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ABSTRACT

Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle
acceleration. However, it remains unclear down to what energy scales this impulsive energy release continues, which has
implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through
their X-ray emission, finding predominantly thermal emission at lower energies; however, at higher energies it can be difficult to
distinguish whether the emission is due to hotter plasma and/or accelerated electrons. We present the first application of nested
sampling to solar flare X-ray spectra, an approach that provides a quantitative degree of confidence for one model over another.
We analyse Nuclear Spectroscopic Telescope Array X-ray observations of a small active region microflare (A0.02 GOES/XRS
class equivalent) that occurred on 2021 November 17, with a new PYTHON package for spectral fitting, SUNKIT-SPEX, to compute
the parameter posterior distributions and the evidence of different models representing the higher energy emission as due to
thermal or non-thermal sources. Calculating the Bayes factor, we show that there is significantly stronger evidence for the higher
energy microflare emission to be produced by non-thermal emission from flare-accelerated electrons than by an additional hot
thermal source. Qualitative confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in Solar
Dynamic Observatory’s Atmospheric Imaging Assembly’s extreme ultraviolet data. The nested sampling approach used in this

paper has provided clear support for non-thermal emission at the level of 3 x 10?* erg s~ in this tiny microflare.
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1 INTRODUCTION

Flares are explosive releases of energy that take place in active
regions (ARs) thought to be produced and powered by magnetic
reconnection of stressed magnetic fields in the solar atmosphere
(Priest & Forbes 2002). The reconnection can release energies up
to ~10% erg and readily drives mass flows, plasma heating, and
particle acceleration (Fletcheretal. 2011; Benz 2017). Flares produce
emission across the electromagnetic spectrum and are commonly
characterized by their Geostationary Operational Environmental
Satellite X-Ray Sensor (GOES/XRS) 1-8 A soft X-ray (SXR)
emission and thermal energy release. Flares with SXR emission
<107® W m~2 and energies between 10%° and 10?8 erg are commonly
referred to as microflares (Lin et al. 1984; Hannah et al. 2011).
Flares with energies of the order of ~10** erg, termed nanoflares,
are proposed to occur everywhere on the solar disc and not just
localized to ARs (Parker 1988). If microflares and nanoflares occur
frequently enough, then they could provide the majority fraction of
the energy heating the corona from the overall flare distribution;
however, this relies on the same flaring mechanisms scaling down to
the weaker events, such as non-thermal particle acceleration emission
(Hudson 1991). It is often difficult to ascertain whether weak, sub-A
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class microflares do indeed show positive evidence for these standard
flare processes often observed in their larger counterparts.

Microflares have been extensively studied in X-rays with instru-
ments such as the Reuven Ramaty High-Energy Solar Spectroscopic
Imager (RHESSI; Lin et al. 2002), Chandrayaan-2’s Solar X-ray
Monitor (Vadawale et al. 2014; Shanmugam et al. 2020), and the
Nuclear Spectroscopic Telescope Array (NuSTAR; Harrison et al.
2013). Statistical and individual studies have observed hard X-ray
emission during microflares from non-thermal electron acceleration
showing evidence that microflares down to GOES class A0.1 appear
to show similar processes to their brighter counterparts (Christe et al.
2008; Hannah et al. 2008; Glesener et al. 2020; Cooper et al. 2021).
However, as the microflares get weaker it becomes increasingly
difficult to determine whether this flare behaviour continues to scale
or has a lower limit. Sensitivity to these weak microflares is crucial in
understanding whether the flare process scales across these different
classifications.

NuSTAR is an astrophysical telescope capable of observing the Sun
>2.5 keV (Grefenstette et al. 2016; Hannah et al. 2016). NuSTAR
consists of two telescopes utilizing Wolter-I-type optics to focus X-
rays on to two focal plane modules (FPMA and FPMB), each with
a field of view (FOV) of 12 arcmin x 12 arcmin. Each FPM takes
2.5 ms to process a detected photon during which no other trigger can
be recorded; the fraction of time NuSTAR spends open to detection
during an observation is quantified by the livetime. Under quiescent
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conditions, NuSTAR’s livetime can reach up to 92 per cent (Paterson
et al. 2023); however, the livetime drops to <16 per cent even with
small microflares of A class or smaller (Cooper et al. 2021). This
limited throughput, combined with flare X-ray spectra steeply falling
with increasing energy, results in a low number of NuSTAR counts at
higher energies.

NuSTAR has observed several microflares with energies from 10?8
down to 10?° erg with GOES classes of B, A, and sub-A (Glesener
et al. 2017; Wright et al. 2017; Hannah et al. 2019; Cooper et al.
2020, 2021; Duncan et al. 2021) and also quiescent Sun features
outside ARs of energies down to 10? erg (Kuhar et al. 2018; Paterson
et al. 2023). Several of these studies have found consistency with
the presence of non-thermal emission throughout the flare evolution,
while Glesener et al. (2020) and Cooper et al. (2021) show convincing
evidence of non-thermal emission in an A5.7 and an estimated A0.1
microflare, respectively.'

It becomes more difficult with weaker flares to confidently
determine the presence of any high-energy emission and even
harder to determine the mechanism behind the emission. In order
to determine the nature of the higher energy emission observed by
an instrument from much weaker microflares, a robust method needs
to be utilized, which can investigate the difference between different
model representations of the observed data. Nested sampling analysis
(Skilling 2004, 2006) can be used for this purpose. Note that this
analytical technique can also be applied in general cases (e.g. in
larger flares) where ambiguity exists between model fits to data.

Nested sampling is a Bayesian technique that is used to map the
posterior distribution and estimate a quantity called the evidence,
which is the probability of an observation given the assumption of a
model representation. The pieces of evidence of different hypotheses
can then be used to compare different model fits to data, providing a
level of confidence for one model over another. The nested sampling
algorithm also accounts for different model parameters and different
numbers of model parameters used between representations. There
are many implementations of nested sampling (Kester & Mueller
2021; Ashton et al. 2022) and it is used extensively in many scientific
fields (Knuth et al. 2015); however, it is not common in the solar
physics community.

In this paper, we present the first use of nested sampling in the
analysis of an AR NuSTAR X-ray microflare that took place on 2021
November 17 at ~21:14 UT (SOL2021-11-17T21:14). In Section 2,
we investigate the microflare evolution in time, space, and energy
using NuSTAR and the Solar Dynamic Observatory’s Atmospheric
Imaging Assembly (SDO/AIA; Lemen et al. 2012) and Heliospheric
and Magnetic Imager (SDO/HMI; Schou et al. 2012). We then
describe the nested sampling algorithm and how it can be used to
determine the most likely model representation to explain a given
data set in Section 3. In Section 4, we then apply the nested sampling
algorithm to the NuSTAR X-ray spectral analysis for the first time
where we determine the most likely explanation for the microflare
emission.

2 X-RAY MICROFLARE

A NuSTAR solar campaign was performed on 2021 November 17—
22 where 9 h-long observations were made of ARs present on the
Sun’s disc. During the third observation, NuSTAR observed three mi-
croflares where the second one (microflare SOL2021-11-17T21:14)

'A NuSTAR solar observations overview is available at https://ianan.github.
io/nsigh_all/.
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is the subject of this paper; the other flares and observations will be
investigated in future papers.

2.1 Time evolution

Microflare SOL2021-11-17T21:14 is clearly observed in X-rays with
NuSTAR as shown in Fig. 1. The extreme ultraviolet (EUV) and
X-ray time profiles from SDO/AIA and NuSTAR, respectively, are
shown (left panel) where the SDO/AIA light curves are from a region
around the microflare (see Fig. 2) and the NuSTAR time profiles are
integrated over the entire AR area indicated by a black box in Fig. 1
(right panel). The X-ray image (right panel) shows the microflare in
the top of NuSTAR’s FOV, inside the black box, as a relatively bright
source compared to the more northern AR (SPoCA 26190; Verbeeck
et al. 2014) core emission.

We find that the native SDO/AIA channel light curves in Fig. 1
(top of left panel) show little similarity with the X-ray time profiles
(bottom of left panel) with the exception of the 94 A channel that
shows a slight positive correlation and a possible negative correlation
with the 304 A channel. The microflare only becomes apparent in
the EUV when calculating the Fe xvIl proxy channel — a linear
combination of the 94, 171, and 211 A channels — as described in
Del Zanna (2013). This channel has a significant response to thermal
emission from material between 4 and 10 MK, which is a crucial
range for NuSTAR microflares (Hannah et al. 2016, 2019; Wright
et al. 2017; Cooper et al. 2020, 2021; Glesener et al. 2020; Duncan
et al. 2021).

The Fexvii light curve shows very similar progression to the
2.5-6 keV FPMA + FPMB NuSTAR time profile indicating that
this microflare heats a significant amount of material to between
4 and 10 MK. The higher energy X-ray range, 6-10 keV, shows
a more impulsive time profile that peaks earlier, indicative of
hot plasma being present in the early stages of the microflare
and/or non-thermal emission from an initially accelerated electron
distribution.

Pre-flare and microflare times are defined from the NuSTAR time
profiles and shown as red and blue shaded regions, respectively, in
Fig. 1. The microflare time is chosen based on the more impulsive
6-10 keV NuSTAR light curve to better investigate the emission
processes in the initial flaring stages.

The microflare, along with many events NuSTAR observed in
the observation campaign, is obvious in the X-ray regime where
it is dominant across the whole FOV; however, as indicated by the
SDO/AIA light curves in Fig. 1, it is difficult to find corroborating
evidence in the native EUV channels even when locating the
microflare’s position. Therefore, the EUV microflaring structure can
only be reliably determined with information from NuSTAR and its
comparison to Fe XVIII images.

2.2 Spatial evolution

Fig. 2 shows EUV images integrated over the microflare time.
Comparable in size to the black box shown in the NuSTAR FOV
image in Fig. 1 (right panel), the left panel of Fig. 2 shows the
SDO/AIA 94 A channel emission of the full AR with the microflare
identified within a black box. The black box region identified to host
the microflare is the area used to depict the other panels.

The FeXvIn proxy channel and, to a lesser extent, the 94 A
channel show a loop structure, while the other channels do not show
any corresponding activity except at the apparent loop footpoints.
Footpoint activity can be seen through all EUV channels; however,
the footpoints do not appear to produce the same response at all levels
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Figure 1. SDO/AIA, including Fe XvII proxy, and NuSTAR livetime-corrected light curves over the time of microflare SOL2021-11-17T21:14 (left panel).
The SDO/AIA time profiles are averaged over the black box region shown in Fig. 2 and a scale factor (for plotting purposes) has been applied, as shown, to
several channels. The area used to create the NuSTAR light curves is shown as a black box across AR SPoCA 26190 in the NuSTAR >2.5 keV integrated,
livetime-corrected FOV (right panel). Pre-flare (21:09:40-21:12:00 UT) and microflare (21:12:30-21:14:50 UT) times are indicated by the shaded red and blue
areas in the NuSTAR light-curve panels, respectively. The red circle with a radius of 48 arcsec shown in the right panel indicates the region size used to produce

spectral fit profiles for the NuSTAR spectra.
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Figure 2. SDO/AIA native channels and Fe XVIII proxy are averaged over the microflare time (blue shaded region, Fig. 1), while the SDO/HMI line-of-sight
magnetogram is taken from the start of the time range. The left panel shows the 94 A channel emission over the full AR with an FOV slightly smaller than the
boxed region in the NuSTAR image from Fig. 1. A black box indicates the location of the microflare and is used to create the zoomed-in images for the other
emission channels (right panels). The Fe XVIII proxy microflaring loop emission contours at 5, 50, and 95 per cent of the maximum are overlaid on the zoomed

panels and are shown in red.

in the solar atmosphere. The northern footpoint appears brighter in
the upper transition region as shown by the relative brightness in
the 131 and 171 A channels, whereas the southern footpoint shows
a greater response in the chromosphere and photosphere as seen
in the 304, 1600, and 1700 A channels (Lemen et al. 2012). From
the SDO/HMI panel in Fig. 2, we find that the loop footpoints are
anchored in opposite polarity regions.

Zoomed images with NuSTAR emission only showed a single
circular shape to co-align with the EUV loop structure for the 2.5-6
and 6-10 keV emission. The lack of distinctive shape in X-rays may
be expected due to the very few high-energy microflare counts and
the fact that the angular extent of the microflare is ~10 arcsec, which
is considerably smaller than NuSTAR’s angular resolution with a full
width at half-maximum and half-power diameter of 18 and ~60
arcsec, respectively (Harrison et al. 2013).

MNRAS 529, 702714 (2024)

From the EUV images shown in Fig. 2, we are able to obtain
a microflaring loop volume by modelling it as a half torus. We
estimate an upper limit for the distance between the footpoints and
the diameter of the loop to be approximately 9 and 2 arcsec (6.5 x 108
and 1.5 x 108 cm), respectively. Therefore, the volume obtained from

the geometry as viewed in EUV is 1.7 x 10% cm?.

2.3 Spectral evolution

Fig. 3 shows the spectral fitting analysis (see Section 2.3.1) of
the NuSTAR FPMA and FPMB grade O (single pixel) microflare
emission on the pre-flare and microflare time using SUNKIT-SPEX,>

2Formerly, SUNXSPEX, a PYTHON spectral fitting tool: https:/github.com/
sunpy/sunkit-spex.
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Figure 3. Simultaneous thermal model fits, using SUNKIT-SPEX, of NuSTAR’s FPMA and FPMB emission spectra during the pre-flare (21:09:40-21:12:00 UT,
left panel) and microflare (21:12:30-21:14:50 UT, right panel) times, which are shown as shaded red and blue regions in Fig. 1, respectively. The pre-flare
spectra are fitted with one thermal model (black) and then used as a fixed component for the microflare spectra (blue). The microflare spectra are fitted with
an additional thermal model (purple) to account for the flaring emission with the overall model being shown in black. The spectra from both times are fitted
over the energy ranges indicated by the horizontal green line in the residual panels. The temperatures and emission measures for each model fit are shown in
their respective model colours where the error ranges are calculated from MCMC analysis and report the 1o equivalent uncertainty. Additionally, 100 random
model samples from the MCMC analysis are shown in orange. The relevant time ranges, effective exposures, and livetimes are also shown in each panel. The
microflare fit in the right panel is also referred to as the null scenario in relation to model comparison.

which utilizes the EMCEE package (Foreman-Mackey et al. 2013). We
find that the pre-flare time (Fig. 3, left panel) is represented well with
an isothermal model of temperature 3.3 MK and emission measure 1
x 10% cm~3 from the Markov chain Monte Carlo (MCMC) analysis,
a common result from previous NuSTAR quiescent AR and pre-flare
spectral fitting (Glesener et al. 2017; Wright et al. 2017; Hannah
et al. 2019; Cooper et al. 2021). The isothermal model available in
SUNKIT-SPEX is a PYTHON version of the IDL function £ _vth.pro
(Schwartz et al. 2002) and uses CHIANTI V7.1 (Dere et al. 1997,
Landi et al. 2013) with coronal abundances (Feldman et al. 1992;
Landi, Feldman & Dere 2002).

The pre-flare thermal model is then used as a fixed component
when fitting the microflare time with an additional thermal model
representing the flaring emission (Fig. 3, right panel). This model fit
provides a temperature and emission measure in a sensible range for
previous NuSTAR microflares, between 4 and 10 MK, as discussed
in Section 2.1; however, it is clear that this model does not provide
a satisfactory representation of the observed spectra. The residuals
of the microflare fit in Fig. 3 indicate a poor fit between 2.5 and
6 keV and a clear count excess above the model at energies >6 keV.
Therefore, we find sufficient reason to include an additional model
to the microflare fit in order to accurately represent the observed
spectra.

Two model candidates are tested to fit the excess: a thermal
scenario, which includes an additional thermal model, and a non-
thermal scenario, which involves the thick-target model (Brown
1971; Holman et al. 2011). The thick-target model assumes a power-
law distribution of electrons of spectral index § above a low-energy
cut-off E. that lose all their energy through Coulomb collisions.
These hypotheses represent either hotter plasma or non-thermal
emission during the impulsive phase of the microflare. In relation
to these two excess additions, the microflare fit in Fig. 3 is termed
the null scenario since the excess is not represented. Representations
of the photon models utilized in each scenario are shown in Fig.
Al. Note that unlike in the spectral analysis of brighter NuSTAR
microflares, no gain correction (Duncan et al. 2021) is required
due to the relatively high livetime of microflare SOL2021-11-
17T21:14.

Fig. 4 shows, in red, the thermal scenario fit (left panel) and the
non-thermal scenario fit (right panel) to the microflare spectra. We
find that both scenarios resolve the poor fit to the 2.5-6 keV range
and represent the count excess well >6 keV.

The thermally fitted excess representation proposes the presence
of a relatively weak emitting source with a temperature of ~10
MK, whereas the non-thermal case suggests thick-target emission
with a 6 of ~8 and an E. of ~6 keV. We note that the non-

MNRAS 529, 702-714 (2024)
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Figure 4. Two different spectral fits of the microflare spectra from the right panel of Fig. 3, one with the count model excess fitted with a thermal model (the
thermal scenario, left panel) and the other fitted with a non-thermal model (non-thermal scenario, right panel) shown in red. The model parameters are shown
in their respective plots and colours with their error values showing 1o equivalent uncertainties resulting from MCMC analysis with 100 random model samples

shown in orange.

thermal parameters are well within those previously reported for
other microflares (Hannah et al. 2008; Glesener et al. 2020; Cooper
et al. 2021). The lower energy thermal models (purple) show a
decrease in temperature and increase in emission measure compared
to the values obtained in Fig. 3 (right panel).

Using the temperatures and emission measures obtained from all
microflare fits, we find the microflare to be an estimated GOES class
between A0.02 and A0.03. The GOES class is roughly estimated
using the goes_f1lux49 . pro IDL routine as the microflare was too
weak to provide a direct GOES/XRS measurement.

From the flare volume upper limit determined in Section 2.2
and the microflare thermal parameters, we find thermal energies
of 1.6701 x 10%, 3.0%04 x 10%, and 2.17)] x 10% erg for the
null, thermal, and non-thermal scenario fits, respectively, using
equations (3) and (A4) from Hannah et al. (2008) and Aschwanden
et al. (2015). In addition, the non-thermal power associated with the
thick-target component in Fig. 4 (right panel) is calculated to be
2.7%37 x 10** ergs™' (equation 5 from Wright et al. 2017), which
results in 3.7ﬁ:2 x 10% erg over the course of the impulsive phase.
All thermal energies are in the expected range for a weak microflare
and we note that in the non-thermal case both energies are consistent
with each other.

Therefore, both hypotheses shown in Fig. 4 present an interesting
and unique conclusion, either showing a microflare of this scale
producing such hot temperatures in the impulsive phase or providing
positive evidence for the presence of visible non-thermal particle
acceleration via a clear count excess in the spectral fits.

MNRAS 529, 702714 (2024)

2.3.1 Best spectral fit

The fits shown in Figs 3 and 4 are determined using the Poissonian
likelihood, £(6), given by

N

M;(0)Pi x e~ Mi®
co=]] ()# )
i=0 b

where M;(6) represents the predicted model counts with parameters
0 and D; is the observed number of counts in a given energy bin, i.
The number of data bins included in the optimization is represented
by N.

We find the optimum fit to the microflare spectra with the
thermal, double-thermal, and thermal and non-thermal models give a
Poissonian log-likelihood value, In(Lp), of —520, —484, and —480,
respectively. This loosely suggests that the non-thermal scenario fit
(Fig. 4, right panel) best represents the observed spectra out of the
tested models. However, it may be expected that this is the case
since the thick-target model has more free parameters; therefore, it
is difficult to ascertain whether the non-thermal scenario should be
trusted more with such a small difference in log-likelihood values
given the different number of parameters available to each model.

Itis possible that there is a discrepancy between the thermal excess
scenario (Fig. 4, left panel) and the EUV time profiles displayed
in Fig. 1. The double-thermal fit suggests the presence of material
at ~10 MK during the microflare’s impulsive phase. However, the
SDO/AIA 131 A channel has a significant response to material of this
temperature (Lemen et al. 2012) but the light curve does not show
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a noticeable increase in emission around this time. Folding the 10
MK thermal component through the EUV channel response, we find
that the hot component is very faint and may be too weak to produce
a significant increase in 131 A channel meaning that the emission
mechanism of the higher X-ray energy excess remains ambiguous.
A more robust approach is needed to assess the thermal and non-
thermal representations of the microflare spectra. The nested sam-
pling approach described in Skilling (2004) provides a reproducible,
intuitive, and reliable method to ascertain how much more likely
one hypothesis is compared to another. Using this approach, we can
investigate the most likely representation of the microflare spectra.

3 COMPARING HYPOTHESES

Bayes formula (Jaynes 2003) is used extensively to test how well
a certain hypothesis, H, explains given data, D, via the posterior,
P(H|D), and is given by
P(DIH)P(H)
PH|D) = —————, 2
P(D)

where P(D|H) is termed the likelihood that describes how likely
the data are observed if the hypothesis is true and P(H) represents
the prior information on the hypothesis (Sivia & Skilling 2006). The
term P (D) is the evidence that describes how likely the data are to
occur independent of hypothesis that is difficult to obtain and, in
some cases, has very little meaning.

Different hypotheses for the given data can then be compared
relative to each other using equation (2) by calculating the posterior
odds. To compute this between two different hypotheses — say H;
and H, — for the same data, the ratio is taken between the respective
posteriors as

P(H\|D) _ P(D|H,) P(H))
P(H|D) ~ P(D|H,) P(H)'

(3)

where we note that the evidence term, P(D), from equation (2)
cancels (Ashton et al. 2022). Equation (3) therefore provides a
relative metric as to which hypothesis between H; and H, is more
likely. It is common that the prior odds, ratio of P(H,) and P(H,),
is evaluated to 1 if there is no prior justifiable preference for one
hypothesis over another and so the posterior odds in this case is fully
equivalent to the ratio of the likelihoods, termed Bayes factor (BF).

Using a nested sampling algorithm (Skilling 2004, 2006), we can
estimate the likelihoods by investigating the parameter posterior
under the assumption that the hypothesis, now model M, is true.
Nested sampling is a Bayesian tool used to compare parametric model
fits to data where the models have parameters, 6, and priors, P(6|M).
This is done by calculating the parameter posterior, P(6|D, M), by

P(D|6, M)P(O|M)
POID,M)= ——F———, (C))
P(DIM)

where we note that all terms depend on the model, M, and the data,
D, being fitted. This explicit form is typically presented in Bayesian
analysis, such as in MCMC analysis (Ireland et al. 2013) where the
P(D|M) term is often excluded in practice.

However, to avoid the repetition of nomenclature, we adopt another
equivalent representation:

L) (6)

P(0) = z (5)
where the nested sampling process uses the likelihood £(6) (e.g.
equation 1) and the prior 7 (6) to estimate both the evidence Z and
the posterior P(6).
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Note that Z is equivalent to the likelihood term P(D|H), in
equations (2) and (3), and is different to the previous evidence term
P(D) from equation (2).

The evidence, Z, could be calculated as

Z= /E(@)n(@)d@, (6)
9

ensuring that the integral of P(6) over the parameter space is
equal to 1 (Sivia & Skilling 2006). However, this integral can
quickly become complex with an increasing number of parameter
dimensions. The nested sampling process takes an approach to
simplify this calculation.

Estimating the pieces of evidence, Z [likelihood P(D|H) in
equation 3] allows for a robust comparison between models and
how well they explain the data. Criteria from Kass & Raftery (1995),
for example, can then be used to assign a relative confidence of one
hypothesis compared to another. Importantly, this is also true even if
the hypotheses rely on a different number of parameters or parameter
priors. The next section details how nested sampling is performed
and how Z is obtained mathematically.

3.1 Calculating the evidence Z with nested sampling

The evidence Z is calculated by sampling a predefined and physically
motivated constrained prior, 7 (0), for the model parameters while
calculating the likelihood, £(6), at every corresponding location.
From this sampling, a quantity called the prior mass can be defined
(Skilling 2006). The prior mass, &, is the amount of prior enclosed
by some likelihood A, which is given by

E) = / 7(0)do, @)
L(O)>r

and contains all sampled points with £(0) > A. From equation (7),
we note that § = 1 when A = 0 (all sampled points are enclosed) and
80 & = 0 when A = L.

The definition of the prior mass can then simplify equations (5)
and (6) to

G
P§) = =z ®)
and
1
Z=/ L(&)dé, )
0

respectively, where the evidence integral is now only performed over
one dimension, the prior mass. Equation (8) shows that taking a
random sample of & from O to 1, the range defined in equation
(9), provides a random sample from the posterior P(£). This is
equivalent to obtaining a random sample from the posterior P(6)
with a random parameter sample of 6; as shown by equation (5).
A nested sampling algorithm will then iterate through the random
samples spread over the constrained prior to calculate the evidence
and posterior distribution.

3.1.1 The information H

A useful value obtained throughout the nested sampling process is
a quantity known as the information, /. This quantity describes
where the bulk of the posterior lies, with the posterior occupying a
fraction of e~** within the constrained prior (Skilling 2006) and can
also be used to estimate the likely number of iterations to compress
the majority of the prior (Ashton et al. 2022). For example, if the
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majority of the posterior takes up a small region of the prior then
is large and if most of the posterior occupies a large area of the prior
then H is small.

3.1.2 Iterating through the samples

The PYTHON nested sampling package, NESTLE,> used throughout
the analysis presented in Section 4 initially starts by sampling the
constrained prior nj;e times where the corresponding likelihood value
is calculated at each sample. These live-points are then ordered
from smallest likelihood, L., to largest. The prior mass is then
calculated for L, before the corresponding live-point is removed
and replaced with another sample with a likelihood value >.L, to
conserve the number of samples across iterations. The prior mass
and the likelihood of the removed live-point is recorded and used to
build the integral described by equation (9). Once a new live-point
is chosen, the process begins again and continues until the stopping
criteria have been met (Skilling 2004).

The stopping criterion used in NESTLE is one that estimates the
remaining prior mass to be sampled. The iterative process can be
stopped when the remaining estimated mass falls below a defined
threshold, Apresh, Using

In(Luax, i&i + Zi) — In(Z;) < Athreshs (10)

where L« ; is the maximum likelihood of the live-points, &; is the
remaining prior mass, and Z; is evidence value at iteration i.

In addition to simplifying the evidence calculations, nested sam-
pling also obtains many random samples of the posterior through
the iterative procedure. Therefore, almost as a by-product, the same
information that MCMC analysis provides is also obtained in the
process.

A nested sampling algorithm can be applied to many different
problems involving model comparison. In Section 4, we apply
the nested sampling algorithm used by NESTLE to the AR X-
ray microflare presented in Section 2 to determine the emission
mechanisms present during its impulsive phase by testing different
hypotheses for the observed data: the null, thermal, and non-thermal
scenarios.

4 THERMAL OR NON-THERMAL EMISSION

The analysis presented in Section 2 seems to indicate that non-
thermal emission is present during this estimated A0.02 microflare’s
impulsive phase; however, the arguments are qualitative or weakly
quantitative and far from decisive. Section 2.1 shows evidence of
an earlier peaking and more impulsive time profile in the higher,
6-10 keV X-ray energies observed by NuSTAR compared to the
lower energy microflare emission (Fig. 1, left panels). This supports
the presence of an additional process beyond the one producing the
EUV microflare signal, but it is not clear whether this is due to a
thermal or non-thermal source.

In Section 2.2, we discussed the observed presence of a clear
microflare loop structure in the Fe XvIII emission (Fig. 2), suggesting
the presence of material between 4 and 10 MK, which appears to
be corroborated by all microflare spectral fits (Fig. 3, right panel,
and Fig. 4). We also see loop footpoints across the SDO/AIA EUV
channels that are anchored in two opposite magnetically polarized
regions as viewed from SDO/HMI. Fig. 2 indicates the presence of
bright footpoints, which could potentially be a result from heated

3https://github.com/kbarbary/nestle
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Table 1. The lower and upper limits to define the uniform constrained prior
for each model parameter used for nested sampling. The same notation for
each parameter used in the spectral fitting is given in brackets as well as the
parameter units. The parameters 72 and EM2 are present in all microflare fits
(Figs 3 and 4), while 73 and EM3 are only in the thermal scenario fit and
F.—, 8, and E, are only in the non-thermal scenario fit shown in Fig. 4 to fit
the count model excess.

Model parameter Lower Upper
Microflare temperature, 72 (MK) 2.5 10
Microflare emission measure, EM2 (cm ™) 1 x 10%2 1 x 10%
Excess temperature, 73 (MK) 8 15
Excess emission measure, EM3 (cm ™) 1 x 10%0 1 x 10%
Excess electron flux, Fo- (e~ s~ 1) 1 x 103 1 x 1033
Excess electron spectral index, § 4 15
Excess low-energy cut-off, E. (keV) 3 10

material through microflare energized electrons decelerating in the
lower solar atmosphere. This interpretation would align with the
presence of non-thermal emission.

Performing spectral fitting analysis on the X-ray microflare spectra
(Section 2.3) shows more evidence that there is different behaviour
below and above 6 keV. We find that an additional model is required
to reasonably fit the count excess >6 keV beyond an isothermal
fit and to resolve the poor fit <6 keV shown in Fig. 3 (right
panel). However, it is still not possible to confidently determine
whether an additional thermal or non-thermal model is required
(Fig. 4).

In order to obtain a robust measure of confidence over the nature
of the high-energy 6-10 keV emission observed from the microflare,
we make use of the nested sampling process (see Section 3). The
nested sampling result will then provide a vigorous, intuitive, and
repeatable level of confidence on the emission mechanism most likely
responsible for the higher energy X-ray emission.

4.1 Nested sampling application to SOL2021-11-17T21:14

Since nested sampling relies on a constrained prior (Section 3.1),
effort must be taken to define appropriate bounds for each param-
eter. We make use of a uniform prior for all parameters where
the bounds of each are determined by previous microflare stud-
ies with consideration to the thermal and non-thermal energetics
involved.

Table 1 shows the bounds for the uniform priors used in the nested
sampling analysis. Studies of microflares comparable in scale to the
one studied here, estimated GOES class ~A0.02, have suggested that
those fitted with a single-thermal model tend to have a temperature
no higher than ~10 MK with emission measure <I x 10% c¢cm™3
(Duncan et al. 2021; Vadawale et al. 2021). Additionally, some
enhanced pre-flare emission may be present while some isothermal
NuSTAR microflares have emission measures as low as ~1 x 104
cm™3 (Cooper et al. 2021). Therefore, sensible prior bounds for the
microflare temperature and emission measure (72 and EM2 from
Figs 3 and 4) are taken to be 2.5-10 MK and 1 x 10¥ to 1 x 10%
cm™3, respectively.

From the physically motivated parameter prior ranges for 72 and
EM?2, and using the volume estimate from Section 2.2, the possible
thermal energies resulting from models within these bounds fall
between approximately 4 x 10%* and 2 x 10?7 erg. Considering
past NuSTAR sub-A class microflares, this is a conservative thermal
energy range and helps support the choice of the defined parameter
prior bounds.
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Figure 5. Posterior distributions for the isothermal, null scenario, representation of the microflare spectra shown in Fig. 3 (right panel) as determined from
nested sampling analysis. The thermal energy distribution is calculated from the temperature (72) and emission measure (EM2) samples. The median and lo
confidence intervals are displayed above the diagonal panels for each marginalized parameter distribution and shown with dashed lines. Contours of 50, 68, and

90 per cent levels are shown in the 2D marginalized posterior distribution.

Next, priors must be defined for the thermal (73 and EM3) and
non-thermal (Fe-, §, and E.) excess model parameters. When other
microflares have been found to be best fitted with two isothermal
models, we find that the emission measure for the higher temperature
component is ~2 orders of magnitude less than the lower temperature
model (Cooper et al. 2021; Duncan et al. 2021) and so we choose a
prior emission measure range of 1 x 10* to 1 x 10* cm™>. In order
to investigate a potential hotter temperature component producing the
count model excess in Fig. 3 (right panel), we set a prior temperature
range of 8—15 MK such that it overlaps with, and goes beyond, the
range being investigated for 72.

The priors for the non-thermal excess models are determined from
previous non-thermal X-ray microflare studies. Hannah et al. (2008)
find that 90 per cent of the RHESSI microflares studied have a low-
energy cut-off between 9 and 16 keV with photon indices between 4
and 10 (corresponding to electron indices between 5 and 11 for thick-
target emission; Brown 1971). However, the majority of these non-
thermal X-ray microflares are of a greater GOES class and brighter
than ones viewed by NuSTAR (Glesener et al. 2020; Cooper et al.
2021), which do not have emission extending to energies as high.
Therefore, the conservative uniform prior bounds for the low-energy
cut-off and the electron index are defined to be 3—10 keV and 4-15,
respectively.

The microflare presented here is much weaker in magnitude than
the non-thermal microflares investigated previously by NuSTAR
and so the electron flux is expected to be less than previously
obtained. Therefore, the prior range is estimated to be 10*° to
10** electronss™! as this microflare is ~3 orders of magnitude
weaker in GOES classification than the non-thermal microflare

studied in Glesener et al. (2020), which is found to have an electron
flux of ~2 x 10% electronss~!. The prior constraints for the non-
thermal model provide an energy range ~10?* to 10%” erg, which is
complementary to the thermal energy range being explored for the
microflare providing additional physical justification for the thick-
target parameter constrained prior bounds.

Throughout the nested sampling analysis, all three scenarios are
run with 10,000 live-points and an Auesn Vvalue of 0.1. These,
again, are conservative values to ensure that the majority of the
prior is sampled adequately. The nested sampling result does not
change significantly with fewer live-points or a larger Ayresnh, oOnly
the uncertainties become larger.

4.2 Nested sampling results

Nested sampling analysis is performed on all three model represen-
tations of the microflare spectra where the process took of the order
of hours to complete for each model scenario using an Apple M1
Max MacBook Pro. The thermal and non-thermal representations
of the excess from Fig. 4 (left and right panels) give In(Z) values
of —497.31 £+ 0.03 and —493.63 =+ 0.03, respectively, while the null
scenario, where the excess is not represented (Fig. 3, right panel), is
estimated to have a value of —530.14 £ 0.03.

The H values (as described in Section 3.1.1) reported for the
analysis in each case are given to be ~9 for the null scenario
and ~11 for both the thermal and non-thermal cases. The sim-
ilar values indicate that the bulk of the posterior lies within a
similar fraction of the constrained prior for each tested hypothe-
sis.
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Figure 6. Similar to Fig. 5 but the nested sampling analysis result for the thermal scenario shown in the left panel of Fig. 4. The thermal energy distribution is
calculated from the temperature (72 and 73) and emission measure (EM2 and EM3) samples.

The posterior distribution corner plots that accompany the pieces
of evidence are shown in Figs 5-7. We find that the constructed
corner plots from the nested sampling analysis agree closely with
those produced from the previous MCMC analysis performed in
Section 2.3 with all parameter values agreeing well within the 1o
equivalent uncertainties. This provides confidence that the posterior
distribution for each model parameter, bound by the defined priors,
is sampled well in the MCMC and that there are no other relevant
solutions inside the physically motivated prior bounds.

With the confirmation from the corner plots produced from
the nested sampling analysis, and corroboration with the MCMC
analysis that the pieces of evidence have been calculated robustly,
we are able to compare each model representation to the others using
BF from equation (3). This is reasonable as we have no evidence or
reason to prefer one model representation over the other; therefore,
we assume a prior odds ratio of 1 making the BF equal to the posterior
odds.

The BF for each comparison is shown in Table 2. We find that the
BFs comparing the thermal and non-thermal representations of the

MNRAS 529, 702714 (2024)

count excess are far more probable than not representing the excess
at all in the null scenario. Therefore, nested sampling has given a
quantitative measure of how much an additional model is required
beyond the pre-flare and isothermal fit with the thermal and non-
thermal scenarios being >10'* times more probable than the null
hypothesis.

Additionally, the nested sampling also shows that the non-
thermal representation is ~40 times more likely to be the cause
of the count excess compared to the thermal model, correspond-
ing to strong evidence for this conclusion. Therefore, the nested
sampling analysis would suggest that this event is the weakest
X-ray microflare to show direct evidence for non-thermal emis-
sion.

To check the sensitivity of the nested sampling result on the
choice of physically motivated prior bounds from Table 1, we
adjust the bounds of each parameter prior by up to 20 per cent.
This still results in the non-thermal scenario being more preferable
to the thermal representation with In(BF) values between 3.5 and
3.8.
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Figure 7. Similar to Fig. 5 but the nested sampling analysis result for the non-thermal scenario shown in the right panel of Fig. 4. The thermal energy distribution
is calculated from the temperature (72) and emission measure (EM2) samples and the non-thermal energy distribution is calculated from the electron flux (F,.-),

electron spectral index (8), and the low-energy cut-off (E¢) samples.

Table 2. The logarithm of BF, BF, and the corresponding level of confidence
from Kass & Raftery (1995) are shown for each model scenario comparison
for the microflare spectra. The error on In(BF) is +0.04 for all values.

Comparison In(BF) BF Confidence
Zithermal 10 Znull 32.8 2 x 10" Very strong
Znon-thermal 10 Znull 36.5 7 x 101 Very strong
Zron-thermal 10 Zthermal 3.7 40 Strong

Furthermore, we narrow the priors around the bulk of the 73 and
EM3 distributions shown in Fig. 6 while leaving the non-thermal
parameter priors unchanged in order to be more favourable to the
thermal scenario. A In(BF) value of ~2 is obtained from this test,
which is still classified as positive evidence for the non-thermal
representation of the microflare (Kass & Raftery 1995).

We note that the best-fitting log-likelihood values, In(L), stated
in Section 2.3.1 show similar differences to the log-evidence values,
In(2Z), for the different scenarios; however, the nested sampling result

MNRAS 529, 702714 (2024)
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is more informative and robust for model comparison. The pieces of
evidence can sufficiently compare models with different parameters
and priors, whereas a clear conclusion cannot be drawn from the
best-fitting log-likelihood values as discussed in Sections 2.3.1 and
3.

5 SUMMARY AND CONCLUSIONS

In this paper, we present the first analysis of X-ray flare spectra
using a nested sampling algorithm. This microflare is estimated to
be approximately an A0.02 GOES equivalent class flare that shows
signs of high temperatures and/or non-thermal particle acceleration;
however, determining the extent of this emission is difficult using
arguments and methods performed in the past.

From the temporal, spatial, and spectral information discussed in
Section 2, we find evidence that the X-ray microflare emission is
not well represented with an isothermal model as a count excess
is present at higher energies in the NuSTAR spectra (Fig. 3). Upon
investigating two emission mechanisms potentially responsible for
this, we find that both a thermal and a non-thermal explanation for
the excess appear to be equally valid with no decisive reason to pick
one over the other.

Qualitative evidence for a non-thermal representation is found
in the form of the lack of higher temperature (~10 MK) emission
response in the 131 A SDO/AIA channel (Section 2.1) and potentially
in the presence of bright EUV loop footpoints visible throughout the
solar atmosphere (Section 2.2). When performing spectral fitting,
the model with the non-thermal component produces a slightly more
preferable log-likelihood value (Fig. 4); however, this metric may be
expected to be better due to the non-thermal component having an
extra free parameter to use during the fitting process compared to the
thermal model. Therefore, a conclusion cannot be made based on the
best-fitting log-likelihood values.

We use a more robust model comparison method called nested
sampling (Section 3), which is used to determine an estimate for the
evidence attributed to each model representation of the data, therefore
allowing BF to be computed for model comparison. In the process, we
also obtain the posterior distributions for each model as shown in Figs
5-7. We find that the model containing the non-thermal component
is most likely to represent the observed microflare spectra with BFs
of 7 x 10" and 40 compared to the null and thermal representations,
respectively.

Therefore, we report the weakest X-ray microflare to have direct
observation of non-thermal particle emission suggesting that X-ray
flares of the estimated scale A0.02 do indeed show similar traits
to their larger counterparts. From the nested sampling results, this
microflare produces a thermal energy of 2.170] x 10% erg, which
is rational compared to the non-thermal energy of 4.2715 x 10%
erg released over the course of its impulsive phase at 3.0753 x 10%*
ergs~!. The corresponding energy posterior distributions of each
model scenario are shown in Figs 5-7. This shows that microflares
this weak, and likely weaker, continue to undergo the same physical
processes with the same/similar emission mechanisms as brighter
flares.

The nested sampling algorithm is in no way specific to X-ray
microflare analysis. It can be used to gain insight into general model
comparison problems and is able to produce the same data products
as MCMC analysis. However, effort will be made to speed up the
process specific to this microflare analysis. This could be achieved by
speeding up the code used for the individual component models and
testing a range of nested sampling algorithm implementations such
as diffusive nested sampling (Brewer, Partay & Csdnyi 2011) and
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those discussed in Speagle (2020) and Williams, Veitch & Messenger
(2023).

Using nested sampling has enabled the robust analysis of the high-
energy count excess. Methods to determine the emission mechanism
for such features in the past either are primarily subjective in
nature and/or fail to give a reliable conclusion. The nested sampling
algorithm is able to allow the repeatable and intuitive study of data
with low signal and is crucial when investigating microflares at
such weak scales. Nested sampling will be used in future NuSTAR
microflare studies, and other flare studies with ambiguous spectra,
to determine the confidence on the emission mechanisms present
throughout the event.
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APPENDIX A: X-RAY THERMAL AND
NON-THERMAL PHOTON MODELS

Fig. Al displays the photon models used to investigate the null
(left panel), thermal (middle panel), and non-thermal (right panel)
scenarios for the microflare as initially described in Section 2.3. Two
photon models are utilized to represent each scenario, an isothermal
model and a thick-target non-thermal model. Both models represent
a photon spectrum produced from different electron distributions.

The isothermal model (purple in all panels and red in the middle
panel of Fig. Al) represents a photon spectrum produced from a
Maxwell-Boltzmann distribution of electrons. The isothermal model
is composed of continuum and line emission and is a function of the
plasma temperature (7) and emission measure (EM).

The non-thermal photon spectrum (red in the right panel of Fig.
Al) results from a power-law electron distribution losing all their
energy through Coulomb collisions (Brown 1971; Holman et al.
2011). The thick-target model is a function of electron flux (F.-),
electron spectral index (8), and low-energy cut-off (E.).
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Figure A1l. Photon models, obtained from SUNKIT-SPEX, used to fit the NuSTAR microflare X-ray count spectra in the null (left panel), thermal (middle panel),
and non-thermal (right panel) scenarios shown in Fig. 3 (right panel) and Fig. 4. The models shown are calculated using NuSTAR’s native energy resolution and
the parameter values obtained from MCMC analysis (Section 2.3). Each model component, along with corresponding parameter set, is shown in purple or red
with the total model in the thermal and non-thermal cases being shown in black.
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