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A B S T R A C T 

Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle 
acceleration. Ho we ver, it remains unclear down to what energy scales this impulsive energy release continues, which has 
implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through 

their X-ray emission, finding predominantly thermal emission at lo wer energies; ho we ver, at higher energies it can be difficult to 

distinguish whether the emission is due to hotter plasma and/or accelerated electrons. We present the first application of nested 

sampling to solar flare X-ray spectra, an approach that provides a quantitative degree of confidence for one model o v er another. 
We analyse Nuclear Spectroscopic Telescope Array X-ray observations of a small active region microflare (A0.02 GOES/XRS 

class equi v alent) that occurred on 2021 No v ember 17, with a new PYTHON package for spectral fitting, SUNKIT-SPEX , to compute 
the parameter posterior distributions and the evidence of different models representing the higher energy emission as due to 

thermal or non-thermal sources. Calculating the Bayes factor, we show that there is significantly stronger evidence for the higher 
energy microflare emission to be produced by non-thermal emission from flare-accelerated electrons than by an additional hot 
thermal source. Qualitative confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in Solar 
Dynamic Observatory’s Atmospheric Imaging Assembly’s extreme ultraviolet data. The nested sampling approach used in this 
paper has provided clear support for non-thermal emission at the level of 3 × 10 

24 erg s −1 in this tiny microflare. 

Key words: methods: numerical – Sun: activity – Sun: corona – Sun: flares – Sun: X-rays, gamma-rays. 
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 I N T RO D U C T I O N  

lares are e xplosiv e releases of energy that take place in active
egions (ARs) thought to be produced and powered by magnetic
econnection of stressed magnetic fields in the solar atmosphere
Priest & Forbes 2002 ). The reconnection can release energies up
o ∼10 32 erg and readily drives mass flows, plasma heating, and
article acceleration (Fletcher et al. 2011 ; Benz 2017 ). Flares produce
mission across the electromagnetic spectrum and are commonly
haracterized by their Geostationary Operational Environmental
atellite X-Ray Sensor (GOES/XRS) 1–8 Å soft X-ray (SXR)
mission and thermal energy release. Flares with SXR emission
 10 −6 W m 

−2 and energies between 10 26 and 10 28 erg are commonly
eferred to as microflares (Lin et al. 1984 ; Hannah et al. 2011 ). 

Flares with energies of the order of ∼10 24 erg, termed nanoflares ,
re proposed to occur everywhere on the solar disc and not just
ocalized to ARs (Parker 1988 ). If microflares and nanoflares occur
requently enough, then they could provide the majority fraction of
he energy heating the corona from the o v erall flare distribution;
o we ver, this relies on the same flaring mechanisms scaling down to
he weaker events, such as non-thermal particle acceleration emission
Hudson 1991 ). It is often difficult to ascertain whether weak, sub-A
 E-mail: kristophercooper95@gmail.com 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
lass microflares do indeed sho w positi ve e vidence for these standard
are processes often observed in their larger counterparts. 
Microflares have been extensively studied in X-rays with instru-
ents such as the Reuven Ramaty High-Energy Solar Spectroscopic

mager (RHESSI; Lin et al. 2002 ), Chandrayaan-2’s Solar X-ray
onitor (Vadawale et al. 2014 ; Shanmugam et al. 2020 ), and the
uclear Spectroscopic Telescope Array ( NuSTAR ; Harrison et al.
013 ). Statistical and individual studies have observed hard X-ray
mission during microflares from non-thermal electron acceleration
ho wing e vidence that microflares do wn to GOES class A0.1 appear
o show similar processes to their brighter counterparts (Christe et al.
008 ; Hannah et al. 2008 ; Glesener et al. 2020 ; Cooper et al. 2021 ).
o we ver, as the microflares get weaker it becomes increasingly
ifficult to determine whether this flare behaviour continues to scale
r has a lower limit. Sensitivity to these weak microflares is crucial in
nderstanding whether the flare process scales across these different
lassifications. 

NuSTAR is an astrophysical telescope capable of observing the Sun
 2.5 keV (Grefenstette et al. 2016 ; Hannah et al. 2016 ). NuSTAR

onsists of two telescopes utilizing Wolter-I-type optics to focus X-
ays on to two focal plane modules (FPMA and FPMB), each with
 field of view (FOV) of 12 arcmin × 12 arcmin. Each FPM takes
.5 ms to process a detected photon during which no other trigger can
e recorded; the fraction of time NuSTAR spends open to detection
uring an observation is quantified by the livetime. Under quiescent
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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onditions, NuSTAR ’s livetime can reach up to 92 per cent (Paterson
t al. 2023 ); ho we ver, the li vetime drops to < 16 per cent e ven with
mall microflares of A class or smaller (Cooper et al. 2021 ). This
imited throughput, combined with flare X-ray spectra steeply falling 
ith increasing energy, results in a low number of NuSTAR counts at
igher energies. 
NuSTAR has observed several microflares with energies from 10 28 

own to 10 26 erg with GOES classes of B, A, and sub-A (Glesener
t al. 2017 ; Wright et al. 2017 ; Hannah et al. 2019 ; Cooper et al.
020 , 2021 ; Duncan et al. 2021 ) and also quiescent Sun features
utside ARs of energies down to 10 26 erg (Kuhar et al. 2018 ; Paterson
t al. 2023 ). Several of these studies have found consistency with
he presence of non-thermal emission throughout the flare evolution, 
hile Glesener et al. ( 2020 ) and Cooper et al. ( 2021 ) show convincing

vidence of non-thermal emission in an A5.7 and an estimated A0.1 
icroflare, respectively. 1 

It becomes more difficult with weaker flares to confidently 
etermine the presence of any high-energy emission and even 
arder to determine the mechanism behind the emission. In order 
o determine the nature of the higher energy emission observed by 
n instrument from much weaker microflares, a robust method needs 
o be utilized, which can investigate the difference between different 
odel representations of the observed data. Nested sampling analysis 

Skilling 2004 , 2006 ) can be used for this purpose. Note that this
nalytical technique can also be applied in general cases (e.g. in 
arger flares) where ambiguity exists between model fits to data. 

Nested sampling is a Bayesian technique that is used to map the
osterior distribution and estimate a quantity called the evidence , 
hich is the probability of an observation given the assumption of a
odel representation. The pieces of evidence of different hypotheses 

an then be used to compare different model fits to data, providing a
evel of confidence for one model over another. The nested sampling 
lgorithm also accounts for different model parameters and different 
umbers of model parameters used between representations. There 
re many implementations of nested sampling (Kester & Mueller 
021 ; Ashton et al. 2022 ) and it is used e xtensiv ely in man y scientific
elds (Knuth et al. 2015 ); ho we ver, it is not common in the solar
hysics community. 
In this paper, we present the first use of nested sampling in the

nalysis of an AR NuSTAR X-ray microflare that took place on 2021
o v ember 17 at ∼21:14 UT (SOL2021-11-17T21:14). In Section 2 ,
e investigate the microflare evolution in time, space, and energy 
sing NuSTAR and the Solar Dynamic Observatory’s Atmospheric 
maging Assembly (SDO/AIA; Lemen et al. 2012 ) and Heliospheric 
nd Magnetic Imager (SDO/HMI; Schou et al. 2012 ). We then 
escribe the nested sampling algorithm and how it can be used to
etermine the most likely model representation to explain a given 
ata set in Section 3 . In Section 4 , we then apply the nested sampling
lgorithm to the NuSTAR X-ray spectral analysis for the first time 
here we determine the most likely explanation for the microflare 

mission. 

 X - R AY  M I C RO F L A R E  

 NuSTAR solar campaign was performed on 2021 No v ember 17–
2 where 9 h-long observations were made of ARs present on the
un’s disc. During the third observation, NuSTAR observed three mi- 
roflares where the second one (microflare SOL2021-11-17T21:14) 
 A NuSTAR solar observations o v erview is available at https://ianan.github. 
o/ nsigh all/ . 

c  

a
F
t  
s the subject of this paper; the other flares and observations will be
nvestigated in future papers. 

.1 Time evolution 

icroflare SOL2021-11-17T21:14 is clearly observed in X-rays with 
uSTAR as shown in Fig. 1 . The extreme ultraviolet (EUV) and
-ray time profiles from SDO/AIA and NuSTAR , respectively, are 

hown (left panel) where the SDO/AIA light curves are from a region
round the microflare (see Fig. 2 ) and the NuSTAR time profiles are
nte grated o v er the entire AR area indicated by a black box in Fig. 1
right panel). The X-ray image (right panel) shows the microflare in
he top of NuSTAR ’s FOV, inside the black box, as a relatively bright
ource compared to the more northern AR (SPoCA 26190; Verbeeck 
t al. 2014 ) core emission. 

We find that the native SDO/AIA channel light curves in Fig. 1
top of left panel) show little similarity with the X-ray time profiles
bottom of left panel) with the exception of the 94 Å channel that
hows a slight positive correlation and a possible negative correlation 
ith the 304 Å channel. The microflare only becomes apparent in 

he EUV when calculating the Fe XVIII proxy channel – a linear
ombination of the 94, 171, and 211 Å channels – as described in
el Zanna ( 2013 ). This channel has a significant response to thermal

mission from material between 4 and 10 MK, which is a crucial
ange for NuSTAR microflares (Hannah et al. 2016 , 2019 ; Wright
t al. 2017 ; Cooper et al. 2020 , 2021 ; Glesener et al. 2020 ; Duncan
t al. 2021 ). 

The Fe XVIII light curve shows very similar progression to the
.5–6 keV FPMA + FPMB NuSTAR time profile indicating that 
his microflare heats a significant amount of material to between 
 and 10 MK. The higher energy X-ray range, 6–10 keV, shows
 more impulsive time profile that peaks earlier, indicative of 
ot plasma being present in the early stages of the microflare
nd/or non-thermal emission from an initially accelerated electron 
istribution. 
Pre-flare and microflare times are defined from the NuSTAR time 

rofiles and shown as red and blue shaded re gions, respectiv ely, in
ig. 1 . The microflare time is chosen based on the more impulsive
–10 keV NuSTAR light curve to better investigate the emission 
rocesses in the initial flaring stages. 
The microflare, along with many events NuSTAR observed in 

he observation campaign, is obvious in the X-ray regime where 
t is dominant across the whole FOV; ho we ver, as indicated by the
DO/AIA light curves in Fig. 1 , it is difficult to find corroborating
vidence in the native EUV channels even when locating the 
icroflare’s position. Therefore, the EUV microflaring structure can 

nly be reliably determined with information from NuSTAR and its 
omparison to Fe XVIII images. 

.2 Spatial evolution 

ig. 2 shows EUV images inte grated o v er the microflare time.
omparable in size to the black box shown in the NuST AR FO V

mage in Fig. 1 (right panel), the left panel of Fig. 2 shows the
DO/AIA 94 Å channel emission of the full AR with the microflare

dentified within a black box. The black box region identified to host
he microflare is the area used to depict the other panels. 

The Fe XVIII proxy channel and, to a lesser extent, the 94 Å
hannel show a loop structure, while the other channels do not show
ny corresponding activity except at the apparent loop footpoints. 
ootpoint activity can be seen through all EUV channels; however, 

he footpoints do not appear to produce the same response at all levels
MNRAS 529, 702–714 (2024) 
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Figure 1. SDO/AIA, including Fe XVIII proxy, and NuSTAR livetime-corrected light curves over the time of microflare SOL2021-11-17T21:14 (left panel). 
The SDO/AIA time profiles are av eraged o v er the black box region shown in Fig. 2 and a scale factor (for plotting purposes) has been applied, as shown, to 
several channels. The area used to create the NuSTAR light curves is shown as a black box across AR SPoCA 26190 in the NuSTAR > 2.5 keV integrated, 
livetime-corrected FOV (right panel). Pre-flare (21:09:40–21:12:00 UT ) and microflare (21:12:30–21:14:50 UT ) times are indicated by the shaded red and blue 
areas in the NuSTAR light-curve panels, respectively. The red circle with a radius of 48 arcsec shown in the right panel indicates the region size used to produce 
spectral fit profiles for the NuSTAR spectra. 

Figure 2. SDO/AIA native channels and Fe XVIII proxy are averaged over the microflare time (blue shaded region, Fig. 1 ), while the SDO/HMI line-of-sight 
magnetogram is taken from the start of the time range. The left panel shows the 94 Å channel emission o v er the full AR with an FOV slightly smaller than the 
box ed re gion in the NuSTAR image from Fig. 1 . A black box indicates the location of the microflare and is used to create the zoomed-in images for the other 
emission channels (right panels). The Fe XVIII proxy microflaring loop emission contours at 5, 50, and 95 per cent of the maximum are o v erlaid on the zoomed 
panels and are shown in red. 
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2 Formerly, SUNXSPEX , a PYTHON spectral fitting tool: https://github.com/ 
sunpy/sunkit-spex . 
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n the solar atmosphere. The northern footpoint appears brighter in
he upper transition region as shown by the relative brightness in
he 131 and 171 Å channels, whereas the southern footpoint shows
 greater response in the chromosphere and photosphere as seen
n the 304, 1600, and 1700 Å channels (Lemen et al. 2012 ). From
he SDO/HMI panel in Fig. 2 , we find that the loop footpoints are
nchored in opposite polarity regions. 

Zoomed images with NuSTAR emission only showed a single
ircular shape to co-align with the EUV loop structure for the 2.5–6
nd 6–10 keV emission. The lack of distinctive shape in X-rays may
e expected due to the very few high-energy microflare counts and
he fact that the angular extent of the microflare is ∼10 arcsec, which
s considerably smaller than NuSTAR ’s angular resolution with a full
idth at half-maximum and half-power diameter of 18 and ∼60

rcsec, respectively (Harrison et al. 2013 ). 
NRAS 529, 702–714 (2024) 
From the EUV images shown in Fig. 2 , we are able to obtain
 microflaring loop volume by modelling it as a half torus. We
stimate an upper limit for the distance between the footpoints and
he diameter of the loop to be approximately 9 and 2 arcsec (6.5 × 10 8 

nd 1.5 × 10 8 cm), respectively. Therefore, the volume obtained from
he geometry as viewed in EUV is 1.7 × 10 25 cm 

3 . 

.3 Spectral evolution 

ig. 3 shows the spectral fitting analysis (see Section 2.3.1 ) of
he NuSTAR FPMA and FPMB grade 0 (single pixel) microflare
mission on the pre-flare and microflare time using SUNKIT-SPEX, 2 

https://github.com/sunpy/sunkit-spex
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Figure 3. Simultaneous thermal model fits, using SUNKIT-SPEX , of NuSTAR ’s FPMA and FPMB emission spectra during the pre-flare (21:09:40–21:12:00 UT , 
left panel) and microflare (21:12:30–21:14:50 UT , right panel) times, which are shown as shaded red and blue regions in Fig. 1 , respectively. The pre-flare 
spectra are fitted with one thermal model (black) and then used as a fixed component for the microflare spectra (blue). The microflare spectra are fitted with 
an additional thermal model (purple) to account for the flaring emission with the o v erall model being shown in black. The spectra from both times are fitted 
o v er the energy ranges indicated by the horizontal green line in the residual panels. The temperatures and emission measures for each model fit are shown in 
their respective model colours where the error ranges are calculated from MCMC analysis and report the 1 σ equi v alent uncertainty . Additionally , 100 random 

model samples from the MCMC analysis are shown in orange. The rele v ant time ranges, ef fecti v e e xposures, and liv etimes are also shown in each panel. The 
microflare fit in the right panel is also referred to as the null scenario in relation to model comparison. 
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hich utilizes the EMCEE package (F oreman-Macke y et al. 2013 ). We
nd that the pre-flare time (Fig. 3 , left panel) is represented well with
n isothermal model of temperature 3.3 MK and emission measure 1 

10 46 cm 

−3 from the Markov chain Monte Carlo (MCMC) analysis, 
 common result from previous NuSTAR quiescent AR and pre-flare 
pectral fitting (Glesener et al. 2017 ; Wright et al. 2017 ; Hannah
t al. 2019 ; Cooper et al. 2021 ). The isothermal model available in
UNKIT-SPEX is a PYTHON version of the IDL function f vth.pro
Schwartz et al. 2002 ) and uses CHIANTI V7.1 (Dere et al. 1997 ;
andi et al. 2013 ) with coronal abundances (Feldman et al. 1992 ;
andi, Feldman & Dere 2002 ). 
The pre-flare thermal model is then used as a fixed component 

hen fitting the microflare time with an additional thermal model 
epresenting the flaring emission (Fig. 3 , right panel). This model fit
rovides a temperature and emission measure in a sensible range for
revious NuSTAR microflares, between 4 and 10 MK, as discussed 
n Section 2.1 ; ho we ver, it is clear that this model does not provide
 satisfactory representation of the observed spectra. The residuals 
f the microflare fit in Fig. 3 indicate a poor fit between 2.5 and
 keV and a clear count excess above the model at energies > 6 keV.
herefore, we find sufficient reason to include an additional model 

o the microflare fit in order to accurately represent the observed 
pectra. 
Two model candidates are tested to fit the excess: a thermal
cenario , which includes an additional thermal model, and a non-
hermal scenario , which involves the thick-target model (Brown 
971 ; Holman et al. 2011 ). The thick-target model assumes a power-
aw distribution of electrons of spectral inde x δ abo v e a low-energy
ut-off E c that lose all their energy through Coulomb collisions. 
hese hypotheses represent either hotter plasma or non-thermal 
mission during the impulsive phase of the microflare. In relation 
o these two excess additions, the microflare fit in Fig. 3 is termed
he null scenario since the excess is not represented. Representations 
f the photon models utilized in each scenario are shown in Fig.
1 . Note that unlike in the spectral analysis of brighter NuSTAR
icroflares, no gain correction (Duncan et al. 2021 ) is required

ue to the relatively high livetime of microflare SOL2021-11- 
7T21:14. 
Fig. 4 shows, in red, the thermal scenario fit (left panel) and the

on-thermal scenario fit (right panel) to the microflare spectra. We 
nd that both scenarios resolve the poor fit to the 2.5–6 keV range
nd represent the count excess well > 6 keV. 

The thermally fitted excess representation proposes the presence 
f a relatively weak emitting source with a temperature of ∼10
K, whereas the non-thermal case suggests thick-target emission 
ith a δ of ∼8 and an E of ∼6 keV. We note that the non-
MNRAS 529, 702–714 (2024) 
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Figure 4. Two different spectral fits of the microflare spectra from the right panel of Fig. 3 , one with the count model excess fitted with a thermal model (the 
thermal scenario , left panel) and the other fitted with a non-thermal model ( non-thermal scenario , right panel) shown in red. The model parameters are shown 
in their respective plots and colours with their error values showing 1 σ equivalent uncertainties resulting from MCMC analysis with 100 random model samples 
shown in orange. 
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hermal parameters are well within those previously reported for
ther microflares (Hannah et al. 2008 ; Glesener et al. 2020 ; Cooper
t al. 2021 ). The lo wer energy thermal models (purple) sho w a
ecrease in temperature and increase in emission measure compared
o the values obtained in Fig. 3 (right panel). 

Using the temperatures and emission measures obtained from all
icroflare fits, we find the microflare to be an estimated GOES class

etween A0.02 and A0.03. The GOES class is roughly estimated
sing the goes flux49.pro IDL routine as the microflare was too
eak to provide a direct GOES/XRS measurement. 
From the flare volume upper limit determined in Section 2.2

nd the microflare thermal parameters, we find thermal energies
f 1.6 + 0 . 1 

−0 . 1 × 10 26 , 3.0 + 0 . 4 
−0 . 4 × 10 26 , and 2.1 + 0 . 1 

−0 . 1 × 10 26 erg for the
ull, thermal, and non-thermal scenario fits, respectively, using
quations (3) and (A4) from Hannah et al. ( 2008 ) and Aschwanden
t al. ( 2015 ). In addition, the non-thermal power associated with the
hick-target component in Fig. 4 (right panel) is calculated to be
.7 + 2 . 7 

−1 . 2 × 10 24 erg s −1 (equation 5 from Wright et al. 2017 ), which
esults in 3.7 + 3 . 8 

−1 . 6 × 10 26 erg o v er the course of the impulsive phase.
ll thermal energies are in the expected range for a weak microflare

nd we note that in the non-thermal case both energies are consistent
ith each other. 
Therefore, both hypotheses shown in Fig. 4 present an interesting

nd unique conclusion, either showing a microflare of this scale
roducing such hot temperatures in the impulsive phase or providing
ositi ve e vidence for the presence of visible non-thermal particle
cceleration via a clear count excess in the spectral fits. 
NRAS 529, 702–714 (2024) 

t  
.3.1 Best spectral fit 

he fits shown in Figs 3 and 4 are determined using the Poissonian
ikelihood, L ( θ ), given by 

 ( θ ) = 

N ∏ 

i= 0 

M i ( θ ) D i × e −M i ( θ ) 

D i ! 
, (1) 

here M i ( θ ) represents the predicted model counts with parameters
and D i is the observed number of counts in a given energy bin, i.
he number of data bins included in the optimization is represented
y N . 
We find the optimum fit to the microflare spectra with the

hermal, double-thermal, and thermal and non-thermal models give a
oissonian log-likelihood value, ln ( L opt ), of −520, −484, and −480,
espectively. This loosely suggests that the non-thermal scenario fit
Fig. 4 , right panel) best represents the observed spectra out of the
ested models. Ho we v er, it may be e xpected that this is the case
ince the thick-target model has more free parameters; therefore, it
s difficult to ascertain whether the non-thermal scenario should be
rusted more with such a small difference in log-likelihood values
iven the different number of parameters available to each model. 
It is possible that there is a discrepancy between the thermal excess

cenario (Fig. 4 , left panel) and the EUV time profiles displayed
n Fig. 1 . The double-thermal fit suggests the presence of material
t ∼10 MK during the microflare’s impulsive phase. However, the
DO/AIA 131 Å channel has a significant response to material of this

emperature (Lemen et al. 2012 ) but the light curve does not show
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 noticeable increase in emission around this time. Folding the 10 
K thermal component through the EUV channel response, we find 

hat the hot component is very faint and may be too weak to produce
 significant increase in 131 Å channel meaning that the emission 
echanism of the higher X-ray energy excess remains ambiguous. 
A more robust approach is needed to assess the thermal and non-

hermal representations of the microflare spectra. The nested sam- 
ling approach described in Skilling ( 2004 ) provides a reproducible, 
ntuitive, and reliable method to ascertain how much more likely 
ne hypothesis is compared to another. Using this approach, we can 
nvestigate the most likely representation of the microflare spectra. 

 C O M PA R I N G  HYPOTHESES  

ayes formula (Jaynes 2003 ) is used e xtensiv ely to test how well
 certain hypothesis, H , e xplains giv en data, D, via the posterior,
 ( H | D), and is given by 

 ( H | D) = 

P ( D| H ) P ( H ) 

P ( D ) 
, (2) 

here P ( D| H ) is termed the likelihood that describes how likely
he data are observed if the hypothesis is true and P ( H ) represents
he prior information on the hypothesis (Sivia & Skilling 2006 ). The
erm P ( D) is the evidence that describes how likely the data are to
ccur independent of hypothesis that is difficult to obtain and, in 
ome cases, has very little meaning. 

Different hypotheses for the given data can then be compared 
elative to each other using equation ( 2 ) by calculating the posterior
dds. To compute this between two different hypotheses – say H 1 

nd H 2 – for the same data, the ratio is taken between the respective
osteriors as 

P ( H 1 | D) 

P ( H 2 | D) 
= 

P ( D| H 1 ) 

P ( D| H 2 ) 

P ( H 1 ) 

P ( H 2 ) 
, (3) 

here we note that the evidence term, P ( D), from equation ( 2 )
ancels (Ashton et al. 2022 ). Equation ( 3 ) therefore provides a
elative metric as to which hypothesis between H 1 and H 2 is more
ikely. It is common that the prior odds , ratio of P ( H 1 ) and P ( H 2 ),
s e v aluated to 1 if there is no prior justifiable preference for one
ypothesis o v er another and so the posterior odds in this case is fully
qui v alent to the ratio of the likelihoods, termed Bayes factor (BF). 

Using a nested sampling algorithm (Skilling 2004 , 2006 ), we can
stimate the likelihoods by investigating the parameter posterior 
nder the assumption that the hypothesis, now model M , is true. 
ested sampling is a Bayesian tool used to compare parametric model 
ts to data where the models have parameters, θ , and priors, P ( θ | M).
his is done by calculating the parameter posterior, P ( θ | D, M), by 

 ( θ | D, M) = 

P ( D| θ, M) P ( θ | M) 

P ( D| M) 
, (4) 

here we note that all terms depend on the model, M , and the data,
, being fitted. This explicit form is typically presented in Bayesian 

nalysis, such as in MCMC analysis (Ireland et al. 2013 ) where the
 ( D| M) term is often excluded in practice. 
Ho we ver, to a v oid the repetition of nomenclature, we adopt another

qui v alent representation: 

 ( θ ) = 

L ( θ ) π ( θ ) 

Z 

, (5) 

here the nested sampling process uses the likelihood L ( θ ) (e.g.
quation 1 ) and the prior π ( θ ) to estimate both the evidence Z and
he posterior P ( θ ). 
Note that Z is equi v alent to the likelihood term P ( D| H ), in
quations ( 2 ) and ( 3 ), and is different to the pre vious e vidence term
 ( D) from equation ( 2 ). 
The evidence, Z , could be calculated as 

 = 

∫ 

θ

L ( θ ) π ( θ )d θ, (6) 

nsuring that the integral of P ( θ ) o v er the parameter space is
qual to 1 (Sivia & Skilling 2006 ). Ho we v er, this inte gral can
uickly become complex with an increasing number of parameter 
imensions. The nested sampling process takes an approach to 
implify this calculation. 

Estimating the pieces of evidence, Z [likelihood P ( D| H ) in
quation 3 ] allows for a robust comparison between models and
ow well they explain the data. Criteria from Kass & Raftery ( 1995 ),
or example, can then be used to assign a relative confidence of one
ypothesis compared to another. Importantly, this is also true even if
he hypotheses rely on a different number of parameters or parameter
riors. The next section details how nested sampling is performed 
nd how Z is obtained mathematically. 

.1 Calculating the evidence Z with nested sampling 

he evidence Z is calculated by sampling a predefined and physically 
oti v ated constrained prior, π ( θ ), for the model parameters while

alculating the likelihood, L ( θ ), at every corresponding location. 
rom this sampling, a quantity called the prior mass can be defined
Skilling 2006 ). The prior mass, ξ , is the amount of prior enclosed
y some likelihood λ, which is given by 

( λ) = 

∫ 

L ( θ ) >λ

π ( θ )d θ, (7) 

nd contains all sampled points with L ( θ ) > λ. From equation ( 7 ),
e note that ξ = 1 when λ = 0 (all sampled points are enclosed) and

o ξ = 0 when λ = L max . 
The definition of the prior mass can then simplify equations ( 5 )

nd ( 6 ) to 

 ( ξ ) = 

L ( ξ ) 

Z 

(8) 

nd 

 = 

∫ 1 

0 
L ( ξ )d ξ, (9) 

especti vely, where the e vidence integral is no w only performed o v er
ne dimension, the prior mass. Equation ( 8 ) shows that taking a
andom sample of ξi from 0 to 1, the range defined in equation
 9 ), provides a random sample from the posterior P ( ξ ). This is
qui v alent to obtaining a random sample from the posterior P ( θ )
ith a random parameter sample of θi as shown by equation ( 5 ).
 nested sampling algorithm will then iterate through the random 

amples spread o v er the constrained prior to calculate the evidence
nd posterior distribution. 

.1.1 The information H 

 useful value obtained throughout the nested sampling process is 
 quantity known as the information, H. This quantity describes 
here the bulk of the posterior lies, with the posterior occupying a

raction of e −H within the constrained prior (Skilling 2006 ) and can
lso be used to estimate the likely number of iterations to compress
he majority of the prior (Ashton et al. 2022 ). F or e xample, if the
MNRAS 529, 702–714 (2024) 
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Table 1. The lower and upper limits to define the uniform constrained prior 
for each model parameter used for nested sampling. The same notation for 
each parameter used in the spectral fitting is given in brackets as well as the 
parameter units. The parameters T 2 and EM2 are present in all microflare fits 
(Figs 3 and 4 ), while T 3 and EM3 are only in the thermal scenario fit and 
F e − , δ, and E c are only in the non-thermal scenario fit shown in Fig. 4 to fit 
the count model excess. 

Model parameter Lower Upper 

Microflare temperature, T 2 (MK) 2.5 10 
Microflare emission measure, EM2 (cm 

−3 ) 1 × 10 42 1 × 10 46 

Excess temperature, T 3 (MK) 8 15 
Excess emission measure, EM3 (cm 

−3 ) 1 × 10 40 1 × 10 44 

Excess electron flux, F e − (e − s −1 ) 1 × 10 30 1 × 10 33 

Excess electron spectral index, δ 4 15 
Excess low-energy cut-off, E c (keV) 3 10 
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ajority of the posterior takes up a small region of the prior then H
s large and if most of the posterior occupies a large area of the prior
hen H is small. 

.1.2 Iterating through the samples 

he PYTHON nested sampling package, NESTLE , 3 used throughout
he analysis presented in Section 4 initially starts by sampling the
onstrained prior n live times where the corresponding likelihood value
s calculated at each sample. These live-points are then ordered
rom smallest likelihood, L ∗, to largest. The prior mass is then
alculated for L ∗ before the corresponding live-point is remo v ed
nd replaced with another sample with a likelihood value > L ∗ to
onserve the number of samples across iterations. The prior mass
nd the likelihood of the remo v ed liv e-point is recorded and used to
uild the integral described by equation ( 9 ). Once a new live-point
s chosen, the process begins again and continues until the stopping
riteria have been met (Skilling 2004 ). 

The stopping criterion used in NESTLE is one that estimates the
emaining prior mass to be sampled. The iterative process can be
topped when the remaining estimated mass falls below a defined
hreshold, A thresh , using 

n ( L max , i ξi + Z i ) − ln ( Z i ) < A thresh , (10) 

here L max , i is the maximum likelihood of the live-points, ξi is the
emaining prior mass, and Z i is evidence value at iteration i. 

In addition to simplifying the evidence calculations, nested sam-
ling also obtains many random samples of the posterior through
he iterative procedure. Therefore, almost as a by-product, the same
nformation that MCMC analysis provides is also obtained in the
rocess. 
A nested sampling algorithm can be applied to many different

roblems involving model comparison. In Section 4 , we apply
he nested sampling algorithm used by NESTLE to the AR X-
ay microflare presented in Section 2 to determine the emission
echanisms present during its impulsive phase by testing different

ypotheses for the observed data: the null, thermal, and non-thermal
cenarios. 

 T H E R M A L  O R  N O N - T H E R M A L  EMISSION  

he analysis presented in Section 2 seems to indicate that non-
hermal emission is present during this estimated A0.02 microflare’s
mpulsi ve phase; ho we ver, the arguments are qualitative or weakly
uantitative and far from decisive. Section 2.1 shows evidence of
n earlier peaking and more impulsive time profile in the higher,
–10 keV X-ray energies observed by NuSTAR compared to the
ower energy microflare emission (Fig. 1 , left panels). This supports
he presence of an additional process beyond the one producing the
UV microflare signal, but it is not clear whether this is due to a

hermal or non-thermal source. 
In Section 2.2 , we discussed the observed presence of a clear
icroflare loop structure in the Fe XVIII emission (Fig. 2 ), suggesting

he presence of material between 4 and 10 MK, which appears to
e corroborated by all microflare spectral fits (Fig. 3 , right panel,
nd Fig. 4 ). We also see loop footpoints across the SDO/AIA EUV
hannels that are anchored in two opposite magnetically polarized
egions as viewed from SDO/HMI. Fig. 2 indicates the presence of
right footpoints, which could potentially be a result from heated
NRAS 529, 702–714 (2024) 
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p  

e  

p

aterial through microflare energized electrons decelerating in the
ower solar atmosphere. This interpretation would align with the
resence of non-thermal emission. 
Performing spectral fitting analysis on the X-ray microflare spectra

Section 2.3 ) shows more evidence that there is different behaviour
elow and abo v e 6 keV. We find that an additional model is required
o reasonably fit the count excess > 6 keV beyond an isothermal
t and to resolve the poor fit < 6 keV shown in Fig. 3 (right
anel). Ho we ver, it is still not possible to confidently determine
hether an additional thermal or non-thermal model is required

Fig. 4 ). 
In order to obtain a robust measure of confidence o v er the nature

f the high-energy 6–10 keV emission observed from the microflare,
e make use of the nested sampling process (see Section 3 ). The
ested sampling result will then provide a vigorous, intuitive, and
epeatable level of confidence on the emission mechanism most likely
esponsible for the higher energy X-ray emission. 

.1 Nested sampling application to SOL2021-11-17T21:14 

ince nested sampling relies on a constrained prior (Section 3.1 ),
ffort must be taken to define appropriate bounds for each param-
ter. We make use of a uniform prior for all parameters where
he bounds of each are determined by previous microflare stud-
es with consideration to the thermal and non-thermal energetics
nvolved. 

Table 1 shows the bounds for the uniform priors used in the nested
ampling analysis. Studies of microflares comparable in scale to the
ne studied here, estimated GOES class ∼A0.02, have suggested that
hose fitted with a single-thermal model tend to have a temperature
o higher than ∼10 MK with emission measure �1 × 10 46 cm 

−3 

Duncan et al. 2021 ; Vadawale et al. 2021 ). Additionally, some
nhanced pre-flare emission may be present while some isothermal
uSTAR microflares have emission measures as low as ∼1 × 10 43 

m 

−3 (Cooper et al. 2021 ). Therefore, sensible prior bounds for the
icroflare temperature and emission measure ( T 2 and EM2 from
igs 3 and 4 ) are taken to be 2.5–10 MK and 1 × 10 42 to 1 × 10 46 

m 

−3 , respectively. 
From the physically moti v ated parameter prior ranges for T 2 and

M2, and using the volume estimate from Section 2.2 , the possible
hermal energies resulting from models within these bounds fall
etween approximately 4 × 10 24 and 2 × 10 27 erg. Considering
ast NuSTAR sub-A class microflares, this is a conserv ati ve thermal
nergy range and helps support the choice of the defined parameter
rior bounds. 

https://github.com/kbarbary/nestle
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Figure 5. Posterior distributions for the isothermal, null scenario , representation of the microflare spectra shown in Fig. 3 (right panel) as determined from 

nested sampling analysis. The thermal energy distribution is calculated from the temperature ( T 2) and emission measure (EM2) samples. The median and 1 σ
confidence intervals are displayed abo v e the diagonal panels for each marginalized parameter distribution and shown with dashed lines. Contours of 50, 68, and 
90 per cent levels are shown in the 2D marginalized posterior distribution. 
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Next, priors must be defined for the thermal ( T 3 and EM3) and
on-thermal ( F e − , δ, and E c ) excess model parameters. When other
icroflares have been found to be best fitted with two isothermal 
odels, we find that the emission measure for the higher temperature 

omponent is ∼2 orders of magnitude less than the lower temperature 
odel (Cooper et al. 2021 ; Duncan et al. 2021 ) and so we choose a

rior emission measure range of 1 × 10 40 to 1 × 10 44 cm 

−3 . In order
o investigate a potential hotter temperature component producing the 
ount model excess in Fig. 3 (right panel), we set a prior temperature
ange of 8–15 MK such that it o v erlaps with, and goes beyond, the
ange being investigated for T 2. 

The priors for the non-thermal excess models are determined from 

revious non-thermal X-ray microflare studies. Hannah et al. ( 2008 ) 
nd that 90 per cent of the RHESSI microflares studied have a low-
nergy cut-off between 9 and 16 keV with photon indices between 4
nd 10 (corresponding to electron indices between 5 and 11 for thick-
arget emission; Brown 1971 ). However, the majority of these non- 
hermal X-ray microflares are of a greater GOES class and brighter 
han ones viewed by NuSTAR (Glesener et al. 2020 ; Cooper et al.
021 ), which do not have emission extending to energies as high.
herefore, the conserv ati ve uniform prior bounds for the low-energy 
ut-off and the electron index are defined to be 3–10 keV and 4–15,
espectively. 

The microflare presented here is much weaker in magnitude than 
he non-thermal microflares investigated previously by NuSTAR 

nd so the electron flux is expected to be less than previously
btained. Therefore, the prior range is estimated to be 10 30 to 
0 33 electrons s −1 as this microflare is ∼3 orders of magnitude 
eaker in GOES classification than the non-thermal microflare 
s
tudied in Glesener et al. ( 2020 ), which is found to have an electron
ux of ∼2 × 10 35 electrons s −1 . The prior constraints for the non-

hermal model provide an energy range ∼10 23 to 10 27 erg, which is
omplementary to the thermal energy range being explored for the 
icroflare providing additional physical justification for the thick- 

arget parameter constrained prior bounds. 
Throughout the nested sampling analysis, all three scenarios are 

un with 10,000 live-points and an A thresh value of 0.1. These,
gain, are conserv ati ve v alues to ensure that the majority of the
rior is sampled adequately. The nested sampling result does not 
hange significantly with fewer live-points or a larger A thresh , only
he uncertainties become larger. 

.2 Nested sampling results 

ested sampling analysis is performed on all three model represen- 
ations of the microflare spectra where the process took of the order
f hours to complete for each model scenario using an Apple M1
ax MacBook Pro. The thermal and non-thermal representations 

f the excess from Fig. 4 (left and right panels) give ln ( Z) values
f −497 . 31 ± 0 . 03 and −493 . 63 ± 0 . 03, respectively, while the null
cenario, where the excess is not represented (Fig. 3 , right panel), is
stimated to have a value of −530 . 14 ± 0 . 03. 

The H values (as described in Section 3.1.1 ) reported for the
nalysis in each case are given to be ∼9 for the null scenario
nd ∼11 for both the thermal and non-thermal cases. The sim-
lar values indicate that the bulk of the posterior lies within a
imilar fraction of the constrained prior for each tested hypothe- 
is. 
MNRAS 529, 702–714 (2024) 
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M

Figure 6. Similar to Fig. 5 but the nested sampling analysis result for the thermal scenario shown in the left panel of Fig. 4 . The thermal energy distribution is 
calculated from the temperature ( T 2 and T 3) and emission measure (EM2 and EM3) samples. 
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The posterior distribution corner plots that accompany the pieces
f evidence are shown in Figs 5 –7 . We find that the constructed
orner plots from the nested sampling analysis agree closely with
hose produced from the previous MCMC analysis performed in
ection 2.3 with all parameter values agreeing well within the 1 σ
qui v alent uncertainties. This provides confidence that the posterior
istribution for each model parameter, bound by the defined priors,
s sampled well in the MCMC and that there are no other rele v ant
olutions inside the physically moti v ated prior bounds. 

With the confirmation from the corner plots produced from
he nested sampling analysis, and corroboration with the MCMC
nalysis that the pieces of evidence have been calculated robustly,
e are able to compare each model representation to the others using
F from equation ( 3 ). This is reasonable as we have no evidence or

eason to prefer one model representation o v er the other; therefore,
e assume a prior odds ratio of 1 making the BF equal to the posterior
dds. 
The BF for each comparison is shown in Table 2 . We find that the

Fs comparing the thermal and non-thermal representations of the
NRAS 529, 702–714 (2024) 
ount excess are far more probable than not representing the excess
t all in the null scenario. Therefore, nested sampling has given a
uantitative measure of how much an additional model is required
eyond the pre-flare and isothermal fit with the thermal and non-
hermal scenarios being >10 14 times more probable than the null
ypothesis. 

Additionally, the nested sampling also shows that the non-
hermal representation is ∼40 times more likely to be the cause
f the count excess compared to the thermal model, correspond-
ng to strong evidence for this conclusion. Therefore, the nested
ampling analysis would suggest that this event is the weakest
-ray microflare to show direct evidence for non-thermal emis-

ion. 
To check the sensitivity of the nested sampling result on the

hoice of physically moti v ated prior bounds from Table 1 , we
djust the bounds of each parameter prior by up to 20 per cent.
his still results in the non-thermal scenario being more preferable

o the thermal representation with ln(BF) values between 3.5 and
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Figure 7. Similar to Fig. 5 but the nested sampling analysis result for the non-thermal scenario shown in the right panel of Fig. 4 . The thermal energy distribution 
is calculated from the temperature ( T 2) and emission measure (EM2) samples and the non-thermal energy distribution is calculated from the electron flux ( F e − ), 
electron spectral index ( δ), and the low-energy cut-off ( E c ) samples. 

Table 2. The logarithm of BF, BF, and the corresponding level of confidence 
from Kass & Raftery ( 1995 ) are shown for each model scenario comparison 
for the microflare spectra. The error on ln(BF) is ±0.04 for all values. 

Comparison ln(BF) BF Confidence 

Z thermal to Z null 32.8 2 × 10 14 Very strong 
Z non - thermal to Z null 36.5 7 × 10 15 Very strong 
Z non - thermal to Z thermal 3.7 40 Strong 
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Furthermore, we narrow the priors around the bulk of the T 3 and
M3 distributions shown in Fig. 6 while leaving the non-thermal 
arameter priors unchanged in order to be more fa v ourable to the
hermal scenario. A ln(BF) value of ∼2 is obtained from this test,
hich is still classified as positive evidence for the non-thermal 

epresentation of the microflare (Kass & Raftery 1995 ). 
We note that the best-fitting log-likelihood values, ln ( L opt ), stated

n Section 2.3.1 show similar differences to the log-evidence values, 
n ( Z), for the different scenarios; however, the nested sampling result
MNRAS 529, 702–714 (2024) 
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s more informative and robust for model comparison. The pieces of
vidence can sufficiently compare models with different parameters
nd priors, whereas a clear conclusion cannot be drawn from the
est-fitting log-likelihood values as discussed in Sections 2.3.1 and
 . 

 SUMMARY  A N D  C O N C L U S I O N S  

n this paper, we present the first analysis of X-ray flare spectra
sing a nested sampling algorithm. This microflare is estimated to
e approximately an A0.02 GOES equi v alent class flare that shows
igns of high temperatures and/or non-thermal particle acceleration;
o we ver, determining the extent of this emission is difficult using
rguments and methods performed in the past. 

From the temporal, spatial, and spectral information discussed in
ection 2 , we find evidence that the X-ray microflare emission is
ot well represented with an isothermal model as a count excess
s present at higher energies in the NuSTAR spectra (Fig. 3 ). Upon
nvestigating two emission mechanisms potentially responsible for
his, we find that both a thermal and a non-thermal explanation for
he excess appear to be equally valid with no decisive reason to pick
ne o v er the other. 
Qualitati ve e vidence for a non-thermal representation is found

n the form of the lack of higher temperature ( ∼10 MK) emission
esponse in the 131 Å SDO/AIA channel (Section 2.1 ) and potentially
n the presence of bright EUV loop footpoints visible throughout the
olar atmosphere (Section 2.2 ). When performing spectral fitting,
he model with the non-thermal component produces a slightly more
referable log-likelihood value (Fig. 4 ); however, this metric may be
xpected to be better due to the non-thermal component having an
xtra free parameter to use during the fitting process compared to the
hermal model. Therefore, a conclusion cannot be made based on the
est-fitting log-likelihood values. 
We use a more robust model comparison method called nested

ampling (Section 3 ), which is used to determine an estimate for the
vidence attributed to each model representation of the data, therefore
llowing BF to be computed for model comparison. In the process, we
lso obtain the posterior distributions for each model as shown in Figs
 –7 . We find that the model containing the non-thermal component
s most likely to represent the observed microflare spectra with BFs
f 7 × 10 15 and 40 compared to the null and thermal representations,
espectively. 

Therefore, we report the weakest X-ray microflare to have direct
bservation of non-thermal particle emission suggesting that X-ray
ares of the estimated scale A0.02 do indeed show similar traits

o their larger counterparts. From the nested sampling results, this
icroflare produces a thermal energy of 2.1 + 0 . 1 

−0 . 1 × 10 26 erg, which
s rational compared to the non-thermal energy of 4.2 + 4 . 6 

−1 . 9 × 10 26 

rg released o v er the course of its impulsive phase at 3.0 + 3 . 3 
−1 . 4 × 10 24 

r g s −1 . The corresponding ener gy posterior distributions of each
odel scenario are shown in Figs 5 –7 . This shows that microflares

his weak, and likely weaker, continue to undergo the same physical
rocesses with the same/similar emission mechanisms as brighter
ares. 
The nested sampling algorithm is in no way specific to X-ray
icroflare analysis. It can be used to gain insight into general model

omparison problems and is able to produce the same data products
s MCMC analysis. Ho we ver, ef fort will be made to speed up the
rocess specific to this microflare analysis. This could be achieved by
peeding up the code used for the individual component models and
esting a range of nested sampling algorithm implementations such
s dif fusi ve nested sampling (Brewer, P ́artay & Cs ́anyi 2011 ) and
NRAS 529, 702–714 (2024) 
hose discussed in Speagle ( 2020 ) and Williams, Veitch & Messenger
 2023 ). 

Using nested sampling has enabled the robust analysis of the high-
nergy count excess. Methods to determine the emission mechanism
or such features in the past either are primarily subjective in
ature and/or fail to give a reliable conclusion. The nested sampling
lgorithm is able to allow the repeatable and intuitive study of data
ith low signal and is crucial when investigating microflares at

uch weak scales. Nested sampling will be used in future NuSTAR
icroflare studies, and other flare studies with ambiguous spectra,

o determine the confidence on the emission mechanisms present
hroughout the event. 
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PPENDI X  A :  X - R AY  T H E R M A L  A N D  

O N - T H E R M A L  P H OTO N  M O D E L S  

ig. A1 displays the photon models used to investigate the null
left panel), thermal (middle panel), and non-thermal (right panel) 
cenarios for the microflare as initially described in Section 2.3 . Two
hoton models are utilized to represent each scenario, an isothermal 
odel and a thick-target non-thermal model. Both models represent 
 photon spectrum produced from different electron distributions. 

The isothermal model (purple in all panels and red in the middle
anel of Fig. A1 ) represents a photon spectrum produced from a
axwell–Boltzmann distribution of electrons. The isothermal model 

s composed of continuum and line emission and is a function of the
lasma temperature ( T ) and emission measure (EM). 
The non-thermal photon spectrum (red in the right panel of Fig.

1 ) results from a power-law electron distribution losing all their
nergy through Coulomb collisions (Brown 1971 ; Holman et al. 
011 ). The thick-target model is a function of electron flux ( F e − ),
lectron spectral index ( δ), and low-energy cut-off ( E c ). 
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Figure A1. Photon models, obtained from SUNKIT-SPEX , used to fit the NuSTAR microflare X-ray count spectra in the null (left panel), thermal (middle panel), 
and non-thermal (right panel) scenarios shown in Fig. 3 (right panel) and Fig. 4 . The models shown are calculated using NuSTAR ’s native energy resolution and 
the parameter values obtained from MCMC analysis (Section 2.3 ). Each model component, along with corresponding parameter set, is shown in purple or red 
with the total model in the thermal and non-thermal cases being shown in black. 
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