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A B S T R A C T

The pervasive realization of virtual replication of physical entities termed Digital Twin (DT)
has been utilized in this paper to optimize the wireless communication of the Narrowband
Internet of Things (NB-IoT) in an industrial scenario. This optimization is exclusively achieved
through DT approach. NB-IoT is a Low-Powered Wide Area Network (LPWAN) standardized
by 3GPP and leverages Long Term Evolution (LTE) technology. The Amplify-and-Forward (AF)
optimization technique is used to improve the performance of some notably poor-performing
terminals in the scenario. Bit-Error-Rate (BER) tests show the terminals’ overall performance
before and after optimization. An improvement of 17% is achieved in BER. The signal quality
of the channels is analyzed as well as the Cumulative Distribution Function (CDF) is used to
showcase the effective throughput performance of the NB-IoT terminals.

. Introduction

Recent convergences of several computational techniques and technologies have led to advancements in the application of DT in
umerous disciplines [1]. Subsequently, wireless communication networks have experienced rapid growth, and with the advent of 5G
nd the Internet of Things (IoT), wireless communication has become the driving force for Industry 4.0, smart cities, agricultural
ndustries, and public infrastructure monitoring [2]. While continuous efforts are being made to resolve the challenges faced by
ireless communication, our approach to optimize wireless communication using DT has emerged as a promising area of research

o resolve some of the challenges associated with wireless communication in complex scenarios.
A DT refers to a virtual representation of physical systems, processes, or devices that allows for real-time monitoring, analysis,

nd even control of these entities [3]. From the perspective of wireless communications, DT can provide a comprehensive and
ccurate model of a communication network [4], including its components – devices that constitute the network, topology – virtual
rrangement of these devices, and behavior — how the system behaves to predefined settings and actions. This practice allows
etwork engineers to simulate and analyze the network’s performance and identify potential challenges before they even occur in
real or physical scenario.
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Fig. 1. Digital Twin architectural steps for the implementation of Wireless NB-IoT for industrial use.

Optimization of wireless communication involves designing wireless networks that transmit data efficiently and effectively
hile meeting a variety of performance metrics, including throughput, bit-error rate, reliability, and energy efficiency. Through

he simulation of wireless networks and the analysis of their performance under a variety of scenarios, DT technology can play a
ritical role in optimizing wireless communication. Wireless communication optimization can therefore benefit from the use of DT,
s it reduces the need for extensive physical testing, and facilitates the evaluation of multiple scenarios, resulting in a more rapid
ptimization process. Our scenario uses a pre-DT, which involves a virtual replication of an intended physical entity as described
n [5]. To evaluate the performance of the communication system under various conditions, the DT is connected to a simulated
ireless network. As part of the DT wireless communication optimization process, amplify-and-forward optimization algorithms are
sed in order to determine the optimal configuration of the wireless network that meets specific performance requirements. A wide
ange of applications for wireless communication optimization can also be found in Industry 4.0 [6] that rely on NB-IoT connectivity,
hich can be used to design wireless networks capable of enabling reliable and efficient communication between machines, sensors,
nd other devices.

This paper focuses on optimizing the wireless communication of NB-IoT through the utilization of DT technology. A DT industrial
nvironment was established, employing DT architectural steps illustrated in Fig. 1. The implementation process was facilitated
hrough the proficient utilization of modeling and simulation tools, namely CATIA, SketchUp, Wireless Insite, and MATLAB. The
udicious selection of these tools was informed by their alignment with the predefined criteria articulated in Section 4, specifically
bout the evolution of the system and DT tools requirements.

The chosen tools exhibit commendable features such as re-calibration and re-configuration capabilities, which are pivotal for
ccommodating the dynamic parameters in the process of the DT creation - (Evolution of the system). Noteworthy among their
ttributes is a demonstrated track record of delivering optimal data and outcomes over an extended period. These tools, individually
ailored to address distinct aspects of the research, collectively contribute to the comprehensive methodology.

CATIA was instrumental in modeling certain industrial equipment, providing a detailed representation of their structural
ntricacies. SketchUp (free 3D warehouse), on the other hand, was adept at capturing the spatial dimensions and architectural
uances of the industrial structures under investigation. Wireless Insite, a specialized tool, took center stage in modeling the NB-IoT
ireless communication network, ensuring a nuanced exploration of its intricate dynamics. Finally, MATLAB played a pivotal role

n data aggregation and visualization, lending its analytical prowess to distill meaningful insights from the amassed information.
In synthesizing the functionalities of these tools, the implementation process attains a nuanced and multifaceted approach,

ortified by the specialized capabilities each tool brings to the fore. The DT environment facilitated the observation and monitoring
f the transmission and signal propagation patterns of 25 NB-IoT terminals. The performance of these terminals was assessed in terms
f key wireless communication parameters, including distance, bit-error rate, throughput, signal-to-interference plus noise ratio, and
umulative distribution function. The simulation process illustrated the wireless behavior of NB-IoT terminals communicating with
he NB-IoT tower as depicted in Figs. 2 and 3. Identified poor-performing terminals underwent parameter adjustments, coupled
ith the introduction of the Amplify-and-Forward (AF) optimization technique. The AF technique was employed within the DT
nvironment to enhance the performance of under-performing NB-IoT terminals, contributing to the general optimization of the NB-
oT wireless communication system. Section 6 presents the detailed results and conclusions drawn from the optimization efforts. The
dentification and resolution of poor-performing terminals, along with the application of the AF optimization technique, showcase
2

mprovements in the overall performance of the NB-IoT wireless communication system.
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Fig. 2. An Aerial Perspective of the Layout for the Industrial Complex Mapping Out its Multifaceted Sections or Compartments.

Fig. 3. An Ariel View of the Industrial Complex Showcasing Some of the Positions of the NB-IoT Terminals and Transceiver Tower as well as the Configuration
Parameters — the Communication Devices.

The remaining parts of this paper are structured as follows: Section 2 highlighted some of the research works carried out in the
field of DT and wireless communication. Section 3 presents the role DT plays in modern Industry 4.0. In Section 4, we delve into
the requirements for choosing a suitable DT concerning the optimization of wireless NB-IoT within an industrial context as well as
its reliability upon its implementation. Section 5 presents the implementation of the system model as it relates to DT for NB-IoT
application. Results obtained from this scenario are presented and discussed in Section 6. In Sections 7 and 8, the paper discusses
the challenges it encounters and provides its conclusion, respectively.

2. Related works

Several studies have been carried out on DT. Among them is the investigation and discussion carried out on the unique features
of DTs, such as their run-time environment, semantic orientation, and internal structure, resulting in a reference architecture model
3
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by [7]. The authors of this study were able to use DT to estimate the effects of the product, procedure, and service outcomes
by utilizing virtual models. This is one of the major economic elements of modern industrial enterprises. The authors focused on
testing some features of DT while this paper focuses on communication networks using DT. Among other types of DTs that have
been discussed by [8] is the simulated DT which uses advanced simulation tools and Machine Learning (ML) technologies to predict
the dynamics of a physical system. The authors here used ML to observe the physical structure while this paper looked at network
optimization using a similar DT approach. Moreover, authors in [9] utilized an open-source IoT and DT architecture to explore the
current state of open-source platforms that can be combined to deliver DT capabilities, including actual data gathering, computer-
generated description, analytics, and visualization. Similarly, an architecture and Q-learning technique was developed by [10] to
improve the status of IoT in a system. A novel contribution that can be applied to DT.

On the performance of DT in wireless edge networks for industrial IoT environments, authors in [11] attempted to solve the
atency problem through Ultra-Reliable and Low Latency Communication (URLLC) Link. The solution consisted of a numerical
ethod for reducing latency. To achieve this, transit power, user association with IoT devices, offloading portions, and the processing

ate of users and edge servers were optimized. The authors simulated and compared their proposed iterative algorithm with other
enchmark schemes to conclude that their proposed algorithm performed better in latency minimization. In a similar research,
uthors in [12] optimized wireless sensor network access control and load balancing in an industrial DT scenario. Employing DT
echnology, the research focused on tree-structured processing for chain formations of generated outliers. This process optimized data
ransmission paths, main chain heads, and non-chain operations within the industry, utilizing DT calculation formulas to determine
he remaining cluster heads in industrial operations. Furthermore, to enable new functionalities in 6G, DT was integrated at the edge
etwork through a proposed wireless DT edge network model. As described in the paper, [13], the authors used Deep Reinforcement
earning (DRL) to resolve the challenge of DT placement and Transfer Learning to address the issue of DT migration. The authors
lso showed that the proposed solution resulted in a reduction of system cost and an improvement in merger rates for flexible
etwork systems, based on the numerical results obtained. Finally, the authors in [14] used a Machine Learning-based Propagation
oss (MLPL) module to estimate the propagation loss in a wireless network. Essentially, this loss is the sum of two entities, namely,
he deterministic path loss and the stochastic fast-fading loss. Using an experimental testbed, the authors tested their work with real
etwork traces and compared the results with those of ns-3’s existing propagation loss models. According to the authors, the results
btained can accurately predict the propagation loss of DT wireless networks in real network environments, thereby enabling the
reation of DT wireless networks using NS-3.

Upon reviewing the cited research, it becomes evident that the body of literature can be discerned along two distinct dimensions.
irst, there exists a strand of research focused on the application of DT exclusively for the examination of industrial physical
ntities, devoid of considerations for a homogeneous communication network. Second, a separate strand concentrates on the
ptimization of communication networks, divorcing itself from the integration of DT. In light of these findings, the present study
eeks to bridge these divergent paths by amalgamating the utilization of DT for the purpose of optimizing a homogeneous wireless
ommunication network. This amalgamation is poised to contribute novel insights and advancements at the intersection of DT and
ireless communication optimization, thereby enriching the existing academic discourse on this subject matter.

Moreover, in recent related studies, the increasing interest in employing DT technology in wireless networks, particularly in
ndustrial IoT has been evident. Nevertheless, it is noteworthy that the utilization of DT in the context of NB-IoT within industrial
ettings remains a relatively unexplored area. This research, therefore, contributes and represents a novelty in this field by presenting
pioneering approach to applying DT in NB-IoT within an industrial environment.

. The role of DT in optimizing wireless NB-IoT in industry

The goal of Industry 4.0 cannot be overemphasized as it is a rapidly evolving digital transformation of manufacturing that
elies on the use of cyber–physical systems, IoT, and big data analytics. This auto-transformation is becoming a reality with the
ransformation of its physical entities into virtual ones — DT. In Industry 4.0, this realization has highlighted the importance of DT.
he development of DTs is meant to be a tested technology designed to emulate physical systems elements, functions, operations,
nd dynamics digitally. This is to allow for more control over testing, analysis, prediction, and hazard prevention. More precisely,
n order to optimize wireless NB-IoT, digital twins can be used in a variety of ways, including:

• Monitoring and Diagnostics: Wireless NB-IoT devices and networks can be monitored and diagnostically assessed using
DTs. In order to identify and troubleshoot problems, improve efficiency, and prevent errors, the information obtained from
DTs can be utilized for these purposes. In the context of wireless NB-IoT networks, DT serves as a virtual representation of
the intended physical industrial settings. Real-life data, encompassing parameters such as signal received power, throughput,
and propagation paths are seamlessly integrated into the DT. This integration facilitates the continuous monitoring of this
critical information. Notably, the implementation of NB-IoT DT in this paper adheres to the Third Generation Partnership
Project (3GPP) release 14 specifications [15]. The comparison of monitored parameters against these specifications enables
the diagnosis, detection of faults, and identification of anomalies through root cause analysis within the DT system.

• Parameter Adjustments: DTs can be used to enhance the performance of wireless NB-IoT networks. The power consumption
of the NB-IoT network devices, routing, and propagation patterns are some of the parameters that can be observed, analyzed,
and adjusted in order to achieve optimization.

• Simulation: Wireless NB-IoT networks can be simulated using DTs under different industrial conditions. These are conditions
that are peculiar to industrial settings as generated through a number of iterations or tests. By using this data, new designs can
4

be tested, evaluation of new technologies can be achieved, and enhancement of the network’s safety and security is possible.
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In this paper, simulation, and parameter adjustments are focal to its optimization approach. However, the use of DTs in optimizing
wireless NB-IoT in Industry 4.0 is still in its early stages, but it has the potential to significantly improve the performance, efficiency,
and reliability of wireless networks. To this end, it has become imperative to choose the right type of DT and its reliability towards
industrial application has become necessary to underscore its role in optimizing wireless NB-IoT in Industry 4.0.

4. Essential components for constructing a DT for wireless NB-IoT optimization

It was of utmost significance to strategically plan and meticulously choose a suitable DT to optimize wireless NB-IoT within the
ontext of achieving the established goals of this study. One of the steps in this process was to review the documentation of the tools
hat are currently available and determine whether they are suitable for the purpose of this study. To achieve this, the under-listed
ive (5) conditions were used as guides for choosing a suitable DT tools; [16,17]:

• Scope and purpose of the project: In order to implement DT correctly, it was imperative to understand why it is necessary and
what the expected results are. In this way, it is easier to determine what impact the results will have on the state of things.
Therefore, in this research, the scope and purpose for selecting this DT was to comprehensively investigate the behavioral
nuances of wireless propagation and analyze the communication patterns within an industrial context. This endeavor is
imperative due to the dearth of extensive research in this domain. The anticipated results aimed to encompass the observation,
identification, and analysis of underperforming NB-IoT terminals, with the ultimate goal of optimizing their performance.

• Evolution of system: Choosing a DT that evolves with the life cycle of the intended physical asset is a required feature
for consideration. This is because as the physical asset evolves over time, the DT technical calibrations and environmental
parameters should be able to support these changes. Regarding this research, the selected DT exhibits the ability for re-
calibration in response to adjustments in scenario parameters. This capability was demonstrated through the re-calibration
and reconfiguration of the tools and parameters to accommodate the changes that occurred during the restructuring and
remodeling phase of the DT, including the communication system analysis.

• Assistance for virtual threads: These are communication structures that link the various aspects of a system from conception
to decommissioning. It is important for DT to support virtual threads because it increases DT accuracy and simplifies its
implementation. The chosen DT in this research is anticipated to uphold the complete life cycle of the envisaged physical
entity, having already provided support during its conceptualization phase and, ideally, throughout its subsequent real-life
realization stage.

• Open and federated data structure: With an open-format data structure, DT can easily be updated, scalable, and extended as
new prototypes and datasets become available. In the course of this study, when confronted with a new dataset, the selected
DT exhibits scalability in effecting, simulating, and managing these data to yield revised or updated results. Furthermore,
aligned with the parameters of this investigation, a centralized and federated data structure was employed in lieu of an open
and federated data arrangement. This choice stems from the fact that a centralized format facilitates seamless data updates
and scalability. In contrast to an open data structure, there exists no imperative for data dissemination across multiple DTs.
This is because multiple DTs do not exist in this case.

• DT tools requirements: In order to build a DT that can easily be interacted with and provides accurate data in real-time,
understanding the types of software and hardware required for setting it up is essential. The selection of DT tools for this
research was conducted following the prerequisites of this study, considering that these instruments possess well-documented
histories of delivering precise data and outcomes.

.1. Reliability of wireless NB-IoT industrial DT

The application of DT in several aspects of physical systems, from smart factories to health and transportation industries, has
roven that DT is a reliable technology in some use cases [18]. The extent to which DT is reliable depends on the quality of the
ata used to create it and the accuracy of the models used to simulate the system. If the data is incomplete or the models are
naccurate, the predictions and simulations provided by the DT may not be reliable. Hence, this study employed comprehensive
atasets in conjunction with a highly precise model to achieve a commendable level of accuracy. However, DT in the context of
ireless communication of NB-IoT in an industrial setting needs to demonstrate its ability to incorporate many of the reliability

hallenges posed by the harsh conditions of industrial settings to wireless communication. The ability of DT to account for the
hysical susceptibility of the wireless network to interrupted operations would make the results obtained from DT more reliable.
herefore, depending on the type of industrial environment in which wireless communication is deployed, this means that DT should
e able to account for the resultant effect these harsh conditions will have on the network. Conditions like noise or field interference,
agnetic fields and emissions, extreme temperatures, flammable gases, humidity and moisture, shocks and vibrations, and power

nterference. In addition, there is also communication interference such as channel interference and overload [19], airborne particles,
nd contaminants. The capability of a DT to capture these realities or dynamics as input data would make the output or results more
eliable and acceptable. Therefore, given the proficiency of the employed tools within this study, the primary emphasis resided on
ssessing the impact of noise level on wireless communication, along with an evaluation of the extent to which the physical structure
ay impede wireless propagation.
5
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Fig. 4. A three-dimensional view of the pre-DT industrial scenario. A comprehensive view of the twin can be gained from these perspectives. All of the sections
of the structure can be seen in this representation, including the NB-IoT terminals, base stations, various types of machinery, robotics, and control teams.

4.2. A description of types of digital twins in industrial indoor NB-IoT

The implementation of DT in the space of wireless communications technology has followed one of the various definitions of
applications of DT. This includes virtual replication of systems, services, and processes as it implies the implementation of DT to
wireless processes, factories, products, and business services. However, the authors in [5] have illuminated certain categories of
DT, providing a comprehensive description of DTs in their diverse forms, which also encompasses futuristic variations as presented
below.

• Pre-DT: Pre-DT is seen as a form of DT that is a classic virtual paradigm and aimed at developing an initial working project
before the physical system is created. This is primarily focused on eliminating or reducing the technical hurdles or threats as
well as detecting challenges prior to the design or execution of the main physical entity. An important and specific scenario
can be demonstrated using this classic type of DT. Furthermore, it contributes to minimizing technical risks during the initial
phases of process design and implementation. Consequently, this study adopted this definition for its implementation.

• Digital Twin: This consists of a virtual system model that incorporates performance, health, and maintenance data from a
physical counterpart. As a result of the knowledge obtained from digital twins through process iterations, the physical twin
can be enhanced in real-time based on the characteristics learned from digital twins. As part of this phase, the digital twin
is subjected to a variety of tests in order to determine how the physical twin will respond to various questions. Corrective
actions are taken on the physical twin if any deficiencies are identified during the digital twin inspection.

• Adaptive DT: This type of DT takes into account the inclination of the operation as well as the priority of the operations.
Therefore, this DT takes into account human operational behavior as input to its analytics process. Moreover, the extent to
which this DT can be adaptive depends simply on the display or user interface that both the physical and digital twins use.

• Smart DT: In addition to its capability, this DT also acquires all adaptive DT features. A machine learning technique is used to
generate an unsupervised model that recognizes entities and their relationships in an operational setting. Also, it intelligently
predicts and optimizes the degree of accuracy of the conditions and situations in which it observes the environment.

Moreover, other organizations have identified four types of DT based on their functions, benefits, and characteristics. In contrast,
others have classified it into three groups according to the phase of the product’s lifecycle that is being twinned. This is known as
the 3Ps. A brief description of these classifications can be found in [20,21].

5. Implementation of digital twin for NB-IoT application

This section describes the methodological use of DT for the implementation in the wireless section or the transceiver unit of NB-
IoT technology. This description follows suit with the regulations and specifications that guide this technology — the 3GPP [15].
The system model is explained to bring forth the methodology or steps involved and the metrics required for the implementation
of this DT as it relates to industrial application in an indoor setting. Finally, the implementation of AF as the optimization scheme.
6
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Table 1
Parameters and system assumption values.

Parameters Values

Bandwidth 200 kHz
Frequency 900 MHz
Transmission rate 6
Reflection rate 10
Diffraction rate 3
Noise Level >3 dB
UE transmission power 23 dBm
Modulation type BPSK
FDD deployment mode Standalone

5.1. Methodology and system model adoption

In this section, the description of a pre-DT [22] scenario for the application of wireless NB-IoT in an industrial setting is provided.
pre-DT is a virtual formulation of a physical asset before it is physically built. This practice allows the iteration of events and

arameters to understudy their effect on the assets so that corrections can be made before the physical asset is finally produced. To
chieve this, the steps shown in Fig. 1 were adopted. The system was conceived based on the engineering standards and reference
cenario as highlighted in [1]. The modeling of the system, as shown in Figs. 2, 3, and 4, consists of an industrial setting that
s characterized by various equipment for production, safety, storage, and transportation. Various types of modeling tools were
mployed to model this industrial scenario as mentioned in Section 1. This modeled scenario has different compartments or sections
s specified at the conceptualization stage in Fig. 1. These compartments include production space, warehouse, waste storage, staff
ffice, and control rooms. These sections are clearly shown in Fig. 2. The NB-IoT terminals are attached to the equipment in these
arious compartments to sense, gather, process, transmit, and receive information wirelessly to a central transceiver point using the
GPP standards. This central transceiver is the NB-IoT tower as shown in Fig. 3. A total number of 25 NB-IoT terminals were placed
n this scenario for this purpose.

NB-IoT is a cellular technology that is Low Power Wide Area Networks (LPWAN) based and utilizes the infrastructure of Long-
erm Evolution (LTE). The modules developed for NB-IoT are designed to integrate seamlessly with LTE infrastructure, which is
ne of the imperative technologies within the IoT. Notably, NB-IoT terminals are equipped with Subscriber Identity Module (SIM)
ards issued by a designated telecommunication operator offering specialized NB-IoT services. This strategic integration ensures the
fficient utilization of LTE infrastructure, providing a robust foundation for the secure and reliable communication capabilities of
B-IoT modules within the broader landscape of wireless connectivity. These terminals transmit the sensed data to the transceiver
r mast as shown in Fig. 3, it is this part of the transmission that has been modeled and simulated in a DT environment using CATIA,
ketchUp, and Wireless Insite. The locations of the NB-IoT terminals along with the approximate distances from the terminals to
he transceiver are also displayed. This diagram showcases a visual estimation of these distances. This is a direct communication
etween the terminals and the transceiver. However, in this direct communication, some terminals do not communicate effectively
ith the transceiver. These terminals are identified in this study and to better their communication, an optimization scheme was
mployed known as the Amplify-and-Forward (AF) cooperative scheme. As described in Fig. 1, the system uses the parameters in
able 1 for its simulation. The results obtained are fed back into the simulating software for re-simulation through a comparator.
his is done for a number of iterations to obtain optimal results. The results obtained via direct communication identified some
B-IoT that performed poorly in communicating with the transceiver point.

In general, DTs are categorized based on application purposes. This categorization as mentioned in [23], includes supervisory,
nteractive, and predictive DTs. Relating these categorizations as shown in Fig. 1 with the system model adopted in this paper and
he type of data generated and collected from the various compartments as shown in Fig. 2, both supervisory and interactive DT is
sed in this scenario. At the supervisory stage, the DT displays real-time information for human operators. Information provided in
his case is useful if people are able to act upon it. As an illustration, by referencing Fig. 2 and directing our attention to the facets
ertaining to production and storage, the industrial sector can opt to augment its manufacturing output in response to indications
rom NB-IoT terminals stationed within the storage or warehousing section, which signal a reduction in the inventory levels. The
nteractive stage involves the DT automating at least one aspect of a process to improve performance through internal monitoring
nd complex analysis for better performance. One illustrative instance pertains to NB-IoT terminals tasked with monitoring fluid flow
ithin pipelines. These terminals possess the capability to either initiate or cease the operation of a flow valve, thereby facilitating

he regulation of fluid flow. This technology application finds relevance in the context of the waste compartment, as depicted in
ig. 2.

Moreover, a simplified approach to the implementation of the system model is represented in Fig. 5. The services requested are
he focal point of the DT testing stage after professional inputs are computed. The results obtained are monitored and compared
ith those expected. A comparator or a feedback loop is used to keep the output in focus. It is at this stage that several technical

isks and design problems are noted and corrected before the physical asset is replicated. When the process reaches a satisfactory
tage, data or parameters are extracted for future implementation.

However, it is imperative to acknowledge the existence of a multitude of prerequisites essential for the judicious selection of
7

ppropriate tools in the context of DT applications. Despite its apparent simplicity, the process of tool selection can prove to be a
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Fig. 5. A simplified presentation of the stages involved in the implementation of a Wireless NB-IoT in an industrial setting.

omplex undertaking. However, this complexity can be ameliorated by directing our attention towards the overarching goals and
bjectives for which the DT is being proposed.

These objectives encompass the evaluation of a selected tool’s suitability concerning its versatility of use, compatibility, and
ntegration capabilities with other DTs. This is of paramount significance as, in numerous antecedent DT processes, reliance on

solitary DT software may prove insufficient in furnishing the requisite or ultimate output. The meticulous delineation of these
rerequisites is indispensable, as any inadequacy in this regard could engender disharmony within the system, leading to decisions
hat fail to accurately reflect the true state of the system. It is also imperative that the selection of these tools adheres to the
nticipated lifecycle of the system, encompassing essential considerations such as technical support for the chosen tool, periodic
pdates for enhanced firmware, and vigilance regarding security concerns. In the context of this research, a thorough examination
f relevant factors was undertaken, and all necessary prerequisites were satisfactorily fulfilled.

.2. Optimization of NB-IoT communication in the DT system model

In the context of understanding the wireless behavior of NB-IoT in this scenario with relation to Section 5.1 and Fig. 1, the
T categorization Core (DTCC) determines the type of DT to be selected. DTCC selection is based on the section of the industry

rom which data is collected via NB-IoT terminals. For example, sensor data from the storage or warehouse section of the industry
ill prompt supervisory DT settings of the software used in the simulation. These settings serve as an input to the simulator as
ell as the modeled physical entity and the required service in focus. These required services include network diagnosis, predictive
aintenance, resource allocation, interoperability, and sustainability. In the context of this study, the services provided include
etwork diagnosis and predictive maintenance. The testing and monitoring of the process as simplified and depicted in Fig. 5 are
arried out within the NBDT. A data collection link 2 provides data input into the system, while a data translation link 1 provides
ata output. To create a physical entity, this output data is used. Additionally, the technical aim interface facilitates the integration of
ireless NB-IoT requirements into the system. The simulator implements its calculations based on specified and established scientific

ormulations as shown in Eqs. (1) and (2). These calculations rely on the technical parameters provided in Table 1.
8
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Referring to the scenario used in this paper as described in Section 5.1, the results obtained identified some low-performing
B-IoT terminals in terms of their wireless communication abilities. This low-performance results from the direct distance between

he NB-IoT terminals and transceivers, obstruction of the wireless signals by industrial equipment, and interference with the signals
f interest. Therefore, it is necessary to improve the transmission conditions of these poor-performing terminals to enhance the
verall performance of the wireless network. To achieve this objective, an AF technique in a cooperative scheme is employed. This
echnique uses a cooperative strategy for selecting the most appropriate NB-IoT Access Terminals (NATs) as depicted in Fig. 6 for
e-transmission. However, the criteria for choosing the most appropriate NAT are based on the NRT with the highest signal-to-noise
atios (SNRs) for end-to-end communication with the transceiver.

Utilizing an amplification factor, the NAT enhances its received power through the process of normalization, facilitated by block-
ise amplification of the transmitted signals. This enhancement is realized subsequent to a rigorous numerical estimation of the

hannel characteristics.
The term – Gain Used by Relay for Retransmission – refers to the specific gain employed by the NAT to facilitate the process of

etransmitting signals. This is illustrated in [[24], Eq. (1)]. In this illustration, the system considers the power level of the transmitted
ignal.

𝛤 =
√

𝛼
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|

qt,nat ||
2 𝛼 + 2𝛽2𝑡,𝑛𝑎𝑡

(1)

where,
𝛤 = NAT gain and 𝛽 is derived from [[24], Eq. (2)].
This is obtainable by first considering the transmitted power level at the relay point which is represented by (𝑝𝑛𝑎𝑡):
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where 𝑡 is the transmitting NB-IoT terminal, 𝛼 = 𝐺
[

|

|

𝑥𝑡||
2
]

represent the energy embedded in the transmitting signal. 2𝛽2𝑡,𝑛𝑎𝑡 =

𝐺
[

|

|

𝑦𝑡,𝑛𝑎𝑡||
2
]

represents the summation of the noise power between the transmitter and the receiver while 𝑞𝑡,𝑛𝑎𝑡 is the attenuation
experienced in the channel.

Henceforth, this segment undertakes a comprehensive analysis of the ramifications engendered by the proposed scheme upon the
operational efficacy of the system. The evaluation entails an in-depth exploration of the Bit-Error-Rate (BER) as well as a rigorous
assessment of signal quality, elucidated through the Signal-to-Interference plus Noise Ratio (SINR). The ensuing discussion of these
findings is situated within the context of Section 6, facilitating a nuanced and thorough examination of their implications.

5.3. AF cooperative communication scheme for NB-IoT

The integration of Multiple Input Multiple Output (MIMO) antenna technology into miniature sensors or IoT modules presents
impractical or unfeasible challenges, with a rare exception as presented by the authors of [25]. This complexity arises from the
considerable resource utilization, particularly power consumption. In the context of NB-IoT, the 3GPP specification has prioritized
minimizing power consumption to extend service duration and reduce NB-IoT terminal maintenance costs and frequency [26].

In this context, optimizing communication among NB-IoT devices, particularly in demanding environments like industrial
indoor scenarios, necessitates the application of a cooperative communication scheme, especially when network homogeneity is
of paramount importance. This cooperative communication scheme effectively emulates a virtual MIMO implementation within a
predefined operational framework [27].

Within these cooperative communication schemes, NB-IoT terminals collaborate to facilitate the transmission of each other’s
messages to a designated destination [28].

In furtherance to this scenario, a cooperative communication scheme referred to as AF is employed. In this technique, each NB-IoT
terminal within the system receives a noisy signal from a transmitting source, amplifies this signal, and subsequently retransmits it
to the base station or transceiver. This process is thoughtfully illustrated in Eqs. (1) and (2). The transceiver, in turn, receives two
distinct versions of signals, both exhibiting independent and faded characteristics.

The transceiver employs a signal detection technique to effectively combine these received signals, ultimately yielding a more
reliable and informative data stream. It is noteworthy that AF technique, like other cooperative communication schemes, comprises
two distinct phases: coordination (phase I) and cooperation (phase II). In the coordination phase (phase I), the NB-IoT terminals
engage in the exchange of their source data and control messages. This exchange encompasses communication with other NB-IoT
terminals as well as with the base station or transceiver. Subsequently, during phase II, the NB-IoT Access Terminals (NAT) as
shown in Fig. 6 collaboratively retransmit the messages they have received to the transceiver, following signal amplification [29].
This cooperative approach enhances the overall robustness and reliability of the system.

6. Results and discussion

In this section, the paper discusses the outcomes observed both before and after implementing the AF cooperative scheme. We
delved into key technical factors, including BER, SINR, and the Cumulative Distribution Function (CDF), particularly concerning the
9
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Fig. 6. A depiction of Phase II of the AF scheme. This phase shows the NATs in their cooperative stage after signal amplification.

Fig. 7. This is an overview of the BER of the wireless NB-IoT system before the implementation of the AF scheme. The poorly performing terminals have the
highest BER as shown.

6.1. Effect of AF on bit-error-rate (BER)

An important metric for analyzing wireless communication performance is the average BER. In this scenario, the overall system
performance in terms of the number of NB-IoT deployed before the implementation of the AF scheme is presented in Fig. 7. The
data was analyzed to understand the performance of NB-IoTs, and certain NB-IoTs were found to have high BER due to some factors.
A few of these factors include the reflection of signals caused by equipment composition, low SINR, and distance. Out of the 25
NB-IoT terminals in the scenario, 14 of these were identified for AF scheme implementation. The BER range for these terminals
is between 0.7221 and 0.9222. Nevertheless, upon the implementation of the AF scheme, the average BER for these terminals
improved as shown in Fig. 8. Some amount of performance improvement was recorded for the first 4 terminals but not much,
however, noticeable improvement is recorded for the rest (0.8916 to 0.6048). The percentage improvement in BER level is shown
in Fig. 9. In this figure, the most optimized NB-IoT are the ones farthest from the transceiver, these 5 terminals improved by 9.5%
to 17% as the overall link improvement.

6.2. Signal quality through signal to interference plus noise ratio (SINR)

The quality of the signals is examined through the SINR values which is the ratio of the signal power to the summation of
interference power and noise power. To achieve this, the SINR values for individual NB-IoT are recorded and presented in Fig. 10.
10
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Fig. 8. The BER for 14 selected NB-IoT terminals. These terminals were identified to have higher BER before the implementation of the AF scheme, however,
the BER was reduced after the implementation of the scheme with little fluctuations in the SINR values.

Fig. 9. Improvement in the BER level for the 14 individual terminals after the implementation of the optimization scheme.

The SINR values are in three folds; first the SINR values for the direct channel or link between an individual terminal and the
transceiver, second, the SINR values for the channel between the terminal and the NAT and third, the SINR values between the NAT
and the transceiver. As shown, the SINR between the NAT and transceiver has the best SINR. This is because, for the implementation
of the AF scheme, a NAT with a high Signal-to-Noise Ratio (SNR) for end-to-end communication with the transceiver is chosen as
explained in Section 5.2. From Fig. 10, the first four terminals have the lowest SINR values which correspond to terminals 25, 24,
23, and 22. This also translates to high BER as presented in Section 6.1.

6.3. Cumulative distribution function (CDF) and effective throughput

In this subsection, the evaluation of the system performance is presented with the aid of a Monte Carlo simulation technique to
understand the effective throughput with respect to CDF. Using this simulation technique, a random sample simulation of 500 runs
was conducted to analyze the effective throughput of the 14 affected NB-IoT terminals. The result is presented in two graphs, each
graph represents a group of 7 terminals. To simulate this, the settings in Table 1 were used.

The CDF shows the effective throughput performance of the terminals at random values. This is a probability function that
describes the distribution of the throughput data. However, the average effective throughput is the actual amount of information
11
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Fig. 10. The SINR value for individual NB-IoT terminals is used to determine their signal quality. The channel quality for the communication between the NRT
nd transceiver appeared to have the highest signal quality. While the signal quality for the direct communication between the individual NB-IoT terminals and
he transceiver is lower as compared to the communication between the terminals and the NRT.

hat is successfully transmitted per second over the wireless channel with all the overhead control data and it is affected by other
actors such as packet loss, and interference. The first group of terminals affected (12–18) is shown in Fig. 11, the average effective
hroughput that is achievable is less than 90 kbps at 50% probability. The less achievable effective throughput is NB-IoT18 with
50.2 kbps. The maximum effective throughput achievable is NB-IoT12 with 152.401 kbps. Similarly, the second group of terminals
affected in this scenario is shown in Fig. 12. At 50% probability, the achievable throughput is between 15.5 kbps and 60 kbps. The
maximum throughput is 99.615 kbps achievable by NB-IoT25. Based on [30], this implies that the effective throughput of these
terminals is lower than the uplink and downlink peak data rates of 226.7 kbps and 250 kbps respectively.

Due to the control overhead data that makes effective throughput much lower than theoretical maximum throughput, the other
major factors responsible for this performance are:

• Transmission Distance. The distance between the base station and the NB-IoT terminals, in part, determines the strength of
the signal and the amount of possible packet loss.

• The Wireless Channel Quality. The major contributors to this factor in industrial settings are the composition of the
environment in terms of structures, material type, and obstructions along the paths of wireless transmission, as well as the
type and sensitivity of transmission antenna.

• Level of Interference from other Wireless Networks or Devices. Other wireless devices and networks that operate within
the same frequency band contribute to the reduction in the effective throughput.

7. Challenges and future research directions

The realization of a DT involves the use of several tools or software for modeling and simulations. The interoperability of these
tools is not seamless and this poses a challenge. This challenge was experienced in the scenario presented in this paper. Moreover,
in a real-world context, various environmental factors, such as irregular levels of noise generated, interference from other wireless
networks, including field and power interference [31,32], extreme temperature [33,34], and vibrations [35] can adversely affect
the specific communication channel under investigation. Incorporating these factors into the DT presented challenges, leading to
the use of assumed values. Furthermore, there is a requisite for a path loss model that comprehensively characterizes wireless signal
propagation within an industrial indoor setting, as expounded upon by the author in Ref. [36]. Therefore, the availability of DT
tools that provide seamless and easy usage would be a step toward the advancement of DTs. These tools, such as wireless Insite, are
expected to offer the capability to incorporate alternative propagation models not explicitly enumerated within the tool’s predefined
options. Moreover, within the context of this research, the incorporation of alternative optimization methodologies beyond the
utilization of AF presents a considerable challenge. Consequently, there arises a compelling imperative for DT tools to facilitate
the integration of diverse optimization techniques, thereby enhancing the attainment of more favorable results. The implication is
that DTs will be adopted more rapidly and confidence in their usage will increase. To build confidence in the usage of DTs, it is
necessary to focus on the accuracy of the technologies upon which DT depends, technologies such as simulation tools, AI, and ML.
In the aspect of ML, there is an opportunity to enhance the scope and effectiveness of this study by integrating ML methodologies
aimed at improving some of the challenges listed above in NB-IoT wireless communication in an industrial indoor environment. To
leverage ML in this specific context, the following elaboration outlines the potential improvements:
12
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f
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Fig. 11. The average effective throughput for the first group of the affected NB-IoT terminals (12–18) showing their cumulative distribution function (CDF).

Fig. 12. The average effective throughput for the second group of the affected NB-IoT terminals (19–25) showing their cumulative distribution function (CDF).

• ML and Wireless Prediction: The use of ML techniques to predict the wireless communication of NB-IoT terminals in an
industrial indoor environment while focusing on the communication parameters and set of environmental conditions gathered
in the study. This should be aimed at providing a mechanism that would allow for the extrapolation of the study to other
industrial facilities that share some common features.

• ML and Link Adaptation Mechanism: According to some researchers, a hybrid link adaptation strategy can be used to study
how coverage enhancement features affect network reliability and latency. In this strategy, latency and coverage have been
optimized. In order to achieve this, they formulated and solved an optimization problem in which the optimal value of
repetitions, bandwidth, and modulation and coding scheme (MCS) is found so that latency is minimized and reliability is
maintained [37]. It would, therefore, be necessary to apply ML in the link adaptation selection process for better optimization
since the hybrid link adaptation method achieves lower latency and higher coverage than any other coverage enhancement
technique.

8. Conclusion

This paper introduces an investigation into wireless NB-IoT optimization, focusing on the viewpoint of DT. Within this contextual
ramework, a technique pertaining to AF optimization is employed within the extant system model to enhance the wireless
ommunication performance of NB-IoT. The pivotal role of DT in the progression of Industry 4.0 is expounded, accentuating the
13
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meticulous selection criteria applied to DTs and their consequential reliability. This, in turn, instills a sense of assurance within
industrial management regarding the possible integration of DT within the NB-IoT and wireless communication domain in general.

The outcome of the optimization procedure is systematically examined, encompassing a comprehensive analysis of the BER
oth before and post-optimization. Manifest enhancements in BER are meticulously delineated for each terminal, with the most
ignificant advancement of over 17% being observed in terminal 25. Complementing this analysis, the CDF is harnessed to elucidate
he intricate nuances of the effective throughput behavior exhibited by the system. Based on the CDF, it is evident that the throughput
erformance of these terminals is below the uplink and downlink peak data rates as prescribed in [30]. Three major factors
ontribute to this behavior: transmission distance, wireless channel quality resulting from industrial structures and obstructions,
nd interference from other wireless networks. This is an indication of room for further optimization. Furthermore, an exhaustive
nquiry into signal quality across various channels interconnecting the NAT entities, transceiver, and NB-IoT terminals is conducted,
hereby providing a multifaceted perspective on the overarching communication dynamics. The communication dynamics observed
n this study highlighted the channel quality between individual terminals and the NB-IoT transceiver, as well as between NAT and
he transceiver. Additionally, the interactions involving poor-performing terminals communicating through the NAT were examined.
pecifically, the communication link involving the transmission from poor-performing NB-IoT terminals to the NB-IoT transceiver
ia the NAT illustrated the practical implementation of the AF optimization scheme.
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