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Abstract

The COVID-19 pandemic has been characterised by sequential variant-specific waves

shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined

by their unique combinations of mutations and there has been a clear adaptation to more

efficient human infection since the emergence of this new human coronavirus in late 2019.

Here, we use machine learning models to identify shared signatures, i.e., common underly-

ing mutational processes and link these to the subset of mutations that define the variants of

concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated

metadata to determine how viral properties and public health measures have influenced the

magnitude of waves, as measured by the number of infection cases, in different geographic

locations using regression models. This analysis showed that, as expected, both public

health measures and virus properties were associated with the waves of regional SARS-

CoV-2 reported infection numbers and this impact varies geographically. We attribute this to

intrinsic differences such as vaccine coverage, testing and sequencing capacity and the

effectiveness of government stringency. To assess underlying evolutionary change, we

used non-negative matrix factorisation and observed three distinct mutational signatures,

unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signa-

tures 1, 2 and 3 were biased to C!T, T!C/A!G and G!T point mutations. We hypothe-

sise assignments of these mutational signatures to the host antiviral molecules APOBEC,

ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational

signature activity from predominantly Signature 1 changes to an increasingly high proportion

of changes consistent with Signature 2. This could represent changes in how the virus and

the host immune response interact and indicates how SARS-CoV-2 may continue to gener-

ate variation in the future. Linkage of the detected mutational signatures to the VOC-defining

amino acids substitutions indicates the majority of SARS-CoV-2’s evolutionary capacity is
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likely to be associated with the action of host antiviral molecules rather than virus replication

errors.

Author summary

We show that both public health measures and virus properties are associated with the

rise and fall of regional SARS-CoV-2 reported infection numbers with regional differences

attributable to the extent of vaccine usage and the effectiveness of public health measures.

In our mutational signature analysis, using non-negative matrix factorisation, we detected

three distinct mutational signatures that can be putatively attributed to the action of spe-

cific host antiviral molecules. Interestingly, we observe a shift in mutational signature

activity from predominantly Signature 1 changes to an increasingly high proportion of

changes consistent with Signature 2. These mutation patterns influence SARS-CoV-2’s

evolutionary capacity, the available genetic variation that selection can act on, and so can

be linked to the mutations defining the variants of concern responsible for the distinct

SARS-CoV-2 infection waves. The dominant types of nucleotide substitutions involved

indicate that much of the mutation and hence variation come from the action of the host

immune response rather than replication errors since the virus has an error correction

system.

Introduction

The COVID-19 pandemic began in late 2019 following a zoonotic spillover event of a SARS-

related coronavirus, subsequently named SARS-CoV-2, in Wuhan, China [1, 2]. The extensive

and rapid global spread of this new human coronavirus and its detrimental impact on human

health has rendered it among the most significant pandemics in recent history [3]. Different

geographical regions of the world have reported varied infection patterns that are attributed to

differences in population demographics and health care systems, diverse government

responses [4, 5], the emergence of more transmissible variants [6, 7] and other viral, human

and population factors. Since its emergence, SARS-CoV-2 has undergone significant genetic

change such that numerous variants, i.e., distinct genotypes, have been identified [8], many

with altered phenotypic properties [9].

The World Health Organization (WHO) and other public health bodies have broadly classi-

fied variants that pose an increased risk to global public health (due to increased transmissibil-

ity, increased virulence or decrease in the effectiveness of public health measures relative to

2019/early 2020 SARS-CoV-2 variants) as variants of concern (VOCs) and variants of interest

(VOIs) [10]. The early SARS-CoV-2 variants to emerge in 2019 and the more transmissible

+S:D614G variant followed by the VOCs (Alpha, Beta, Gamma, Delta and currently Omicron)

have driven significant and sequential “waves” of SARS-CoV-2 infections internationally. The

emergence of each variant showing a clear geographical link [11–13].

Viral mutations arise from a diverse set of processes (principally viral polymerase replica-

tion errors and host anti-viral editing processes), which can be identified by the characteristic

mutational signatures that they leave on the genome [14, 15]. Such characterisation of domi-

nant mutational processes is routinely used in cancer genomics [16]. The catalogue of SARS-

CoV-2 nucleotide changes show distinct mutational patterns suggestive of a role for host

antiviral mutational processes in introducing changes in the viral RNA [17, 18]. These
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processes potentially dominate in SARS-CoV-2 evolution because point mutations introduced

in replication are mostly corrected by the action of a proofreading enzyme.

The generation of virus diversity, the key to virus persistence by generating novel variation

and thus evolutionary capacity, is multi-faceted [19], yet our understanding of the relative

importance of underlying mutational processes linked to the action of host anti-viral mole-

cules is still very limited. Given that SARS-CoV-2 continues to develop new variants, many

associated with sets of previously observed (convergent) and novel mutations [9], it is critical

that we improve our understanding of the mechanisms and sources of evolutionary change.

Along with routine surveillance of SARS-CoV-2 infections, there has been an unprece-

dented global sequencing effort resulting in databases containing many millions of genome

sequences, in particular GISAID [20]. Here we examined this data to describe the global

molecular epidemiology and evolution of SARS-CoV-2. Using regression models we first

examined how viral properties and public health measures have influenced the magnitude of

infection waves in different geographic locations. Satisfied that SARS-CoV-2 variants have

been an important driver of infections we then used non-negative matrix factorisation to char-

acterise the mutational processes involved in the generation of variants and their changing pat-

terns of activity over time.

Results

Characterising the SARS-CoV-2 waves regionally

This first part of the study reports on global SARS-CoV-2 data from 24/12/2019 to 28/01/

2022 only as limited public health measures were in place after this time. We observed 1,544

distinct SARS-CoV-2 lineages from 7,348,178 sequences. 88% of the infections in the global

pandemic during this time frame were caused by a subset of 13 Pango and WHO variants

(S1 Table). While there are geographical differences there is a clear dominance of a subset of

variants and replacement of these through time (Fig 1). This “wave” infection pattern was

evident in all geographic locations. Although biased by testing rates, Europe and the Ameri-

cas had the highest infection rates, reporting up to 450 cases per million population per day

(Fig 1). The emergence or introduction of VOCs coincided with a steep increase in infection

rates globally. For example, cases in Asia showed a steep rise in February 2021, which peaked

in May 2021 (Fig 1, panel Asia). During this period, Alpha and Delta comprised greater than

75% of the SARS-CoV-2 cases identified in the sequence data. Africa and Oceania on the

other hand displayed overall sustained low case numbers. Despite this, Beta dominated the

second wave in parts of Africa while Alpha dominated the third Oceanic wave. After its

emergence in March 2021, Delta spread to become the predominant variant across all conti-

nents. The Omicron variant of concern was first identified in South Africa in late November

2021 and, by January 2022, it had rapidly become the predominant cause of infections world-

wide (Fig 1).

Covariates of the waves

We investigated the degree to which public health measures and viral properties explain conti-

nent-specific reported cases of infection. Correlation analysis at the global level showed a sig-

nificant correlation between infection rates and the predictor variables: government

stringency, vaccination, previous infection burden, virus diversity and fitness (S2 Table).

Regression analysis revealed that the impact of the predictor variables on the magnitude of

reported cases were found across all continents. We classified significance levels as follows: no

significance for p-values greater than 0.05, weak significance for p-values between 0.05 and

0.001, and high significance for p-values less than 0.001. Our findings indicated that
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government stringency had a weakly significant impact in Asia, Europe, and South America,

but a strongly significant impact in Africa, Oceania, and North America. Virus fitness, previ-

ous infection burden, and vaccination demonstrated a strongly significant impact across all

continents. Virus diversity was strongly correlated with high infection numbers in Europe and

Fig 1. Continent-level SARS-CoV-2 lineage dynamics and pandemic curves. Lines show a 14-day rolling average of reported SARS-CoV-2 cases.

Bars show the biweekly proportions of common lineages and are coloured by lineage. The white space shows the proportion of sequences from

other (non-majority) lineages.

https://doi.org/10.1371/journal.pcbi.1011795.g001
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North America, with a weaker association in Africa, Asia, Oceania, and South America. The R

squared values, indicating the proportion of variance explained by our model, were greater

than 0.5 for all continents, ranging from 0.66 in Oceania to 0.79 in Africa (S3 Table). Gener-

ally, our predictions closely resembled the rise and fall of SARS-CoV-2 infection case numbers

(Fig 2).

For country-level analysis, we included 29 countries from six continents based on the com-

pleteness of data (availability of sequence data in every 14 day bin). Pandemic plots were visu-

alised using biweekly bins and multiple linear regression was fitted using the same approach.

Different countries had varying lineage dynamics as illustrated in S1 Fig. The five predictor

variables had varying impacts on infection rates across countries (S2 Fig). Despite some differ-

ences related to the population level processes investigated here, there is a clear variant replace-

ment process taking place. As the generation of novel variants is fundamentally a mutation

dependent process we next investigated the underlying patterns of mutations being generated

through time. The goodness of fit varied among countries, with the R squared varying from

0.28 (Japan) to 0.96 (Australia), with a median of 0.69 (S4 Table). Though our model success-

fully captured the general infection wave patterns in many countries, it struggled to capture

short-term data spikes in specific instances, such as in Belgium (November 2020), India (May

2021), Indonesia (August 2021) and Japan (September 2021) (S2 Fig).

Fig 2. Association of SARS-CoV-2 infection rates and predictor variables globally. A. Pearson’s correlation matrix of infection rate and predictor

variables. Positive correlations are denoted in orange and negative correlations in blue and colour intensity is directly proportional to coefficient value.

B. Model fitting using multiple linear regression. Black solid lines show a 14-day rolling average of adjusted SARS-CoV-2 cases. Pink solid lines show

fitted mean response values of infection rates with predictor values as input.

https://doi.org/10.1371/journal.pcbi.1011795.g002
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Identifying putative mutational processes contributing to changes in

SARS-CoV-2

New variants of concern have displaced viral lineages that were previously dominant in the

population in different geographical regions and in some cases globally (Fig 1). This behaviour

has been observed with the original variants of concern (Alpha, Beta and Gamma) and then

globally with the Delta and Omicron lineages. We investigated whether these variant wave

events (periods of time where infections are dominated by a single variant) were linked to the

activity of specific mutational processes. Each of the variants of interest/concern has evolved

independently such that detecting the patterns of mutations in the SARS-CoV-2 sequence data

allows us to observe which processes are most active and could be contributing to the emer-

gence of variants.

Mutations were called using inferred references for each of the Pango lineages, which we

call tree-based referencing (S3 Fig). The SARS-CoV-2 alignment of 13,278,844 sequences up to

26/10/2022 was used. Of these 13 million sequences 2,195,182 sequences were selected as they

contained 5,726,144 newly arisen mutations. Cytosine to thymine mutations (C!T) were the

most common and were the primary substitution category for most weeks where sequences

were recorded. Note, SARS-CoV-2 has an RNA genome but we refer to uracil as a thymine to

match pre-existing DNA mutational signature notations.

Three signatures were identified with distinct substitution patterns using non-negative

matrix factorisation (NMF) (Fig 3 and S5 Fig). Signature 1 is heavily biased towards C!T

mutations. Signature 1 had a high probability of ACA, ACT and TCT contexts (adjacent nucle-

otides in the 5’ and 3’ direction of the mutated site), consistent with what was earlier reported

by Simmonds et al. [17] as highly mutated contexts for C!T substitutions in SARS-CoV-2.

Signature 2 is predominantly adenine to guanine (A!G), guanine to adenine (G!A) and thy-

mine to cytosine (T!C) mutations. The proportion of A!G and T!C mutations is approxi-

mately equal in this signature, which is indicative of a double-stranded mutational process.

SARS-CoV-2 mutations at adenine positions on the negative strand will be counted as thymine

mutations due to the negative strand being used to replicate positive sense RNA, with the

mutated A!G now pairing with a cytosine on the +sense RNA and replacing the original thy-

mine [21, 22]. Signature 3 is predominantly composed of guanine to thymine (G!T)

substitutions.

The dynamics of mutational processes through the pandemic

By using the available SARS-CoV-2 sequences we can measure the mutational signature activ-

ity across time as long as our samples are aggregated using time series annotations. Signature

exposures (Fig 4) show that Signature 1 remained the most prominent signature throughout

the pandemic, although following the emergence of Signature 2 its activity reduced propor-

tionally. Absolute exposure values (Fig 4B) show that Signature 1 does not appear to reduce its

exposure, rather Signature 2 increases its exposure. Signature 2 establishes itself as a substantial

signature after December 2020. It continues to expand after October 2021, just prior to the

emergence of the Delta VOC. Signature 3 is by far the least active of the three signatures but

remains consistent until after January-February 2022 when it begins to drop towards zero.

This is around the time Omicron began to emerge as the dominant VOC.

Combined signature activity reached a peak between July and October 2021 (Fig 4B) coin-

ciding with the peak number of unique mutations (Fig 5A and 5B). This is around the time the

mutational signature dynamics appear to be shifting, with Signature 2 contributing more

unique mutations. We can see that this also coincides with the Delta VOC wave, which,

between May 2021 and January 2022, was the lineage group showing the greatest number of
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newly acquired mutations (Fig 5). Delta was the first VOC to dominate on a global scale, out-

competing other VOCs like Alpha, Beta and Gamma in their regions of circulation. Omicron

similarly repeated this phenomenon, almost entirely replacing Delta globally within weeks of

its emergence (Fig 5B). We also see a marked decrease in the activity of Signature 3 following

Omicron’s establishment as the dominant variant. A similar decrease in G!T mutations was

Fig 3. Mutational signatures extracted from the SARS-CoV-2 genome sequences by non-negative matrix factorisation. Signatures are patterns of probabilities for

each category of substitution in a three nucleotide context. Each bar represents a context and is coloured by the substitution category of the mutation that occurs there.

Each signature may represent a distinct mutational process. Signature 1 is heavily biased towards cytosine to thymine (C!T) mutations, particularly in 3’ CpG

contexts TCG, CCG and ACG. Signature 2 from SARS-CoV-2 is predominantly adenine to guanine (A!G), guanine to adenine (G!A) and thymine to cytosine

mutations (T!C). Signature 3 is strongly guanine to thymine (G!T), a pattern that is thought to be caused by the action of guanine oxidation by reactive oxygen

species. Signatures are shown normalised against the tri-nucleotide composition of the SARS-CoV-2 genome. Non-normalised forms in the context of the SARS-CoV-

2 genome composition are shown in S5 Fig.

https://doi.org/10.1371/journal.pcbi.1011795.g003
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also observed by Bloom et al. [23] and Ruis et al. [24]. This is different to Delta, where there

was an increase in Signature 3 following its emergence. These Signature 3 changes become par-

ticularly apparent when we begin to look at signature activities within variant-defined subsets

of the data.

Signature dynamics spatially and by variant

After observing changes in signature activity during transitions between dominant variants,

we next investigated the differences between signature activities in variant-defined subsets of

the data as well as in continent-defined subsets. We used the globally extracted signatures to

extract exposures from the subsets using a non-negative least squares regression to retain the

non-negativity constraint. This allowed for the measurement of signature activity in each of

the subsets of interest.

Fig 4. Signature exposure plots showing the activities of the extracted mutation signatures over the duration of the COVID-19 pandemic. A.

Shows the percentage activity of the signatures during a given week of the pandemic, with each colour representing a different signature. B. Shows the

signature activities as their absolute values at each epidemic week.

https://doi.org/10.1371/journal.pcbi.1011795.g004
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Signature 1 was the most active in almost all the variant-defined subsets as was expected

from the global activity. Signature 3 was most active in the Delta subset as well as during the

Delta wave in the continent-defined subsets (Fig 5). The non-VOC, Beta and Omicron subsets

appear to be the least impacted by Signature 3 with almost zero activity in Omicron. Signature

2 also shows low activity in the non-VOC subset but is very active in the other VOC subsets, in

particular Alpha, where it appears to be the most active, overtaking the Signature 1 process.

Continent-defined subsets of the data also consistently showed the high activity of Signa-

ture 1. Signature 2 begins to consistently appear in all continents after 2020, with only small

bursts of activity being detected before this (Fig 5D), again consistent with what we see in the

global data. Signature 3 activity also follows the pattern of the global activity, appearing most

prominently during the Delta wave.

Bridging the gap between mutation signatures and amino acid

substitutions

Stratifying non-synonymous nucleotide substitutions by their association with mutational sig-

natures should provide insights into how these mutational processes affect viral proteins.

Exposures were calculated by stratifying nucleotide mutations by whether they were synony-

mous or non-synonymous substitutions for each dataset (Fig 6A). The unattributed exposure

Fig 5. A. Counts of unique SARS-CoV-2 mutations for each epidemic week, with colours representing which continent the mutations came from. B.

Counts of unique mutations per week that are part of the mutational signature substitution-context features (i.e., no indel mutations included). Colours

represent which lineage/group of lineages the mutations belong to. C. Ridgeline plot showing the exposure of mutational signatures in SARS-CoV-2

variant-defined subsets. Exposures are coloured by the signature they have been attributed to. D. Ridgeline plot showing the exposure of mutational

signatures in SARS-CoV-2 continent-defined subsets.

https://doi.org/10.1371/journal.pcbi.1011795.g005
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Fig 6. A. Exposures for each of the SARS-CoV-2 mutational signatures for both synonymous and non-synonymous stratified datasets. Synonymous exposures are

below 0 on the y-axis, while non-synonymous exposures are above 0. Each area represents signature exposures across epidemic weeks, with colours representing which

signature the exposures are attributed to. B. Non-synonymous and synonymous mutations in the tree-based references of identified variants of concern. Signature 1

produces the majority of both synonymous and non-synonymous substitutions in all lineages. Signature 3 mutations are more often non-synonymous substitutions in

the lineages of concern, with most lineages having few to no changes. Signature 2 non-synonymous mutations appear to have increased in the Omicron lineages (BA.1

and BA.2). C. Variant of concern associated non-synonymous mutations coloured by the mutational signature with the greatest likelihood of causing the change. D.

Variant of concern synonymous mutations coloured by the putative mutational process that caused the change.

https://doi.org/10.1371/journal.pcbi.1011795.g006
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was calculated using the model error for mutational categories not contained within any of the

extracted mutational signatures. The majority of non-synonymous substitutions can be

described by the observed mutational signatures. Signature 1 likely produces most of the non-

synonymous mutations, however, Signature 3 is an almost exclusively non-synonymous signa-

ture, with particularly high activity during the Delta wave of infections. Signature 2 appears to

produce predominantly synonymous mutations.

Using the tree-based references, we can also look at individual lineage reference sequences

to observe which mutational processes have probably produced their specific amino acid sub-

stitution set. The tree-based references were used since they are equivalent to a high-quality

representative sequence and because many of the early real sequences contain sequencing

errors. For each variant of concern, mutations were assigned to a signature by calculating the

maximum likelihood of the mutation and its context being produced by each of the three

extracted signatures. Using the trinucleotide context C[C! T]G as an example, the likelihood

function is P(C[C! T]G j Signature), which corresponds to the probability bars for CT-CCT

in the extracted signatures. Mutations that contained substitution-context pairs not found

within any of the mutational signatures were labeled as “unattributed”.

The Alpha VOC tree-based reference sequence contains eleven Signature 1 changes, six Sig-

nature 2 changes and a single Signature 3 change. Signature 1 changes account for 39% of all

substitutions within the Alpha tree-reference sequence, with 75% of these mutations being

non-synonymous substitutions. Signature 1 was frequently active prior to the Alpha VOC’s

emergence. The activity plots (Fig 4) show that this was the case for much of the pandemic,

particularly prior to the Alpha’s emergence around September 2020. It should be noted that

while Signature 1 mutations are by far the most frequent, only one is found within the Spike

protein (producing the S:T716I change). Signature 3 only had one change, which was non-syn-

onymous appearing in ORF:8. Signature 2 mutations were non-synonymous substitutions

83% of the time, with three Spike mutations relating to the process including S:D614G, which

is present within all known variants of concern.

The Beta VOC emerged around the same time as Alpha (Autumn 2020) and is defined by a

smaller set of mutations. A greater proportion of Signature 1 mutations are non-synonymous

substitutions in Beta (66%). Signature 2 mutations resulted in S:D215G and S:E484K, the latter

reported to help the virus evade neutralising antibodies [25]. Signature 3 mutations most likely

produced S:K417N in spike, which is also reported to aid in antibody evasion [25, 26] similar

to S:E484K.

Gamma also emerged in Autumn 2020 and has 33 different defining substitutions. Signa-

ture 1 mutations account for 11 of these with 54% being non-synonymous. Four are present in

Spike including S:L18F, S:P26S, S:H655Y and S:T1027I. Signature 2 mutations resulted in six

amino acid substitutions, with only 75% of changes being non-synonymous. Three of the five

mutations in non-synonymous substitutions occurred in Spike. Signature 3 mutations in the

Gamma lineage were all non-synonymous except for a single synonymous substitution in

ORF1a/b.

Delta was the first VOC to dominate worldwide and replace almost every other lineage in

all regions. The initial Delta sequence (Pango lineage B.1.617.2) contains six Signature 1 muta-

tions. 66% of these changes were non-synonymous and none occurred within Spike. Signature

2 mutations were all non-synonymous and displaced throughout the virus ORFs including

ORF1a/b, S and M. Signature 3 mutations in Delta are found in non-coding regions and N,

with the N mutations both being non-synonymous.

Omicron is the most recent VOC to emerge, quickly replacing Delta globally. Omicron dif-

fers from earlier VOCs with a much greater number of Spike mutations relative to the other

ORFs. The first identified Omicron variant B.1.1.529 has 40 substitutions of which 32 are non-
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synonymous changes. This is almost double that of Delta, which only had 18. Seven of these

substitutions were Signature 1 changes, two were Signature 3 and ten were Signature 2

changes. There are four non-synonymous ORF1a/b mutations despite this ORF being substan-

tially longer than SARS-CoV-2’s other ORFs. Only one Spike substitution was synonymous

out of the 21 total changes. This number is even greater when looking at the major Omicron

variants BA.1 and BA.2. BA.1 had 31 non-synonymous substitutions in Spike alone while BA.2

had 28. Between these three Omicron variants, only two Spike substitutions are non-synony-

mous out of a total of 40. Nine of the 40 changes are from Signature 1, 2 are from Signature 3

and 12 are from Signature 2. This means 23/40 of the changes appear to come from these three

mutational processes. 20 of the 40 substitutions observed in these variants were present in the

receptor-binding domain (RBD) of Omicron, with nine of these changes thought to help Omi-

cron evade the immune response or increase its transmissibility [27]. Of these beneficial RBD

changes, three are potentially the result of Signature 1 activity, 9 are Signature 2 and one is

from Signature 3. The high density of Signature 2 RBD amino acid changes in a variant that

has emerged as Signature 2 exposure increased suggests that the mutational process behind

Signature 2 may have contributed to the emergence of the Omicron variant.

Signature exposures and highly mutated sequences in wastewater data

Similar trends over time in exposures are seen when the mutational signatures are applied to

publicly available wastewater data. Although the trend is seen at a lower resolution than global

data, Signature 1 and Signature 3 are gradually replaced by Signature 2 (Fig 7A). Although, Sig-

nature 2 is not quite as strong as in the global data (Fig 4). This suggests trends in mutational

processes can be monitored using wastewater, not only sequencing of the infected population.

Additionally, at time periods where a high level of virus diversity is expected, there are highly

mutated sequences present in the wastewater (Fig 7C). This suggests cryptic sequences in

wastewater may be used to observe potential upcoming variants, similar to how known

sequences have been back-traced to particular buildings using wastewater [28].

As chronic SARS-CoV-2 infections are implicated as a major contributor to VOC evolution

[29, 30], it may be possible to parse highly-mutated cryptic sequences of interest from chronic

infections out of wastewater data in the interest of detecting potential VOCs. Unfortunately,

this is problematic to deconvolve as sequencing data for immunocompromised and chroni-

cally infected individuals is sparse. When sequences from known chronic infections are exam-

ined, the distribution of mutation types is consistent with global data, with Signature 1

mutations dominating as expected for samples from January 2022 (Fig 7B). Although, due to

the low number of chronic infections for comparison this result is not very conclusive, it does

demonstrate how mutational patterns can be potentially detected in this type of data. Studying

these types of infections, and underlying mutational processes, will be important to under-

stand better the origins of the sets of mutations that contribute to the generation of VOCs.

Discussion

In this study, we investigated SARS-CoV-2 lineage dynamics and identified temporal variables

that are associated with increased numbers of infection cases. Both public health measures and

virus properties were associated with the sequential waves of regional SARS-CoV-2 infections

cases. These predictors have varying impact in different geographical locations. As more of the

global population’s immune system becomes sensitised to existing SARS-CoV-2 variants,

either through previous infection or vaccination, the virus has and will continue to undergo

changes that enable reinfections. The continued emergence of new variants is thus expected.

In some regions, government stringency had limited significant impact on patterns of
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infection. This could be due to differences in implementation strategies and support, other

competing predictor variables, as well as behavioural changes in citizens as a response to the

restrictions.

Our analysis highlights the significant role of vaccination in influencing reported COVID-

19 case patterns across all continents, even in regions with lower vaccination coverage like

Africa. Despite Africa’s lower vaccination rates, the continent has seen a relatively low-level of

sustained transmission. This phenomenon might be attributed to factors such as the younger

median age of the population, lower population density, immune priming due to prevalent

Fig 7. A. Signature exposures per month from wastewater sequences show similar trends in mutational processes as the global data, although at a lower

resolution and, interestingly, with a lower Signature 2 exposure. B. Substitutions in SARS-CoV-2 consensus sequences from infections of

immunocompromised individuals contain mutation types corresponding with patterns observed in the distinct signatures. Of note, there are more

synonymous mutations present in the chronic infection data than in the global sequences, although it is important to note the sample size for

immunocompromised infections is low. C. Mutation counts in wastewater sequences for bi-yearly time periods. Highly mutated sequences cluster to

the right especially during the 2021 July-December time period, as would be expected when Omicron was emerging.

https://doi.org/10.1371/journal.pcbi.1011795.g007
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infectious diseases, and limited testing capacity [31]. The weak impact of viral diversity on

reported cases in Asia and South America may be explained by the emergence and dominance

of variants such Delta and Gamma in the regions, respectively. For instance, the Delta variant,

initially identified in Asia, quickly became the predominant strain, overshadowing other line-

ages before spreading globally. Overall, the predictor variables significantly contributed to

explaining the rise and fall of infection numbers across different continents, accounting for

more than half of the variance in reported cases. The differences in the regression effectiveness

can be attributed to intrinsic differences among continents, such as variations in vaccine cov-

erage, testing and sequencing capabilities, and the effectiveness of government stringency

measures.

While our model effectively captured the general trends of infection waves, it struggled to

accurately represent peaks within short time-frames in some countries. This discrepancy

might be attributed to the omission of certain predictor variables, like mass gatherings, which

are known to contribute to viral super-spreading events [32].

In utilizing the OWID and OxCGRT datasets, which are arguably among the most compre-

hensive for addressing our research objectives, we note some limitations. First, there were dis-

crepancies in parameter definitions, such as varying case classifications across regions. Second,

positive tests are commonly labeled based on their reporting date rather than “date-of-event”

[33]. Lastly, the cases reported in these datasets may not be fully representative of the actual

disease burden. Although the Human Development Index (HDI) of a country can act as a

proxy to bridge the gap between reported cases and the true disease burden, it does not fully

capture the entire complexity.

The extracted signatures from the global SARS-CoV-2 dataset show clear and distinct pat-

terns describing mutational processes acting on the viral genome. The most prominent of

these signatures, Signature 1 (Fig 3 and S5 Fig), shows a marked bias towards C!T mutations,

a signal indicative of the APOBEC family of cytidine deaminases [17, 18]. APOBEC enzymes

have been shown to cause extensive C!T editing of DNA and RNA in human and viral

genomes. However, it is not yet clear whether they are the cause of this pronounced C!T bias

in SARS-CoV-2 despite a number of other studies also observing other APOBEC-like muta-

tional patterns [34–37]. Cytosines flanked by either an adenine or thymine in both the 3’ and

5’ direction appear to be the most pronounced targets of Signature 1. APOBEC editing was

shown to have contexts outside of the traditional TpC when structural features of the nucleic

acid such as hairpin loops are present [38]. Outside of structural features, APOBEC3A is

thought to be the predominant cause for TpC changes and is found to be expressed in lung tis-

sue [39]. ApC changes are considered to be caused by APOBEC1, which in cell models was

shown to efficiently edit SARS-CoV-2 RNA [39]. APOBEC1 is found predominately in the

liver and small intestine, tissues reported to be infected by SARS-CoV-2 [39, 40]. 3’ CpG nucle-

otide contexts are the most targeted, in particular TCG, CCG and ACG. CpG suppression is a

well-known dinucleotide bias. In RNA viruses, this appears to be a result of selective pressures

exerted from the presence of host CpG sensing molecules such as Zinc-finger Antiviral Protein

(ZAP). ZAP relies on host CpG suppression to allow it to specifically target non-host genomic

material (such as viral RNA) with higher CpG content [41]. This allows viruses with lower

CpG content to better evade restriction by ZAP since it more closely resembles the host CpG

composition. While ZAP does not induce C!T changes, it may help explain why C!T sites

in a CpG 3’ context are preferentially edited relative to other 3’ contexts. ZAP has been shown

to restrict SARS-CoV-2 despite pre-existing CpG depletion [42]. ZAP isoforms have been

shown to prevent necessary translational frame-shifting for SARS-CoV-2 ORF1b protein pro-

duction. [43]. The non-normalised form of Signature 1 (S5 Fig) shows that when tri-nucleotide

bias is not accounted for 3’ CpG’s are lower than the normalised signatures, yet 5’ TpC and

PLOS COMPUTATIONAL BIOLOGY Mutational processes and SARS-CoV-2’s evolutionary capacity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011795 January 25, 2024 14 / 26

https://doi.org/10.1371/journal.pcbi.1011795


ApC contexts remain the most prevalent(S5 Fig). The most targeted contexts do shift to ACA,

ACT and TCT, likely reflecting their comparatively high abundance within the SARS-CoV-2

genome relative to 3’CpG contexts. These non-normalised contexts are consistent with what

was earlier reported by Simmonds et al. [17]).

Signature 2 (Fig 3 and S5 Fig) has a nearly identical proportion of A!G and T!C muta-

tions. These are a known target of the ADAR family of adenine deaminases. ADAR enzymes

typically operate on double-stranded RNA and convert adenine into inosine [21, 22]. Inosine

forms base pairs with cytosine, which after another round of replication causes guanine to

replace the inosine and complete the A!G change. As ADAR operates on both strands of

dsRNA, the mutational signature resulting from the process is expected to contain an equal

proportion of A!G and T!C mutations, which is the case for Signature 2 [21]. Signature 2

also contains a number of G!A mutations, which could be caused by low-level C!T activity

on the negative sense RNA strand. Due to the cellular strand biases present between the posi-

tive and negative sense RNA [36], C!T mutational processes acting on ssRNA are much less

likely to produce a mutation on the negative strand (resulting in G!A substitutions) than

C!T changes on the positive strand. The negative strand will only be present during the repli-

cation phase of the virus while the positive strand will be present both on cell entry and on exit

as the new viral particles are packaged to infect further cells. This could explain why the nega-

tive sense Signature 1 changes are present in Signature 2, since it may be operating at a similar

level to Signature 2 on the negative strand. The non-normalised form of Signature 2 (S5 Fig)

does have different targeted contexts, just as with Signature 1. However, the main attribute of

Signature 2 is its equal contributions of A!G and T!C substitutions, which still remain

equal.

Signature 3 (Fig 3 and S5 Fig) is dominated by G!T substitutions. A putative mechanism

for this is Reactive Oxygen Species(ROS) in the cell. Increases in oxidative stress as part of a

ROS ‘burst’ have been associated with viruses during the early stages of infection [34, 44]. Gua-

nine nucleotides are known to be vulnerable to oxidation, with the product 7,8-dihydro-8-oxo-

2’-deoxyguanine (oxoguanine) pairing with adenine bases rather than cytosine [44, 45]. Similar

to inosine causing A!G changes, this change to oxoguanine will result in a G!T mutation

after a replication cycle. The lack of C!A changes in the signature also suggests that the mech-

anism is most active on the positive single-stranded RNA rather than the negative single-

stranded RNA. The initial positive single-stranded RNA is found in the cytoplasm, meaning it

can be easily accessed by ROS and other mechanisms of mutation. Viral replication is thought

to take place within membrane-bound environments that aim to protect the RNA. The pres-

ence of double-stranded RNA within these environments strongly suggests that this is the case

[46] and may explain the relative lack of negative strand mutations in SARS-CoV-2 signatures.

The non-normalised G!T signature (S5 Fig) seems to display a context preference of TpG and

ApG nucleotides, although this contextual bias is changed to CpG and ApG following normali-

sation. These contextual biases mean that the signature could be some other as yet unknown

editing mechanism on the viral RNA, although normalisation changing this context so heavily

suggests that this bias perhaps has more to do with genome composition. The increased CpG

context shift post-normalisation could also be another ZAP-induced effect, where CpG deple-

tion is selected for to help the virus evade ZAP. Curiously, this G!T bias has been observed in

other coronaviruses, but not widely among RNA viruses [47]. ROS has a verified cancer muta-

tional signature [15, 48] although the context preferences do not match the signatures (normal-

ised or non-normalised) observed here. However, there are a multitude of differences between

viral RNA and human DNA that make these signatures difficult to compare.

It is important to note that while SARS-CoV-2 does have an error correction mechanism

resulting in fewer replicase-induced errors, this mechanism will not catch all changes. A
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number of the mutations picked up from the set of sequences (and included in our mutational

signatures) will be derived from replication errors. However, the clear and repeatable extrac-

tion of the signatures indicates that despite this potential contamination, the extracted signa-

tures do appear to be predominantly other mutational processes. While a replication error-

associated mutational signature may be identified in future, this signature is too diffuse to

identify as a distinct process. Similarly, a high proportion of mutations are not accounted for

by the extracted mutational signatures. These mutations were not present in large enough

quantities to enable effective extraction from the data. Future methods may be able to tease out

the more subtle mutational mechanisms that almost certainly exist to induce these less com-

mon mutation types.

Signature activities clearly change in both the global dataset and in the various subsets of

the data for VOCs and continents. In the global data (Fig 4) Signature 1 is dominant through-

out the pandemic. Signature 2 only begins to appear around November 2020, after which it

appears consistently active for the remainder of the pandemic. This is approximately when

variant of concern lineages began to emerge, as well as the beginning of the first vaccine roll-

outs. This is particularly apparent in the Alpha subset where Signature 2 is the most highly

active mutational process (Fig 5), with a large depletion of Signature 1 activity as well.

Alpha was shown to increase sub-genomic RNA expression of several immune-antagonist

viral proteins including nucleocapsid (N), ORF9b and ORF6 [49–52]. N is thought to shield

dsRNA from detection by RNA sensors, which trigger downstream antiviral response path-

ways [49, 52–54]. ORF9b antagonises TOM70, a protein required for the activation of mito-

chondrial antiviral-signalling proteins (MAVS) [49] while ORF6 inhibits the transportation to

the nucleus of inflammatory transcription factors [55]. Combined, the cumulative immune

inhibition may have resulted in an observable change in the mutational processes that we

observe within the Alpha lineage. Beta and Gamma (both VOCs that emerged around the

same time as Alpha) gained amino acid substitutions that helped evade the immune system

primarily via antigenic change. Alpha’s reliance on attenuating immune pathways rather than

antibody binding may be why we see a different signature exposure pattern in this VOC rela-

tive to the others. This could be due to the attenuated pathways being involved in signalling for

the mutational processes behind Signatures 1 and 3, while not inhibiting Signature 2 as much.

This Alpha pattern is not observed in the other VOC datasets, although Delta and Omicron

have a high level of Signature 2 exposure as well, despite Signature 1 remaining the dominant

process in those subsets. Signature 3 appears to be most prominently found in the Delta subset

and remains consistently at low levels in the global data until January 2022 when it appears to

disappear almost entirely. The Omicron subset has little to no exposure for Signature 3 and

this happens to be the VOC almost exclusively circulating after January 2022. Why Omicron

appears to have so little Signature 3 exposure is unclear, although unlike previous VOCs, Omi-

cron differs in its preference of cell entry mechanism. Previous variants of the virus typically

enter the cell using membrane fusion, where the viral membrane fuses with the cell membrane

via the action of ACE-2 receptor binding and TMPRSS2 cleavage of the spike protein. Omi-

cron instead favours an endosomal route of entry whereby the viral particle binds to the cell

using ACE-2 and is enveloped by endocytosis into the cell. Cleavage of the spike protein then

occurs via the action of Cathepsin L, which allows for the release of the viral RNA into the

cytoplasm of the now-infected cell [56, 57].

Signature transitions from Signature 1 to Signature 2 changes occur from December 2020

onwards in the global dataset and appears consistently in the VOC and continent-defined sub-

sets around this time point as well. Alpha underwent a major shift to Signature 2 mutations

early in its time as a VOC, although Signature 1 returned as the predominant set of changes

towards the end of its wave of infections. The non-VOC subset appears to be the least impacted
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by Signature 2 changes. However, this can mostly be explained by the number of non-VOC

sequences quickly declining after the emergence of the VOC lineages. Delta underwent a dra-

matic increase in Signature 2 and Signature 3 exposure from July 2021, with Signature 2

becoming the predominant signature towards the end of Deltas wave. Signature 2 changes

continue into Omicrons introduction, although it does decrease after the initial BA.1 wave

from December 2021 to March 2022. It seems clear that while Signature 1 mutations have

dominated in contributing to the evolutionary capacity of SARS-CoV-2 throughout the pan-

demic, this mutational environment is beginning to change. Such shifts in mutational pro-

cesses are potentially evidence of changing interactions between the viruses and the immune

systems of the hosts they circulate within. For example, changes in population-level immunity

via vaccination or previous infections may influence the mutations that we observe in the data.

Changing mutational process activity in consensus sequences from infections is unlikely to

fully reflect the true activity of each process, but they are likely to show which processes are

contributing mutations that eventually make it into circulating viruses.

All variants of concern we assessed show predominantly non-synonymous mutations and

all mutational signatures are associated with more non-synonymous than synonymous

changes. More synonymous substitutions in the lineage references were found in ORF1a/b,

which is expected due to it being the longest ORF. However, this pattern is not observed with

non-synonymous mutations as these are mainly located in the spike protein (Fig 6C and 6D).

This is consistent with spike being under intense immune pressure since it is the main glyco-

protein for SARS-CoV-2. As such, spike must change in order to escape the host immune

response, while maintaining its main function of binding and entry into host cells. Signature 1

changes are the predominant source of mutations in all SARS-CoV-2 VOCs that we analysed,

followed by unattributed mutations, Signature 2 changes and Signature 3 changes. Signature 3

changes were unlikely to be synonymous mutations with only Beta, Gamma and Delta con-

taining very few such changes (Fig 6D). This is also reflected in the global synonymous/non-

synonymous exposures where Signature 3 appears completely inactive in the synonymous

mutation subset (Fig 6A). Signature 2 exposure appears the most likely to be synonymous

mutations (Fig 6A) but this does not seem to be observed in the VOC lineages where most Sig-

nature 2 changes are non-synonymous mutations (Fig 6B).

In conclusion, mutational signature analysis reveals important processes contributing to

SARS-CoV-2 genetic variation and serves as a tool to track the dominant changes over time

and to generate hypotheses about the main mechanistic processes in play. Specifically, host

antiviral molecules as opposed to replication errors appear to be a the main generator of muta-

tions (confirming earlier computational studies), a result that requires experimental confirma-

tion. Despite limitations in potential biases, our findings contribute to a better understanding

of the complex dynamics driving the evolution of SARS-CoV-2 and the emergence of VOCs.

Methods

Data

The findings of this study are based on metadata associated with 13,281,213 sequences avail-

able on GISAID up to October 26, 2022 and accessible at doi.org/10.55876/gis8.221201qs.

Sequences were filtered to remove records from non-human hosts, with lengths less than

20,000 nucleotides, non-assigned lineages, with greater than 30% unknown bases, sequences

reported to be collected before 24/12/2019 and those with excessive mutations/deletions. The

cutoff for filtering out hypermutated sequences was 175 mutations in coding regions or more

than 69 different deletions, the cutoffs were manually determined after evaluation of the
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mutation/deletion distribution and selecting the point where sequence counts were consis-

tently observed in single digits, this resulted in 1,852 sequences being filtered out.

Publicly available daily SARS-CoV-2 cases, tests performed and total vaccinations per capita

were obtained from OWID [58] in September 2022. Prior to February 2023, the OWID data

was piped from the Johns Hopkins University COVID-19 dashboard [33, 59]. Country-level

government stringency indices were downloaded from OxCGRT [60]. Government stringency

indices are composed of nine indicators: school closure, workplace closure, cancellation of

public events, stay at home order, public information campaigns, restrictions on public gather-

ings, public transport, internal movement and international travel. The index on a given day

ranges from 0 to 100 and is calculated as the mean of the nine indicators, with higher indices

indicating stricter regulations. If responses vary at sub-national levels, the index at the strictest

level is used [60].

Wastewater findings are based on metadata associated with 1,343 sequences available on

GISAID and accessible at doi.org/10.55876/gis8.230406qg. Wastewater sequences were down-

loaded from the ‘wastewater data’ section of GISAID in December 2022.

Sequences for immunocompromised individuals were downloaded from GISAID in

November 2022. Analysis of this was based on the metadata associated with 34 sequences avail-

able on GISAID and accessible at doi.org/10.55876/gis8.230406fb. Sequences were chosen

based on the known list of sequences used in [30]. Sequences were aligned to the COVID refer-

ence genome before use.

Design

Predictors of SARS-CoV-2 reported cases were explored using a linear model at both country

and continent levels. We collected continuous dependent variables reported on a daily basis.

These were classified into two groups: (i) public health measures (government stringency, test-

ing capacity and vaccination), (ii) viral properties (diversity and fitness). We examined the

data for completeness of predictive variables. In instances of missing vaccination data, we

interpreted this as no vaccinations having been given. This was a reasonable assumption for

periods prior to the vaccine rollouts in the respective countries. With the exception of vaccina-

tions, variables with less than 70% of the countries reporting data were not included. The num-

ber of SARS-CoV-2 diagnostic tests performed was excluded as a predictor due to missing

data. We determined the previous burden by summing the adjusted new cases per capita over

the past 90 days. Prior infection significantly reduces the risk of a subsequent infection, with a

reduction in risk of up to 95% in the initial three months [61]. This was included as a predictor

variable in the linear model.

Amino acid substitutions were defined against the Wuhan-Hu-1 sequence. Building on

findings from Obermeyer et al., we extracted a list of previously identified fitness-associated

mutations [62]. Each fit mutation within a sequence was counted and the counts were normal-

ized to the number of sequences per geographical location. Virus fitness was therefore defined

as the sum of the frequencies of previously identified [62] amino acid substitutions that

increase SARS-CoV-2 fitness divided by the sum of total genomes and the log of total muta-

tions per location.

Virus Fitness ¼
weekly sum of fit mutations

total seqs per week þ logðtotal mutations per weekÞ

Diversity was calculated by dividing distinct lineages by the total number of genomes in a

given week. Sequences reported in GISAID were assumed to be representative of the diversity

of infections for that continent/country.
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Linear model

We employed a linear regression model, described by Heo et al. [63], to adjust reported cases

per country using the Human Development Index (HDI), which encompasses not just eco-

nomic growth but also reflects a country’s capacity for per capita testing. Countries with higher

HDI levels, typically high-income nations, conducted more tests per million people, often lead-

ing to more confirmed cases compared to nations with lower HDI levels. Adjusted daily cases

were smoothed using a 14-days rolling average to limit possible noise and identify simplified

changes over time. For continent-level analysis, data from all contributing countries was used

to fit the linear model. To ensure that countries with a large number of cases didn’t artificially

inflate the results, each country’s influence on the continent-level OxCGRT index was adjusted

based on its percent contribution to the continent’s 14-day average daily case tally.

Pearson’s correlation was used to test for correlation among the variables. Multiple linear

regression was fitted to evaluate the relationship between infection rate (adjusted daily cases

per capita) as the outcome and the public health measures and viral properties as predictors

within the different continents. The regression models were fitted on data from 01 April 2020

onwards, as (sequence) data addition remained stable after this. The country-level analysis was

carried out for countries with less than 50 days of missing genome data using a similar

approach.

Pandemic plots

Case numbers and sequence data were aggregated by their respective continents, a 14-day roll-

ing average was used to smooth out daily infection rates and categorical variables were sum-

marised by counts. Proportions of lineages were calculated in 14-days bins and the most

common lineages were visualised per continent.

Tree-based referencing

The rapid evolution of SARS-CoV-2 means that the majority of viral sequences are distinct

from the early pandemic reference genome Wuhan-Hu-1 [64]. Continuing to count mutations

against the early reference sequence can result in mutations being allocated the wrong substi-

tution category (i.e., A!T instead of a C!T) where sites have mutated multiple times. Azgari

et al. [35] tackled this issue by building a tree of clustered sequences to remove ancestral muta-

tions. However, we utilise the available SARS-CoV-2 tree generated as part of the Pango [8]

nomenclature to generate a reference sequence for each defined lineage. This means that

sequences from the lineage B.1 are compared against a generated reference sequence for the B

lineage rather than the Wuhan-1 sequence (See S3 Fig for diagrammatic description).

One reference sequence was generated for each of the Pango lineages in the alignment. A

nucleotide was included in the generated Pango reference if it exceeded a frequency threshold

of greater than 75% of the samples from the lineage. If this threshold was not reached, the ref-

erence nucleotide of the nearest parental lineage was used (i.e., if a mutation in B.1 is ambigu-

ous, the nucleotide from the B lineage reference at that position is used). Building intermediate

references also meant that counting inherited mutations could be avoided. Since mutations

were identified relative to their nearest parental Pango lineage, inherited mutations are not

counted because, relative to this sequence, there hasn’t been a mutation. Mutations are also

only counted once per lineage set of sequences so that mutations that are observed many times

due spread of the virus rather than acquisition by a mutational process are not over-counted.

This means that convergent amino acid substitutions can be observed between lineage sets,

although they may be undercounted within a lineage. However, this is necessary since it is very

difficult to identify convergence within similar sequences (especially at a global scale).
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Overcounting of the mutations results in mutational signatures that reflect the circulating pre-

dominant lineages rather than the mutational processes producing the mutations in those

lineages.

Pseudo-sampling

Mutations were binned into categories composed of their substitution type (e.g., cytosine!

thymine = CT) and their mutation context. The mutation context is the mutated base and

the nucleotides at the 5’ and 3’ positions of the mutated base. There are a total of 192 types

of substitution-context matchings that can appear (12 possible single nucleotide changes x

four possible nucleotide 5’ x four possible nucleotide 3’). Every sequence produces a single

count vector of mutation category counts, with the total count matrix becoming the muta-

tional catalogue of the virus. On average, a single SARS-CoV-2 genome sequence has very

few new mutations. As extracting mutational signatures when mutation counts are low is

unlikely to produce meaningful results, we define each sample as a time-point (all of the

sequences collected in an epidemic week) and decompose signatures from the counts at

each time-point rather than from each sequence. This shrinks the mutational catalogue of

the virus from millions of samples down to less than 200 samples, one for each Epidemic

Week.

Non-negative matrix factorisation

NMF (non-negative matrix factorisation) [65, 66] was used to split the mutational catalogue

into two sub-matrices. One matrix represents the mutational signatures, the other matrix rep-

resents the exposure of the signatures. These matrices were used to reconstruct the original

mutational catalogue with some degree of error. To verify the validity of the identified signa-

tures, NMF was performed 100 times for each value of N, with N representing the number of

signatures to extract from the mutational catalogue. For this analysis, N was set to 2, . . ., 10.

For each NMF run, a new mutational catalogue was generated using bootstrap re-sampling of

the original matrix and removal of any mutational categories that did not account for more

than 0.5% of mutations. Mutational categories are pseudo-sampled down into epidemic week

matrices that NMF was run on. The signatures were then clustered together using K-means

clustering, with the cluster means forming the new signatures. Clusters were then assessed

using the silhouette score to determine the clustering quality. Clusters with high silhouette

scores are well separated from other clusters and are dense and well-formed. Cosine similarity

was used to determine if the signature was reliably extracted from the cluster. The cosine simi-

larity was calculated between signatures extracted from the whole mutational catalogue and

the cluster means of the signature clusters. A higher cosine similarity indicates that the cluster

mean shows a similar pattern to the initial mutational signature. Following the best practices

in Islam et al. [66], an N value of three was selected due to the reduction of the reconstruction

error plateauing around three and the marked decrease in silhouette score for signatures

greater than 3. The average cosine similarity between signatures and clusters was consistently

above 0.95 for each cluster and had an average of 0.98 for all three clusters when clustering was

repeated 100 times. Silhouette scores for each cluster were above 0.95, suggesting excellent sep-

aration and density of clusters (S5 Table and S9 Fig). Signatures can therefore be reliably

extracted from the bootstrapped catalogues, are robust and thus are unlikely to be artefacts.

Counts of mutations were normalised by the tri-mer composition of the SARS-CoV-2 refer-

ence sequence (dividing the counts by the number of contexts in the reference sequence).

Composition biased versions of the signatures were then produced by rescaling the signatures

using tri-mer composition.
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Non-negative least squares regression

A non-negative least squares (NNLS) Regression was used to produce positive exposure

weights for each of the signatures in each of the datasets. The non-negativity of the regression

ensures that the weights of the signatures continue to represent an additive process. The NNLS

weights can then represent the exposures of the signatures on each dataset.

Consensus lineage and continent signatures

Mutational catalogues were constructed for each continent and each of the Variant of Concern

(VOC) lineages (Alpha, Beta, Gamma, Delta and Omicron). The global signatures were then

used to extract exposures for each of the mutational catalogues to determine how processes

varied between each mutational catalogue subset. VOC sequence sets were filtered so that

weeks with fewer than 100 sequences were excluded.

Supporting information

S1 Fig. Country-level SARS-CoV-2 lineage dynamics. Solid bars show the biweekly propor-

tions of the common lineages. Bars are coloured by lineage and white space shows the propor-

tion of sequences from other lineages. The countries included in this analysis is based on

temporal data completeness.

(TIF)

S2 Fig. Model-fitting of country-level SARS-CoV-2 reported cases. Black solid lines show a

14-day rolling average of adjusted SARS-CoV-2 cases. Pink solid lines show fitted mean

response values of infection rates with predictor values as input and grey shaded areas high-

light the confidence intervals. The countries included in this analysis is based on temporal data

completeness.

(TIF)

S3 Fig. Diagrammatic depiction of how tree-based referencing works. Each Pango lineage

has a reference generated for it. Arrows show which sequences use which reference sequence,

with the arrow tip indicating the reference. For example, sequences from the B.1 lineage are

compared against the reference for the B lineage so that B.1 lineage-defining mutations can be

counted.

(TIF)

S4 Fig. Graphical description of the methods for NMF extraction of mutational signatures.

For every value of N signatures, the mutational signatures are extracted 100 times for boot-

straped and pseudo-sampled datasets. Once this has been completed, signatures are clustered

into N clusters and the stability and density of those clusters are evaluated using the silhouette

score. Signatures that have silhouette scores above 0.95 are evaluated as stable signatures. The

cluster means become the extracted signatures. The best set of N signatures is selected by pick-

ing the value of N that best minimises the reconstruction error and has the best silhouette score

(with a minimum of 0.95). A further evaluation is the cosine similarity of the clustered signa-

ture means with the signatures extracted by completing NMF on the original pseudo-sampled

dataset. Again, signatures must have a cosine similarity of at least 0.95 to be considered.

(TIF)

S5 Fig. Non-normalised mutational signatures for SARS-CoV-2. Signatures were extracted

using normalised counts calculated by dividing the mutation counts by the count of the tri-

nucleotide context of the mutation context (Fig 4). These signatures were then multiplied

post-analysis by the tri-nucleotide composition of the reference sequence to produce the non-
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normalised signatures shown here.

(TIF)

S6 Fig. Counts of unique substitutions per week of the pandemic. Areas are coloured by

substitution category.

(TIF)

S7 Fig. Counts of unique substitutions per week of the pandemic for each VOC category.

Areas are coloured by substitution category.

(TIF)

S8 Fig. Counts of unique substitutions per week of the pandemic for each continent cate-

gory. Areas are coloured by substitution category.

(TIF)

S9 Fig. Signature evaluation metrics. The number of signatures was selected at N = 3 since

this produced an “elbow” for the reconstruction error while having a suitable silhouette score

greater than 0.95.

(TIF)

S1 Table. Proportion of common lineages/variants globally.

(XLSX)

S2 Table. Correlation between infection rate and predictor variables across different conti-

nents.

(XLSX)

S3 Table. Effect of public health measures (government stringency and vaccination) and

viral properties (diversity and fitness) on infection rates at continent level.

(XLSX)

S4 Table. Effect of public health measures (government stringency and vaccination) and

viral properties (diversity and fitness) on infection rates at national levels.

(XLSX)

S5 Table. Evaluation Results for Signature with N = 3.

(XLSX)
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