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A B S T R A C T

Recently, context-aware data management becomes the focus of many research efforts placed at the intersection
between the Internet of Things (IoT) and Edge Computing (EC). Huge volumes of data can be collected by
IoT devices being ‘connected’ with EC environments transferring data towards the Cloud. EC nodes undertake
the responsibility of managing the collected data, however, they are characterized by limited storage and
computational resources compared to Cloud. Evidently, this makes imperative the introduction of data selectivity
methods to keep locally only the data requested by end users or applications for current and future analytics
services. In this paper, we study an EC environment where nodes rely on data selectivity and decide the
allocation of newly received data to peers, or Cloud when these data are not conformed with local data filters.
Data filters are the means for determining local data selectivity by keeping only data that statistically match
the needs of nodes (e.g., match the already present data or requests for processing defined by incoming tasks).
We contribute with data selectivity and filtering models that support intelligent decisions on when and where
incoming data should be allocated. We intent to ‘postpone’ the transfer of data to the Cloud by keeping them
close to end users. Our approach concludes a data map of an EC environment nominating every node as
the owner of specific data (sub)spaces facilitating the placement of future processing tasks. We evaluate and
compare our models and algorithms against schemes found in the literature showcasing their applicability and
efficiency in pervasive edge computing environments.
1. Introduction

Pervasive Computing (PC) refers to the intelligent placement of
data and devices armed with embedded processors around end users to
support various types of applications. The current transformation of PC
is the combination of two infrastructures: Internet of Things (IoT) and
Edge Computing (EC). IoT devices are located very close to end users,
thus, their connection with the EC ecosystem results in the Pervasive
Edge Computing (PEC) paradigm. Numerous devices are active in these
ecosystems facilitating the collection of data and the execution of tasks.
Any type of application is supported by a set of services present either
on IoT devices or EC nodes. Nodes act as the mediators between the
IoT ecosystem and the Cloud having the opportunity to host data and
execute e.g., processing analytics and predictive tasks. Nodes are also
located close to end users and IoT devices [1] and exhibit computa-
tional capabilities that give them the ability to process data and follow a
behaviour towards the maximization of the performance. Nodes should
be armed with intelligence to adapt their behaviour and be aligned with
the dynamics of the environment and dynamic changes in applications’
requests.
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Apart from running services and executing processing tasks, EC
nodes, hereinafter called nodes, are adopted for distributed data stor-
age by incorporating all the necessary semantics for data update and
access [2,3]. As nodes have less capabilities than Cloud datacenters,
they should intelligently decide their line of actions related to: (a) what
services or tasks should be executed locally; (b) what data should be
kept locally to support the requested and/or future processing tasks.
One of the reasons is that nodes cannot host huge volumes of collected
data captured by IoT devices. However, the collected data should
remain available as much as possible at the EC infrastructure to reduce
the latency that will be faced when processing activities rely on Cloud
premises. Recent large scale experimentation activities adopting real
settings around the Globe show that (a) 58% of end users can reach a
close edge server in less than 10 ms while only 29% of end users can
enjoy a similar latency from a nearby Cloud location; (b) compared
to Cloud, edge servers offer lower latency to 92% of end users [4].
These observations become more intense if we focus on areas where
Cloud datacenters are ‘rare’ (e.g., in Africa). Hence, it is more beneficial
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to keep data to neighbouring EC nodes (which are located in a close
distance compared to the Cloud) maintaining a map of the available
datasets instead of sending data and requests/tasks to the Cloud and
wait for final outcomes.

In any case, even if a huge amount of resources could be deployed
at the edge to evolve into a large-scale distributed computing environ-
ment, still, it would not have been an appropriate place for processing
huge volumes of data [1]. Therefore, decisions that lead to efficient
management of the available resources and incoming processing tasks
are related to which data should be kept locally at the nodes. Ap-
parently, if incoming data do not ‘fit’ in the local resources, we can
detect the opportunity to have them migrated at peer nodes before it is
decided to be transferred to Cloud. Such kind of behaviour lies at the
core of the PEC targets, i.e., to deliver on-device/on-node applications
and support collaborative models for distributed data management and
tasks processing. The described scenario will be useful when we aim to
support real-time data processing, which is the main challenge when
running applications that interact directly with end users. We consider
that the decision making related to the selection of data that will
be kept locally consists of a data selectivity problem. This requires the
introduction of a data filter being responsible to be statistically matched
gainst the data. The matching process will result if these data will be
ocally stored or rejected and allocated to peers otherwise. However,
f a new task requests data for accessing and processing, while those
ata are absent, nodes can adopt two strategies: (i) task offloading

or (ii) migrating the appropriate services/data locally [5]. Either the
offloading decision or data migration requires to rely on peers that are
in a close distance to enjoy the limited possible latency.

Motivating Example. We focus on a scenario where a set of EC
nodes are placed in various locations in a smart city. EC nodes are ca-
pable of storing multidimensional data and executing a set of Machine
Learning (ML) models or any other processing activity (e.g., missing
value imputation, outliers detection). For instance, the discussed data
can be the recordings of environmental parameters and urban pollution
indicators in a city, e.g., temperature, humidity, ozone, particulate
matter (PM), CO2, SO2, and NOx. The collected data are maintained
in dedicated data structures and may be replicated/transferred to the
Cloud where a central repository of all the available data is available.
Processing activities are requested in the form of tasks, e.g., estimation
of certain statistics for some or all the data dimensions, execution of
regression models for estimating future realizations of the observed
features/variables, context based classification of the current situation
in a specific part of the city, etc. Nodes rely on a data selectivity
method, i.e., a filter that is delivered upon the incoming requests for
processing to reject newly received data that do not match with the
current patterns, thus, they save local resources. For instance, local
council authorities may demand from nodes located at the core area
of a suburban area to return the pollution levels for a set of envi-
ronmental monitoring parameters when the observations are over a
pre-defined threshold. This way, a dedicated application will be capable
of triggering alerts and initiate potential mitigation actions or urban
planning (e.g., installations of roadside vegetation barriers). The data
(probably those below the pre-defined threshold) can be maintained
in close neighbouring nodes located in the same suburb to be part
of other processing activities like the provision of environmental data
and their estimations to citizens in real-time maps. This way, nodes
become ‘experts’ on data with specific statistical characteristics and
efficient in terms of storage being fully adjusted to applications’ needs.
In this case, where every model comes from a specific dataset, it will
be profitable to keep any rejected data assets in the EC ecosystem and
migrate them to the most appropriate peer(s) in terms of the statistical
patterns and characteristics of the owned dataset. In the example of the
environmental urban monitoring, data can be selectively stored to peers
in close distance with the node(s) rejecting them in order to reduce the
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latency when access on them is required. Hence, the rejected data in a
node may become useful data in another node being part of the training
process under the assumption that nodes are close.

In the above motivating scenario, we identify the need for selec-
tively sharing the locally rejected data when they do not match the
local data based on a data filter decision. Our proposal to selectively
keep those data at the EC infrastructure as much as possible targets
to minimize the latency in the provision of responses and maximize
the reusability of the data for current and future analytics tasks. When
keeping rejected data in neighbouring node(s), specifically in peers
that possess statistically similar data, we evidently enjoy lower latency
compared to relying on the Cloud as already noted above. When access
to the relocated data is requested by a specific task, then, those data can
be accessed either by migrating them back to the original node (if there
is available storage capacity) or by offloading the task that demands
their processing [6]. In any case, the definition of data filters, which are
adopted to decide the discussed rejections, is a very dynamic process
that could lead to the necessary updates if continuous requests for
processing demand for data that are not participating in the data filters
delivered in the previous epochs. Apparently, data filters are concluded
at pre-defined intervals in order to keep track of the evolution of the
incoming requests.

In this paper, we address the issue of efficient management of
locally rejected data and introduce a data selectivity mechanism that
combines ML with probabilistic decision making. Distributed data fil-
ters are shared across the network edge to guide the decision making
upon the optimal relocation of the rejected data to the most suitable
peers. Initially, our strategy is to perform processing of data filters
locally at every node in light of examining potential matching peers. A
clustering process groups the available nodes together based on the sta-
tistical similarities of their data filters depicting a matching degree for
the most recent past. Additionally, we introduce a probabilistic model
being responsible to expose the expected difference between pairs of
filters upon historical values trying to assess data filter similarity in a
window of observations. Our technical contributions are:

• A machine learning model trained over shared data filters across
distributed nodes;

• A probabilistic model to detect the statistical matching between
shared data filters within sliding time window;

• An aggregation mechanism merging current view on the filters
matching and corresponding historical patterns;

• A decision making mechanism selecting the most suitable peers
where locally rejected data are relocated;

• A comprehensive evaluation of our mechanism against
approaches found in the literature showcasing the benefits and
its applicability in PEC environments.

The paper is organized as follows. Section 2 elaborates on related
work. We provide preliminary information in Section 3. The data
selectivity problem formulations are discussed in Section 4. Section 5
introduces our models and algorithms, while Section 6 reports on the
experimental evaluation. Section 7 concludes the paper with our future
agenda.

2. Related work

The IoT and the EC infrastructures are smoothly combined to create
a layered architecture where data and services can be allocated in any
place. IoT devices can monitor a specific phenomenon collecting the
corresponding data [7–10] reporting them in streams [11] towards the
Cloud back end. Streams processing is adopted when real time decisions
should be made while the processing of data at rest is utilized for
long term decisions. The outcome of processing activities, requested
in the form of tasks, is reported back to the requestors that may
be end users or applications. Some examples of tasks are as follows:
queries requesting data retrieval upon the local data [12,13], the

training of ML models [6,14], data selection for caching [15], video
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pre-processing [16]. When nodes have a high load or do not own
data requested by the incoming tasks, those tasks could be offloaded
to peers or Cloud [6,17]. Other mitigation actions that nodes can
adopt to increase the efficiency of the requested processing are the
migration of services [5] or data [18,19]. Both activities try to fill
gaps in the capabilities of nodes to avoid any malfunctions or delays
in the provision of responses. An intelligent behaviour is concluded
when all the aforementioned actions are combined with the ultimate
goal to keep data and processing as close to end users as possible to
minimize the latency. The aggregation of locally possessed data [20],
the collaboration between nodes [21] or the definition of a sink node
acting as the single representative of a group [8] where data are stored
and processing activities take place [22] are some of examples towards
reaching a level of collaboration between autonomous entities. No mat-
ter the adopted strategy, the discussed problem is complex if we want
to have nodes acting independently trying to meet the performance
challenges that dynamic and distributed environments impose.

If we focus on the individual behaviour of nodes, we can eas-
ily detect the need for the efficient management of the incoming
tasks and the available data. Both, tasks offloading and data migra-
tion/replication activities refer in solving the same problem, i.e., to
effectively serve the requests for processing. Depending on the status
of nodes, e.g., the presence of the appropriate data, the current load,
etc, we can decide to offload some tasks or to ask for data migra-
tion. Apparently, the first choice is to keep tasks and data at the
EC ecosystem instead of relying to the Cloud in order to minimize
the latency in the provision of responses. The decision for offloading
tasks faces various challenges like the communication overhead [23].
The best possible performance can be only achieved by incorporating
into the decision making mechanism the processing of the surrounding
contextual information. The fundamental awareness of the local load
in combination with the data present at every node consists of a
crucial knowledge for the selection of where tasks could be executed.
Towards this direction, we can rely on a ‘map’ of the distributed
data and their owners to ‘affect’ any offloading activity [18] while a
monitoring mechanism of the local status of nodes [24] can trigger
those actions. The research community has already proposed various
mechanisms like cooperative schemes [25], models relying on swarm
intelligence technologies [26,27], genetic algorithms [28], graph-based
schemes and their intelligent management [29] or the optimal stopping
theory [30]. In general, any of the proposed models should take into
consideration the combination between the local processing load and
the demand for every task before it is in a position to deliver the
final action [6,31]. Nodes would benefit if they were aware of the
distribution, trends, and access patterns of the incoming tasks over their
local data [14,32].

Data migration and replication can be adopted to efficiently use the
computing resources available at the edge of the network by providing
the necessary basis for any processing activity. Latency can be avoided
if we place the appropriate data at the appropriate nodes in order to
speed up the processing and eliminate the overhead of data transfer
when this processing should be executed. Obviously, data migration
and/or replication should be performed, if it is possible, in a proactive
manner before a processing is requested [33]. Replication is the ideal
methodology to handle scenarios where data consumers are located
in different geographical areas subscribe to the same data, while only
one replica of these data exists in the proper node [34]. Data can be
transferred either in a push or in a pull model depending on the node
that will initiate the activity (requestor or provider); otherwise, it can
be concluded by a central entity that undertakes the responsibility to
place the data at the appropriate locations in the ecosystem. Edge to
edge learning could provide solutions to the problem of data migration
as it targets to optimize the organization of the edge ecosystem [35].
In [36], the authors focus on an optimization algorithm that is re-
sponsible to eliminate the delay in data transmission and computation
110

time. Such an approach is beneficial when we try to serve applications
targeting to transfer data in the network. The authors of [37] propose
a method for data collection in support of privacy upon the smart
grid infrastructure. In [38], a secure data channel resisting injection
attacks is suggested. Data are continuously transmitted and replicated
to the available nodes to support the minimum possible knowledge for
decision making. The authors of [39] discuss a high-security model for
transferring large scale data to the Cloud back end as well as an inter-
cloud knowledge migration scheme. The main observed parameter is
communication overhead as it plays a significant role in the transfer
of data. In [40], the authors propose an opportunistic mechanism for
data offloading based on a random strategy for selecting the nodes from
the population where the offloaded data will be allocated. In [41], it is
pointed out that data migration could be part of virtualized resources
migration. The decision is based on parameters like the time required
for the migration activity, the downtime, application quantity and
application degradation.

Data selectivity or data filtering is adopted to select the incoming
data that will be hoisted locally in a node. Any selectivity/filtering
model should be designed to detect the dependencies between nodes,
their datasets and incoming tasks [42,43]. Actually, the processing
of the constraints that the incoming tasks impose is a useful knowl-
edge to identify and conclude the appropriate local data filter. For
instance, DTFilter [44] is proposed to evaluate the incoming tasks based
on a searching balanced-tree algorithm avoiding the transmission of
duplicate data assets in data streams. Another attempt for data selec-
tivity/filtering is based on data labelling and policy rules expressions
to define the conditions that should be satisfied before any data assets
is selected to be hosted locally [45]. In [46], the authors present the
adoption of Bloom filters to exploit the partitioning of the collected
data in light of addressing event streams using sliding windows. The
authors of [47] propose a scheme that adopts an ML model for detecting
outliers. It is a type of selectivity/filtering method that tries to detect
data that may negatively affect the statistics of the dataset and the
training of machine learning models. In [48], the authors present a
communication standard designed to support generic data acquisition,
filtering and buffering protocols between Cloud and EC infrastructures.
In [49], the authors discuss a method adopted at the EC ecosystem
being responsible to utilize existing ML models to classify a suspicious
file in a set of pre-defined categories. The authors of [50] present an
adaptive data processing method for EC nodes sensing in ubiquitous
NB-IoT. The proposed model process the NB-IoT data to have practical
engineering application value. Finally, in [51], a sampling methodology
is discussed. The proposed approach relies on the latest data collected
to be the subject of processing of a linear fitting and adjusts the next
sampling frequency according to the linear median jitter sum and an
adaptive sampling strategy.

In this paper, we depart from the state of the art as it is above pre-
sented and propose a different mechanism for data selectivity/filtering.
Actually, we do not focus on the conclusion of a data filter but we
propose a model for allocating the locally rejected data to the appro-
priate node in the EC ecosystem. Our intention is to support the nodes
with a model that tries to keep IoT data at the edge of the network as
much as possible. The proposed approach differs from a data migration
model in the sense that our mechanism decides the migration of data
only when those data do not match to the local dataset. This way,
if compared with the relevant literature, the envisioned methodology
is motivated by the need of enhancing the efficient management of
the incoming data and the ‘coordination’ of data offloading activities
which becomes part of the behaviour of every EC node. Our strategy
is built upon the knowledge that local data filters are formulated after
the processing of the incoming tasks imposing requests about the data
assets that should participate in the demanded activities. We reveal the
potentials of the proposed approach focusing on context-aware data
allocation processing and defining a novel ‘map’ over the distributed
nodes’ datasets capable of supporting decision making and serve any
defined task. Our model results the migration of data that will power
the distributed datasets by incorporating additional information pieces

with great benefits for the potential training of local ML models.
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3. Problem fundamentals

3.1. Rationale

We report on the problem fundamentals and preliminaries. Table 1
shows the notations adopted in this paper.

Consider a PEC environment with 𝑁 distributed nodes from a set
=

{

𝑛1, 𝑛2,… , 𝑛𝑁
}

. Nodes are directly connected in the EC infras-
ructure as well as with the IoT devices to receive and host data. In this
ombined ecosystem (IoT and EC), horizontal (collaborative activities
etween nodes) or vertical (collaborative activities between IoT devices
nd nodes) services can access the collected data. Our target is to keep
ata selection and processing close to end users while avoiding inherent
atency when relying to the Cloud. Evidently, nodes’ computational
apabilities cannot be compared with Cloud’s processing power, thus,
ntelligent schemes are required for efficient management of data and
asks at the edge. One of the most significant decisions that nodes
hould take is the selection of data kept locally due to limited storage
esources. The remaining data can be either transferred to Cloud or be
ept at the edge in peer nodes.

efinition 1. Data selectivity refers to the action of choosing the data
ssets that could be kept and stored locally to a node for current and
uture processing.

Data selectivity targets to support fast processing outcomes, low
atency and reduced bandwidth consumption [52]. Apparently, data
electivity should be affected by tasks accessing and executed over local
atasets. For instance, tasks related to finding the top-𝑘 item in data
treams [53], training and sharing reusable models [54], and offloading
redictive analytics [5,6].

efinition 2. A task (or task request) is a data processing activity
hat should be performed upon the currently available data satisfying
pecific data domain constraints (range intervals).

The on-node processing of tasks taking into account their condi-
ions and data domain constraints, requires the definition of a filtering
echanism aligned with the demand for data. Such mechanism should

imely decide on rejecting data that are not requested locally (currently
nd in the near future), thus, saving resources. When the decision
f transferring the rejected data to the Cloud is ‘postponed’, thus,
aving them shared to peers owing similar datasets, yields in enhancing
odes’ local datasets with new data. Therefore, data sharing should be
overned by fundamental rules concerning (i) the similarity between
he new and local data, (ii) the ability of the new hosting nodes to store
dditional the data, and (iii) the expected communication overhead.
he anticipated benefits can be obtained considering that nodes are
rmed with knowledge about where every data asset is located in the
dge. In turn, any potential offloading of tasks, which cannot be served
ocally, will be performed efficiently as well. Our approach is based on
he capacity of nodes to incrementally and dynamically build individual
ata filters upon incoming tasks requests.

efinition 3. A data filter is represented via a set of data domain
onstraints/range intervals per data dimension such that the currently
vailable data should satisfy.

Any data asset lying outwith the filter is allocated either to a subset
f peer nodes or Cloud. This decision is made in a sequential manner.
hen incoming data asset violates the local filter constraints, then,

odes (i) check whether the data asset can be migrated to peers having
imilar datasets; or (ii) to Cloud in the absence of any suitable peer.
111
3.2. Task & filter definitions

Consider the local dataset on node 𝑛𝑖 ∈  as a collection 𝐷𝑖 of
𝑀-dimensional vectors 𝑖 = {𝐱𝑣}

|𝐷𝑖|
𝑣=1 with 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑀 ] ∈ R𝑀 .

Analytics tasks are represented by a series of data access requests over
node’s data for e.g., regression and classification. We, therefore, define
a task request as

 =
{[

𝑦𝑙1, 𝑦
ℎ
1
]

,… ,
[

𝑦𝑙𝑀 , 𝑦ℎ𝑀
]}

, (1)

where for 𝑗 = {1, 2,… ,𝑀}, 𝑦𝑙𝑗 and 𝑦ℎ𝑗 represent the lowest and highest
range values for the 𝑗th dimension, such that 𝑦𝑙𝑗 ≤ 𝑦ℎ𝑗 . For instance, the
task request  = [15, 28], with 𝑦𝑙𝑗 = 15, 𝑦ℎ𝑗 = 28 demands access and
processing over data values in the range [15, 28]. Tasks are received in
streams introducing a set of range values per request. The node’s local
data filter aggregates all range intervals for each 𝑗th dimension. Let us
denote the filter for the 𝑗th dimension with

[

𝑦𝑙𝑗 , 𝑦
ℎ
𝑗

]

, where the lowest 𝑦𝑙𝑗
and the highest 𝑦ℎ𝑗 interval boundaries correspond to the lowest and the
highest values or the average lowest and highest interval boundaries of
all the task requests, respectively. Note that nodes consider 𝑊 incoming
requests before the final data filter

[

𝑦𝑙𝑗 , 𝑦
ℎ
𝑗

]

is applied. On the other

hand, each incoming data 𝐱 is matched against
[

𝑦𝑙𝑗 , 𝑦
ℎ
𝑗

]

, which provides
key information to the node on deciding whether to keep locally 𝐱
or not. Data filters can be the result of a simple or more complex
processing, e.g., they could be the minimum and maximum values
of requests or the aggregation of the received values for each of the
two lists 𝑦𝑙𝑗&𝑦ℎ𝑗 . This processing lies beyond the subject of the paper
being left for future work. After the processing of all filters for every
dimension, nodes devise a data selectivity methodology based on a set
of range intervals:

̃𝑖 =
{[

𝑦𝑙𝑗 , 𝑦
ℎ
𝑗

]}

, 𝑗 = 1, 2,… ,𝑀, (2)

The ̃𝑖 in Eq. (2) is distributed in the PEC at pre-defined dissemination
epochs to keep nodes aware about the filtering activities in their peers.
In the time between two reporting epochs, nodes do not have full
information on the actual boundaries of their peers’ data filters. There
is a trade off between the frequent dissemination of filters with the
increased possibility of burdening the network. The management of the
aforementioned uncertainty and the discussed trade off lies at the first
places of our future research directions.

Consider the ability of 𝑛𝑖 to discern the suitable peers where locally
rejected data could be allocated to remain as much as possible at the
EC infrastructure. After every reporting epoch where data filters are
distributed in the network, 𝑛𝑖 updates its local cache/data structure
storing its neighbouring peers’ filters. In Eq. (3), the 𝐌𝑁×𝑀 matrix
presents an example of such a cache/data structure that stores 𝑁 data
filters (the local one and the 𝑁 − 1 filters of peers). Note, each filter
has 𝑀 boundary pairs due to the dimensionality of the collected data.
When a data asset 𝐱 arrives at 𝑛𝑖, the node matches it against the
local aggregated filter ̃ . This provides information about the suitable
peer nodes for potentially hosting 𝐱 subject to a decision of the local
rejection. An overview of the actions that 𝑛𝑖 takes is:

• Action 1: If 𝐱 matches ̃𝑖, then, 𝐱 is stored in the local dataset at
node 𝑛𝑖;

• Action 2: If 𝐱 does not match ̃𝑖, then 𝑛𝑖 selects the best possible
peer to send over 𝐱. This is obtained given the data filters in ̃ ,
as will be elaborated later;

• Action 3: If 𝐱 does not match ̃𝑖 and there is no appropriate peer
to host 𝐱, then 𝐱 is transferred to the Cloud.

Every action is taken subject to the rejection of previous actions in the
following order: Action 1, Action 2, and Action 3. This sequential deci-
sion making postpones the transfer of 𝐱 to the Cloud. The fundamental
challenge is to obtain the list of the most appropriate peers capable of
hosting 𝐱 based on the data filters aggregated in ̃ . To deal with this
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Table 1
Nomenclature.

Notation Description

𝑁 Number of nodes
 = {𝑛1 ,… , 𝑛𝑁} Set of nodes
𝑛𝑖 The 𝑖th node
𝐱 Multivariate data vector
𝐌𝑁×𝑀 Cache of distributed filters
𝑀 Dimensionality of data vectors
 The task request for processing
[

𝑦𝑙𝑗 , 𝑦
ℎ
𝑗

]

Requested interval for processing
𝑦𝑙𝑗 The lowest boundary of the final filter
𝑦ℎ𝑗 The highest boundary of the final filter
̃𝑖 The final local data filter for the 𝑖th node

challenge and elaborate on a solution, we contribute with a probabilis-
tic quantization-based model over the difference between data filters.
The aim is to aggregate the available information in between reporting
epochs with historical data filters in light of deciding where the locally
rejected data should be hosted at the EC infrastructure.

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[𝑦𝑙11, 𝑦
ℎ
11] [𝑦𝑙12, 𝑦

ℎ
12] … [𝑦𝑙1𝑀 , 𝑦ℎ1𝑀 ]

[𝑦𝑙21, 𝑦
ℎ
21] [𝑦𝑙22, 𝑦

ℎ
22] … [𝑦𝑙2𝑀 , 𝑦ℎ2𝑀 ]

… … … …

[𝑦𝑙𝑁1, 𝑦
ℎ
𝑁1] [𝑦𝑙𝑁2, 𝑦

ℎ
𝑁2] … [𝑦𝑙𝑁𝑀 , 𝑦ℎ𝑁𝑀 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

4. Data selectivity & filters processing

This section introduces the filter management and the development
of an ML model being responsible to facilitate the detection of similar
peers in order to support the migration of data when necessary.

4.1. Data filters management

All the received data filters are maintained into a local data struc-
ture for processing. The target is to ‘group’ peers based on their data
filters, then, to detect where 𝐱 can be allocated. Since 𝐱 is a multidi-
mensional vector, any similarity with the processed data filters should
be delivered across 𝑀 ‘individual’ similarities.

Initially, we have to identify the sub-set of nodes exhibiting similar
data filters for every dimension. Those nodes become a first target
group for sharing 𝐱. Without loss of generality, in the remaining de-
scription, we focus on the 𝑗th dimension. The same approach stands
true for all the adopted dimensions. We cluster the data filters for
the 𝑗th dimension (𝑗th column of the matrix 𝐌). The outcome is ||
clusters (without loss of generality, we consider the same number of
clusters for all dimensions). Fig. 1 presents an example of the proposed
model. We could rely on any clustering algorithm, e.g., in a distance
based approach where all data filters present in a cluster exhibit the
lowest possible intra-cluster and the maximum possible inter-cluster
distances. Clustering is a widely adopted ML methodology that does not
require any training process and delivers the final clustering outcome
in a limited amount of time. We have to notice that the number of
clusters are pre-defined (see the experimental evaluation of our model)
and depict the best possible value for reaching high quality clusters.
However, we can also rely on a clustering method that does not require
the number of clusters beforehand (it is a matter of implementation and
does not affect the proposed model) increasing the autonomous nature
of the proposed scheme. The clustering process obtains a set of clusters
 =

{

𝐶𝑗
1 , 𝐶

𝑗
2 ,… , 𝐶𝑗

||

}𝑀

𝑗=1
with centroids

{

𝑐𝑗1, 𝑐
𝑗
2,… , 𝑐𝑗

||

}𝑀

𝑗=1
such that

the following equation holds:

𝑐𝑗𝑚 = 1
𝑗

|𝐶𝑗
𝑚|

∑

‖

[

𝑦𝑙𝑖𝑗 , 𝑦
ℎ
𝑖𝑗

]

−
[

𝑦𝑙𝑖′𝑗 , 𝑦
ℎ
𝑖′𝑗

]

‖,∀
(

𝑖, 𝑖′
)

, 𝑖 ≠ 𝑖′. (4)
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|𝐶𝑚| 𝑖=1
t

Apart from the aforementioned clusters, all nodes maintain histori-
cal values related to the reported data filters in a window �̂� . The aim is
to use such information to combine it with the knowledge extracted by
the delivered clusters. The proposed model (presented later) aggregates
the matching between nodes based on the most recent data filters
with the historical patterns identified upon the historical reports that
depict the continuous connection between the different data filters. The
ultimate goal is to efficiently support the matching between nodes not
only on the current but also on past views.

4.2. Nodes matching indicator

After the clustering process, 𝑛𝑖 decides to offload the rejected data
ased on the 𝑀 clusters (one per dimension). Let us denote the set
f clusters where 𝑛𝑖 is present with  =

{

𝑆1, 𝑆2,… , 𝑆𝑀
}

, 𝑆𝑗 ∈ .
Apparently, 𝑛𝑖 ‘matches’ to a sub-set of peers for each dimension.
The target is to determine the final sub-set of similar peers for all
dimensions. We achieve this focusing on the intersection of different
sets 𝑆𝑗 , 𝑗 = 1, 2,… ,𝑀 , i.e., 𝑆 = 𝑆1 ∩ 𝑆2 ∩ … ∩ 𝑆𝑀 . Let 𝑛𝑧 be a node
being member of 𝑆 and exhibits a high similarity with 𝑛𝑖 across all
the envisioned dimensions. The discussed approach consists of a ‘strict’
model that tries to identify nodes being in the same clusters for all
dimensions. We can extend this list if no node is similar to 𝑛𝑖 for all the
imensions and define a threshold over which the delivered similarity is
ccepted. For instance, we can incorporate in 𝑆, nodes that are present
t the same cluster with 𝑛𝑖 for at least 𝜃 dimensions.

We can adopt the 𝐿1 norm for calculating the difference (a.k.a.
anhattan distance) between the filters of two nodes, e.g., 𝑛𝑖 and 𝑛𝑧.
his means that the difference for the 𝑗th dimension is defined by
𝑗
𝑖𝑧 = |𝑦𝑙𝑖𝑗 −𝑦𝑙𝑧𝑗 |+ |𝑦ℎ𝑖𝑗 −𝑦ℎ𝑧𝑗 |. Apparently, max

(

𝑑𝑗𝑖𝑧
)

refers to the diameter
f the corresponding cluster. Upon this distance, we define the Nodes
atching Indicator (NMI) as the heuristic:

𝑗
𝑖𝑧 = 𝛼 ⋅

(

1

1 + 𝑒𝛾𝑑
𝑗
𝑖𝑧+𝛿

)

(5)

with

𝛼 =

{

𝜔 ∈ [1,∞] if 𝑛𝑖, 𝑛𝑧 ∈ 𝑆𝑗 ,
�̂� ∈ (0, 1) otherwise,

(6)

and 𝛾 ∈ R+, 𝛿 ∈ R−. NMI depicts the distance between 𝑛𝑖 and 𝑛𝑧 as
a portion of a threshold defined by parameters 𝛾 and 𝛿. When 𝑛𝑖&𝑛𝑧
are not in the same cluster, the use of 𝛼 reduces the final similarity
result. If 𝑛𝑖&𝑛𝑧 are distant, indicating a high difference in their data
filters (even if they are placed in the same cluster), 𝜙𝑗

𝑖𝑧 becomes low
(close to zero). When 𝑛𝑖&𝑛𝑧 have a low difference in their data filters,
𝜙𝑗
𝑖𝑧 becomes high (close to unity). The holistic NMI between nodes 𝑛𝑖

and 𝑛𝑧 is obtained as the aggregated indicators of all dimensions:

𝜙𝑖𝑧 =
𝑀
∑

𝑗=1
𝜙𝑗
𝑖𝑧. (7)

NMI aggregates the current difference of the data filters of the two
nodes for all dimensions. This knowledge is integrated with the histori-
cal information on the filters’ difference, which will be used to identify
the list of suitable peers where 𝐱 could be migrated/replicated.

5. Suitable peers selection

In this section, we elaborate on the process adopted to select the
final subset of suitable peers to decide upon when 𝐱 deviates from
the local data filter. The final decision is based on the knowledge of
the difference between the current data filters as well as historical
data filters information. The aim is to select peers that are historically
similar with the node rejecting 𝐱 avoiding to be affected by any seasonal
rends.
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Fig. 1. An example of the envisioned clustering process for every dimension.
5.1. Statistically oriented peers selection

Consider the following random variables: 𝑌 𝑙
𝑗 representing the lower

boundary of a data filter for the 𝑗th dimension with realization 𝑦𝑙𝑗 ,
and 𝑌 ℎ

𝑗 representing the higher boundary of a data filter for the 𝑗th
dimension with realization 𝑦ℎ𝑗 . Based on this assumption, we conse-
quently define the following random variables 𝑗𝛺𝑙

𝑖𝑧 = |𝑌 𝑙
𝑖𝑗 − 𝑌 𝑙

𝑧𝑗 | and
𝑗𝛺ℎ

𝑗 = |𝑌 ℎ
𝑖𝑗 − 𝑌 ℎ

𝑧𝑗 | depicting the difference of the boundaries for the
𝑗th dimension. Apparently, 𝛺𝑖𝑧 =

∑𝑀
𝑗=1

(

𝑗𝛺𝑙
𝑖𝑧 + 𝑗𝛺ℎ

𝑖𝑧
)

depicts the total
difference for a pair of data filters for nodes 𝑛𝑖 and 𝑛𝑧. By maintaining
the historical differences of the data filters adopted by the two nodes,
we calculate the expected difference over time and combine it with the
current difference as indicated by 𝜙𝑖𝑧.

The linearity of the total difference leads to the linearity of the
sum of expected values under the assumption that filters boundaries
are independently selected. Hence, we need to estimate the expectation
𝜙𝑖𝑧 = E

(

𝛺𝑖𝑧
)

and involve the summation of expected values for every
boundary of the two data filters, i.e., 𝜙𝑖𝑧 =

∑𝑀
𝑗=1

(

E
(

𝑗𝛺𝑙
𝑗

)

+ E
(

𝑗𝛺ℎ
𝑗

))

.
We can observe that the expected value of the difference between filters
is affected by the distribution of the lower and the higher boundaries
as it is expected.

Lemma 5.1. If 𝑌 𝑙
𝑖𝑗 ∼ 𝑁

(

𝜇𝑙
𝑖𝑗 , 𝑙𝜎

2
𝑖𝑗

)

and 𝑌 𝑙
𝑧𝑗 ∼ 𝑁

(

𝜇𝑙
𝑧𝑗 , 𝑙𝜎

2
𝑧𝑗

)

, then, we

obtain that E
(

𝑗𝛺𝑙
𝑗

)

= 𝑙𝜎
𝑗
𝑖𝑧

√

2
𝜋 ⋅ 𝑒

(

−
(𝑙𝜇

𝑗
𝑖𝑧 )

2

2⋅(𝑙𝜎
𝑗
𝑖𝑧 )

2

)

+ 𝑙𝜇
𝑗
𝑖𝑧 ⋅

(

1 − 2𝛷
(

− 𝑙𝜇
𝑗
𝑖𝑧

𝑙𝜎
𝑗
𝑖𝑧

))

with 𝑙𝜇
𝑗
𝑖𝑧 = 𝜇𝑙

𝑖𝑗 − 𝜇𝑙
𝑧𝑗 and 𝑙𝜎

𝑗
𝑖𝑧 = 𝜎𝑙𝑖𝑗 + 𝜎𝑙𝑧𝑗 .

Proof. Recall that 𝑗𝛺𝑙
𝑗 = |𝑌 𝑙

𝑖𝑗 − 𝑌 𝑙
𝑧𝑗 | and 𝑌 𝑙

𝑖𝑗 , 𝑌
𝑙
𝑧𝑗 are two normally dis-

tributed random variables with means 𝜇𝑙
𝑖𝑗 , 𝜇

𝑙
𝑧𝑗 , and standard deviations

𝑙𝜎𝑖𝑗 , 𝑙𝜎𝑧𝑗 . As it is already proved [55], the difference of the two normally
distributed random variables is also a Normal with mean 𝜇𝑙

𝑖𝑗 − 𝜇𝑙
𝑧𝑗

and variance 𝑙𝜎2𝑖𝑗 + 𝑙𝜎2𝑧𝑗 . Finally, for getting the expectation of 𝑗𝛺𝑙
𝑗 , we

have to observe that 𝑗𝛺𝑙
𝑗 follows a folded Normal distribution and we

can find the probability distribution function (pdf) by adding together
the pdf of both 𝑥 and −𝑥. We then obtain the expected value of the

folded Normal distribution, i.e., E
(

𝑗𝛺𝑙
𝑗

)

= 𝑙𝜎
𝑗
𝑖𝑧

√

2
𝜋 ⋅ 𝑒

(

−
(𝑙𝜇

𝑗
𝑖𝑧 )

2

2⋅(𝑙𝜎
𝑗
𝑖𝑧 )

2

)

+ 𝑙𝜇
𝑗
𝑖𝑧 ⋅

(

1 − 2𝛷
(

− 𝑙𝜇
𝑗
𝑖𝑧

𝑙𝜎
𝑗
𝑖𝑧

))

where 𝑙𝜇
𝑗
𝑖𝑧 = 𝜇𝑙

𝑖𝑗 − 𝜇𝑙
𝑧𝑗 and 𝑙𝜎

𝑗
𝑖𝑧 = 𝜎𝑙𝑖𝑗 + 𝜎𝑙𝑧𝑗 . □

Lemma 5.2. If 𝑌 ℎ
𝑖𝑗 ∼ 𝑁

(

𝜇ℎ
𝑖𝑗 , ℎ𝜎

2
𝑖𝑗

)

and 𝑌 ℎ
𝑧𝑗 ∼ 𝑁

(

𝜇ℎ
𝑧𝑗 , ℎ𝜎

2
𝑧𝑗

)

, E
(

𝑗𝛺ℎ
𝑗

)

=

ℎ𝜎
𝑗
𝑖𝑧

√

2
𝜋 ⋅ 𝑒

(

−
(ℎ𝜇

𝑗
𝑖𝑧 )

2

2⋅(ℎ𝜎
𝑗
𝑖𝑧 )

2

)

+ ℎ𝜇
𝑗
𝑖𝑧 ⋅

(

1 − 2𝛷
(

− ℎ𝜇
𝑗
𝑖𝑧

ℎ𝜎
𝑗
𝑖𝑧

))

where ℎ𝜇
𝑗
𝑖𝑧 = 𝜇ℎ

𝑖𝑗 − 𝜇ℎ
𝑧𝑗

and ℎ𝜎
𝑗
𝑖𝑧 = 𝜎ℎ𝑖𝑗 + 𝜎ℎ𝑧𝑗 .

Proof. It follows from Lemma 1. □
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It should be noticed that Lemmas 1 and 2 can be easily extended to
incorporate additional distributions for the random variables depicting
the lower and higher boundaries of the data filters.

5.2. Decision making & data allocation

The final decision making is related to the selection of peers where
𝐱 can be migrated, if the it is locally rejected. The basis for the
proposed decision making is the two NMIs, i.e., 𝜙𝑖𝑧 and 𝜙𝑖𝑧 calculated
for all nodes 𝑛𝑧 ∈ 𝑆. Recall that 𝜙𝑖𝑧 depicts the matching of the
two filters based only on the most recent reporting epoch while 𝜙𝑖𝑧
is calculated over the historical data filters reports trying to identify a
long-term similarity between nodes. Before we ‘merge’ the two NMIs,
we normalize 𝜙𝑖𝑧 as it represents the expected difference of the two
filters. We strategically select a simple and fast heuristic based on a
Sigmoid function that eliminates the final outcome (it gets a value close
to zero), if it is over a threshold. Hence, we obtain:

𝜙𝑖𝑧 =
1

1 + 𝑒𝛾𝜙𝑖𝑧+𝛿
. (8)

By selecting the values of 𝛾 ∈ R+ and 𝛿 ∈ R−, we utilize a strategy
for the threshold over which we consider that the expected difference
is high enough to eliminate the final outcome of the proposed function.
The aggregation of two NMIs is, then, adopted by the geometric mean:

𝑓
(

𝜙𝑖𝑧, 𝜙𝑖𝑧

)

=
(

𝜙𝑖𝑧
)𝜉

(

𝜙𝑖𝑧

)𝜉′
, (9)

where 𝜉 and 𝜉′ are the weights for every NMI. The geometric mean is
not heavily affected by fluctuations and extreme values of the processed
variables and is suitable to develop a mathematical strategy upon the
observations. By carefully selecting 𝜉 and 𝜉′, we can pay more attention
on the current filters difference or their historical patterns in order to
safely decide if 𝐱 could be allocated to node 𝑛𝑧. After the estimation of
𝑓 for every pair of nodes, we weight the final result by incorporating
in the final outcome the distance of 𝐱 from the centres of the filters,
i.e.,

𝑓
(

𝜙𝑖𝑧, 𝜙𝑖𝑧

)

= �̂�
1 + 𝑒�̂�𝑑+𝛿

⋅ 𝑓
(

𝜙𝑖𝑧, 𝜙𝑖𝑧

)

, (10)

where �̂�, �̂� ∈ R+, 𝛿 ∈ R− and 𝑑 =
∑𝑀

𝑗=1 |𝑥𝑗 −
(

1
2 (𝑦

ℎ
𝑧𝑗 + 𝑦𝑙𝑧𝑗 )

)

|. The final
outcomes are sorted in a descending order of 𝑓 and the top-𝑘 peer nodes
are those that can host 𝐱.

6. Experimental evaluation

We experiment with various scenarios where we apply specific
values for the adopted parameters and observe the performance of
the proposed model. In this section, we present the datasets that
feed our experimentation activities, the performance metrics and the
realization of the above parameters. We have to notice that we rely
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on a custom simulator written in Python where, through the use of
dedicated classes, we simulate the available EC nodes, the arrival of
new data, the delivery of local data filters for a set of nodes and the
envisioned processing through the adoption of the appropriate data
structures. We have to notice that, our simulator gives the opportunity
to create a number of nodes and their local datasets in order to support
a very dynamic experimentation setup. We do not consider a single
powerful node that administrates the proposed model as a central point
of decision making. In every node, we emulate the reception of new
data assets and update/conclude the corresponding data filters at pre-
defined epochs. This simulator is running on an Intel i7 processor with
16 GB RAM.

6.1. Performance metrics & setup

It is a strategic decision to rely on real datasets that carry data
observed in a specific setting. We adopt: (a) the India Air Quality
dataset1 (dataset DS1) which is a combined data repository across years
nd states and a clean version of the historical daily ambient air quality
ata provided by the Ministry of Environment and Forests and Central
ollution Control Board of India under the National Data Sharing
nd Accessibility Policy (NDSAP). In this dataset, there are 435,742
ectors of real values for 13 dimensions. We pre-process that dataset
nd eliminate missing values and borrow two dimensions (𝑀 = 2),

i.e., the measurements of Sulphur dioxide (SO2) and Nitrogen dioxide
(NO2). From the available values, we get the minimum SO2 to be
9 and the maximum value is 1361 and for the NO2 the minimum
and maximum are 26 and 2652, respectively; (b) the GNFUV dataset2

(dataset DS2) that comprises 2 x (4) sets of mobile sensor readings data
(temperature, humidity) from four (4) Raspberry Pi’s corresponding to
a swarm of four (4) Unmanned Surface Vehicles (USVs). The swarm of
the USVs is moving according to a GPS pre-defined trajectory floating
over the sea surface in a coastal area of Athens (Greece). We adopt the
temperature and humidity readings with their values being observed
below 100 to formulate a dataset with different statistics than the
former one (i.e., the India Air Quality dataset). We consider 𝑁 nodes

=
{

𝑛1, 𝑛2,… , 𝑛𝑁
}

and randomly select a number of tuples to be
art of the local datasets 𝐷𝑖, 𝑖 = 1, 2,… , 𝑁 . At pre-defined intervals
i.e., every 10 iterations), we add new tuples in the datasets (to update
heir statistics) and estimate the new data filters. Recall that we build
he local filters upon the last 𝑊 incoming requests and maintain the �̂�

recent filters from those produced locally in the nodes. We consider that
for every filter, 𝑦𝑙𝑗 and 𝑦ℎ𝑗 are defined as the minimum and maximum
values of the incoming tasks. The simulation is performed by producing
a random vector in a randomly selected node checking if this vector
matches to the local data filter. If not, we apply our model and select
the top-𝑘 peers that could host the new data. We perform a set of
iterations and record the results for a number of performance metrics
presented below. The final outcomes are depicted by the average of
observations in order to harmonize the detected performance as it is
affected by the randomly selected measurements.

We evaluate our model introducing the following performance met-
rics:

• 𝜏 refers in the ability of the proposed model to handle real time
decision making and expose if our approach can be adopted in an
EC setup. 𝜏 is defined as the average time (in seconds) required to
delivery the allocation of a random vector when it does not match
to the local filter, i.e., 𝜏 =

∑

𝜏𝐗
|𝐱| where 𝜏𝐗 is the time required

to decide for the allocation of 𝐱 and |𝐱| is the number of the
processed vectors. Apparently, when 𝜏 → 0, the proposed model

1 https://www.kaggle.com/datasets/shrutibhargava94/india-air-quality-
ata

2 https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+
ehicles+Sensor+Data
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spends the minimum possible time for the final allocation and
can be considered as an appropriate model for real time decision
making;

• 𝜖 depicts the ability of the proposed model to detect the best
possible node to allocate the incoming vectors by checking if the
allocated data assets matches to the filter of the receptor. 𝜖 is de-
fined as: 𝜖 = 𝐽

𝐸 with 𝐽 being the number of experiments where the
allocated vector matches to the filter of the first node in the top-𝑘
list for the entire set of the dimensions, and 𝐸 is the number of
the experiments. We have to notice that the matching is detected
for all the considered dimensions (a conjunctive scheme). The
greater the 𝜖 is (close to unity) the better the performance of the
model becomes. The proposed model reasons about the similarity
of the reported filters before it decides to allocate the incoming
data assets;

• 𝜖 refers to the matching of the firstly selected node with the
incoming vector for at least the 50% of the adopted dimensions
(a disjunctive scheme). 𝜖 represents a more relaxed strategy to
support the final decision making. 𝜖 is similarly defined as the 𝜖
metric;

• 𝜌 relies on the top-𝑘 list of the selected peers and depicts the
matching with their local filters. 𝜌 is defined as follows 𝜌 =
𝐽
𝑘⋅𝐸 where 𝐽 represents the number of experiments where the
incoming vector matches to the filters of the top-𝑘 nodes. 𝜌 is
depicted by the percentage of nodes present in the top-𝑘 list
that own a filter matching to the allocated vector. Naturally,
a high value of 𝜌 (close to unity) represents the best possible
performance for the proposed model;

• �̂� depicts the outcome of a disjunctive strategy, i.e., we detect if
the incoming vector matches to at least the 50% of the adopted
dimensions in the top-𝑘 nodes. �̂� is similarly defined as 𝜌.

We compare our model, coined Filters Matching Model (FMM)
with the model presented in [40], coined Random Model (RM) and
the scheme proposed by [56] coined Distance Based Allocation Model
(DBAM). The RM randomly selects the peers from the population where
the offloaded 𝐱 will be allocated. We consider that RM relies on 𝑘
peers by selecting them in a sequential order. The DBAM focuses on the
distance between nodes and allocates the data to closest peer (the data
allocation involves only one peer) targeting to depict the locality of
the observations. The popularity of data referred in the corresponding
paper [56] does not match to the needs of our model and is omitted
in the comparative assessment. In our experimentation, we consider
𝑊 ∈ {3, 5, 10, 15, 20}, �̂� = 50, 𝑁 ∈ {5, 10, 20, 50} 𝑘 ∈ {2, 3, 5, 7, 10}
| ∈ {2, 3, 4, 7}, 𝐸 = 50, 𝜔 = 2 �̂� = 0.2, �̂� = 5. Through the

adoption of the aforementioned parameters, we target to (a) simulate
a dynamic environment where different numbers of tasks (𝑊 ) are
studied to conclude the final data filters; (b) simulate a environment
where different numbers of nodes 𝑁 are considered to participate in the
ecosystem. This, in combination with different realizations of 𝑘, gives
us the opportunity to create multiple experimental scenarios where we
select different groups of nodes to decide the final allocation of data
assets; (c) through ||, we experiment with different number of groups
in the clustering process to detect if a more ‘relaxed’ grouping activity
(clusters with potentially high intra-cluster distance) negatively affects
the final performance. It should be noted that all the parameters can be
accessed through a configuration process/file in order to enhance the
autonomous nature of the approach.

6.2. Performance assessment

We initially evaluate FMM as far as 𝜏 concerns for both datasets
DS1, DS2. The delivered outcomes show that FMM requires [0.06, 0.08]
seconds (approximately) to allocate a data vector 𝐱. This means that
12.5 to 16.5 (approximately) data assets can be processed in a second
which is a time interval that can support real time applications. These

https://www.kaggle.com/datasets/shrutibhargava94/india-air-quality-data
https://www.kaggle.com/datasets/shrutibhargava94/india-air-quality-data
https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data
https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data
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Fig. 2. Performance outcomes related to 𝜖 and 𝜖 metrics for different 𝑁 .
Table 2
Performance outcomes for 𝜖 and 𝜖 metrics when DS2 feeds our model (different 𝑁).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜖 𝜖 𝜖 𝜖

5 0.28 0.87 0.42 0.96
10 0.28 0.85 0.50 0.93
20 0.30 0.95 0.60 1.00
50 0.38 0.95 0.58 0.96

results comes natural if we consider the time complexity of the adopted
algorithm found to be low as it depends only on the complexity of
the clustering algorithm and the number of nodes 𝑁 . For instance,
if we adopt the K-means algorithm, we can have a complexity of
𝑂(𝑀 ⋅𝑁 ||⋅2+1) [57] as we perform 𝑀 clustering activities and we have
to group pairs of low and high values for the adopted filters. Moreover,
we have to notice that the calculation of the envisioned expectations of
the variables that represent the low and high values of the filters are
based on the incremental calculation of the corresponding means and
standard deviations which does not add a significant burden in the final
complexity.

In Figs. 2 & 3, we present our results for 𝜖, 𝜖, 𝜌, �̂� for different
number of nodes 𝑁 adopting DS1 to feed our model. In this set of
experiments, we keep || = 3, 𝑘 = 3 and vary 𝑊 between 3 (left)
and 5 (right). We observe that FMM manages to reach high values
for the adopted metrics especially when the disjunctive strategy is
adopted. Recall that the disjunctive strategy indicates that at least 50%
of the dimensions should match to 𝐱 before a node is considered as
a candidate for the data migration. We also observe that 𝑁 positively
affects the performance as FMM reaches values above 0.5 for 𝜖 and 𝜌
and close to unity for the remaining parameters. If we focus on the 𝜌, �̂�
metrics, the vast majority of the selected nodes own filters that match
to 𝐱. Finally, 𝜖 is also approaching unity for a high 𝑁 exhibiting that the
dataset of first node selected by FMM matches the allocated data asset
for the majority of the envisioned dimensions. As far as the effect of
𝑊 concerns, a high value positively affects the performance as FMM
collects more requests for processing and produces filters that better
correspond to the collected data. Tables 2 & 3 present our experimental
results for the dataset DS2. We observe that 𝜖 and 𝜌 values are less
than the previous experimentation scenario with the dataset DS1 (the
model adopting DS1 outperforms on average with 41% and 23% for 𝜖
and 𝜌, respectively). If we focus on the scenario where 𝑊 = 5, the DS2
manages to achieve better results when 𝑁 ∈ {10, 20} (around −26%
and −22% on average for 𝜖 and 𝜌, respectively).

In Fig. 4, we present the statistical distribution of the results by
providing the boxplot for 𝜖 and 𝜌 metrics. We clearly observe the
‘statistical stability’ of the outcomes as the inter-quartile distance is
considered as low in the majority of the experimental scenarios. There
is not any significant difference from the maximum and minimum val-
ues and we do not observe any outliers in our performance outcomes.
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Table 3
Performance outcomes for 𝜌 and �̂� metrics when DS2 feeds our model (different 𝑁).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜌 �̂� 𝜌 �̂�

5 0.27 0.81 0.33 0.92
10 0.24 0.83 0.54 0.93
20 0.36 0.88 0.60 0.97
50 0.36 0.89 0.58 0.92

Table 4
Performance outcomes for 𝜖 and 𝜖 metrics when DS2 feeds our model (different 𝑘).
𝑘 || = 3, 𝑊 = 5, 𝑁 = 20 || = 3, 𝑊 = 5, 𝑁 = 20

𝜖 𝜖 𝜖 𝜖

2 0.47 0.87 0.56 0.96
5 0.53 1.00 0.52 0.97
7 0.37 0.93 0.43 1.00
10 0.37 0.96 0.48 1.00

Table 5
Performance outcomes for 𝜌 and �̂� metrics when DS2 feeds our model (different 𝑘).
𝑘 || = 3, 𝑊 = 5, 𝑁 = 20 || = 3, 𝑊 = 5, 𝑁 = 20

𝜌 �̂� 𝜌 �̂�

2 0.45 0.88 0.46 0.98
5 0.49 0.97 0.45 0.94
7 0.39 0.91 0.37 0.87
10 0.37 0.90 0.40 0.88

In general, the boxplots confirm the previous observations and expose
the difference in the performance when the two different datasets feed
our model. In any case, this difference is considered as low and mainly
depends on the interval where the dimensions are realized in the two
datasets. This is more intense when only three tasks are utilized to
define the data filters as it is exposed by the plots at the left part of
the figure. If more tasks (i.e., 𝑊 = 5) are utilized to define the filters,
the two datasets lead to similar results.

In Figs. 5 & 6, we present our performance evaluation for different
number of selected nodes 𝑘 adopting DS1 to feed our model. We
investigate if the final list of nodes plays a significant role in the
outcomes. In this set of experiments, we keep 𝑁 = 20, 𝑊 = 5 and
|| varies between 3 (left) and 5 (right). We observe that, naturally,
𝑘 affects the outcomes especially if 𝜌&�̂� are our main concern. The
increased 𝑘 causes fluctuations in the outcomes as more nodes are
included in the final list that may not completely match to 𝐱 for
the entire set of dimensions. However, the provided results exhibit
that FMM manages to select nodes that are appropriate for hosting
the rejected data especially if we adopt the disjunctive strategy. As
far as 𝜖 and 𝜖 concerns, we obtain similar results as in the previous
experimentation scenario. Concerning the adoption of DS2, Tables 4 &
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Fig. 3. Performance outcomes related to 𝜌 and �̂� metrics for different 𝑁 .
Fig. 4. Performance outcomes distribution for 𝜖 (1. Left) and 𝜌 (2. Right) metrics and different 𝑁 .
Fig. 5. Performance outcomes for different 𝑘 (𝜖 and 𝜖 metrics).
5 present our results. Again the model with the DS1 as the core dataset
leads to better results for 𝜖 and 𝜌 metrics except the scenario where
|| = 5 and 𝑘 ∈ {2, 5}. The outcomes related to the 𝜖 and �̂� metrics are
observed to be similar.

The next set of experiments refers to the adoption of different 𝑊
and the corresponding results are presented by Fig. 7 when DS1 feeds
our model. We keep || = 4, 𝑘 = 5 and 𝑁 varies between 10 (left)
and 20 (right). We observe that 𝜖 is increasing as more tasks are
considered to be the basis for delivering the final filters. This means that
FMM is capable of detecting filters (minimum and maximum values)
that better depict the statistical description of the underlying requests
116
by opening up the min–max interval of the requested data. Recall
that data and requests are randomly produced upon the same dataset
that governs our decision making. 𝜌 is observed to be governed by
fluctuations while the disjunctive strategy (𝜖, �̂�), again, manages to
lead to results close to unity. The fluctuations in the 𝜌 realization are
due to the random management of the tasks and the adopted data as
the selected nodes may not match to 𝐱 for the envisioned dimensions.
When DS2 feeds our model, we observe similar outcomes with 𝜖 ∈
{0.43, 0.39, 0.38, 0.54} for 𝑁 = 10 and 𝜖 ∈ {0.39, 0.31, 0.45, 0.73} for
𝑁 = 20. As far as 𝜌 concerns we get 𝜌 ∈ {0.30, 0.40, 0.37, 0.58} for 𝑁 = 10
and 𝜖 ∈ 0.40, 0.29, 0.44, 0.75 for 𝑁 = 20 confirming our conclusion
{ }
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Fig. 6. Performance outcomes for different 𝑘 (𝜌 and �̂� metrics).
Fig. 7. The performance of the proposed model when it is applied for different 𝑊 .
that the proposed model behaves well when a high number of tasks
are processed to deliver the final filters. This is because the variability
of the requests manages to lead to filters that clearly depict and affect
the underlying data stored in every node.

In Fig. 8, we provide the performance outcomes for different ||
adopting DS1 to feed our model and keeping 𝑘 = 5, 𝑊 = 10 and 𝑁
varies between 10 (left) and 20 (right). We observe that FMM manages
to reach high values especially for 𝜖, 𝜖 and �̂�. We can observe that an
increased number of nodes positively affect the results as FMM has the
opportunity to process more values and detect the appropriate set of
peers. The processing of more nodes gives us the ability to efficiently
detect the groups of peers (through the clustering) and open up the
room for the application of our model that demands for many nodes to
be present in the delivered clusters. This can be seen in the results for
|| = 7 and 𝑁 = 10 where every cluster consists of a few nodes, thus,
FMM decides, with a penalty (as explained above), to incorporate in the
processing and the final list peers from other clusters than the cluster
where the node offloading the data asset is present. If we focus on the
scenario where DS2 feeds our model, we get: 𝜖 ∈ {0.26, 0.43, 065}&𝜌 ∈
{0.41, 0.37, 0.55} for 𝑁 = 10, 𝜖 ∈ {0.57, 054, 0.60}&𝜌 ∈ {0.44, 0.51, 0.48}
for 𝑁 = 20. Again, we observe that the proposed model is in favour of
a large ecosystem with many nodes and large groups of peers when the
final decision should be made.

In Tables 6 & 7, we present our results for the comparative assess-
ment between the proposed FMM and RM for both datasets DS1 and
DS2. We observe that FMM outperforms RM for all the experimental
scenarios no matter the adopted dataset. The higher the 𝑁 , the higher
the difference becomes. The random selection of nodes for offloading
data it may be the optimal baseline model cornering the time required
to deliver the final outcome, however, it does not lead to the best
choices for migrating data. Naturally, an increased 𝑊 , that affects the
production of the filters, assists the RM to deliver better results as the
statistical representation of the data and filters is better than in other
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Table 6
Comparative assessment between FMM and RM for different 𝑁 (Dataset: DS1).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜖 𝜌 𝜖 𝜌

5 64.71% 30.43% 41.18% 5.26%
10 58.82% 22.58% 37.04% 35.71%
20 84.00% 40.74% 69.23% 46.67%
50 228.57% 79.17% 179.17% 80.00%

Table 7
Comparative assessment between FMM and RM for different 𝑁 (Dataset: DS2).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜖 𝜌 𝜖 𝜌

5 0.00% 22.73% 20.00% 6.45%
10 115.38% 84.62% 28.21% 28.57%
20 42.86% 44.00% 30.43% 52.94%
50 137.50% 111.76% 70.59% 31.71%

cases. Recall that an increased 𝑊 gives the opportunity to increase the
min–max interval of the requested data.

In Tables 8 & 9, we see our comparative results for different 𝑘 for
both datasets DS1 and DS2. Now, an increased number of nodes present
in the final selection list increases the chances of the RM to reduce
the difference from the FMM as well. The higher the 𝑘 is the lower
the difference becomes. However, FMM outperforms RM again in all
the experimentation scenarios except the scenario where DS2 feeds our
model and we target to a limited number of nodes that participate in
the final decision making (𝑘 = 2). We have to notice that in this set of
experiments, we adopt 𝑁 = 20 and || = {3, 5}.

The performance outcomes provided by Tables 10 & 11 confirm
our previous observations for the effects of a high 𝑊 if we focus on
the disjunctive strategy. This means that the RM can find room for
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Fig. 8. The performance of the proposed model when it is applied for different number of clusters.
Table 8
Comparative assessment between FMM and RM for different 𝑘 (Dataset: DS1).
𝑘 𝑁 = 20, || = 3, 𝑊 = 5 𝑁 = 20, || = 5, 𝑊 = 5

𝜖 𝜌 𝜖 𝜌

2 135.00% 113.64% 60.00% 46.67%
5 84.38% 45.00% 45.45% 22.22%
7 94.12% 57.14% 82.35% 18.75%
10 44.44% 13.04% 63.41% 20.93%

Table 9
Comparative assessment between FMM and RM for different 𝑘 (Dataset: DS2).
𝑘 𝑁 = 20, || = 3, 𝑊 = 5 𝑁 = 20, || = 5, 𝑊 = 5

𝜖 𝜌 𝜖 𝜌

2 135.00% 66.67% 7.69% −4.17%
5 23.26% 8.89% 79.31% 50.00%
7 12.12% 11.43% 0.00% 2.78%
10 42.31% 32.14% 26.32% 8.11%

Table 10
Comparative assessment between FMM and RM for different 𝑊 (Dataset: DS1).
𝑊 𝑁 = 10, || = 4, 𝑘 = 5 𝑁 = 20, || = 4, 𝑘 = 5

𝜖 𝜌 𝜖 𝜌

5 50.00% 15.63% 27.27% 22.22%
10 29.27% 33.33% 133.33% 68.75%
15 32.56% −3.70% 34.00% 51.52%
20 103.03% −4.26% 16.42% 22.45%

Table 11
Comparative assessment between FMM and RM for different 𝑊 (Dataset: DS2).
𝑊 𝑁 = 10, || = 4, 𝑘 = 5 𝑁 = 20, || = 4, 𝑘 = 5

𝜖 𝜌 𝜖 𝜌

5 30.30% 11.11% 21.88% 14.29%
10 −30.36% 5.26% −32.61% 0.00%
15 0.00% 8.82% 25.00% 29.41%
20 0.00% −6.45% −8.75% 10.29%

randomly selecting nodes that may exhibit a high similarity with 𝐱.
There are two experimentation scenarios, i.e., 𝑊 ∈ {15, 20}, where
the RM outperforms the FMM if the 𝜌 metric concerns having DS1 to
feed our model. When DS2 is the case, RM outperforms FMM in four
experimental scenarios but not a specific trend is observed. We can say
that the DS2 lead the proposed model to have similar performance as
RM. In any case, the outcomes of the two models are close enough. In
all the remaining experimentation scenarios, the FMM outperforms the
RM.

In Tables 12 & 13, we provide the comparative performance out-
comes between FMM and DBAM taking into consideration 𝜖 and 𝜖
metrics for different number of nodes 𝑁 . Recall that DBAM considers
that only the closest peer in the same cluster will be the new host
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Table 12
Comparative assessment between FMM and DBAM for different 𝑁 (Dataset: DS1).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜖 𝜖 𝜖 𝜖

5 180.00% 55.36% 60.00% 14.12%
10 80.00% 37.50% 105.56% 6.10%
20 76.92% 15.00% 25.71% 19.23%
50 53.33% 12.05% 45.65% 19.05%

Table 13
Comparative assessment between FMM and DBAM for different 𝑁 (Dataset: DS2).
𝑁 𝑊 = 3, || = 3, 𝑘 = 3 𝑊 = 5, || = 3, 𝑘 = 3

𝜖 𝜖 𝜖 𝜖

5 47.37% 10.13% 13.51% 15.66%
10 21.74% 8.97% 61.29% 0.00%
20 11.11% 4.40% 87.50% 29.87%
50 90.00% 31.94% 222.22% 17.07%

of the rejected data. The adoption of DS1 leads to the best possible
results compared to the scenario where we adopt DS2. In all the
experimentation scenarios, FMM outperforms DBAM and exhibit a very
good performance exposing, at the same time, that only the distance
between nodes cannot efficiently lead to the best possible allocations.
For DS1 we observe that for an increased number of nodes DBAM
menages to achieve better performance than in the other scenarios
reducing the difference with FMM. This is more ‘intense’ in the 𝜖 metric
for which the two model exhibits similar behaviour. In the first places of
our future research, we consider the combination of the distance based
selection with the reasoning of the proposed model to enhance more
the efficiency and lead to the best possible performance.

7. Conclusions

The current evolution of the Internet of Things (IoT) and Edge
Computing (EC) leads to the combination of two vast infrastructures
where various intelligent services can be uploaded to facilitate end
users activities. EC nodes can be the mediators between IoT and the
Cloud as far as the data transfer concerns and become the executors
of tasks over collected data. Due to the computational and storage con-
straints of EC nodes’ resources (they are limited compared to Cloud), we
have to select the data that will be hosted locally. This data selectivity
approach leads to the creation of distributed datasets with specific
statistical characteristics. Our target is to provide a model for allocating
data that do not match to the selectivity scheme of a node and keep
them at the edge as much as possible by migrating those data assets to
peers. We propose a migration model to peers owing similar datasets
as they are exposed by the corresponding data filters. Our mechanism
introduces the combination of Machine Learning (ML) for grouping
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nodes based on their data filters with a probabilistic approach to detect
the historical similarity between distributed datasets. We evaluate the
proposed model to expose that is capable of delaying the transfer of
data to the Cloud by selecting the appropriate peers to host them. The
final outcome is the ability to support a comprehensive data map of the
EC network, designating each node as the owner of specific data spaces,
thus, facilitating the allocation of future processing tasks. In the first
place of our future research plans is the definition of a more complex
scheme for the management of the filters clustering outcomes in order
to detect sub-clusters and the ‘direction’ of the similarity between two
filters. We have to detect this similarity not only based on the distance
between two pairs but also this distance should play a crucial role in
the final selection of nodes especially when filters lie at the edges of
the delivered clusters.
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