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A B S T R A C T   

Overcurrent cycling refers to the procedure of imposing repetitive overcurrent to superconducting tapes/devices 
for characterizing their critical current reduction. Characterizing the overcurrent cycling behaviour of Rare Earth 
Barium Copper Oxide (ReBCO) tapes is a crucial step in the design process of High Temperature Superconducting 
(HTS) devices. Multiple overcurrent incidents during the operation of an HTS device can significantly decrease 
the total critical current, leading to potential quenches and failures. Data-driven models have been proposed in 
the literature to estimate the Critical Current Degradation Rate (CCDR) of ReBCO tapes under multiple over-
current scenarios. However, these methods have exhibited notable errors in the range of 8%–11%, in the esti-
mation of the critical current reduction. This paper proposed methods based on Artificial Intelligence (AI) 
techniques aimed at the challenges of conventional methods of CCDR estimation. Different AI-based techniques 
were proposed, tested, and compared to show the effectiveness of the proposed intelligent approach, including 
Support Vector Regression (SVR), Decision Tree (DT), Radial Basis Function (RBF), and Fuzzy Inference System 
(FIS). Experimental data on critical current values of ReBCO tapes subjected to multiple and repetitive over-
current cycles were employed for this investigation. The results demonstrated that the Mean Relative Error 
(MRE) of the SVR method is 23%, for the DT model is approximately 0.61%, the MRE of the FIS model is well 
above 0.06%, and the MRE value for the RBF method is about 1.1 × 10− 6%. Moreover, the proposed AI models 
offer fast test times, ranging from 1 to 11 ms. These findings highlighted the potential of using AI techniques to 
enhance the estimation accuracy of the risks associated with overcurrent events.   

1. Introduction 

To reduce the increase rate of Earth’s bulk temperature, many 
countries, including the United Kingdom (UK), are participating in the 
decarbonization programs. The energy and transportation sectors are 
two major industries responsible for high amount of greenhouse gases by 
combusting fossil fuels in conventional power plants and propulsion 
systems of transportation units. To reduce the carbon footprint, elec-
trical power generation through renewable energy resources and fusion 
plants together with electrification of the transportation units are pro-
posed [1]. Here, the main challenge is that conventional electrical de-
vices have high losses, low power densities, high weights, and large sizes 
that make them too bulky and expensive for energy and transportation 
sectors. To tackle these issues, High Temperature Superconducting 
(HTS) materials have been proposed, where they increase the power 
density of electrical devices and reduce energy losses, while they have 

an environmentally friendly nature [2,3]. Thus, HTS devices, consisting 
of Coated Conductors (CCs) based on Rare-earth Barium Copper Oxides 
(ReBCO), will become promising solutions in electrical power systems 
and stand-alone electrical grids of ships, trains, and aircraft, in future. 

Overcurrent cycling, overheating cycling, and mechanical overload 
cycling are factors that reduce the expected life of HTS devices by 
reducing the overall critical current of CCs. Many efforts have been 
made to characterize the critical current of HTS tapes, under different 
electrical [4–7], thermal [8], and mechanical overloads [9–12]. In this 
regard, overcurrent cycling is referred to 5x-20x current increase of the 
HTS device that lasts for 15 cycles or more [13,14]. Although Over-
current incidents are inevitable, they are highly likely to significantly 
diminish the Average Critical Current (ACC) of ReBCO tapes/wires, 
thereby increasing losses, generating local heating, causing hotspots, 
and essentially impacting the Remaining Useful Life (RUL) of HTS de-
vices. Indeed, by the occurrence of overcurrent events, the ACC of a 
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superconductor starts to reduce due to thermal stresses on the super-
conducting layer. Finally, the CC would be damaged after multiple times 
of overcurrent events and ACC would be reduced so that the safety and 
stability of HTS devices are jeopardized. This phenomenon arises from 
the reduction of ACC within an HTS tape, which can trigger premature 
quenching, and ultimately result in HTS device failure. 

To avoid any failures and malfunctions in HTS devices, studying the 
Critical Current Degradation Rate (CCDR) after overcurrent is critically 
important. It is pivotal to estimate the remaining number of overcurrent 
cycles that an HTS device can handle without ACC degradation in a safe 
range where the operation of the device is not jeopardized. In this 
manner, important parameters of CCDR testing are the magnitude and 
frequency of overcurrent, operational temperature of HTS tape, initial 
critical current of the HTS tape, and geometrical/physical properties of 
HTS tapes. In Ref. [15], an experimental effort has been conducted on 
the overcurrent characteristic of nine ReBCO samples. The imposed 
overcurrent is a 50 Hz AC with three different amplitudes which are 
namely, 200 A, 300 A, and 400 A with different times ranging from 100 
ms to 400 ms. Another experimental study has been performed by 
Ref. [16] to investigate the impact of tape structure on the CCDR after 
overcurrent. The thickness of the stabilizer layer was changed while the 
approximate amplitude of overcurrent is 900 A which lasts for 80 ms. In 
Ref. [17], a 3D Finite Element Model (FEM) is developed to study the 
thermal impact of overcurrent on CCDR. The amplitude of overcurrent 
in this varied from 250 A to 340 A while the initial value of critical 
current was about 120 A. A numerical model is proposed in Ref. [18], to 
investigate the CCDR caused by overcurrent and mechanical over-
loading. The imposed overcurrent varies from 220 A to 240 A which is 
injected into the tapes in the form of pulsed current. An experimentally 
validated model is proposed in Ref. [19] that investigates the impact of 
lightning overcurrent on the CCDR of the ReBCO tapes. The amplitude of 
the overcurrent is 30 kA while the duration is 0.4 μs. Two data-driven 
models, the Life Prediction Model (LPM) and the Similarity-Based 
Method (SBM), are used in Ref. [7], to estimate the CCDR in ReBCO 
tapes, caused by overcurrent. In this regard, initially, experimental tests 
on 4.4 mm wide, 200 μm thick HTS have been conducted [7]. The 
samples of this reference are 20 copper-encapsulated second-generation 
YBCO tapes. Different samples were cut from the same reel of YBCO tape 
sequentially to make sure that the CCDR processes of these samples, 
under overcurrent, are as similar as possible. However, YBCO tapes have 
cracks through their length at the initial state due to mechanical cutting. 
That results in different CCDR characteristics in different samples. 
Another difference between different samples is that the manufacturing 
process makes it impossible for the thickness of the superconducting 
layer to be completely uniform in all areas of the reel [7]. Then, the data 
are fed into the models to characterize the CCDR of different samples. 
Here, despite the alignment of estimated values with measured data 
trends, the Mean Relative Error (MRE) exceeds 8% at minimum. It 
should be improved to be able to satisfy the requirements of engineers 
and manufacturers during the design of HTS devices. Besides, mathe-
matical data-driven models consider the trend of data and fit themselves 
with this trend. It demands a novel method that not only fits with the 
trend of data but also analyses the data individually to increase the 
accuracy and adaptability of the CCDR estimation. In other terms, unlike 
the fitting methods that just consider the trend of data, models are 
needed to not only consider the trend in data but also consider the 
changes of each data individually to increase the accuracy and adapt-
ability. Efforts should be taken to address the gap in accurate and 
adaptable estimation methods of CCDR that simultaneously consider the 
trend of data and the data individuality. 

In this paper, novel approaches based on Artificial intelligence (AI) 
techniques are proposed for estimating the CCDR during multiple 
overcurrent cycles. For this purpose, support vector machines, decision 
trees, fuzzy interference systems, and radial basis networks have been 
used. The data used for these methods are experimental data that have 
been reported in the literature. Results have shown that the proposed AI- 

based methods have a mean relative error of lower than 1%, for the 
optimum hyperparameters. For the selection of the hyperparameters, a 
sensitivity analysis has been conducted to ensure that the reported 
hyperparameters result in the highest accuracy of the proposed models. 
It should be noted that hyperparameters are parameters related to the 
structure of the AI-based models that are set before the learning process 
begins. Hyperparameters can be tuned and would directly affect how 
well an AI-based model trains and learns the trend of the data. 

2. Intelligent modelling methodology 

To predict the CCDR of the HTS CCs, intelligent methods are proper 
choices for predictive and real-time estimation in electric transportation 
units. This is critically important to be done by accurate and fast tech-
niques to increase the safety and reliability of the electric system. For 
such purposes, accuracy and speed play important roles in offering 
highly accurate, fast response time, and adaptability for estimation of 
the critical current reduction rate, after the fault is cleared in the power 
system [20–24]. 

2.1. Decision tree model 

Decision Tree (DT) is one of the machine learning methods that is 
used for classification, regression, and prediction of complex systems 
characterisation [25,26]. It is a visual representation of a series of de-
cisions made based on features that help predict the target variable’s 
outcome. DT has a hierarchical-like structure that is initiated from a root 
node starts branching out towards the internal nodes and ends up with a 
leaf node, just like a tree. In this context, the root node is the raw data set 
before any decision-making happens. The internal node is a point where 
the decision-making procedure happens based on the features of the 
data. A leaf node is also defined as the final output of the DT model that 
could be used/updated for data estimation/prediction. The goal of 
DT-based models is to form splits that end up with homogenous data 
subsets. In other words, at each decision point, an “if” condition is 
established, and depending on whether the answer is true or false, 
another condition is introduced at the subsequent level of the DT to 
refine the set of common features. This process continues until a final 
decision, pinpointing a specific category, is reached where the data are 
completely pure, the discussion about the meaning of data im/purity 
will be conducted later in this section. In general, this method starts with 
choosing the features and thresholds that could separate data, so that 
they are in the best split. The best split is achieved by minimization of 
error criteria, such as mean squared error. As stated before, the DT starts 
with a root node and then, at the first stage, the whole dataset is divided 
into two subclasses, based on features. Again, based on the features and 
homogeneity in each of the subsets, the previous splitting procedure is 
repeated to further the separation of subclasses and increase the ho-
mogeneity of the resulting subsets. This continues until the stoppage 
criteria are met which could be the maximum number of levels. At this 
stage, which is known as the leaf node, no further splitting happens and 
the highest possible homogeneity for data is achieved. Finally, each 
branch of the level has its properties and features, and new test data 
could be injected for test/prediction purposes. More information about 
this method can be found in Refs. [27–30]. 

A schematic of a DT, in Fig. 1, is made to illustrate how a Correct 
Decision (CD) is chosen among all other possible decisions. DT uses a 
tree-like behaviour to calculate the possible consequences, probable 
chance of a specific event, etc. In DT, after preprocessing of data, and 
based on inputs fed into the DT model, a decision is made at the first 
level to separate the data into homogenous subsets concerning target 
values. Then, in the next level, subsets are re-split into more subsets 
based on the input data, in each decision-making level. This procedure 
goes on until stoppage criteria are met which could be a maximum 
number of levels or maximum depth. 

Splitting measures are the most important steps toward a high- 
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accuracy estimation/classification based on input data. Splitting is 
conducted through a decision-making process based on a set of hierar-
chical if-else conditions. DT starts with an original set (S) as a root node 
which is the whole data set at the beginning. In each iteration, it cal-
culates the Entropy (E), Information Gain (IG), and Gini Index (GI) for 
each dataset where in each iteration, it selects the data with the highest 
E and lowest IG. It should be noted that iteration is a fundamental 
process that is used in the learning stage of AI-based models. It involves 
the repetitive execution of specific procedures to improve a system’s 
performance and accuracy. In this context, E is defined as the amount of 
information required to accurately describe data characteristics. Thus, 
the homogeneity of data that means that all elements are similar, E is 0, 
and the data is pure. Else if data is inhomogeneous E is higher than 0 and 
moves towards 1, in other terms data is impure. Therefore, E is one of the 
measures used for the classification of data based on their purity, as it is 
calculated in equations (1) and (2). Then, there is another measure for 
data impurity which is known as GI. Same as entropy, GI has a value 
between 0 and 1, where 0 means pure samples while 1 shows the total 
inequality among the data elements. GI is also calculated in equation (3) 
[31]. Finally, there is IG which is defined as a measure that helps to 
decide the most informative feature to split the data at each node of the 
tree. The aim of this is to select the feature that separates the data into 
different classes or reduces the E, with the best performance. IG is 
determined in equation (4) [31]. Now let’s see how these measures help 
the decision-making process. 

The role of IG in the decision-making process is to quantify the 
impact of a designated feature for the reduction of E in the data set. In 
other words, by determining the IG, E difference before and after the 
split is determined. Therefore, a higher IG results in more pure/ho-
mogenous data after the split, so the decision-making should be con-
ducted towards the highest value for IG. On the other hand, the role of GI 
is to measure the quality of the “split” as a procedure not the quality/ 
purity of data after the split. In this context, for decision-making, the 
lower value of GI has the higher priority. Finally, there is E which is used 
to calculate the homogeneity of a data set in subsets created by different 
splits. As stated, DT is more of an “if-else” procedure that is updated 
based on the updated information of data [31]. In this regard, “attri-
butes” is defined as a piece of information that is used to determine the 
properties of a field or tag in a database. 

E(s)=
∑c

i=1
− pi log2pi (1)  

E(T,X)=
∑

c∈X
P(c)E(c) (2)  

GI = 1 −
∑c

i=1
(pi)

2 (3)  

IG(T ,X)=E(T) − E(T,X) (4)  

where, pi is the probability of an event i of state S or percentage of class i 
in a node of state S, T is the current state, and X selected attribute. 

2.2. Fuzzy interference system model 

Fuzzy logic, rooted in human logic and the consideration of partial 
truths, is the main idea behind the Fuzzy Inference Systems (FIS) [32]. 
FIS employs a set of fuzzy conditional rules (if-then conditions) to 
recognize the characteristics of a phenomenon. When designing a fuzzy 
system, the extraction of effective rules and the selection of efficient 
membership functions are of paramount importance. It should be 
mentioned that in fuzzy logic, the concept of membership is defined as 
the degree or extent to which data belongs to a specific set or group. 
Unlike classical logic, where an element either completely belongs or 
does not belong to a set or group. This is because errors in these choices 
can significantly impact system performance. In simpler cases, rule and 
function selection is often done through trial and error. However, for 
complex problems, this process becomes very challenging and 
time-consuming when implemented on regular personal computers 
[33]. The operation basic of FIS-based models is fuzzy sets, where each 
data point has a degree of membership functions. Here, the degree of 
membership function shows the degree to which an input value belongs 
to a particular cluster. In other words, it maps each input to a cluster by 
considering its membership function value. For instance, consider that 
three clusters exist, cluster A, cluster B, and cluster C. For each cluster, a 
data point has membership function values of 0.2, 0.8, and 0.0, 
respectively. This means that the considered data point probably be-
longs to cluster A, otherwise it belongs to cluster B, and is never part of 
cluster C. The degree of membership function is a number varying from 
0 to 1. Equation (5) shows the membership function μB(x) of dataset B 
for input data of X [34]: 

B{x, μB(x) | x∈X} (5) 

Usually, triangular, trapezoidal, Gaussian and generalized bell- 
shaped membership functions are considered for FIS modelling. Fig. 2 
shows these membership functions plotted versus X, where X is the input 
of the Fuzzy interference model. 

Fuzzy logic starts with an input, converts it into a fuzzy representa-
tion, and subsequently directs it to a FIS. Within the FIS, it associates 
fuzzy input categories with fuzzy output categories by integrating rules 
from the fuzzy rule base, ultimately yielding a clear-cut output through 
defuzzification. Numerous inference systems are at one’s disposal; 
however, for crucial current parameterization tasks, the Sugeno infer-
ence system is favoured due to its high computational efficiency. 
Equation (6) representing a Sugeno inference rule is presented below 
[34]: 

If Input 1= x and Input 2 = y, then Output is z = αx + βy + κ (6) 

It should be noted that “z” is the output of the fuzzified stage of the 
FIS-based model which is a combination of different inputs x and y. 

Fig. 1. A schematic of the DT method.  
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In a FIS, the logical operator of “and “ is to be presented by equation 
(7) [35]. 

X AND Y=min(X,Y) (7)  

Also, in a FIS, the logical operator of “or ” is to be presented by equation 
(8) [35]: 

X OR Y=max(X,Y) (8) 

In equation (7), the “AND” involves considering the minimum of the 
membership values of two or more fuzzy sets or propositions to deter-
mine their intersection. For instance, let’s assume that two fuzzy sets are 
available: “tall” and “young.” If one aims to find the intersection of “tall” 
AND “young” of a person, the minimum of the membership values of 
“tall” and “young” should be considered to determine their combined 
membership value. This represents how much a person simultaneously 
belongs to both the “tall” set and the “young” set. In equation (8), the 
“OR” operation consists of considering the maximum of the membership 
values for two or more fuzzy sets to determine their union. Again, 
considering the same “tall” and “young” concept, if one aims to find the 
union of “tall” OR “young”, the maximum of the membership values of 
“tall” and “young” must be considered to determine their combined 
membership value. This represents how much a person belongs to either 
the “tall” set the “young” set, or both. 

To be used in a fuzzy logic model, the data must fall within one of the 

membership functions. These membership functions represent clusters. 
Each cluster signifies the category to which the input data belongs, and 
the FIS generates an output accordingly. Essentially, clustering involves 
the grouping of similar data [34]. The clustering techniques employed in 
this context include grid partition clustering, fuzzy C-means clustering 
and the subtractive clustering method (SCM) which are the most com-
mon clustering techniques in literature and are formulated in Ref. [36]. 
Fig. 3 shows an overview of an FIS considering different parts. More 
information regarding the fuzzy logic method can be found in Refs. 
[37–40]. 

In general, estimating the outputs by using inputs through FIS could 
be concluded as the following steps:  

• Fuzzification: changing the crisp/numerical input data into fuzzy 
sets using linguistic variables and membership functions.  

• Fuzzy rule designation: considering fuzzy rule sets so that they relate 
input variables to output variables. These rules typically follow an 
“IF-THEN” structure and capture expert knowledge or system 
behaviour.  

• Fuzzy inference: This step includes the application of fuzzy logic 
operations such as fuzzy “OR” and fuzzy “AND” by using the defined 
rules and the membership values of input variables to determine the 
degree of support of each rule.  

• Aggregation: Combine the activated rules using methods like max, 
min, or weighted average to obtain an aggregated fuzzy output.  

• Defuzzification: Convert the aggregated fuzzy output into a crisp 
value or decision. 

2.3. Support vector regressor model 

Support vectors are a well-known family of machine learning algo-
rithms, which is used for both classification (Support Vector Machine, 
SVM) and regression (Support Vector Regression, SVR) problems. The 
generalization ability to handle many types of datasets (even the highly 
non-linear problems) with high accuracy makes it a popular method 
among researchers. To reach this, the support vector aims to find a hy-
perplane in the higher dimensional transformed data that has a 
maximum margin and a minimum error. Ideally, the margin is defined as 
the region near the hyperplane where there should not be any data 
points. Therefore, a tolerance (ϵ) value for error must be considered to 
leave these points remaining in the margin which are known as support 
vectors. Support vectors have a direct influence on the orientation and 
position of the hyperplane and the boundaries. A general presentation of 
SVR methods is shown in Fig. 4. More details and considerations about 
SVR can be found in Refs. [41–43]. 

The non-linear data can be represented by a fitting equation which is 
formulated by SVR as equation (9) [44]: 

f (x)=wvφ(x) + b (9)  

where, w is the weight fand actor, φ is the function that SVR uses to 
generate data in high-dimensional space using the input data to reach a 

Fig. 2. Membership functions of the FIS-based estimation techniques.  

Fig. 3. A schematic of an FIS-based model.  
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better relation between variables and therefore, reduce the error. Also, 
the SVR algorithm tries to use the training dataset and minimize the 
following equation to find the best model with the lowest inaccuracies, 
as shown in equations (10) and (11) [45]: 

Minimize equation :

[
||w||2

2
+C

(

vϵ+
1
M
∑M

i=1

(
ζi, ζ∗

i

)
)]

(10)  

subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (xi) − si ≤ ϵ + ζ∗
i , i = 1, 2, 3,…

si − f (xi) ≤ ϵ + ζi, i = 1, 2, 3,…
ζi, ζ∗

i ≥ 0, i = 1, 2, 3,…
ϵ ≥ 0, i = 1, 2, 3,…

(11)  

where, ||w||
2

2 is the regularization factor, C is cost function for model’s 
smoothness balancing and ϵ is loss function, v is a controller between 
0 and 1 to control the number of support vectors, ζi, ζ∗i are non-negative 
slack parameters, and M is the number of observations of the training 
dataset [45]. 

In this method, the kernel function plays a vital role in Support 
Vector Regression (SVR). It enables SVR to handle non-linear relation-
ships by changing the data into a more complex space, making it 
possible for a linear model to grasp intricate patterns. By considering 
k(xi, xi) = φ(x)φ(x) as kernel function, equation (9) can be rewritten as 
equation (12): 

f (x)=
∑M

j=1

(
ζ − ζ∗

i

)
k(xi, xi)+ b (12) 

It should be mentioned that the kernel function in the SVR algorithm 
is used for implicitly mapping the input data points into a higher- 
dimensional feature space. By doing this, the SVR algorithm can find a 
linear regression model that separates the data points with a maximal 
margin while minimizing prediction error tolerance. 

2.4. Radial basis network model 

Radial basis function neural network (RBFNN) is a type of feed- 
forward neural network (FFNN) which is used for regression prob-
lems. The most distinguishing difference between RBFNN and FFNN is 
their universal approximation and fast training speed. A typical RBFNN 
has three main layers including an input layer with the number of 
neurons equal to the number of input variables, a hidden layer with 
enough neurons and weight and bias factors to make a relation between 
the variables, and finally, an output layer to predict the target variables. 

In comparison, RBFNN uses a radial basis mathematical function in the 
hidden layer. Each RBF in the hidden layer calculates its activation by 
considering the distance between the input data and a specific centre 
point. Frequently, the radial basis function (RBF) has a form like the one, 
described in equation (13) [46]: 

φ(r)= exp
(

−
r2

2σ2

)

(13) 

In this context, the centre point represents the prototypes or cen-
troids in the input space around which the radial basis functions are 
cantered. Each centre point corresponds to a prototype or representative 
point in the input space. 

Where r represents the distance of predicted data and the cluster’s 
centre [47]. There are some ways to evaluate this distance. The method 
that is very common and has been used in this paper is Euclidean dis-
tance which r can be evaluated for jth neuron in the hidden layer using 
equation (14) [46]: 

the rj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
xi − wij

)2

√

(14)  

In this equation, x is the input vector and w is network’s centre vector. 
So, by a combination of these two equations, the final output of each 
neuron in the hidden layer can be calculated by using equation (15) 
[48]: 

sigmasφ(r)= exp

⎛

⎜
⎜
⎝ −

⃒
⃒
⃒
⃒
∑n

i=1

(
xi − wij

)2
⃒
⃒
⃒

2σ2

⎞

⎟
⎟
⎠ (15) 

By having the final output value of each neuron, RBFNN in each 
epoch/iteration aims to minimize the objective function shown in 
equation (16) [49]: 

E=
1
N
∑N

i=1

⃦
⃦yi − WT φ(r)

⃦
⃦2 (16)  

where, yi is the target value during the regression and is the weight that 
should be updated in each epoch to increase the accuracy of model. To 
update the weights in each iteration, a least squares method is used, as 
presented in equation (17) [49]: 

W =
(
ΦΦT)− 1ΦYT (17)  

where, Φ is the vector of the outputs and Y is the vector of target values. 
Indeed, it should be mentioned that epochs represent full passes through 
the entire training dataset, and iterations represent individual updates 
based on a batch of data within each epoch. Fig. 5 shows a RBFNN that 
consist of two inputs (X1 and X2), output layer, and two hidden layers. 

2.5. Performance indices 

An AI-based model needs to be evaluated by some indices during its 
training to ensure accuracy. These indices can help us to compare the 
accuracy of different sets in the sensitivity analysis. The indices that 
have been used in this paper are the common indices in the field of AI 
including Root-Mean-Square Error (RMSE), Pearson coefficient (R2 - to 
show the goodness of a fit), Mean Relative Error (MRE), and Mean Ac-
curacy (MAC). These indices are shown in equations (18)–(21) [20,50, 
51]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ns

k=1

(dk − yk)
2

ns

√

(18)  

Fig. 4. A general presentation of the SVR method, where X-axis refers to the 
input value of each data point while Y refers to the output value specified to 
each data point. 
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R2 =

∑ns
k=1(dk − d)(yk − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ns

k=1(dk − d)2∑ns
k=1(yk − y)2

√ (19)  

Mean Relative Error (MRE)=
(dk − yk)

yk
∗ 100 (20)  

Mean Accuracy (MAC)= 1 − Mean Relative Error (MRE) (21)  

3. Results and discussion 

This section presents information and properties of the samples, 
followed by a sensitivity analysis on the hyperparameters of AI-based 
models. The optimal structure of each AI model is compared, and their 
accuracy is evaluated against existing data-driven models from the 
literature, demonstrating superior performance of the proposed method 
in this study. 

3.1. Specification of the HTS tape and overcurrent testing flowchart 

The electrical and geometrical ReBCO tape is presented in Table 1, 
based on the experiments conducted in Ref. [7]. Seven copper encap-
sulated second-generation YBCO tape samples are cut from the tape of 

Table 1. These samples were obtained by sequentially cutting from the 
same YBCO tape reel to maintain consistency in their CCDR processes 
when subjected to overcurrent. However, at the initial stage, the YBCO 
tapes exhibit cracks along their length due to mechanical cutting, 
leading to varied CCDR characteristics among the samples. Additionally, 
the manufacturing process prevents the superconducting layer’s thick-
ness from being uniformly consistent across all parts of the reel. 

Fig. 6 shows the distribution of CCDR data of different samples after 
being experimentally tested under different overcurrent cycles, con-
ducted by Ref. [52]. Based on this reference, the test procedure for 
gaining the experimental results is as follows and shown in Fig. 7 where 
it also shows the test circuit of the experimental critical current acqui-
sition used by Ref. [52]:  

• After three times measuring the critical current of the CC, the mean 
value of three tests is considered as the initial value of critical 
current.  

• The next step would be conducting the overcurrent test. Here the 
overcurrent waveform is a 50 Hz, 480 A, and with a duration of 0.44 
s. This means that the imposed overcurrent approximately 5 times 
higher than critical current of samples [52].  

• After each three/two times repetition of the overcurrent test, the 
critical current of the CC is measured, and reported.  

• The final two steps are repeated until the ACC of the CCs reduces to 
be less than 3% of the initial values. 

Each of seven samples were tested for more than 10 times until 
finally, 3% threshold of CCDR was pass. Under each test, different 
overcurrent cycles have been applied to each sample. This resulted in 

Fig. 5. A general overview on RBFNN.  

Table 1 
The geometrical and electrical parameters of the studied ReBCO tape [7].  

Parameter Value Unit 

HTS tape width 4 mm 
ReBCO layer width 1 μm 
Average critical current 100–110 A 
Operational temperature 77 K 
Copper stabilizer thickness 2 × 50 μm 
Hastelloy substrate thickness 70 μm 
Silver shield thickness 2 μm 
Buffer layer thickness 0.2 μm  

Fig. 6. Experimental data of different samples undergone through different 
overcurrent cycle test. 

A. Sadeghi et al.                                                                                                                                                                                                                                 



Materials Today Physics 42 (2024) 101365

7

more than 70 data points to be used for AI-based model. By having these 
data, the next step is the implementation of AI-based models. This is 
done firstly through an investigation for selection of the hyper-
parameters for each model. In this regard, the inputs are the number of 
overcurrent cycles and sample number while the output is the CCDR in 
percentage. It should be mentioned that the term “samples” is referred to 
the different pieces of the same YBCO tape presented in Table 1. Since 
the critical current of YBCO tapes has variative characteristics through 
the length of the tape, the different pieces of the same HTS tape, would 
react differently under overcurrent events. As a result of this, one YBCO 
tape was used here for CCDR analysis in this paper, as well as the 
reference paper. 

3.2. Sensitivity analysis on hyperparameters of AI-based models 

Sensitivity analysis is a technique that is used to study how changes 
in hyperparameters affect the estimated outputs of an AI-based model. 
The main goal of such a study is to understand the relationship between 
the different hyperparameters of an AI technique and the accuracy of 
output estimation. 

3.2.1. Hyperparameters tuning for DT model 
In this section, the impact of DT hyperparameters on the final ac-

curacy of critical current degradation is discussed. The number of trees is 
changed from just 1 to 30, as shown in Table 2 and Table 3, where their 
impact is analysed on the accuracy of the estimation metrics and 
training/test time. By considering the number of trees as 1, the mini-
mum MRE is 3% and maximum is 28% while the simulation time is 

about 1.65 ms. After increasing the number of trees to 5, the MRE is 
significantly reduced. In this case the maximum MRE value is reduced 
well above 58% compared with the first case with 1 tree. Although the 
MRE is reduced significantly, it still has high value in some samples 
which should be reduced further. To achieve this, number of trees have 
been increased further to 10, where maximum value of MRE is reduced 
well above 47% while the minimum value of MRE is just reduced to 7%, 
compared with the situation where number of trees was 5. Also, the test 
time of the model where number of trees is 10, increases approximately 
75% compared to the model with 5 trees. On the other hand, increasing 
the number of trees from 10 to 15, results in 50% reduction of maximum 
MRE, while the test time is increased well above 7% and the train time 
approximately 18% increases. If another time, the number of trees in-
creases from 15 to 20, the maximum MRE is again 70% reduced while 
test time is increased by 33% and the train time is 10% more at this 
stage. Finally, by the increase of the trees number from 20 to 30, 
maximum MRE would be less than 1%. Whilst the train time approaches 
to near 1 s which is quite long. By observing the whole trend in the 
results of Tables 2 and 3, the MRE of the DT-based model is reduced by 
increasing the number of trees while the computational times are 
significantly increased. Also, by considering the S1 sample, it would be 
observed that MRE is well above 8% when decision tree is 1. By 
increasing the tree number to 5, the MRE is 58% reduced while test time 
is increased approximately 100% increased. Then, by further increasing 
the tree number to 10, the MRE of this sample 55% reduces and the test 
time faces 75% increase, and the train time faces 71% increase. By doing 
this analysis, it is obvious that by increase of the trees number, not only 
the maximum MRE is reduced but also MRE of each individual sample 
reduces. This is an approvement on the pre-discussed concept of AI- 
based methods that unlike fitting methods, AI cope itself with respect 
to data trend as well as the data individuality. 

Fig. 7. Experimental test procedure of the ReBCO tapes samples, data acquisition and experimental test set up used in [52].  

Table 2 
Mean relative error, MRE (%) of DT model.  

Number of trees 1 5 10 15 20 30 

Samples 
S1 8.62 3.65 1.61 0.83 0.54 0.02 
S2 14.78 4.98 1.69 1.31 0.32 0.23 
S3 10.57 4.21 2.67 1.28 0.59 0.49 
S4 3.84 1.31 1.2 0.49 0.24 0.07 
S5 21.52 7.50 4.60 3.05 1.43 0.82 
S6 28.39 11.59 5.99 3.52 1.09 0.63 
S7 14.15 16.08 6.4 3.21 0.32 0.26  

Table 3 
Test and train times (ms) of DT model for all ReBCO samples.  

Number of trees 1 5 10 15 20 30 

Test Time (ms) 1.65 3.24 5.66 6.01 8.09 10.29 
Train Time (ms) 136 268 457 644 712 976  
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3.2.2. Hyperparameters tuning for FIS models 
Table 4 and Table 5 tabulate the MRE values in estimation of CCDR 

after overcurrent with respect to grid partition clustering method by FIS 
technique. A number of clusters have been changed ranging from 2 to 11 
to study their impact on the final accuracy of the estimation. When, 
number of membership functions is 2, the maximum MRE value, that 
happens for sample 7, is 1620% and the test/train time is 1.12/113 ms. 
Then, by increasing the number of membership functions from 2 to 3, 
the maximum MRE 80% reduces while the test and train times are 34% 
and 19% increased. Although the maximum MRE was reduced signifi-
cantly, it has still an unacceptable value of 300%. Thus, further increase 
in the number of memberships functions is necessary. Even for 5 
membership function, still maximum MRE is higher than 100% which is 
not practical. Surprisingly, after increase of membership functions 
number to 11, the maximum MRE value remains barely constant while 
the train and tests times are increasing. In conclusion, it should be noted 
that the current grid partitioning method is not applicable for gaining a 
high estimation accuracy by FIS-based regression. 

To study the impact of different clustering method on the accuracy of 
the FIS model, another clustering method is used, known as the C-means 
clustering method. Table 6 and Table 7 show the changes of MRE value 
regarding the variations of cluster numbers in C-means method. Firstly, 
2 clusters are considered that results in maximum MRE of 1450% and 
the train/test time of 101/1.15 ms. Then, by increasing the number of 
clusters to 3, the maximum MRE is approximately 10x reduced while the 
train/test time is 41%/44% increased. The maximum MRE reduced 
further by increasing the number of clusters from 3 to 5 where it faces a 
33%. In this case, the test and train times faces 24% and 11%, respec-
tively. Thus, it should be stated that by increasing the number of clusters 
the accuracy of the model as well as the train and test times are 
increased. Finally, it is observable that under 11 clusters, the maximum 
MRE is reduced significantly to 12% while test and trains times increase 
significantly, more than 90%. It should be stated that, although for 11 
clusters most of the MRE values are lower than 2%, the maximum MRE is 
still high for exact CCDR estimation. Thus, it could be stated that this 
type of clustering is unable to predict the CCDR in an accurate manner. 

Another clustering method, known as SCM is used to study the 
feasibility of FIS techniques in accurately estimating the CCDR of 
different samples. In this clustering method, the radius of clusters plays 
an important role. Thus, changes of cluster radius and their impact of 
accuracy is studied with respect to the results presented in Table 8 and 
Table 9. By considering the cluster radius equal to 0.6, the maximum 
MRE of the model is above 3610% with the train/test time of 103 and 
1.19 ms. To reduce the maximum MRE, the cluster radius is selected to 
be 04 that results in significant reduction of maximum MRE to 190%. 
Although this value is still high, the significant reduction of maximum 
MRE, shows that reduction of clustering radius could end up with ac-
curacy increase of the model. Based on this, radius is reduced to 0.2 
while the maximum MRE face a huge reduction approximately equal to 
84%. In this state, the train and test times of the model are about 32% 
increased. The next step to reduce the cluster radius from 0.2 to 0.01 to 

observe the impact of small cluster radius on the accuracy of the model. 
By doing this, surprisingly, the maximum MRE of the model is reduced 
to lower than 0.2% with train and test times of 638 ms and 9.95 ms, 
respectively. The reason of such significant reduction is that by 
considering the clustering radius equal to 0.01, the number of clusters 
(or cluster centres) are increased that could increase the accuracy of the 
model, in this case. By observing these values of SCM clustering, it 
should be stated that, among the FIS-based models, the SCM-based FIS 
has the best performance and selected to be compared with other 
methods. 

3.2.3. Hyperparameters tuning for SVR model 
SVR has two important hyperparameters. In this paper, the impact of 

training error (C) and non-linearity level of kernel function σ hyper-
parameters is studied. After performing an optimization on these pa-
rameters, the best values have been selected for different samples. The 

Table 4 
Mean relative error, MRE (%) of FIS model with grid partition clustering 
method.  

Membership 
function number 

2 3 5 7 9 11 

Samples 
S1 17.58 7.43 6.62 3.98 2.78 0.075 
S2 22.22 11.10 10.55 2.39 0.03 0.004 
S3 7.49 6.44 4.19 0.24 0.0059 0.001 
S4 365.00 208.09 137.57 18.94 0.023 0.011 
S5 28.36 33.88 27.82 29.59 26.55 24.14 
S6 199.84 31.52 7.82 0.13 0.0043 1.6e- 

4 
S7 1620.1 325.92 76.84 34.02 0.1603 0.02  

Table 5 
Test and train times (ms) of FIS model with grid partition clustering method, for 
all ReBCO samples.  

Membership function number 2 3 5 7 9 11 

Test Time (ms) 1.12 1.51 1.88 3.01 3.09 4.85 
Train Time (ms) 113 134 99 262 318 467  

Table 6 
Mean relative error, MRE (%) of FIS model with Fuzzy C-means clustering 
method.  

Cluster number 2 3 5 7 9 11 

Samples 
S1 30.36 7.43 4.93 3.82 1.07 0.19 
S2 26.07 14.24 3.99 0.26 0.01 3e-5 
S3 6.89 6.48 1.91 0.06 0.004 1e-6 
S4 378.17 238.17 159.59 25.39 5.36 0.78 
S5 30.15 32.83 30.52 26.02 17.35 12.14 
S6 229.29 101.27 8.99 4.22 0.45 0.003 
S7 1450.2 149.58 37.81 14.93 7.67 1.21  

Table 7 
Test and train times (ms) of FIS model with Fuzzy C-means clustering method, 
for all ReBCO samples.  

Cluster number 2 3 5 7 9 11 

Test Time (ms) 1.15 1.66 1.85 2.55 3.11 6.14 
Train Time (ms) 101 143 178 239 355 431  

Table 8 
Mean relative error, MRE (%) of FIS model with Sub-clustering method.  

Cluster radius 0.6 0.4 0.2 0.01 

S1 20.11 15.68 6.67 0.0012 
S2 12.51 9.25 9.78 0.0353 
S3 6.57 6.06 4.93 8.54e-4 
S4 236.33 190.62 1.24 0.178 
S5 28.42 30.13 29.98 0.127 
S6 155.12 20.07 3.59 4.95e-4 
S7 3160.01 79.72 27.80 0.0829  

Table 9 
Test and train times of FIS model with Sub-clustering method, for all ReBCO 
samples.  

Cluster radius 0.6 0.4 0.2 0.01 

Test Time (ms) 1.19 1.66 2.19 9.95 
Train Time (ms) 103 159 211 638  
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results are shown in Table 10 for CCDR estimation of different samples. 
The estimation MRE value with SVR method is 23%–200% which is very 
high for such purpose. As a result of this, the SVR technique could not be 
used for this purpose. However, this should be pinpointed that the train 
time of SVR-based model has the lowest value among all other AI-based 
methods. Also, the test time of this method in some cases is higher than 
other methods, such as estimation for sample 3 which has the test time 
about 11 ms. 

3.2.4. Hyperparameters tuning for RBFNN model 
The RBFNN has two important hyperparameters, namely, spread of 

network and number of neurons. Regarding these hyperparameters, 
Fig. 8 shows the impact of these hyperparameters of MRE for different 
samples. As it can be observed, by increasing the number of neurons the 
accuracy of the model increases and increasing the spread of RBF, re-
duces the error of the model. For S1, when the spread pf network is about 
1 and the number of neurons is 25, the MRE of the model is approxi-
mately 25% while by keeping the neurons number constant and 
increasing the spread of network to any number higher than 5, the MRE 
will be reduced to less than 1%. However, by increasing the number of 
neurons while considering the constant value for spread of network, 
MRE will be reduced to about 10%. This is also the case, for other 
samples, where increasing the spread of network has more impact on 
MRE reduction, compared to number of neurons. Thus, it could be stated 
that the designation of proper value for spread of network plays a more 
crucial role in MRE reduction of the model, compared to number of 
neurons value. This can be also approved that in some cases, keeping the 
spread value of the systems as constant value while increasing the 
number of neurons does not reduce the MRE of the model and increases 
it, like S2. In all samples, for spread value lower than 5, MRE reduces to 
less than 1% for all samples and all choices of neuron numbers. It should 
be noted that, the results shown in Fig. 8, are the mean value of 50 
iterations. 

3.3. Optimized results and analysis 

After sensitivity analysis on the impact of hyperparameters on MRE 
index of different methods and deciding that SVR methods could not be 
used for CCDR purposes since it has a significant error, this section deals 
with comparing the estimation results of best structure in each estima-
tion method. 

Fig. 9(a) shows the final estimation results by RBFNN method. As can 
be seen, the resulted curve is in an excellent coordination with experi-
mental results. The resulted curve not only follows the trend of data 
inside of the fitting zone but also shows an incremental characteristic for 
the zone without any data. Although there are no data available in this 
zone, we know that any further overcurrent event, will results in more 
CCDR. Thus, the predicted trend of data within this zone is expected to 
be consistently incremental, aligning with the trend visually depicted in 
Fig. 9(a). Fig. 9(b) illustrates the estimated curve by DT system which is 
also in an excellent coordination with experimental results. Finally, 
Fig. 9(c) is related to the results of FIS-based estimation which has also a 

high level of accuracy while in some points, such as data-points of 
sample 5, it has lower accuracy comparing two previous methods. 

It should be mentioned that there are several advantages of AI-based 
regressions over conventional fitting methods where regression using AI 
techniques could outperform traditional fitting methods in certain sce-
narios such as:  

• Dealing with complexities: AI-based regression models can handle 
complex relationships between inputs and the outputs by identifi-
cation of patterns in the data. So, by having different samples from 
different HTS tapes with different sublayer structures and critical 
current, fitting methods such as piecewise linear could not be used. 
This is because of that more than two or three inputs could be fed into 
the conventional fitting methods.  

• Nonlinearity: Traditional fitting methods like linear regression or 
polynomial regression assume linear relationships between vari-
ables. AI-based regression models, such as neural networks, can learn 
non-linear relationships, making them more adaptable to complex, 
non-linear data distributions.  

• Scalability: AI techniques, can handle vast amounts of data more 
efficiently than some traditional fitting methods. They often scale 
well with larger datasets, allowing for potentially more robust pre-
dictions as the amount of data increases. While the accuracy of the 
conventional fitting methods reduces by increasing the number of 
data, since each data could have a specific characteristic. 

• Generalization: AI models can exhibit better generalization capa-
bilities, meaning they can often perform well on unseen data, known 
as extrapolation. This is especially true for AI techniques which can 
generalize across various patterns and trends within the data.  

• Adaptability: AI-based regression models are often adaptable to 
various types of data and problems. They can be fine-tuned, re- 
trained, or modified to suit different scenarios, making them versa-
tile compared to some traditional fitting methods that might be more 
rigid in their application. 

Table 11 tabulates the RMSE, R, and Mean Accuracy (MAC) indices 
of different methods for CCDR estimation to make their comparison 
more conceivable in terms of numbers. Highest RMSE value of RBFNN 
method relates to sample number five with a 10x to 100x higher RMSE 
value comparing to other samples. However, the accuracy of this sample 
is quite high with a MAC value of 99.999999%. The lowest accuracy in 
DT model relates to sample number six with RMSE value of 0.04 which is 
about 1000x higher than worst case in RBFNN. Finally, the MAC value of 
FIS method for samples four, five, and seven is less than 95% which 
shows the incapability of this methods in CCDR estimation. Thus, among 
these methods, the RBFNN technique has the upper hand and privilege 
to other methods. 

The proposed methods in this paper have high value accuracy, and 
they outperform the techniques exists in literature. Table 12 tabulates 
the MRE (%) and RMSE (%) values of two methods proposed in litera-
ture, known as Life Prediction Model (LPM) and Similarity-Based- 
Method (SBM) [52] comparing to the MRE values of methods pro-
posed in this paper as well as the three fitting equations. The MRE value 
of FIS, as the AI-based method with lowest accuracy, is 1300% lower 
than proposed methods in literature, while it also outperforms the fitting 
methods with more than ten times lower value. DT method has also high 
estimation accuracy and low error with R value of 0.9999, MRE of 0.06, 
and RMSE value of 0.0129. Thus, this method has also a better perfor-
mance, compared to LPM, SBM, and fitting methods. Finally, there is 
RBFNN, as the best AI-based model with 1.1 × 10− 6 MRE and RMSE near 
zero. This shows the capability of AI-based methods for CCDR estimation 
of ReBCO tapes. The MRE value of AI-based models is also extremely 
lower than the MRE value of three mathematical fitting equations, 
shown in Table 12. On the other hand, AI-based models have lower MRE 
values compared to rest of the methods. This approves that just AI-based 
models consider the individuality of data. 

Table 10 
Mean relative error, MRE (%), test time (ms) and training time (ms) of SVR 
method.  

Sample value of training 
error and the 
margin (C) 

Value of non- 
linearity level 
(σ)

MRE 
(%) 

Test 
time 
(ms) 

Train 
time 
(ms) 

S1 10 1 43.12 2.14 18.8 
S2 10 2 59.13 5.11 14.5 
S3 10 1 23.11 10.95 19.5 
S4 40 9 85.33 6.11 10.4 
S5 40 2 121.13 6.55 13.6 
S6 10 2 66.48 6.19 15.2 
S7 50 9 207.74 6.01 19.1  
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Fig. 8. The sensitivity analysis results after 50 times simulation repetition for different samples and different hyperparameters of RBFNN.  
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4. Conclusion 

Overcurrent events are one of significant factors contributing to the 
partial or fully degradation of the critical current in High Temperature 
Superconducting (HTS) tapes. The degradation of critical current could 

reduce the reliability and remaining life of HTS devices. In the existing 
literature, experimental tests have been conducted to measure the 
Critical Current Degradation Rate (CCDR) of HTS tapes, and analytical 
methods have been employed to estimate the trends in the experimental 
data. This paper proposes Artificial Intelligence (AI) techniques to 

Fig. 9. Final estimation results versus real experimental data.  

Table 11 
Comparison of different estimation methods for CCDR.  

Samples RBFNN DT FIS 

R RMSE MAC R RMSE MAC R RMSE MAC 

S1 1.000 2.4e-12 99.999999 0.9999 0.0129 99.998965 0.9999 1.5e-5 99.881 
S2 1.000 3.5e-11 99.999999 1.0000 1.2e-6 99.999999 0.9999 3.5e-4 96.474 
S3 1.000 9.6e-14 99.999999 1.0000 1.5e-5 99.999999 0.9999 2.2e-5 99.915 
S4 1.000 1.9e-13 99.999999 1.0000 9.2e-6 99.999999 0.9999 8.7e-3 82.210 
S5 0.999 9.4e-11 99.999999 1.0000 5.8e-6 99.999999 0.9993 5.2e-2 87.30 
S6 1.000 2.1e-13 99.999999 0.9999 0.0416 99.996541 0.9999 4.9e-6 99.999 
S7 0.999 1.3e-12 99.999999 1.0000 1e-7 99.999999 0.9999 3.5e-5 91.712  
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address the low accuracy of existing estimation methods. The proposed 
AI techniques are investigated by Support Vector Regression (SVR), 
Radial Basis Function Neural Network (RBFNN), Decision Tree (DT), and 
Fuzzy Inference Systems (FIS). The main findings of this work are:  

• In DT model, the increase in the number of trees, resulted in accuracy 
enhancement and training/testing times increased.  

• The selected structure for DT model is when 30 trees are considered 
that results in Mean Relative Error (MRE) lower than 1% with about 
1 s of train time and a test time of 10 ms.  

• The MRE of best FIS model is lower than 0.2% while train and test 
times are 638 ms and 9.95 ms, respectively. 

• The SVR method for all cases has high error which make it imprac-
tical for CCDR estimation.  

• RBFNN model has the best performance when spread value is higher 
than 5 with number of neurons higher than 30 that results in MRE 
well lower than 1e-6%.  

• The MRE of AI-based methods proposed in this paper, such as FIS, 
DT, and RBFNN is 100x to 1000x lower compared to data-driven- 
based methods, presented in literature. 
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