
updates, packet loss detection, and adaptive thresholds to reduce
the packet rate and data volume of the network. We validate the
design by implementing a proof-of-concept on the 5G testbed
at the University of Glasgow. The experimental results demon-
strate the feasibility of the network and the cloud-edge-terminal
collaborative architecture.

Index Terms—LoRa mesh, 5G, hybrid network, weather mon-
itoring, railway digitalization, cloud-edge-terminal collaboration.

I. INTRODUCTION

Since the 19th century, the railway has become one of the
main transportation methods all over the world. According
to the International Union of Railways [1], the total length
of railway tracks in the world was more than 855,726 km
in 2022. The cost of maintaining such a vast infrastructure
is very high, especially if traditional periodic maintenance
methods are used, i.e., sending the crew and equipment to
walk along railways to check the status of the infrastructure
regularly. With the development of Internet of Things (IoT)
and data analysis technologies, predictive maintenance has
become a promising method to reduce costs. Due to the long
length of railway tracks, a massive number of sensors deployed
alongside railway tracks is needed to monitor the status of the
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infrastructure and transmit it to the cloud for making policies.
The crew and equipment are sent out to specific locations only
when maintenance status is triggered by the system. On the
other hand, bad weather causes damage to the infrastructure
and poses a threat to the safety of passengers and staff [2].
Specifically, a high temperature poses the risk of buckling to
rails and a low temperature freezes rails. High wind can blow
objects onto rails blocking the railway, while heavy rain makes
rails slippery and continuous rain would result in landslides or
flooding. To reduce the damage and threat, railway operators
need to monitor the trackside weather and predict the weather
in the future. With the information, they can take action before
adverse weather happens, such as reducing the speed limit,
rescheduling routes, and sending special fleets to maintain
the rails. Both predictive maintenance and weather monitoring
need a massive machine-type communication (mMTC) net-
work to gather data from sensors throughout the whole railway
network. The main requirements of the network are as follows.

1) Wide coverage: The communication network should
cover the whole railway network which is characterized
by several long linear tracks.

2) Supporting massive end devices: Given the long length
of railway tracks, a massive number of sensors and
end devices need to be deployed to monitor the whole
railway network.

3) Low-cost communication infrastructure: High invest-
ment in the infrastructure is hard to be paid back as
many railways are located at remote sites without other
connectivity requirements.

4) Low-power and low-cost end devices: Given the massive
number of end devices, their power consumption and
cost have a great impact on the overall cost.

Unfortunately, current trackside networks do not satisfy the
requirements. As a traditional mobile communication system
of railways, the global system for mobile communications-
railway (GSM-R) is widely used globally, especially in Europe
[3]. Based on the second-generation cellular network, GSM-
R is already outdated and suffers from many issues such as
high interference, low capacity, and limited capability. Hence,
GSM-R cannot support massive end devices for predictive
maintenance or weather monitoring. With the sunset of the
second and third-generation cellular networks, GSM-R is
being replaced by long-term evolution for railways (LTE-R)
which is based on the fourth-generation (4G) cellular network.

0000–0000/00$00.00 © 2023 IEEE
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Fig. 1. 4G signal strength of Scotland railways (based on [5]).

Although operators have started deploying 4G since 2009, they
do not cover the whole railway network due to the low rate
of return in remote and rural areas. Taking Scotland as an
example, Ofcom, the regulator for communication services in
the United Kingdom, measured the 4G signal strength in the
railways of Scotland [4]. As shown in Fig. 1, the railways
near main cities have good signal strength, whereas coverage
in rural areas is poor, especially the lines in the highland and
west coast which are remote sites with low population density.
Thus, the current 4G does not provide the coverage required by
railway networks. With wide deployment in recent years, the
fifth-generation (5G) cellular network is expected to facilitate
railway digitalization. However, 5G faces the same challenges
as 4G, and might even require a denser deployment based on
their operating frequency bands. Therefore, the biggest issue
of 4G and 5G for widespread railways is that they cannot
provide wide coverage at a low cost.

Regarded as one of the most popular low-power wide-
area technologies, long range wide area network (LoRaWAN),
based on long range (LoRa), is an important supplement to
cellular networks in rural areas [6]–[9]. With a star topology,
the messages from LoRaWAN end devices aggregate at the
LoRaWAN gateway which forwards them to the LoRaWAN
server on the cloud by backhaul networks. Although Lo-
RaWAN has wide coverage, it is not suitable for linear rail
lines as many LoRaWAN gateways have to be deployed
alongside the lines at a certain distance. Each gateway requires
access to a backhaul connection, which significantly increases
the deployment cost. Instead of using one-hop communication,
LoRa mesh can extend the coverage of LoRaWAN with no
need to densely deploy gateways. It allows trackside end
devices to relay messages from other end devices until they

arrive at a gateway that is deployed at locations with access to
a backhaul network. Thus, LoRa mesh is a potential network
providing wide coverage for railways.

Motivated by the trackside sensing requirements, the cov-
erage status of existing trackside networks, and the wide cov-
erage of LoRa mesh, in this paper, we propose a LoRa mesh-
based network to monitor trackside weather. LoRa mesh is a
self-organized network lacking a centralized server for man-
agement, e.g., node registration. To overcome this challenge,
we propose integrating LoRa mesh into a 5G network, which
provides the LoRa mesh with a private cloud for network
management and intelligent data processing. Moreover, 5G
networks can provide a reliable and flexible backhaul for LoRa
mesh and reduce the deployment cost by utilizing existing
cellular infrastructure. On the other hand, collaborating with
the terminal and cloud, edge computing is integrated to reduce
the volume of data transmitted in the network. The proposed
network is suitable for trackside low data rate sensing ap-
plications including both predictive maintenance and weather
monitoring. Moreover, due to its low cost and extensive
coverage, the proposed network can be utilized in various
scenarios, including infrastructure monitoring in remote areas,
environmental monitoring in agricultural settings, and the
development of IoT-based smart cities. In this paper, we
implement it as a proof of concept for weather monitoring. Our
main contributions in this paper are summarized as follows.

1) We integrate LoRa mesh into a 5G network. The 5G
network provides a reliable backhaul and a centralized
platform for deploying LoRa mesh servers. LoRa mesh
significantly extends the coverage of the 5G network at
a low cost.

2) We design a cloud-edge-terminal collaborative architec-
ture for the LoRa mesh-5G integrated network. With
timely significant-change updates, packet loss detection,
and adaptive threshold algorithms, the architecture can
significantly reduce the data volume of the network.

3) Using off-the-shelf components, we implement the LoRa
mesh-5G integrated network at the University of Glas-
gow campus, proving its feasibility. Although it is used
for weather monitoring, it acts as a prototype for track-
side low data rate sensing.

The rest of this paper is structured as follows. We review
the related works in Section II. In Section III, we present the
network model and integration methods of the LoRa mesh-
5G integrated network. The cloud-edge-terminal collaborative
architecture is proposed in Section IV along with three al-
gorithms about timely significant-change updates, packet loss
detection, and adaptive thresholds. The implementation and
experimental results are presented in Section V and Section
VI, respectively. Finally, Section VII concludes the paper.

II. RELATED WORKS

There has been significant research progress on facilitating
the evolution of GSM-R to IoT-enabled smart systems for
railways. Paula et al. [3] reviewed the evolution of railway
communication technologies from GSM-R to LTE-R. They
observed that the legacy infrastructure is gradually being
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replaced by smart train management systems that provide
many IoT-enabled services such as predictive maintenance,
smart train control, and smart infrastructure. Singh et al. [10]
investigated key IoT technologies that have the potential to
be applied to the next-generation railway system such as fog
computing, cloud computing, wireless sensor networks, big
data analytics, and 5G technology. As current trends, IoT and
big data-based methods are being used to collect and analyze
data from railway systems. Moreover, artificial intelligence-
integrated architectures are being used to make policies for
smart railway systems. Ai et al. [11] presented a complete
framework of 5G technologies for smart railways. However,
due to the high cost of dense deployment of 5G base stations,
current efforts to employ 5G technology in smart railways,
such as [12]–[15], only focus on high-speed or urban railways.

With wide coverage and low power consumption, LoRa-
based networks are being used for smart railways. Jo et al. [16]
stated the necessity of combining IoT with condition-based
maintenance for smart railways. To evaluate the suitability
of existing IoT solutions, they compared long-term evolution
(LTE), LoRa, and narrowband Internet of Things (NB-IoT).
According to the results, LoRa is the optimal solution in
terms of coverage, power consumption, and implementation
complexity. As for electromagnetic compatibility, Deniau et
al. [17], [18] analyzed the impact of transient electromagnetic
interference on LoRa and LoRaWAN in a railway environment
and proved that the interference can be detected and separated
by support vector machines (SVM)-based methods. Based on
LoRa, Naveen and Rayala [19] designed an automatic level-
crossing system, and Ferretti et al. [20] designed a signaling
system for smart railways.

To extend the coverage of LoRa, many efforts have been
put into research on LoRa mesh networks. Lundell et al. [21]
proposed a routing protocol for LoRa mesh networks and
validated it in both laboratory and field tests. Berto et al.
[22] implemented a LoRa mesh network based on RadioHead
packet radio library [23] which is a popular open-source LoRa
mesh library for embedded microprocessors with very limited
resources. Lee and Ke [24] evaluated the performance of
LoRa mesh networks via a real experiment of monitoring
large-area IoT sensors. Huh and Kim [25] proposed a LoRa
mesh protocol and discussed its use cases including fire pipe
freeze monitoring, street light smart control, and toxic gas
monitoring. Ebi et al. [26] used a LoRa mesh network to
monitor underground infrastructure. By evaluating the perfor-
mance of two field tests, it is proved that LoRa mesh networks
have advantages over LoRa and LoRaWAN in terms of the
coverage and reliability of packet delivery. Hong et al. [27]
proposed a hierarchical-based energy-efficient routing protocol
for LoRa mesh networks. It is demonstrated that the proposed
protocol outperforms conventional ad hoc on-demand distance
vector routing methods in terms of energy efficiency and
transmission delay. Tian et al. [28] developed LoRaHop which
is an add-on protocol compatible with LoRaWAN to extend
the coverage by a multi-hop mesh network. They evaluated
its performance on an outdoor testbed demonstrating that
LoRaHop can extend the coverage of a LoRaWAN network
with improved reliability and reduced power consumption. Wu

and Liebeherr [29] proposed a self-organizing communication
protocol, called CottonCandy, to mitigate packet collisions
during data collection.

To reduce the deployment cost of LoRa-based networks
and extend the coverage of 5G networks, LoRa/LoRaWAN-
5G integration is regarded as a potential solution. Chen et
al. [6] provided a survey on LoRa/LoRaWAN-5G integration
in which the main challenges and potential solutions are
discussed in detail. Yasmin et al. [7] proposed four integration
methods. Three of them focus on enabling LoRaWAN to
communicate with the 5G access network. The last one aims
to deploy LoRaWAN servers as a part of the 5G core network.
Navarro [8] proposed to incorporate the protocol stack of
eNodeB into the LoRaWAN gateway, enabling the LoRaWAN
gateway to access 4G/5G core network directly. Ksentini and
Frangoudis [30] utilized the European Telecommunications
Standards Institute (ETSI) multi-access edge computing server
(MEC) [31] as the cloud for deploying LoRaWAN servers
and related applications. To improve the performance of
LoRaWAN-5G integrated networks, Torroglosa et al. [32]
proposed a roaming method for the end devices with dual
connectivity of LoRaWAN and 5G. Because of these efforts,
LoRa/LoRaWAN-5G integrated network has been used for
many applications. Chen et al. [33] implemented a LoRaWAN-
5G integrated network with a cooperative access network and a
converged core network, which is used to monitor the indoor
temperature and human activity for smart buildings. Zhang
et al. [34] integrated LoRa into the 5G network to extend
coverage to the blind area of smart grids.

While 5G networks provide cloud computing and central-
ized management for LoRa-based networks, edge computing
is being used to enhance their network performance. Sarker
et al. [35] proposed a generic architecture to integrate edge
computing into LoRa-based networks. Reducing the latency,
edge computing makes LoRa-based networks suitable for some
latency-sensitive applications. Liu et al. [36] designed and
implemented a LoRa system with edge computing at the LoRa
gateway to reduce the large latency of LoRa and balance the
workloads between the LoRa gateway and the LoRa servers
on the cloud. Sarker et al. [37] utilized an edge computing-
enabled LoRa network for smart parking, achieving near real-
time monitoring of vehicles. Reducing the volume of data sent
to the cloud, edge computing eases the backhaul workload.
Kumari et al. [38] implemented edge devices to compress the
data from smart meters before sending it to the LoRa gateway.
Sharofidinov et al. [39] deployed a machine learning approach
at the edge of a LoRa network to analyze and control the state
of a greenhouse, reducing the volume of data sent to cloud
servers. In addition to reduced latency and data volume, edge
computing can enhance network security. Hou et al. [40] used
edge computing to enhance the security of LoRa by deploying
blockchain at the LoRa gateway, i.e., the edge of the network.

To summarize, IoT technologies are improving railway
digitalization and LoRa is a promising solution. However, as
a single technology, LoRa is not sufficient for widespread
railway systems. Integrating mesh networks, 5G networks,
and edge computing into LoRa significantly improves its
performance and capability. Therefore, in our approach, we
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Fig. 2. System model of the LoRa mesh-5G integrated network.

design and implement a LoRa mesh-5G integrated network
enabled by edge computing.

III. LORA MESH-5G INTEGRATED NETWORK

In this section, we will introduce a system model and an
integration approach of the LoRa mesh-5G integrated network
for trackside smart monitoring.

A. System Model

As shown in Fig. 2, a LoRa mesh network is deployed
alongside a railway track to monitor the weather. It consists
of two kinds of nodes, i.e., gateway (GW) and sensor nodes
denoted as Si where i is an integer. The gateway is deployed in
the middle of the railway line, receiving packets from sensors
deployed on either side of the railway line. The coverage area
of the gateway is equivalent to that of a single-hop LoRa
network, depicted as a light green ellipse in Fig. 2. We assume
that there are N1 and N2 sensor nodes on the left side and the
right side of the gateway, respectively, where N1 and N2 are
integers. Some nodes, such as S1, S2, SN1 , SN1+1, SN1+N2−2

and SN1+N2
, are equipped with weather stations. They can

read the weather station data and send it to the gateway in the
form of LoRa mesh packets. Besides, they also relay packets
from other nodes. Other nodes do not have weather stations,
such as S3 and SN1+N2−1, and only relay packets. They are
used to extend the coverage of the LoRa mesh network when
network operators do not want to densely deploy weather
stations. The relaying of sensor nodes significantly extends
the coverage of the LoRa mesh network, as depicted by the
light blue ellipse in Fig. 2. All the packets containing weather
data are transmitted to the gateway via one-hop or multi-hop
LoRa communication. Depending on the distances between
nodes, one sensor node can have one or multiple routes to the
gateway. When joining the network or finding that the existing
route is no longer valid, a sensor node tries to discover a valid
route to the gateway automatically, achieving self-organization
and self-healing [22], [41]. Moreover, to achieve remote and
smart control, downlink communication is enabled, allowing
the gateway to send commands like resetting to sensor nodes.

After aggregating at the gateway, all the trackside data needs
to be transmitted to the cloud through a backhaul connection.
To leverage existing cellular infrastructure, the gateway is
deployed in areas with 5G coverage, e.g., a train station. As
shown in Fig. 2, a 5G base station (gNB) is deployed near
a train station providing connections for various users, such
as automated guided vehicles, smartphones, and the LoRa
mesh network. Compared with LoRa and LoRa mesh, the 5G

network offers relatively shorter coverage, illustrated by the
yellow ellipse in Fig. 2. In the 5G network, the gateway acts
as user equipment (UE) that can communicate with the gNB
directly. Then, through the 5G backhaul, the weather data can
securely arrive at the 5G core network in the cloud. It is clear
from Fig. 2 that the LoRa mesh-5G integrated network has a
significantly extended coverage compared with 5G networks
and single hop LoRa-5G integrated networks.

B. Integration Approach

Although LoRa mesh networks benefit from flexible deploy-
ment and coverage extension, they lack a centralized server,
resulting in difficulties in management. Leveraging the existing
5G network, we propose to deploy a LoRa mesh server within
the 5G core network to provide efficient management. To allow
the LoRa mesh nodes to access the 5G network, we integrate
a 5G dongle into the LoRa gateway.

The functions of the LoRa mesh server are 1) sensor node
registration, 2) network parameter management, e.g., the up-
date frequency of sensor nodes, 3) data storage, 4) cloud data
processing for application, and 5) providing a user interface.
As shown in Fig. 3, the LoRa mesh server is deployed in one
of the virtual machines within the 5G network cloud. Based
on the 5G-MEC integration method proposed by ETSI [31],
the cloud is deployed within the 5G core network as a MEC
and connects to the user plane function (UPF) via N6 interface
in the user plane. Based on hypertext transfer protocol secure
(HTTPS), transmission control protocol (TCP), and Internet
Protocol (IP), the user interface bridges the LoRa mesh server
and external networks. Through the user interface, the network
status and the processed application data are displayed to users
in a dashboard. Moreover, the interface allows authorized users
to change the parameters of the network and reset specific
sensor nodes or the gateway. To enable the gateway to access
the LoRa mesh server within the 5G core network, we install
the protocol stack of 5G UE in the gateway. As shown in
Fig. 3, the gateway has both the LoRa mesh protocol stack
and the 5G UE protocol stack. When receiving LoRa mesh
packets from sensor nodes, the gateway decapsulates them like
a usual LoRa mesh node. Then, acting as a 5G UE, the gateway
encapsulates the data as 5G packets and transmits them to gNB
over the air via NR-Uu interface. Through the gNB and UPF,
the packets arrive at the LoRa mesh server securely as the
transmission is protected by 5G security mechanisms.

In terms of the application layer protocol for the session
between the gateway and the LoRa mesh server, we choose
message queuing telemetry transport (MQTT) [42] which
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Fig. 3. Protocol stacks of LoRa mesh-5G integrated network.

is a lightweight open messaging transport protocol. Based
on a publish-subscribe model, an MQTT broker listens to
MQTT publishers and retransmits the received messages to
specific MQTT subscribers. The messages are published on
topics. In the LoRa mesh-5G integrated network, an MQTT
broker is deployed in the LoRa mesh server to retransmit
messages with two topics including uplink data and downlink
commands. Regarding uplink data, an MQTT publisher and an
MQTT subscriber are deployed in the gateway and the LoRa
mesh server, respectively. Regarding downlink commands, an
MQTT publisher and an MQTT subscriber are deployed in
the LoRa mesh server and the gateway, respectively. By doing
so, bidirectional communication between the gateway and
the LoRa mesh server is achieved. Designed for restricted
environments such as machine-to-machine communication and
IoT, MQTT has many advantages including a small footprint,
limited network bandwidth, fast message delivery, and easy de-
ployment. In the LoRa mesh-5G integrated network, compared
with hypertext transfer protocol (HTTP) [43], MQTT can
reduce the consumption of the gateway resource, especially
the required 5G radio frequency bandwidth. However, security
is the main drawback of MQTT [44]. Without built-in encryp-
tion, MQTT usually uses transport layer security (TLS)/secure
sockets layer (SSL) for security encryption, deviating from
its design aim as TLS/SSL is not a lightweight protocol.
By virtue of the 5G security mechanisms, there is no need
to use TLS/SSL as MQTT data is encapsulated as a 5G
payload protected by 5G authentication and encryption. Thus,
the drawback of MQTT on security is overcome in the LoRa
mesh-5G integrated network.

According to the above description, the integration of LoRa
mesh and 5G is achieved at both the core network level and
access network level. The core-level integration helps manage
the LoRa mesh network and provides a user interface for
observation and control. The access-level integration keeps the
deployment flexibility of the LoRa mesh network. Collecting
data from a mesh network requires one or more nodes to have
a backhaul connection to upload the data to the cloud. The
backhaul connection is usually via wire-based networks like

Ethernet or short-range wireless networks like WiFi, posing
restrictions on the deployment location of one or more nodes.
With the capability of communicating with gNB, the gateway
is required to be deployed within the coverage of gNB which
is a relatively large area and has no impact on the deployment
flexibility of LoRa mesh networks. Thus, the LoRa mesh-
5G integrated network benefits from both the management
capability of the 5G network and the coverage extension
of LoRa mesh networks with no impact on the deployment
flexibility.

IV. CLOUD-EDGE-TERMINAL COLLABORATION

In addition to enhancing communication capability, the
integration of LoRa mesh and 5G also provides a three-
level computing architecture, i.e., terminal computing at sensor
nodes, edge computing at the gateway, and cloud computing
at the 5G core network. Through cloud-edge-terminal collab-
oration, the packet rate and data volume of the integrated
network can be reduced significantly, which is beneficial to
enhancing the scalability of the LoRa mesh network, reducing
the required 5G radio frequency bandwidth, and easing the
backhaul workload.

A. Cloud-edge-terminal Collaboration Architecture

As shown in Fig. 4, terminal devices, i.e., sensor nodes,
measure air temperature and wind speed, and the observations
are sent to the edge, i.e., the gateway, periodically. Despite
operating in license-free bands, LoRa suffers from duty cycle
limitation which results in lower packet rates to connect
more end devices [45]. So, it is necessary to reduce the
frequency of periodic updates to support more sensor nodes.
However, a low update frequency increases the delay between
a significant change in an observation happening and the
railway track manager knowing it. The delay further increases
the response time to adverse weather or extreme weather. To
address the issue, besides sending periodic updates at a low
frequency, terminal devices send significant-change updates to
the gateway edge immediately when detecting a significant
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change between the current observation and the last update.
The detection is easy to achieve so that the complexity and
resource consumption of terminal devices is not increased. As
shown in Fig. 4, after receiving data from terminal devices, the
gateway edge stores it on a local database. Given the storage
capability of the gateway edge device, the retention time of
the data is limited.

Operating in license-free bands, LoRa suffers from packet
loss due to reasons such as signal collision [46]. With more
hops and dynamic routes, LoRa mesh is more likely to
lose packets. If packet loss continues for a specific sensor
node, there is a high probability that the sensor node has
malfunctioned or its route to the gateway has issues, e.g.,
some intermediate nodes are too busy to relay packets for
it. Routing-related issues can be solved by remote resetting
the sensor node as this will initiate route discovery again. If
there are multiple potential routes to the gateway, the new
route is very likely to be different from the old one as the
busy intermediate nodes are also too busy to process the route
discovery request from it. The issues with the sensor node
can be classified into two categories. The first category is those
that can be solved remotely, e.g., the periodical updates of two
sensor nodes collide with each other as they transmit periodical
updates at the same time due to the same period and start time.
Remote resetting can solve the issue by changing the start time
of the sensor node. It is also expected to solve many other
issues of the first category. The second category is those that
cannot be solved remotely such as hardware issues. Although
they cannot be solved remotely, a remote resetting command
is also helpful to verify this kind of issue as the sensor node
cannot transmit an acknowledgment back to the gateway for
the remote resetting command in this situation. Thus, it is
necessary to design a packet loss detection algorithm to trigger
remote reset commands to heal the network or verify the
issues that cannot be solved remotely. In this paper, as shown
in Fig. 4, a method of packet loss detection is designed for
the gateway edge. It reads data from the local database and
automatically sends a reset command to the specific sensor
node when detecting continuous packet loss. On receiving a
reset command, the sensor node resets itself, discovers a route
to the gateway again, and sends an acknowledgment to the

gateway. The reason why packet loss detection is deployed
at the gateway edge instead of the cloud is that it is based
on the most recently received data that is not necessarily
fully sent to the cloud. To reduce the backhaul 5G network
requirement, the edge filters data before sending it to the
cloud. The filtering policy is based on thresholds calculated
in the cloud. Besides filtering the real-time data, the edge
also calculates the maximum air temperature, minimum air
temperature, and maximum wind speed of a day, which are
sent to the cloud on a daily basis for calculating the thresholds
of the filtering.

The computation tasks of the cloud are application-oriented.
In the case of trackside weather monitoring, track and/or
train operators are concerned about bad weather that is likely
to pose a danger to passengers, trains, or infrastructures.
Network Rail [2], the biggest track manager in the United
Kingdom, discloses their definitions of adverse weather and
extreme weather in winter, i.e., temperature below -3 ◦C
or wind speed above 60 miles per hour (mph) as adverse
weather, and temperature below -7 ◦C or wind speed above
70 mph as extreme weather. In summer, high temperature
also has an adverse impact on the track or train. In adverse
weather or extreme weather, the operator must take action
promptly such as imposing a speed restriction for trains,
rescheduling timetables and/or routes, and scheduling special
fleets like snowploughs. Thus, we propose to use historical
daily maximum and/or minimum weather values to predict the
maximum and/or minimum weather values of the next day as
the thresholds of real-time data filtering. As shown in Fig. 4,
the thresholds are sent to the edge. If weather values are within
the thresholds, they are discarded in the edge. Otherwise, they
are sent to the cloud immediately. There are two advantages of
the adaptive thresholds. First, the operator can master the trend
of the weather with reduced data volume from the edge to the
cloud. Second, if weather values are outside of the predictions,
the operator is informed of the unexpected values immediately
which are likely to change to adverse or extreme weather. So,
the operator can get an early warning of adverse weather and
extreme weather. By employing the adaptive thresholds, the
operator obtains the data with lower delays. In the meantime,
the data volume from the edge to the cloud is significantly
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reduced.
As shown in Fig. 4, besides data volume reduction, the cloud

runs a dashboard that shows the location of LoRa mesh nodes,
the status of the LoRa mesh network, and the weather status
and values. Moreover, the cloud sends alerts to corresponding
staff when adverse or extreme weather is likely to happen.
Combined with data from other sources such as atmosphere,
passenger, train, and route information, weather data can also
be used to make intelligent policies such as speed restrictions,
timetables, routes, scheduling special fleets, and maintenance.

B. Periodic and Significant-change Updates

Sensor nodes send periodic updates with the period p. In ad-
dition, they send significant-change updates when the change
from the last update is bigger than ct for air temperature or
cw for wind speed. The parameters ttu and twu denote the
time of the last update for air temperature and wind speed,
respectively. Let T (t) and W (t) denote temperature and wind
speed at the time t, respectively. Assume that sensor nodes
check observations at intervals of ∆t, where p/∆t ∈ N. Then,
the time of sending periodic and significant-change updates
can be described by Algorithm 1.

Algorithm 1 Periodic and significant-change updates
Input: ct, cw, p
Initialization: Time t = 0, ttu = 0, twu = 0
Repeat:

IF t/p ∈ N THEN
send T (t) and W (t) in one packet
ttu = t, twu = t

ELSE IF |T (t)− T (ttu)| ≥ ct THEN
send T (t)
ttu = t

ELSE IF |W (t)−W (twu )| ≥ cw THEN
send W (t)
twu = t

END IF
t = t+∆t

C. Packet Loss Detection

As mentioned earlier, there are two kinds of packets
from the terminal to the edge, i.e., periodical updates and
significant-change updates. Since packet loss is easy to detect
for periodic updates, we only focus on the detection for
significant-change updates. Given that the characteristics of
air temperature and wind speed are different, we use different
methods to detect packet loss for them.

Trackside air temperature varies continuously and is un-
likely to fluctuate greatly within a short duration. Given that
the period of the periodical updates is relatively short, we
assume that air temperature varies monotonically within a
period. So, when ∆t approaches 0, i.e., the checking for
significant changes is continuous, the estimated number of

generated significant-change updates between time ip and time
(i+ 1)p where i ∈ N is

n̂g
i =

{
0, for T (ip) = T ((i+ 1)p)⌈
|T ((i+1)p)−T (ip)|

ct

⌉
− 1, for T (ip) ̸= T ((i+ 1)p)

(1)
where ⌈·⌉ is the ceiling function. Packet loss of significant-
change updates on air temperature between time ip and time
(i+ 1)p happens when

nr
i < n̂g

i , (2)

where nr
i is the number of received significant-change updates

between time ip and time (i+1)p. As deterministic formulas,
(1) and (2) can be used to detect packet loss for air temperature
easily.

Unlike air temperature, wind speed fluctuates greatly. More-
over, even within a short time, it is likely to change so
dramatically that we regard it as a discrete variable. Thus,
it is difficult to derive a deterministic formula for packet loss
detection on wind speed. Since packet loss is an abnormal
behavior, data-driven anomaly detection methods are suitable
for the detection. The received data on wind speed between
time 0 and time (n+ 1)p where n ∈ N can be denoted as

Wn = {w0(0), w1(0), ..., wc0(0),

w0(p), w1(p), ..., wc1(p),

...,

w0(np), w1(np), ..., wcn(np)}, (3)

where w0(ip) with i ∈ [0, n] ∩ N is the value of the periodic
update at time ip, wj(ip) with j ∈ [1, ci] ∩ N is the value of
one significant-change update between time ip and time (i+
1)p, and ci ∈ N is the number of significant-change updates
between time ip and time (i+1)p. Packet loss happens when
the number of generated packets is not equal to the number
of received packets. Since the number of generated packets is
related to the changes in the readings, we select five features
denoted by a feature vector

Fi = [ci, STDi, max
j∈[0,ci]

wj(ip), min
j∈[0,ci]

wj(ip), w0(ip)]
T, (4)

where STDi is the standard deviation of
{w0(ip), w1(ip), ..., wci(ip)}. By slicing the received
data by windows with the length of αp where α ∈ Z+, the
data set can be structured as

W ′
n = [(I ′1, o1), (I

′
2, o2), ..., (I

′
n−α+1, on−α+1)], (5)

where I ′i = [FT
i , FT

i+1, ..., F
T
i+α−1]

T, and the binary variable
oi is the output of the ith window. The parameter oi = 1 when
there is packet loss during the time window, and 0 otherwise.
Finally, we use SVM [47], a typical anomaly detection method,
to process the data set for packet loss detection.

D. Long-term Prediction for Adaptive Thresholds

There are many methods based on historical data to predict
the daily maximum temperature, daily minimum temperature,
and daily maximum wind speed [48]–[50]. Given that the
data we have collected is limited, we employ autoregressive



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, XXX 2024 8

integrated moving average (ARIMA) [51] which is a robust
time-series prediction method. Processing the three kinds of
values separately, we use ARIMA to predict the maximum air
temperature, minimum air temperature, and maximum wind
speed of the next day based on historical daily maximum air
temperature, minimum air temperature, and maximum wind
speed respectively.

Let ptmin, ptmax, and pwmax denote the predicted minimum air
temperature, maximum air temperature, and maximum wind
speed of the next day, respectively. The thresholds of minimum
air temperature, maximum air temperature, and maximum
wind speed are calculated respectively as

Ht
min = max(ptmin, c

t
min + vtmin), (6a)

Ht
max = min(ptmax, c

t
max − vtmax), (6b)

Hw
max = min(pwmax, c

w
max − vwmax), (6c)

where ctmin, ctmax, and cwmax are the criteria of adverse weather
about low air temperature, high air temperature, and high wind
speed, respectively, and vtmin, vtmax, and vwmax are the fixed
values determined by the operator for early warning of adverse
weather. Ht

min, Ht
max, and Hw

max are sent back to the edge and
only data outside of the thresholds is sent to the cloud.

V. IMPLEMENTATION

Given the safety and efficiency implications in railway
operations as we have highlighted in Section I, we have
implemented a proof of concept on the University of Glasgow
campus for validation purposes. In this proof of concept,
we deploy a LoRa mesh-5G integrated network utilizing the
Glasgow 5G testbed. As shown in Fig. 5(a), a GW is deployed
within the coverage of the 5G testbed and it connects to the
network using its 5G module. In addition, we deploy three
sensor nodes i.e., S1, S2, and S3 such that sensors S2 and S3

can communicate with GW directly. However, due to blockage
by the main building of the University of Glasgow, S1 can
communicate with neither GW nor S3 directly. Instead, the
packets of S1 must be relayed by S2 to arrive at GW. Thus,
the topology of the LoRa mesh network is illustrated by blue
dash lines in Fig. 5(a).

S1 and S3 are sensor nodes connected to a weather station.
As shown in Fig. 5(b), they consist of a weather station
produced by Davis Instruments1 and a sensor node box that
has a weather envoy, a Raspberry Pi, and an Arduino board
inside. The weather envoy reads real-time data from the
weather station using WiFi and transmits it to the Raspberry
Pi using a data logger. The Raspberry Pi is connected to the
Arduino board using a universal serial bus (USB) cable. Data
processing is realized using the Raspberry Pi. When periodic
updates or significant-change updates need to be sent to GW,
the Raspberry Pi transmits the update to the Arduino board
where a LoRa mesh client runs. Given the requirement of low
power consumption and low costs, the LoRa mesh clients in
the network are based on RadioHead packet radio library [23].
On receiving data from Raspberry Pi, the LoRa mesh client
encapsulates the data as a LoRa mesh packet and sends it over
the air to the LoRa mesh client of GW directly or through
other sensor nodes. Unlike S1 and S3, as shown in Fig. 5(c),

(d) Gateway (GW)

5G dongle Arduino

Raspberry Pi

S3

S2
S1

(b) Sensor node with
weather station (S1 & S3)

(c) Sensor node without weather station (S2)

(a) Deployment locations (based on Google Map)

ArduinoWeather station

GW

5G coverage

Sensor node box

Fig. 5. Implementation at the campus of the University of Glasgow. S1 and
S3 are sensor nodes with weather stations shown in (b). S2 is a sensor node
without a weather station shown in (c). GW is a gateway shown in (d).

S2 consists of only an Arduino board and a power system.
Without weather stations, S2 only relays LoRa mesh packets.

As shown in Fig. 5(d), GW consists of an Arduino board, a
Raspberry Pi, and a 5G dongle. Running on the Arduino board,
the LoRa mesh client of GW receives LoRa mesh packets,
decapsulates them, and forwards them to the Raspberry Pi.
All the data processing tasks of the edge shown in Fig.
4 are realized in the Raspberry Pi. Moreover, an MQTT
subscriber and an MQTT publisher are implemented in the
Raspberry Pi using Node-RED2 which is a programming tool
providing a wide range of nodes with various functions. The
5G dongle is assembled at the University of Glasgow and can
access the Glasgow 5G testbed. By the 5G dongle, the LoRa
mesh gateway can communicate with the LoRa mesh server
deployed in the 5G core network.

Glasgow 5G testbed is equipped with an on-premises private
cloud. We create a virtue machine instance on the cloud
to implement the LoRa mesh server. In the implementation,
we only realize the functions of data volume reduction and
dashboard as the functions of alert and policy are out of
the scope of this paper. For bidirectional communication with

1https://www.davisinstruments.com/
2https://nodered.org/
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GW, we implement an MQTT broker, an MQTT subscriber,
and an MQTT publisher on the server also using Node-
RED. Moreover, Node-RED is used to process the received
data and store it in the long-term global database which is
realized by InfluxDB3. For data volume reduction, we use
Python to read data from InfluxDB, make predictions, and
store the results. i.e., thresholds, in InfluxDB again. Node-RED
monitors InfluxDB for the thresholds and sends them to GW.
We use Grafana4 to directly read from InfluxDB, process data,
and display data on a dashboard. Grafana provides an HTTP-
based user interface by which users can access the dashboard
from external networks easily. Besides, we implement another
user interface for changing the parameters of the network
such as the update frequency of LoRa mesh sensor nodes. By
deploying HTTP end-points on the Node-RED, the LoRa mesh
server provides HTTP-based web services that users can call
from external networks to change parameters. With the two
user interfaces, authorized users can monitor the network and
change parameters easily.

VI. EXPERIMENTAL RESULTS

In this section, we will describe the experimental results of
periodic and significant-change updates, packet loss detection,
and adaptive thresholds.

A. Periodic and Significant-change Updates

To investigate the benefits of timely significant-change up-
dates, we record data in a sensor node from May 01, 2023, to
May 17, 2023, with ∆t = 1 second. By doing so, the results
of different p, ct, and cw can be calculated from one data
set. To quantify the delay between a significant change in an
observation happening and the track manager knowing it, we
define the average delay between time 0 and time (n + 1)p
where n ∈ N as

d̂ = 1440 ·
∑n

i=0 di
(n+ 1)p

, (7)

where the constant number 1440 is for transforming the unit
of d̂ to minutes per day and di is the delay occurring between
ip and (i + 1)p, such that di = 0 if |T (t) − T (ip)| < ct

and |W (t)−W (ip)| < cw for ∀t ∈ (ip, (i+ 1)p). Otherwise,
di = max ((i+ 1)p− t) where t satisfies |T (t)−T (ip)| ≥ ct

or |W (t)−W (ip)| ≥ cw. With the definition, the average delay
is illustrated in Fig. 6. For sending only periodic updates, the
average delay increases significantly with the increase of p,
ct, and cw. However, as shown in Fig. 7, increasing p can
significantly reduce the number of packets. Thus, periodic
updates cannot achieve low packet rates and low average delay
at the same time. Adding significant-change updates solved the
problem. The green line in Fig. 6 illustrates the average delay
in sending periodic and significant-change updates. Regardless
of p, ct, and cw, it approaches zero as sensor nodes send
updates once a significant change is detected. On the other
hand, its number of packets also reduces significantly with
the increase of p. Compared with periodic updates, adding

3https://www.influxdata.com/
4https://grafana.com/
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Fig. 6. Average delay with different periods and significant-change criteria.
ct and cw are in ◦C and mph, respectively. “P&S” denotes that sensor nodes
send periodic and significant-change packets.
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Fig. 7. The number of packets with different periods and significant-change
criteria. ct and cw are in ◦C and mph, respectively. “P&S” denotes that sensor
nodes send periodic and significant-change packets.

significant-change updates increases the number of packets
very slightly, e.g., using significant-change updates with ct =
2 ◦C and cw = 20 mph only increases about 3 packets per
day when p is between 5 and 5.08 minutes. Therefore, it
is beneficial to use periodic updates and significant-change
updates to reduce packet rates and average delay at the same
time.

B. Packet Loss Detection

We collect data directly from sensor nodes, including gen-
erated periodical updates and significant-change updates, from
December 14, 2022, to January 20, 2023, with p = 15 minutes,
ct = 2 ◦C, and cw = 12 mph. Assume that all the periodical
updates are received by GW.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, XXX 2024 10

In terms of air temperature, ng
t = n̂g

t for 99.97% of the
data, which means the estimation of (1) has the accuracy of
99.97%. In this situation, the result of packet loss detection is
correct no matter whether there is a packet loss or not.

In terms of wind speed, given that there are not enough lost
packets during this time to do the training and test of SVM,
we randomly delete 30% of the significant-change updates and
then generate samples with features by the moving window
method which are described in (4) and (5). The samples with
deleted significant-change updates are labeled as abnormal, or
otherwise normal. Then, 80% of the samples are randomly
selected to train the SVM algorithm, and the remaining 20%
of the samples are utilized to evaluate the performance. Since
packet loss detection is a supervised anomaly detection prob-
lem, we select four common performance metrics including
precision, recall, F1score, and accuracy which are defined
as

precision =
TP

TP + FP
, (8a)

recall =
TP

TP + FN
, (8b)

accuracy =
TP + TN

TP + FP + FN + TN
, (8c)

F1score =
2 ∗ precison ∗ recall
precison+ recall

, (8d)

where TP denotes true positive that the loss of significant-
change updates is successfully classed as an abnormality, TN
denotes true negative that a normal situation is identified
correctly, FP denotes false positive that an abnormality is
incorrectly classed as normality, and FN denotes false neg-
ative that a normal situation is incorrectly identified as an
abnormality. To obtain the optimal window length, we repeat
the experiments with different window lengths. As shown
in Fig. 8, with the window length increasing, recall and
accuracy drop when the window length is less than 1 hour
and become stable when the window length is bigger than
2 hours. precision and F1score increase with the window
length increasing and become stable when the window length
is bigger than 15/4 hours. Therefore, the window length
should be set bigger than 15/4 hours for high performance
of the packet loss detection algorithm. Given computation
complexity and storage requirement, the window length is set
as 15/4 hours which also serves as the retention time of the
local database in the edge.

C. Adaptive Thresholds

We also use the data collected from the implemented
network between December 14, 2022, and January 20, 2023,
for the adaptive threshold algorithm. ARIMA model is fit by
the data from December 14, 2022, to January 10, 2023. The
remaining data is used to evaluate the prediction performance
by root mean square error (RMSE) and mean absolute error
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Fig. 8. Result of packet loss detection.

TABLE I
RESULTS OF ADAPTIVE THRESHOLDS.

Prediction objective RMSE MAE Data reduction rate
Max air temperature 1.906 ◦C 1.544 ◦C 72.23%Min air temperature 1.231 ◦C 0.983 ◦C

Max wind speed 6.997 mph 6.097 mph 97.96%

(MAE) which are defined as

RMSE =

√√√√ 1

ne

ne∑
i=1

(yi − ŷi)2, (9a)

MAE =
1

ne

ne∑
i=1

|yi − ŷi|, (9b)

where yi is the ith actual value, ŷi is the corresponding
predicted value, and ne is the total number of the values to be
evaluated. As shown in Table I, the RMSE of the prediction for
the maximum air temperature, minimum air temperature, and
maximum wind speed of the next day is 1.906 ◦C, 1.231 ◦C,
and 6.997 mph, respectively. The MAE of the prediction about
the maximum air temperature, minimum air temperature, and
maximum wind speed of the next day is 1.544 ◦C, 0.983 ◦C,
and 6.097 mph, respectively. With the prediction accuracy, the
data reduction rates from edge to the cloud for air temperature
and wind speed are 72.23% and 97.96%, respectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a LoRa mesh-5G inte-
grated network for trackside smart weather monitoring. We
first presented the network model and integrated the LoRa
mesh network into a 5G network, which significantly reduced
the cost of deploying communication infrastructure for wide
and remote coverage. We employed the proposed network
for weather monitoring and designed a cloud-edge-terminal
collaborative architecture to bring artificial intelligence to the
IoT network. Utilizing three intelligent algorithms, i.e., timely
significant-change updates, packet loss detection, and adaptive
thresholds, the proposed architecture reduced the data volume
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and achieved self-detection for packet loss. With reduced data
volume, the network can support more end devices and provide
wider coverage. Based on the Glasgow 5G testbed, a proof of
concept was implemented using low-power and low-cost off-
the-shelf hardware. The experimental results demonstrated the
feasibility of the proposed integrated network and cloud-edge-
terminal collaborative architecture. The proposed LoRa mesh-
5G integrated network satisfies all the identified trackside
sensing requirements, i.e., wide coverage, supporting massive
end devices, low-cost communication infrastructure, and low-
power and low-cost end devices.

However, the possibility of signal collision and interference
could rise with an increase in the deployed end devices, posing
a threat to network reliability. Moreover, duty cycle regulation
[52] on the frequency bands utilized by LoRa could constrain
its scalability. In our future work, we plan to analyze these
aspects of the network and introduce novel LoRa mesh routing
algorithms to address the potential challenges associated with
reliability and scalability.
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