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A B S T R A C T   

As wind energy continuously expands its share in power generation, the grid has a higher requirement for stable 
wind production. This study aims for a wind forecasting-based turbine control to mitigate power fluctuation 
caused by wind uncertainties. Firstly, a compass-vector transformation supports a wind model on direction 
forecasting besides velocity. Wind modelling adopts a general network structure of learning-shaping to learn the 
transformed vector series. Wind speed and direction averaged from prediction determine the three-degree-of- 
freedom (3-DOF) reference as the control objective and update the system configuration. Subsequently, the 
model predictive control (MPC) solves real-time regulation by sparse quadratic programming (QP). Besides, the 
control loop integrates generator control, speed compensation, and output buffer to coordinate the generator, 
pitch servo, and yaw servo. According to the simulation, the long short-term memory (LSTM) ensures a mean 
accuracy of over 0.997 on a 30-s prediction window. Its performance is more stable than the dense (DNN), 
convolutional (CNN), and CNN-LSTM. Compared to the baseline control, the proposed MPC can reduce 7% 
output oscillation and 12% peak-to-peak. Wind forecasting improves rotation and power stability by 44% at high 
wind. The proposed turbine control is proven to contribute to better wind power quality.   

1. Introduction 

With more attraction to low-carbon emissions, wind energy has 
experienced rapid development in technology and industrial applica-
tions in the past two decades [1]. Wind turbines (WTs), the device of the 
wind energy conversion system (WECS), are responsible for capturing 
wind energy and outputting electricity [2]. Turbine control performance 
dominantly influences output power quality [3]. However, wind un-
certainties and aerodynamic nonlinearities induce control disturbance, 
leading to output fluctuation and grid supply risk [4]. This research 
intends to develop a control framework to forecast wind variation and 
utilize wind prediction to optimise configuration. 

The primary type of WT is a three-degree-of-freedom (3-DOF) system 
that varies rotor speed, pitch angle, and yaw angle [5]. Wind forecasting 
provides a necessary wind reference that determines the 3-DOF 

objective, so a reliable wind model is critical for output stability [6]. 
Conventional wind forecasting involves physical and statistical models 
[7]. Physical models, a part of numerical weather prediction (NWP), 
take multiple meteorological and topographical parameters as input and 
calculate potential wind variation through physical laws [8]. Statistical 
methods analyse historical data to estimate wind distribution that cal-
culates the most likely wind [9]. However, physical models are 
commonly expensive and slow in computation due to fluid calculations, 
e.g., the Navier-Stokes equation [10]. Statistical methods have a 
requirement of the stationary process [1] that is too strict to satisfy for 
short-term time series. In contrast, machine learning provides an effi-
cient calculation with no prerequisite for series distribution [1]. 

Owing to the development of artificial intelligence techniques, ma-
chine learning favours employing deep-learning structures, such as 
convolutional neural network (CNN) and recurrent neural network 
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(RNN), to achieve higher accuracy for time series forecasting, besides 
conventional multilayer perceptron (MLP) [11]. Neshat et al. proposed 
an evolutionary decomposition and a generalised normal distribution 
optimisation to enhance bidirectional long short-term memory (LSTM) 
for wind speed prediction [12]. Chen et al. introduced a novel hybrid 
CNN-LSTM architecture for wind speed forecasting, which encodes high 
dimensional input into embedding vectors and decodes prediction re-
sults [1]. Ahmed et al. employed an ensemble-based LSTM to investigate 
seasonal and periodic characteristics over wide data segmentations (3- 
month ~ 1-day) and time horizons (14-day ~ 5-minute) [13]. Xiang 
et al. combined a self-attention temporal CNN and an LSTM to forecast 
ultra-short-term wind power [14]. Liu et al. applied error correction and 
variational model decomposition into a hybrid CNN-LSTM-MLP for 
hourly solar irradiance prediction [11]. Ewees et al. adopted a human- 
behaviour-based metaheuristic algorithm, a heap-based optimiser, to 
train the LSTM, thus improving LSTM accuracy on wind power fore-
casting [15]. Agga et al. studied deep-learning architectures in photo-
voltaic power forecasting and suggested that the CNN-LSTM suppresses 
standard machine learning and single deep-learning models [16]. Fu 
et al. presented a framework of outlier processing, mode decomposition, 
subsequence reconstruction, and stacked generalization for short-term 
wind speed forecasting [17]. Also, data filtering and mode decomposi-
tion are helpful tools that can improve model training for complex series 
with the aid of nonlinearity identification, noise cleaning, and infor-
mation extraction [18]. Although diverse state-of-the-art models 
continuously improve the reliability and accuracy of time series, their 
prediction window is too long for a turbine control system to update the 
control objective. In addition, most wind forecasting methods focus on 
wind speed but ignore direction. This work targets seconds-level deep 
learning for wind speed and direction series. 

When a wind model predicts speed and direction, an operational 
optimisation will transform wind reference to the proper rotation, pitch, 
and yaw (3-DOF) [19]. Modern turbine control relies on maximum 
power point tracking (MPPT), in which wind generation crosses a var-
iable speed region (Region ii) and a pitch regulation region (Region iii) 
[20]. However, the conventional MPPT is not flexible for large-capacity 
WTs. This research also introduces a dynamic operation optimisation 
driven by the wind model to update the 3-DOF reference for the 
controller. After that, turbine control executes different 3-DOF opera-
tions and deals with disturbances caused by wind stochastics. Gambier 
and Meng designed a proportional-integral-derivative (PID) 20-mega-
watt (MW) system that considers torque control, pitch control, and 
fore-aft damping [21]. Kelkoul and Boumediene proposed a sliding 
mode control (SMC) enhanced by a super-twisting algorithm to reduce 
generator chattering [22]. Li et al. developed a linear quadratic regu-
lator (LQR) that coordinates generator and pitch servo responses 
through forecasted aerodynamics [23]. Sudharsan et al. presented a 
pseudo-adaptive model prediction control (MPC) integrating torque and 
pitch control for fatigue mitigation [24]. The MPC is more promising 
among existing controllers because its horizon prediction contributes 
less control cost and more robust adaptability. Various controllers make 
efforts for higher control performance, but most do not consider wind 
forecasting to predict future wind variations and adjust their control 
objectives in advance. This work will combine the wind forecasting 
model and the MPC to enhance stability and reduce output fluctuation. 

This study aims for a wind forecasting-based MPC design and has the 
following contributions: 

The proposed wind forecasting method processes the time series of 
wind horizontal and vertical components instead of directly passing 
wind series so that the forecasting model can handle wind speed and 
direction. 
Four deep models (MLP, CNN, LSTM, and CNN-LSTM) take a general 
structure of learning-shaping to be compatible with wind vector se-
ries. Meanwhile, four models are tested and compared for the pre-
diction performance. 

An operation optimisation algorithm receives the weighted wind 
reference forecasted by the wind model and determines the optimal 
working point to capture the nominated power. This procedure de-
rives necessary speed, pitch, and yaw references as the control 
objective. 
The MPC updates its internal system model according to wind pre-
diction and initializes the regulation problem. A more accurate sys-
tem model improves the aerodynamic estimation of the MPC, which 
benefits better control accuracy and robustness. 
The forecasting-enhanced MPC incorporates generator, pitch, and 
yaw control, which has a global regulation of 3-DOF. The highly 
integrated MPC conduces to a fully coupled system that balances 
different components to optimise the control reaction. 

This paper organizes the contents as follows. Section 2 introduces 
the target turbine and flowchart. Section 3 demonstrates wind series 

Fig. 1. The IEA 15-MW offshore reference.  
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modelling with four deep networks and derives 3-DOF references from 
wind prediction. Section 4 details the forecasting-based MPC, including 
real-time system modelling, quadratic programming (QP), and control 
loop of the generator, pitch servo, and yaw servo. Section 5 examines 
model accuracy and control performance. Section 6 summarizes the 
main findings and conclusions. 

2. Overview 

With moving into the deep ocean, offshore WTs have a range of ca-
pacity in rated power from 8 MW to 20 MW, in which the share of 15 to 
20 MW has reached 38 % [25]. As the main steam offshore in the recent 
decade, the 15-MW turbine is worth investigating for industrial appli-
cations. The section will introduce a 15-MW reference and illustrate the 
overall design of the reference turbine. 

2.1. Target turbine 

The National Renewable Energy Laboratory (NREL) and the Tech-
nical University of Denmark report a reference WT of 15-MW through 
the second work package of the International Energy Agency (IEA) wind 

task 37, named IEA 15-MW [5]. The IEA 15-MW leaps ahead of the 
present generation of industry WTs for fixed-bottom offshore wind en-
ergy. The IEA 15-MW applies a monopile support structure, a Class IB 
direct-drive machine, a rotor diameter of 240 m, and a hub height of 
150 m, as displaced in Fig. 1 [5]. This study will use the IEA 15-MW to 
implement and discuss the proposed control design. 

Table 1 provides the necessary parameters of the IEA 15-MW. Each 
simulation step iterates on 50 blade elements of the IEA 15-MW to 
compute aerodynamic responses. The IEA 15-MW employs a 200-pole 
permanent magnetic synchronous generator (PMSG) to absorb shaft 
kinetic energy and convert it to electrical power. The rated output of the 
PMSG (15 MW) corresponds to 96.5 % of absorbed rotation energy. 
Besides, the first-order model with rate constraint mathematically sim-
ulates pitch and yaw servos. 

2.2. Design flowchart 

Large-size WTs favour a direct-drive design that implants the rotor 
shaft to the generator rotor, which benefits a compact nacelle space. 
Fig. 2 is the direct-drive profile of the IEA 15-MW that consists of the 
PMSG, pitch servo and yaw servo. The proposed control framework 
consists of wind forecasting and control optimisation. The forecasting 
module takes wind velocity and direction measurements from an 
anemometer and a vane mounted on the turbine nacelle. Subsequently, 
the vector series converted from the wind measurement is passed to a 
wind vector series model to predict future wind vectors. The inverse 
vector transformation restores the predicted wind speed and direction. 
The processing unit will use the wind prediction to configure the 
working point (rotation, pitch, yaw, and captured power). Meanwhile, 
the control module updates the system model that linearizes the coupled 
response at the working point. After that, the MPC initializes its regu-
lation model and objective to monitor the system state and react to state 
transition or perturbation. 

3. Wind forecasting 

Wind forecasting uses several prior wind samples to predict future 
wind trends as time series forecasting. An accurate forecasting model 
ensures the optimal control configuration for higher system stability and 
power quality. This section will build four networks to predict wind 
vector series through data preprocessing and compass-vector trans-
formation, as shown in Fig. 3. 

3.1. Data description 

Since multiple variables might affect wind prediction, it is necessary 
to perform a feature selection to include proper features for time series 
modelling [26]. Considering the employed dataset gathered from multi- 
meteorological sensors has 13 variables, the spatial correlation [7] be-
tween these features evaluates their dependencies. A negative correla-
tion means an opposite variation between two series candidates, but its 
magnitude means the same correlation intensity as a positive. Therefore, 
Fig. 4 calculates the absolute correlation for feature analysis, in which a 
value close to the unit shows a higher correlation. Air pressure 
(barometer measurements) correlates lightly with wind velocity and 
direction, and temperature potentially affects direction, but both cor-
relations are less than 0.5. Only wind measurements at different heights 
have strong correlations. Hence, the time series modelling ignores air 
pressure and temperature and only considers wind velocity and direc-
tion at the hub height for simplicity. 

Fig. 5 defines the representation of wind measurement in the com-
pass direction, which is clockwise and represents the direction blowing 
from [9]. Angles are not explicit model inputs due to 0◦ or 360◦ alter-
nations. For better learning, a vector decomposition transforms wind 
velocity vi and direction θv as Eqs. (1)(2), with inverse transformation as 
Eqs. (3)(4). 

Table 1 
Parameters of the IEA 15-MW offshore.  

Parameter Value Comment 

Wind turbine 
class 

IEC class 1B – 

Rotor orientation upwind – 
Control variable speed 

collective 
pitchnacelle 
rotation 

updated to variable power 
controlcompatible with maximum 
energy capture 

Cut-in wind 
speed 

4.4 m/s optimised to avoid too low outputs 

Cut-off wind 
speed 

25 m/s – 

Rated wind speed 10.2 m/s optimised for perpendicular rotation 
plane 

Power rating 15 MW – 
Number of blades 3 – 
Rotor diameter 240 m – 
Airfoil series FAA-W3 50 blade elements 
Minimum rotor 

speed ωmin
d 

5.0 RPM – 

Maximum rotor 
speed ωmax

d 

7.56 RPM – 

Design pitch βmin 0 deg minimum pitch angle 
Pitch time 

constant τβ 

1 s first-order model 

Pitch velocity βv 7 deg/s maximum velocity 
Yaw time 

constant τγ 

1.5 s first-order model 

Nacelle rotation 
limit γv 

0.25 deg/s maximum rotation 

Blade mass 65,000 kg corresponds to a moment of inertiaJt =

936,000,000 kg • m2 

Shaft driving direct drive accounts for zero dampingDt = 0N • m/

rad • s 
Number of pole 

pairs p 
100 matched for 7.56 RPM 

Stator voltage Vg 4.77 kV – 
Stator resistance 

Rs 

0.16 Ω – 

Stator d-axis 
inductance Ld 

0.01587H Ld = Lq for symmetrical machines 

Stator q-axis 
inductance Lq 

0.01587H – 

Permanent 
magnet flux Ff 

19.49 wb – 

Electrical 
frequency fe 

12.6 Hz – 

Generator 
efficiency kg 

96.5 % mechanical efficiency  
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vx = vi • cosθv (1)  

vy = vi • sinθv (2)  

vi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

x + v2
y

√
(3)  

θv = arctan
vx

vy
(4)  

Fig. 6 compares the distribution of the joint velocity and direction and 
the decomposed vector. It clearly shows wind vectors are much simpler 
for the model to learn. Therefore, wind forecasting converts compass 

wind to wind vector and later returns to compass wind after forecasting. 
Meanwhile, a forecasting model no longer needs to weigh input features 
because an orthogonal pair have equal importance. 

The training set has 2,281,610 samples sampled at a frequency of 
0.1-Hz. Table 2 summarises statistics of the training set about compass 
and vector. Velocities concentrate on 4.28 ~ 9.62 m/s, and directions 
focus on about 90◦ and 250◦ affected by seasonal winds. Model testing is 
on a successive 30-day set of 259,200 samples. 

3.2. Preprocessing 

For passing correct information into a model, the min–max scaler 
(Eqs. (5)(6)) performs input normalization and prediction restoration 

Fig. 2. The flowchart from wind forecasting to control optimisation.  

Fig. 3. Procedures of training and testing a wind series model.  
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[27]. ̃x =
[
vx, vy

]T is an orthogonal vector, ̃xmin and ̃xmax can be found in 
Table 2. 

x̃′
=

x̃ − x̃min

x̃max − x̃min
(5)  

x̃ = x̃′
•

(

x̃max − x̃min

)

+ x̃min (6)  

Windowing is a way to process time series data so that a machine 
learning platform can perform training on inputs and prediction labels 
to make a time series model. Meanwhile, a windowing definition de-
termines the time axis of successive predictions. Fig. 7 visualizes win-
dowing operation on training and testing sets. A complete window 
consists of input and shift subwindows, in which a shift subwindow 
includes an offset and a label. The green offset in Fig. 7 is for flexible 
applications, such as reserving time for model calculation. It notes that 
the proposed windowing has different movements on training and 
testing sets. Each window from the training set is independent and has 
no overlap with adjacent windows. However, the testing set moves the 
window according to the label width to make successive predictions. In 

this study, an input subwindow of 6 samples and a label subwindow of 3 
predictions constitute a window without offset. 

3.3. Deep learning models 

Deep learning models rely on complex and multiple network archi-
tectures that exploit nonlinear mapping capabilities [28]. The con-
volutional and recurrent structures are the two most widely applied 
deep-learning methods in time series forecasting [11]. This section 
will introduce CNN and LSTM-based models to predict 2-D wind vector 
series. Meanwhile, wind modelling includes an MLP and a hybrid CNN- 
LSTM for comparison. Under the window definition, four models have 
the same input shape of 6 × 2 and output shape of 3 × 2, corresponding 
to a sampled 60-s input series and a forecasted 30-s label series. In other 
words, a wind forecasting model predicts half a minute for the control 
optimisation. Model training and replay uses Tensorflow [29]. The 
gradient optimiser is the Adam optimiser [30], and the loss function is 
the mean squared error (MSE) [31]. 

3.3.1. Dense neural network 
The DNN is a classic type that stacks regular layers in Tensorflow 

Fig. 4. Heatmap of the spatial correlation between features including barometer, temperature, wind vane, and wind anemometer.  
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[29]. The DNN is another name for deep-learning MLP, one of the primal 
deep-learning neural networks. The developed DNN is a seven-layer 
architecture, as illustrated in Fig. 8. The hidden part between input 
and label layers undertakes two tasks: one is for learning underlay time 
series information, and the other is for shaping so that a prediction has 
an expected output shape, which yields a learning-shaping structure. 

Since the native dense layer only works for 1-D vectors, it requires 
flattening the 2-D input layer to pass data flow correctly. All dense layers 
for learning take the ReLU [14] as their activation function to introduce 
nonlinearity between connected layers. In the shaping structure, the 
dense layer whose neurons equal the label size applies the linear 

operation to achieve direct output, and the reshaping layer transforms 
the hidden vector into the label shape. It notes that the shaping structure 
is reused in the following networks to achieve 2-D prediction. 

Table 3 gives specific layer configurations in Tensorflow. The 
hyperparameter tuning of the DNN neurons only adjusts four dense 
layers on the learning side. Their neurons can be equally increased or 
decreased with a step of 16 units until the training loss converges 
smoothly. The tuning of the other models also follows the same princi-
ple. The configuration of Table 3 can ensure steady training through 
multiple trials. It is worth mentioning that a robust network should not 
be sensitive to hyperparameters. It should consider adding a learning 
layer if similar hyperparameters lead to enormous prediction 
discrepancies. 

3.3.2. Convolutional neural network 
The CNN has become a primary deep-learning method in renewable 

energy forecasting [11]. It relies on feature extraction to interpret a 
sophisticated data topological structure, which has achieved success in 
image processing [11]. Compared with 2-D images, the only difference 
in applying the CNN in wind series forecasting is that a convolution 
kernel convolves the input layer on a single spatial (or temporal) 
dimension [1]. Fig. 9 is the CNN architecture in this study. The 1-D 
convolution layer moves the kernel window along with the time axis 
of the input series. Since the Conv1D layer has parsed the underlay time 
information, the unfolded Conv1D output cascades a dense layer for 
learning. 

Table 4 details the optimised structure of Fig. 9. The convolution and 
flattening layers perceive time series features and output a character 
vector so that a dense layer can understand temporal characteristics. It 
accounts for plenty of neurons in the dense layer on the learning side. 

Fig. 5. Compass wind reporting velocity and direction (the north refers to 
0◦ or 360◦). 

Fig. 6. Wind distribution (uneven relation between velocity and direction) and vector decomposition (uniform relation).  

Table 2 
Description of 0.1-Hz wind training data.   

Mean Std. Min. 25 % 50 % 75 % Max. 

vi(m/s)  7.30  3.97  − 0.10  4.28  6.89  9.62  33.71 
θv(◦)  192.97  87.40  0.01  110.36  218.62  259.84  359.99 
vx(m/s)  − 1.19  4.80  − 24.64  − 3.95  − 1.24  1.23  17.98 
vy(m/s)  − 1.64  6.47  − 28.53  − 6.66  − 2.16  3.19  24.68  
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3.3.3. Long short-term memory 
The LSTM is one of the most popular extensions of the RNN that 

predicts various time series [11]. The basic mechanism of a recurrent 
structure is a sequential model that can arrange time-series data as input 
vectors and supply output results through its internal cell [15]. There-
fore, the input series goes through cells in a sequential vector, and the 
output label concatenates with the next time series at each movement 
[13]. The LSTM uses memory cells (Fig. 10) to replace conventional 
RNN cells, thus solving the gradient explosion and disappearance of the 
RNN. 

Assuming the forget gate ft , input gate it, cell state Ct , and output gate 
ot in Fig. 10, Eqs. (7)~(12) represent the calculation procedure of the 
LSTM at each step [1]. The input gate controls the information received 
by memory cells, the output gate controls the forecasted information of 
memory cells, and the forget gate determines the information to be 
removed [9]. Memory cells are responsible for recording cell states [9]. 

ft = σ
(
Wf • [ht− 1, xt] + bf

)
(7)  

it = σ(Wi • [ht− 1, xt] + bi ) (8)  

C′
t = tanh(WC • [ht− 1, xt] + bC ) (9)  

Ct = ft*Ct− 1 + it*C′
t (10)  

ot = σ(Wo • [ht− 1, xt] + bo ) (11)  

ht = ot*tanh(Ct) (12)  

where W and b are the weight and bias of a gate/cell. The LSTM with the 
shaping structure adopts the setting of Table 5. 

3.3.4. Hybrid network 
This section combines a CNN and an LSTM to build a hybrid CNN- 

LSTM model. Fig. 11 illustrates the whole framework. In the hybrid 
model, the CNN plays a role in feature extraction, and the LSTM works as 
a temporary forecasting layer to calculate such extracted features along 
the time axis. Therefore, the LSTM undertakes forecasting functionality 
for extracted features, not raw time series. The CNN-LSTM structure is 
supposed to be an encoder-decoder mechanism in which the CNN is the 
encoder, and the LSTM is the decoder [1]. 

Table 6 lists the layer configuration of the CNN-LSTM. Owing to 
recurrent prediction, the CNN-LSTM still has a concise layer structure. 
However, the LSTM layer requires more parameters waiting for training 
because extracted features increase the LSTM input dimension. 

Fig. 7. Window definition for sampling and forecasting.  

Fig. 8. The structure of stacked dense layers.  

Table 3 
The DNN configuration.  

Layer Arguments Value Parameters 

Flatten – – – 
Dense unitsactivation 32relu 416 
Dense unitsactivation 32relu 1,056 
Dense unitsactivation 32relu 1,056 
Dense unitsactivation 32relu 1,056 
Dense units 6 198 
Reshape – (3, 2) –  
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3.4. Evaluation criteria 

Model evaluation adopts three indexes: the r-square (R2, Eq. (13)) 
[30], the median absolute error (MAE, Eq. (14)) [15], and the root mean 
squared error (RMSE, Eq. (15)) [27]. The R2 is a correlation coefficient 
that measures consistency between model predictions and measure-
ments. The MAE focuses more on the central part of data distribution 
and eliminates the influence of some exceptional cases from the head 
and tail. The RMSE is a classic statistical metric that indicates the 
divergence of the group error of forecasted values. 

R2 = 1 −
∑N

i=1

(
yi − yp

)2

∑N
i=1y2

p

(13)  

MAE = median
( ⃒
⃒yi − yp

⃒
⃒
)

(14)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
yi − yp

)2

√
√
√
√ (15)  

where yi is the i-th measurement and yp is the corresponding model 

outcome. 

3.5. Operation optimisation 

After a wind model generates a series of wind vector predictions, a 
weighted average tool determines the average wind speed and direction 
in the label length as wind reference. Assuming averaged wind vectors 
(vx, vy), Eqs. (16)(17) compute wind speed and direction references. 
Eqs. (17)(18) weights wind components by assigning more importance 
to a closer prediction. 

vi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
x + v2

y

√

(16)  

θv = arctan
vx

vy
(17)  

vx =

∑N− 1
i=0 (N − i) • vx

i
∑N

n=1n
(18)  

vy =

∑N− 1
i=0 (N − i) • vy

i
∑N

n=1n
(19) 

As the IEA 15-MW is an upwind WT, the nacelle orientation expects 
to face the wind flow, which infers the yaw reference equals the pre-
dicted direction. Eqs. (20)~(22) unwrap the yaw angle to make a 
continuous yaw orientation. 

γ+ = mod
(

θv − γ′
ref , 2π

)
(20)  

γ− = γ+ − 2π (21)  

Fig. 9. The 1-D convolutional structure.  

Table 4 
The CNN configuration.  

Layer Arguments Value Parameters 

Conv1D filters 
kernel size 
activationpadding 

32 
3 
relusame 

224 

Flatten – – – 
Dense unitsactivation 32relu 6176 
Dense units 6 198 
Reshape – (3, 2) –  
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γref =

{
γ′

ref + γ+, if γ+ < |γ− |

γ′
ref + γ− , else

(22)  

where γ′
ref denotes the last yaw reference. Eqs. (20)(21) calculate the 

rotation angle from clockwise or counterclockwise, and Eq. (22) selects 
the minimum rotation angle. After the above, the IEA 15-MW needs 
rotor speed and pitch angle references to determine power capture. 

Most WT controllers are variants of the MPPT, i.e., receiving wind 
power as much as possible [32]. This research applies a control strategy 
that can vary output power to meet different generation requirements, i. 
e., power reference point tracking (PRPT) [23]. The PRPT operation 
requires a synthesis aerodynamic model of the IEA 15-MW that can 
provide power and torque response from wind velocity, rotor speed, and 
pitch angle. Algorithm 1 takes advantage of the aerodynamic model 
and computes the operating point (ωref

d , βref , P
ref
d ) for variable speed and 

pitch regulation [23]. It notes that Algorithm 1 receives prediction vi 
from Eq. (16) as input wind speed. The basic idea behind steps 1 ~ 5 is 
to find the maximum load at the forecasted wind speed, which follows 
the optimal tip speed ratio (TSR) [33] and the pitch regulation rule of 
Region iii. Subsequently, steps 6 ~ 10 try to pitch blades to reduce the 
captured power until it reaches the target power Pt. Finally, the 

Fig. 10. The LSTM cell structure.  

Table 5 
The LSTM configuration.  

Layer Arguments Value Parameters 

LSTM units 32 4480 
Dense units 6 198 
Reshape – (3, 2) –  

Fig. 11. The CNN-LSTM structure.  

Table 6 
The CNN-LSTM configuration.  

Layer Arguments Value Parameters 

Conv1D filters 
kernel size 
activationpadding 

32 
3 
relusame 

224 

LSTM units 32 8320 
Dense units 6 198 
Reshape – (3, 2) –  
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algorithm returns reference values and torque sensitivities.   
Algorithm 1. Control input reference optimisation 

Input initialize rotor speed and pitch angle references (ωd , β)load the IEA 15- 
MW aerodynamic model  
(M ←[vi, ωd, β]) 
receive the external power output target Pt 

Output speed, pitch, and power references (ωref
d , βref , P

ref
d )torque sensitivities  

(
∂Qd

∂ωd
, 

∂Qd

∂β
) 

1. if in Region ii: 

(continued on next column)  

(continued )  

Algorithm 1. Control input reference optimisation 

2. find ωref
d = ωd 

where J (ωd) = max
(

M |Pd

)
with β = βmin 

3. else (Region iii): 
4. find βref = β 

where J (β) = min
(

abs
(

M |Pd
− Pmax

d

))
with ωd = ωmax

d 

5. predict the maximum power Pmax
d ←

[
vi, ωref

d , βref

]

(continued on next page) 

Fig. 12. Example of the rotor speed and pitch angle optimisation.  

Fig. 13. Example of the power curve of the IEA 15-MW in the PRPT (overlapped speed curves due to the TSR, multiple angle curves for different targets).  
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(continued )  

Algorithm 1. Control input reference optimisation 

6. if the target is less than the maximum Pmax
d > Pt : 

7. increase βref 

until J
(

βref

)
= min

(
abs
(

M |Pd
− Pt

))

8. update Pref
d ←

[
vi, ωref

d , βref

]

9. else 
10. accept the maximum solution Pref

d = Pmax
d 

11. linearize torque sensitivities at selected speed and pitch (
∂Qd

∂ωd
, 

∂Qd

∂β
) 

12. return ωref
d , βref , P

ref
d , 

∂Qd

∂ωd
, 

∂Qd

∂β   

Fig. 12 examples steps 1 ~ 10 of Algorithm 1 at a wind speed of 10 m/s. 
Firstly, Algorithm 1 moves the rotor speed on the zero-pitch curve, 
determining the optimal rotor speed with the optimal TSR. Secondly, 
Algorithm 1 gradually increases the pitch angle to reach the desired 
output. 

Fig. 13 provides an example of the PRPT running Algorithm 1. The 

100 % output curve is the same as the MPPT. Compared with the MPPT, 
the PRPT provides a flexible power range to ensure constant power over 
different wind velocities. 

4. Turbine control 

The control objective of the 3-DOF IEA 15-MW is to regulate the 
nacelle, shaft, and blade to the optimal reference of yaw, speed, and 
pitch derived from section 3.5. When the system works at the nomi-
nated operational point, it should capture and deliver the needed power. 
This section introduces a fully coupled system model and establishes the 
corresponding MPC optimisation. 

4.1. Control design 

The control objects include a PMSG that balances torque for stable 
rotation and absorbs captured wind power, a pitch servo that adjusts 
pitch angle to affect aerodynamics and a yaw servo that navigates the 
rotor of blades to face wind flow. Fig. 14 visualises the control flow from 
wind forecasting to terminal devices. The wind forecasting with 

Fig. 14. The schematic diagram of the wind forecasting-based MPC.  
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operation optimisation calculates the optimal rotation, pitch, and yaw. 
The pitch and yaw references are direct control inputs, but the speed 
reference needs to be the voltage and current signal of the PMSG. 
Meanwhile, the control system initializes the predictive model (i.e., 
system matrix) inside the MPC according to the working point. After 
setting the control objective and system matrix of the PMSG and servos, 
the MPC is responsible for changing states and eliminating errors caused 
by either system noises or external wind stochastics. 

Since wind forecasting and control have different response fre-
quencies, Fig. 15 explains their working period on the time axis. First, 
each wind forecasting period, i.e., the label width (30-s) in Fig. 7, 
circularly updates the control objective (speed, pitch, and yaw refer-
ences) according to the received wind prediction (Eqs. (16)(17)). The 
control objective remains the same until the next forecast. The MPC 
sampling interval (or working period) is much faster than the forecasting 
period, in which the MPC samples the system state and solves the QP 
optimisation. A shorter interval is not always the best because the pro-
cessing unit cannot compute the QP solution immediately, so a higher 
sampling frequency is meaningless in accuracy. The MPC interval is 1 
ms, considering a trade-off between fast response and computational 
cost. 

4.2. System modelling 

The fundamental DOF of WECS is the main shaft rotation that de-
livers received mechanical power to the generator side [34]. The rotor 
control, i.e., speed control, targets maintaining system rotation at 
desired speeds by regulating the generator output torque [20]. Since the 
IEA 15-MW couples the generator rotor and the main shaft, a stiff shaft 
model [35] (Eq. (23)) can depict the system rotation with aerodynamic 
input Qd and PMSG load Qe. Table 1 lists the shaft parameters. 

Jtω̇d = Qd − Qe − Dtωd (23)  

The essence of the PMSG control is to change the voltage condition and 
affect the electromagnetic torque on the terminal side of the main shaft 
[36]. The PMSG relies on permanent magnets to achieve magnetizing, 
thus not requiring any external excitation current [32]. Joining the 
nacelle structure, the direct-drive PMSG, a type of radial flux outer-rotor 
generator, yields a simple and compact layout shown in Fig. 16 [5]. The 
PMSG model, including output torque [36], decouples into fractious 
d and q-axis components through the virtual stator winding, as given in 
Eqs. (24)(25)(26) [32]. 

Vd = RsId − ωeLqIq +Ldİdr (24)  

Vq = RsIq +ωeLdId +Lqİq +ωeψf (25)  

Qe =
3p
kg

( (
Ld − Lq

)
Id − ψf

)
Iq = −

3p
kg

ψf Iq (26)  

where ωe is the synchronous speed varying with the rotor speed. Table 1 
lists the PMSG parameters. Eqs. (24)(25) reflect the state transition of 
PMSG under the controllable stator voltage signals. Eq. (26) explicitly 
calculates the generator torque from the rotor current. From the gen-
erator’s perspective, the speed control is equivalent to the torque control 
[32]. 

Most pitching [37] and yawing [38] systems in wind energy refer to 
servo systems that track input reference. The pitch and yaw controllers 
behave as a model of the dynamic system with amplitude and output 
limitations, which the first-order system can represent [39]. With time 
constants τβ and τγ, Eqs. (27)(28) describe the response of the pitch β 
and yaw γ servos. It notes that three blade pitch servos of the IEA 15-MW 

Fig. 15. The time definition of the forecasting-based MPC.  

Fig. 16. The direct-drive PMSG of the IEA 10-MW.  
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are under collective pitch control and have an identical response [40]. 

β̇ =
1
τβ
(βi − β) (27)  

γ̇ =
1
τγ
(γi − γ) (28)  

where βi and γi are the input reference of the pitch and yaw servos. 
Table 1 lists the servo parameters. One characteristic of pitch [33] and 
yaw [38] is that both have movement constraints due to servo load 
capacity. The pitch servo has double-side position boundaries that 
normally satisfy ∈ (0◦

, 90◦

). The yaw system can navigate at any angle 
around the compass circle. 

To parse system dynamic variation and give explicit transition rep-
resentation, a small signal analysis [41] on Eqs. (23)~(28) derives an 
incremental form of the response of the shaft rotation, PMSG, pitch 
angle, and yaw position, as indicated in Eq. (29). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δω̇d =
1
JT

(ΔQd − ΔQe − DtΔωd)

ΔQd =
∂Qd

∂ωd
Δωd +

∂Qd

∂β
Δβ

ΔQe = −
3p
kg

ψf ΔIq

Δİd = −
Rs

Ld
ΔId +

ωeLq

Ld
ΔIqr +

ΔVd

Ld

Δİq = −
ωeLd

Lq
ΔId −

Rs

Lq
ΔIqr +

ΔVq

Lq

Δβ̇ =
1
τβ
(Δβi − Δβ)

Δγ̇ =
1
τγ
(Δγi − Δγ)

(29) 

Compared with Eq. (23), the equation set Eq. (29) introduces an 
item of linearized shaft response under speed and pitch variation. 
Substituting the aerodynamic input deviation and the PMSG torque 
response into the rotor speed equation yields a linearized rotation 
governing equation Eq. (30). 

Δω̇d =
1
JT

((
∂Qd

∂ωd
− Dt

)

Δωd +
3p
kg

ψf ΔIq +
∂Qd

∂β
Δβ
)

(30)  

where ∂Qd
∂ωd 

and ∂Qd
∂β are estimated torque sensitivities [23] from the 

operation optimiser. 
After Eq. (30) simplifies Eq. (29), a state space Eq. (31) around the 

working point estimates the system state Δx under the influence of the 
control vector Δu. 

Δẋ = AΔx+BΔu (31)  

Δx =
[
Δωd, ΔId, ΔIq, Δβ, Δγ

]T (32)  

Δu =
[
ΔVd, ΔVq, Δβi, Δγi

]T (33)  

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Jt

∂Qd

∂ωd
−

Dt

Jt
0

3pψf

Jtkg

1
Jt

∂Qd

∂β
0

0 −
Rs

Ld

ωeLq

Ld
0 0

0 −
ωeLd

Lq
−

Rs

Lq
0 0

0 0 0 −
1
τβ

0

0 0 0 0 −
1
τγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)  

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
1
Ld

0 0 0

0
1
Lq

0 0

0 0
1
τβ

0

0 0 0
1
τγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35) 

The PMSG currents, pitch angle, and yaw angles are actuator states, 
so integral items [42] are included in the system state to enhance control 
steady-state accuracy. It results in updating the state space to Eqs. (36) 
(37)(38) with the same input vector. 

Δx =

[

Δ0, Δ1, Δ2, Δ3, Δ4,

∫

Δ1,

∫

Δ2,

∫

Δ3,

∫

Δ4

]T

(36)  

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a00 0 a02 a03 0 0 0 0 0
0 a11 a12 0 0 0 0 0 0
0 a21 a22 0 0 0 0 0 0
0 0 0 a33 0 0 0 0 0
0 0 0 0 a44 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(37)  

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
b10 0 0 0
0 b21 0 0
0 0 b32 0
0 0 0 b43
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(38)  

4.3. Model predictive control 

The MPC has various applications in the WECS. For example, Lin 
et al. considered mechanical load and power optimisation in the MPC 
design [43]. Wakui et al. tried to use the MPC to stabilize the power 
output and platform motion of a floating WT system [3]. Yao et al. 
introduced distributed MPCs at a wind farm level to suppress tower fa-
tigue loads [41]. Current MPCs almost adopt standard MPC libraries that 
employ the ADMM solver [41] to solve the MPC optimisation. However, 
recent QP solvers are much faster than the original ADMM since they 
accelerate computing for the sparse matrix. Besides, most MPCs in the 
WECS only deal with the 2-DOF system (speed and pitch), and some 
simplify the generator model as a linear torque model. Firstly, the pro-
posed MPC fully couples necessary devices (PMSG, pitch and yaw ser-
vos) for the 3-DOF control. Secondly, the MPC optimisation is 
formalized to a standard sparse-matrix problem so that a general- 
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purpose QP solver is available to use. 
A native objective of the receding horizontal predictive control is to 

reach desired system states with minimum control input, which yields a 
quadratic optimisation objective of the MPC [43]. Eq. (39) represents 
the optimisation objective of a small signal MPC, which takes N steps 
prediction to measure the deviation about the regulation objective xobj 

and the control cost [3]. 

J = min

(
∑N

k=0
ΔxT

k QΔxk +
∑N− 1

k=0
ΔuT

k RΔuk

)

(39)  

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

Δxk+1 = AdΔxk + BdΔuk
xmin ≤ xref + Δxk ≤ xmax
umin ≤ uref + uk ≤ umax

Δx0 = Δx

(40)  

Q = diag(q0, q1, q2, q3, q4, q5, q6, q7, q8) (41)  

R = diag(r0, r1, r2, r3) (42)  

where xk and uk are the discrete state and input variables at a time step, 
Ad = eAts and Bd =

∫ ts
0 eA(ts − t)dt • B discrete the system state, and x is the 

sampled state. Q and R are semi-definite and positive definite weights 
for scaling state deviation and input cost [43]. The IEA 15-MW adopts a 
horizontal length of 20. 

Eqs. (43)(44) configure the weighting matrics of the IEA 15-MW. 
This weighting assumes a higher priority for the rotor speed. Besides, 
the PMSG has a lower regulation intensity due to the high sensitivity of 
the electromagnetic torque. In contrast, each control input has the same 
priority. 

Q = diag(1000, 0.01, 0.01, 1, 1, 0.001, 0.001, 0.001, 0.001) (43)  

R = diag(1, 1, 1, 1) (44) 

The MPC optimisation is a typical QP problem that can be solved 
using active-set, interior-point or augmented-Lagrangian methods [44]. 
This study applies a native QP solver-based approach to find the MPC 
solution. Let P and q define symmetric and linear costs, Eq. (45) ex-
presses a standard QP problem [45] considering equality constraints and 
bound constraints. 

J = min
(

1
2
x T P x + qT x

)

(45)  

s.t.
{

Ax = b
l ≤ x ≤ u (46) 

Owing to the computational efficiency of the sparse matrix, a state- 
constrained method [46] transforms Eq. (39) into a form of Eq. (45). 
Assuming a predictive horizon has nx state variables and nu input vari-
ables, Eqs. (47)~(53) update the MPC optimisation. It is worth 
mentioning that the state objective of a small signal MPC is zero, which 
accounts for a zero sequence of Eq. (49). 

x = [Δx0,⋯, ΔxN , Δu0,⋯, ΔuN− 1]
T (47)  

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q ⋯ 0nx

⋮ ⋱ ⋮

0nx ⋯ Q

⏞̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅⏞
N+1

⋯ 0nx×nu

⋮ ⋱ ⋮

0nu×nx ⋯
R ⋯ 0nu

⋮ ⋱ ⋮
0nu ⋯ R
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(48)  

q =

⎡

⎣0nx ⋯
⏟̅⏞⏞̅⏟

N+1

, 0nu ⋯
⏟̅⏞⏞̅⏟

N

⎤

⎦

T

(49)  

A =

⎡

⎢
⎢
⎢
⎢
⎣

− Inx 0nx ⋯ 0nx

Ad − Inx ⋱ ⋮
⋮ ⋱ ⋱ 0nx

0nx ⋯ Ad − Inx⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
(N+1)×(N+1)

0nu 0nu ⋯ 0nu

Bd 0 ⋱ ⋮
⋮ ⋱ ⋱ 0nu

0nu ⋯ Bd 0nu⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
(N+1)×N

⎤

⎥
⎥
⎥
⎥
⎦

(50)  

b =

⎡

⎣ − Δx0, 0nx ⋯
⏟̅⏞⏞̅⏟

N

⎤

⎦

T

(51)  

l =

⎡

⎢
⎣xmin − xref ⋯
⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟

N+1

, umin − uref ⋯
⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅⏟

N

⎤

⎥
⎦

T

(52)  

u =

⎡

⎢
⎣xmax − xref ⋯
⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟

N+1

, umax − uref ⋯
⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

N

⎤

⎥
⎦

T

(53)  

where Δx0 is the sampled small-signal state. Although the MPC suggests 
nu control input sequences, only the first control input Δu0 takes effect 
on the next horizon. The ProxyQP selected as the QP solver is an 
augmented Lagrangian method that consists of a preprocessing pro-
cedure, an initialization for primal and dual candidates, and a cold 
restart strategy [45]. 

4.4. Control loop 

Only pitch and yaw are straightforward objectives in the 3-DOF 
system, and rotor rotation needs to be a signal that the PMSG can 
accept. Eqs. (24)(25) indicates that the PMSG adjusts the stator voltage 
according to the output current error to produce a proper electric torque 
for torque equilibrium and stable rotation. Under the given rotor speed 
ωref

d and estimated power capture Pref
d from Algorithm 1, Eqs. (54)(55) 

calculates the current reference (Iref
d , Iref

q ) of PMSG [47]. 

Iref
d = −

Qref
s

3Vg
(54)  

Iref
q = −

Pref
s

3Vg
(55)  

Pref
s ≈ kgPref

d (56)  

Qref
s = Kpf Pref

s (57)  

Vg = p • ψf ω
ref
d (58)  

where Kpf = tan(arccos(pf) ) is the power factor coefficient, pf = 1 and 
Kpf = 0 for the regular operation of the PMSG. The PMSG motor model 
accounts for the negative sign of the output current. Eq. (58) indicates 
the phase voltage has a linear proportion relationship with the rotor 
speed. Besides, neglecting time-derivative items in Eqs. (24)(25) leads 
to the voltage reference (Vref

d , Vref
q ). 

When a PMSG runs in actual wind conditions, there will be a power 
gap between the model power and the actual output due to model ac-
curacy and wind fluctuation. Therefore, the system probably drifts away 
from the given rotor speed. A speed compensator fs (Eqs. (60)) corrects 
the q-axis current Isig

q according to the speed error Δωd. 

Isig
q = (1+ fs) • Iref

q (59) 
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fs(Δωd) = Lsf •

(
2

1 + exp
(
− Ksf • Δωd

) − 1

)

(60)  

Δωd =
ωd − ωref

d

ωref
d

(61)  

where fs has a S-shape symmetrical at the origin. Ksf affects the slope at 

the origin and Lsf limits the compensation range. Fig. 17 draws fs with 
Ksf = 20 and Lsf = 0.5. The compensator reduces the PMSG generation 
to raise the rotor speed below the desired speed and increases the 
generator torque to slow down for overspeeding. 

Since wind variation and operation adjustment result in power 
fluctuation, two Savizky-Golay filters [48] cascade the MPC voltage 
output as a buffer to reduce oscillation. The Savizky-Golay filter is a kind 
of least-squares polynomial smoothing (Eq. (62)) that minimizes the 

Fig. 17. The S-curve for speed error compensation.  

Fig. 18. The moving buffer of the Savizky-Golay filter.  

Fig. 19. The feedback loop of the small signal MPC controlling the PMSG, pitch servo, and yaw servo.  
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Fig. 20. An example of wind series forecasting on one-month data.  

T. Li et al.                                                                                                                                                                                                                                        



Energy Conversion and Management 302 (2024) 118155

17

mean-squared approximation error E N for the group of 2M+1 input 
samples x[n] centred on n = 0 [48]. 

E N =
∑M

n=− M
(p(n) − x[n] )2

=
∑M

n=− M

(
∑N

k=0
αknk − x[n]

)2

(62)  

where p(n) =
∑N

k=0αknk is a polynomial process to be decribed. The 
Savizky-Golay window and order are 5 and 2 for the 15-MW PMSG. 

Fig. 18 explains the movement of applying the Savizky-Golay filter 
on a voltage sequence. The current output value is a smoothed value 
before 9 buffer samples. This moving buffer lags the control voltage 
acting on the PMSG. More buffer samples improve smoothness, but a 
long buffer ruins stability due to control lag. The trade-off between 
smoothing and control response accounts for a buffer size 10. 

Therefore, an entire MPC control loop includes the system reference 
forecasted by the wind model, the dynamic system, the QP optimisation, 
the PMSG voltage-current control, and the voltage buffer, as shown in 
Fig. 19. 

5. Case study 

The case study will first examine and compare the forecasting ac-
curacy of four wind models (DNN, CNN, LSTM, and CNN-LSTM). After 
model verification, a simulation will test the 3-DOF MPC of the IEA 15- 
MW with and without wind forecasting. 

5.1. Wind forecasting 

Wind forecasting is a core component in the proposed control system 
of the IEA 15-MW that provides wind velocity to regulate output power 
and wind direction to navigate yaw angle. Fig. 20 displays the compass 
wind forecasted by four time-series models. Given a 30-s prediction 
length, there will be 86,400 predictions for a 30-day wind series. Ac-
cording to the figures, predicted wind speeds align with actual velocities 
and achieve high accuracy. Predicted yaw angles often match wind di-
rections and keep track of rapid fluctuations. 

Table 7 trains each model 30 times and summarises the evaluation 
indexes in section 3.4. Four models achieve an average R2 of over 0.996 
in wind speed and direction, indicating the wind modelling frame of the 
compass-vector transformation and vector series model is feasible and 

reliable. However, there are some noticeable model differences. Firstly, 
the MLPN has the worst direction prediction, considering a max MAE of 
1.95◦ and a max RMSE of 6.97◦. Therefore, a conventional stacked-layer 
network is weaker than a network containing feature extraction or 
recurrent structure. The CNN enhances the direction accuracy compared 
with the MLPN, but its stability is slightly worse than the LSTM and 
CNN-LSTM. The reason is that the CNN primarily relies on the dense 
layer to learn features extracted by the convolution. Therefore, a model 
with a recurrent base is more suitable for wind vector series. 

Considering most metric distributions, the LSTM and CNN-LSTM 
have similar performance and surpass the MLPN and CNN. Neverthe-
less, the LSTM has tiny advantages except for the RMSE of direction, 
which manifests that the encoder-decoder design has no promotion. The 
CNN-LSTM theoretically can increase the learning efficiency of complex 
and diverse features, but the wind vector has only two projection fea-
tures. Therefore, the encoder-decoder cannot further improve the LSTM. 
In conclusion, the LSTM has accurate predictions, stable training results, 
and economic parameters. The following control simulation will use the 
LSTM as the wind forecasting model. 

5.2. Synthesis control 

Since the WT operation depends on the wind reference in each 
forecasting period, this section will investigate the MPC of WECS with or 
without forecasting for high and medium wind intensities. There will be 
four cases:  

i. 100% power production at a wind speed range of 14.5~16 m/s,  
ii. 50% power production with the above series,  

iii. 50% power production at a range of 9.4~9.8 m/s,  
iv. 25% power production with the above series. 

Since case i satisfied the rated output condition of the conventional 
MPPT, this case also includes a control design derived from the NREL 
baseline [49]. The baseline control integrates a direct-driven PMSG 
speed-torque control [33], a perturbation observation-based MPPT [32], 
a collective pitch control [50], and a pitch-gain scheduling [51]. The 
non-forecasted and baseline simulations average the input wind series as 
the most frequent observation [19]. Case i compares and discusses the 
performance and reliability of the proposed MPC, and cases (ii, iii, iv) 
examine the effects of wind forecasting and power stability. 

Table 7 
The statistical result of model predictions over 30 tests.     

Mean Std. Min. 25 % 50 % 75 % Max. 

MLPN vi(m/s) R2  0.9969  0.0006  0.9952  0.9966  0.9970  0.9974  0.9978 
MAE  0.0696  0.0359  0.0278  0.0417  0.0610  0.0881  0.1778 
RMSE  0.1961  0.0188  0.1644  0.1816  0.1945  0.2051  0.2453 

θv(◦) R2  0.9969  0.0009  0.9938  0.9966  0.9970  0.9976  0.9979 
MAE  0.6272  0.3784  0.2467  0.3976  0.5345  0.7547  1.9528 
RMSE  4.8753  0.6284  4.0581  4.3771  4.8631  5.1295  6.9666 

CNN vi(m/s) R2  0.9977  0.0004  0.9968  0.9976  0.9977  0.9980  0.9982 
MAE  0.0494  0.0196  0.0286  0.0336  0.0434  0.0579  0.0999 
RMSE  0.1688  0.0133  0.1500  0.1597  0.1675  0.1725  0.1994 

θv(◦) R2  0.9974  0.0004  0.9961  0.9973  0.9975  0.9977  0.9980 
MAE  0.4468  0.1859  0.2593  0.3214  0.4188  0.4891  1.1263 
RMSE  4.4847  0.3353  3.9698  4.2824  4.4312  4.6185  5.5511 

LSTM vi(m/s) R2  0.9979  0.0002  0.9975  0.9978  0.9979  0.9980  0.9984 
MAE  0.0394  0.0096  0.0277  0.0329  0.0371  0.0443  0.0635 
RMSE  0.1624  0.0074  0.1434  0.1589  0.1628  0.1675  0.1755 

θv(◦) R2  0.9973  0.0003  0.9966  0.9971  0.9972  0.9974  0.9979 
MAE  0.3577  0.0767  0.2567  0.3084  0.3410  0.3991  0.5361 
RMSE  4.6320  0.2287  4.0804  4.4830  4.6702  4.7458  5.1869 

CNN-LSTM vi(m/s) R2  0.9977  0.0002  0.9971  0.9976  0.9977  0.9978  0.9982 
MAE  0.0451  0.0133  0.0270  0.0352  0.0433  0.0499  0.0762 
RMSE  0.1689  0.0086  0.1518  0.1653  0.1684  0.1714  0.1890 

θv(◦) R2  0.9974  0.0003  0.9970  0.9972  0.9974  0.9976  0.9980 
MAE  0.4187  0.0830  0.2929  0.3558  0.4259  0.4792  0.5757 
RMSE  4.4910  0.2498  3.9378  4.3335  4.5116  4.6770  4.8721  
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Fig. 21. 100% power production for case i.  
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5.2.1. High-velocity scenario 
Wind speed over 10.2 m/s can ensure sufficient wind capture for the 

rated power production, to which the high-velocity scenario of 14.5~16 
m/s corresponds. Fig. 21 runs the full-load operation of the IEA 15-MW 
under three control configurations. The baseline and non-forecasted 
cases share the same wind data processing, but their rotation and pro-
duction differ significantly. Firstly, the baseline regards the rotor rota-
tion as the dominant control objective, which accounts for fewer 
rotation fluctuations (less than 0.0001 p.u.). On the contrary, the MPC 
balances the multiple objectives of Eq. (36), which allows moderate 
speed variation for better power quality. Therefore, the MPC power is 
intuitively smoother than the baseline, especially when updating wind 
references. 

The forecasted control has a more stable rotor speed and power 
output than the non-forecasted. The rotor speed of the forecasted control 
distributes from 0.996 to 1.003 p.u. However, the non-forecasted fluc-
tuates from 0.993 p.u. to 1.003 p.u., and its fluctuations look more 
aggressive. As one of the most critical stability indexes, the rotor speed 
reflects the capability of suppressing incoming wind uncertainties of a 
control design. Since the wind forecasting model provides a reliable 
wind estimation, the control unit updates an accurate MPC objective. 
Thus, control results are close to expectations. When examining velocity 
and direction predictions, the forecasting model behaves like sampling 
future winds with the zero-hold method. In contrast, the non-forecasted 
method cannot reach such accuracy. For example, the region of 
570~780-s has an apparent gap between wind reference and actual 

Fig. 22. 50% power production for case ii.  
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wind. 
When lowering the power target to 50%, both rotor speeds in Fig. 22 

fluctuate less because a lower target naturally reduces the aerodynamic 
load. Thus, the MPC can more easily handle fluctuation. Like the 100% 
case, the forecasted control performs better in stabilizing the rotor 
speed. In terms of output, the lowest output of the non-forecasted almost 
touches 0.4 p.u., farther than the forecasted. 

5.2.2. Medium-velocity scenario 
The control performance at medium wind speeds is more practical 

due to the concentration shown in Fig. 6 and Table 2. Regarding wind 
references in Fig. 23, forecasted speeds and directions still closely track 
upcoming winds. However, non-forecasted winds have obvious 

mismatches, e.g., wind speed before 210 s and wind direction in 
420~720 s. Due to the variable speed operation in Region ii, there are 
conspicuous power spikes before 210 s and after 750 s. It is hard for a WT 
to eliminate these spikes because rotation response and power 
smoothness are contradictory. A fast rotor regulation requires the PMSG 
to change torque immediately, resulting in power spikes. It is helpful to 
place a circuit filter or energy storage [52] to absorb these spikes. 

Fig. 24 decreases the output target to 25% for the same wind series in 
Fig. 23. Although the non-forecasted wind reference drifts away from 
measurement, the rotor speed and output power do not exhibit note-
worthy differences compared to the high-velocity cases. The internal 
linearization of MPC handles modest aerodynamic variation well, so 
wind forecasting has less effect in the medium-velocity cases. 

Fig. 23. 50% power production for case iii.  
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Table 8 summarises statistical results about rotor speed and output 
power in Fig. 21~Fig. 24. Firstly, the baseline ensures a stable rotation 
with the minimum speed deviation, which gives rise to more output 
fluctuation for fast speed response. Compared with the baseline, the 
MPC can improve an average output of 0.007 p.u., reduce 7% of power 
variation, and alleviate 12% of output peak-to-peak, contributing to a 
higher power quality. With wind forecasting, the power production has 
a mean promotion of 0.01 p.u., and the rotation and output fluctuation 
remarkably reduces at least 44% in cases i and ii. However, cases iii 
and iv only diminish about 10% of rotation fluctuation but improve 
nothing for power quality. Wind forecasting is not helpful to low-load 
scenarios because the MPC robustness is enough to compensate for 
wind error. In conclusion, the wind forecasting-based MPC has 

advantages in rotation stability and effectively improves power quality 
at heavy loads. 

6. Conclusion 

This study proposes a wind forecasting-based MPC that uses wind 
prediction to optimise system configuration and integrates the generator 
and servo control for constant output. The proposed wind forecasting 
achieves direction series prediction on the foundation of the conven-
tional wind speed model. Meanwhile, the forecasting section compre-
hensively investigates feature analysis, compass-vector transformation, 
series windowing, learning-shaping structure, and four deep-learning 
networks. Besides, wind forecasting integrates a novel operation 

Fig. 24. 25% power production for case iv.  
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optimisation to interpret wind series prediction to the system working 
point. The model evaluation indicates that the convolutional or recur-
rent structure surpasses the simple layer stack, and the recurrent layer is 
more efficient, which accounts for a model ranking (LSTM≥CNN- 
LSTM>CNN>DNN). The average accuracy of the LSTM reaches a r- 
square of at least 0.9973. This trustworthy performance can help the 
MPC perceive wind stochastic variation in advance. 

As the key of WECS, the MPC, enhanced by wind forecasting, co-
ordinates the PMSG, pitch servo, and yaw servo for a 3-DOF regulation 
of speed, pitch, and yaw. Proven by the baseline comparison, the MPC 
with the state-of-the-art QP solver and sparse-matrix QP construction 
has a persuasive control performance of multiple objectives. Also, four 
wind and output scenarios verify that wind forecasting strengthens 
rotation stability and power smoothness. In particular, wind forecasting 
can lower about 44% of rotor speed and output power oscillation at high 
wind speed. Integrating wind series forecasting and 3-DOF turbine 
control reinforces wind energy controllability and promotes wind power 
stability. 
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