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ABSTRACT The Internet of Things (IoT) is an essential part of 5G, Beyond-5G (B5G), and 6G
systems; it has several applications in two of the principal 5G use cases, namely ultra-reliable low-latency
communications (URLLC) and massive machine-type communications (mMTC), and in their successors
within B5G and 6G: extreme ultra-reliable low-latency communication (eURLLC) and ultra-massive
machine-type communication (umMTC). IoT systems, which are characterized by narrow bandwidths, have
stringent requirements owing to the specific nature of their applications and use cases. The purpose of this
study is to investigate and jointly optimize the energy efficiency (EE) and latency through resource allocation
for IoT cellular systems. With regard to the contributions, in this study we investigated the optimization
of EE in narrowband IoT systems, compared resource unit configurations (RUCs), jointly formulated the
optimization of EE and latency, and introduced a suboptimal but efficient algorithm. More precisely, as the
EE performance of various resource unit configurations has not been exhaustively investigated in the current
state of the art, we analyzed and compared the EE of RUCs. The results show vast differences in performance
between RUCs. For example, in terms of EE, the best RUC has an EE more than 80 times higher than the
worst, which illustrates the importance of this investigation. We then proposed a scheduler based on the
shortest job first (SJF) for minimum latency allocation, and another scheduler based on a joint evaluation of
EE and latency. With respect to conventional techniques, these schedulers achieve a better trade-off between
latency reduction and gain in terms of EE for a wider range of parameter configurations in multi-cellular
layouts. The study demonstrates that in the presence of repetitions, algorithms that achieve high EE will
mostly achieve low latency.

INDEX TERMS Energy efficiency, latency, resource allocation, uplink scheduling.

I. INTRODUCTION
Currently, the Internet of Things (IoT) is one of the
main components of modern wireless communication
paradigms. There are three main 5G services: mas-
sive machine-type communication (mMTC), ultra-reliable
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low-latency communications (URLLC), and enhanced
mobile broadband (eMBB). Two of these services are
related to IoT: mMTC, which is for IoT devices and high-
density connections, and URLLC, which serves industrial
and mission-critical IoT. These services will not only
remain in Beyond-5G (B5G) and 6G, but will also evolve
into ultra-massive machine-type communication (umMTC)
and extreme ultra-reliable low-latency communication
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(eURLLC). In addition to the requirements of these services,
IoT devices often impose additional power consumption
requirements. Therefore, the resource allocation should
be designed to target multiple performance indicators.
This is in line with the trend for B5G and 6G, because
these systems are expected to have a mix of the three
services rather than only one service at a time [1]; for
example, merging the requirements of reliable low latency
communications and machine-type communication in a
unique service. In this study, we aim to achieve energy
efficiency (EE) and latency optimization owing to the
importance of energy consumption in IoT devices and the
ever-increasing importance of energy savings and latency
reduction in 5G, B5G, and 6G applications. In several IoT
scenarios, power is limited, and the main performance targets
are a low data rate, long range, and narrow bandwidth. Thus,
the narrowband IoT (NB-IoT) is a suitable technology for
these scenarios. Since its introduction in Release 13 [2],
NB-IoT has been present in all successive releases of the
3GPP standard specifications, and it has been recognized as
one of the main building blocks for IoT in 5G IoT low-power
wide area (LPWA) communication.

In order to summarize the main requirements of mMTC
and URLLC, we can list the following KPI (Key Performance
Indicators) [3], which are also the expression of the wide
range of verticals in the 5G and B5G application scenarios:

• mMTC: Here, the connectivity is extended to extremely
high densities, that is, 106 devices per km2 in an
urban environment, a target for UE battery life beyond
10 years, assuming a stored energy capacity of 5 Wh.

• URLLC: Here the focus is on the reliability, and the
general reliability requirement for one transmission of a
packet is 1−10−5 for 32 bytes with a user plane latency
of 1 ms and end-to-end latency of less than 10 ms. For
eV2X (enhanced Vehicle to Everything), reliability is
expected to be 1−10−5, and user plane latency 3−10ms
when the packet is relayed via BS.

Looking at the KPIs, it is immediately clear that it is crucial
to understand and develop all the techniques that enable a
wide range of requirements and combinations of reliability,
latency, and EE. Moreover, when we look at the URLLC
and mMTC requirements within an IoT device, the typical
requirements and use case characteristics are

• Sporadic or periodic traffic, with data rates that can
achieve maximum levels of approximately 1 − 2 Mbps.

• Extremely variable reliability levels: from 99% to
99.9999% according to the application.

• The importance of battery life: consequently, EE remains
a specific design and operational requirement.

• The user plane latency is in the range 1 − 5 ms for
applications with more stringent requirements.

Among the examples of IoT use cases where EE and
low latency play a relevant design role, we can mention
(i) smart city and environment monitoring systems for
public safety and (ii) systems for Industrial IoT (IIoT),
such as critical monitoring systems, factory automation, and

location/motion control. For example, wireless sensors in
an industrial context—specifically safety-related sensors—
have stringent requirements in terms of battery life and
latency, that is, a battery life measured in years and
5–10 ms latency [4]. Additionally, as reported in [5],although
mMTC is characterized by a long battery life, there are
applications such as IIoT orchestration or automation that
are also characterized by latency requirements in the range
of 10-50 ms. The main motivation of this study starts from
the need of optimizing EE, a major objective in current and
future networks, in which the goal is to reduce the carbon
footprint and work towards green communication. On the
other hand, reducing latency to the order of milliseconds
is critical for several applications, such as safety-related
ones, augmented reality, and vehicular ones. Moreover,
as previously mentioned [1], in the future, there will be a need
to achieve both reduced latency and EE in several applications
and use cases, such as, ‘‘factories of the future’’-related
applications [6]. Therefore, we found a need to investigate
the potential trade-off between EE and latency within a
design that integrates and considers their joint optimization.
In this study, the goals of the mathematical analysis and
proposed algorithms are to maximize EE and reduce latency
for IoT devices, with an emphasis on NB-IoT systems
using resource allocation. Several possible resource unit
configurations can be allocated to devices, and each of these
resource unit configurations has distinct characteristics. The
EE performance of these resource unit configurations should
be investigated and understood exhaustively. Moreover, often
in the literature only one resource unit configuration has been
chosen in the allocation approaches, and this work starts with
an analytical study to investigate the EE performance of all
possible resource unit configurations. We then propose an
optimization problem and practical algorithms that optimize
EE and latency.

The remainder of this paper is organized as follows.
Related works and novel contributions are presented in
Sect. II. Sect. III briefly introduces EE concepts and various
aspects of the problem. Sect. IV presents the optimization
problem and mathematical formulation. Sect. V presents the
proposed suboptimal solutions and the related algorithms.
Sect. VI presents numerical results. Finally, conclusions are
in Sect. VII.

II. RELATED WORK AND NOVEL CONTRIBUTIONS
As already mentioned, one of the main design aspects of
IoT systems is EE, which is at the center of this research
article. Many research works in the literature either target or
claim to target this aspect. A relevant portion of the literature
deals with energy consumption rather than EE. In [7], [8],
[9], and [10], energy consumption was calculated for a range
of scenarios. Based on [11] and [12], the average energy
consumption and average delay were calculated using a
queuing model to consider the average values of the synchro-
nization, resource reservation, and transmission processes.
Parameters such as the average traffic, average transmission
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time, and average rate were also considered. However, energy
consumptionwas investigated without considering the impact
of various resource unit configurations (RUCs) and resource
allocation on the transmission process. In [13], a semi-
Markov model of radio resource control (RRC) connected
and idle states (particularly the discontinuous reception and
the power saving mode) was proposed to finalize energy
savings. Similarly, the authors of [14] analyzed the NB-IoT
downlink power consumption model and used the particle
swarm algorithm for energy consumption optimization.
In [15], the focus was on the resource allocation process
and energy consumption for a range of RUCs, and the
minimum transmitted power was derived for all possible
combinations of repetitions, modulation and coding schemes,
and resource units (RUs). In [16], a survey of techniques that
target energy consumption models in two specific examples
(agriculture and health) was presented. A different approach
was presented in [17], where channel coding was used to
improve energy consumption and rate. For a D2D system,
the authors of [18] used reinforcement learning aided by
federated learning to minimize the power consumption and
maximize the sum rate through resource allocation. The
adopted system model comprises one cell, no repetitions,
and no latency optimization. For an NB-IoT single-cell
system, the authors of [19] propose a scheduling algorithm
for search space periods, not for downlink or uplink resource
allocation, which optimizes energy consumption by reducing
idle time and blind decoding. Finally, in [20], the effects of
semi-persistent scheduling and transmission time length on
the latency of narrowband devices were investigated.

In the context of EE, several studies have focused on
optimizing the resource allocation in B5G and 6G systems.
The authors of [21] proposed a resource allocation algorithm
for a system in which delta-orthogonal multiple access was
used. The algorithm comprises two phases: Base station
selection and power allocation. Amulti-cellular scenario with
imperfect successive interference cancellations was assumed.
The latency and repetitions were not considered. In [22],
the authors considered a system comprising cognitive radio
and nonorthogonal multiple access. They also proposed a
resource allocation optimization problem to maximize EE.
This problem was solved by using the Dinkelbach algorithm.
A single cell was considered without repetitions or latency
optimization. Resource allocation for reconfigurable intelli-
gent surfaces (RIS) was the focus of [23]. EE maximization
is achieved through the allocation of power and the RIS phase
shift. The system was a single cell, and repetitions were
not considered. Finally, [24] provides a survey of resource
allocation and power control techniques specifically for EE
in cell-free ultra-dense systems that exploit massive MIMO.

Regarding EE in the NB-IoT context, the following studies
provided varying views on this problem. The authors of [25]
researched EE optimization for NB-IoT. The main idea is
to cluster users and split them into three types: (1) cluster
heads, (2) users belonging to clusters (but not cluster
heads), and (3) nonclustered users. The authors assumed

a single-tone resource configuration, no repetitions, and a
single-cell scenario. The resource allocation problem is based
on allowing nonclustered and clustered users to use the same
resources. In [26], the EE was calculated in the presence of
interference between narrowband physical uplink shared and
random access channels (NPUSCH and NPRACH). In [27],
an EE problem formulation for the simultaneous transmission
of cellular 5G devices and IoT devices without considering
sub-carriers (SCs) and repetitions was introduced. In [28],
an analytical M/D/H/K queue model was formulated to
investigate the EE and improve battery life. Although the
concept of the four RUs is explained, the effect of RU types on
EE has not been studied, and latency has not been considered.
The authors of [29] proposed anNB-IoT uplink scheduler that
performs resource allocation and link adaptation to optimize
the EE. Repetitions, delay constraints, and various RUCs
were considered. However, the impact of each RUC on EE
was not shown. Furthermore, the optimization problem was
formulated only for EE in single-cell systems.

The main objective of this study is to investigate and
determine the characteristics of good schedulers for joint
EE and latency optimization in systems with repetitions
and, where present, RUCs. As seen in the NB-IoT literature
review, various RUCs are not generally considered for EE
optimization, and only a single-tone RUC is used, although
we show that this is the one with the lowest EE. In addition,
other typical characteristics of IoT,such as the impact of
multi-cellular scenario and repetitions are not considered,
even though repetitions play a significant role in increasing
coverage and reducing the block error rate [30]. Because
these elements are all related to the latency and EE of
the system, the joint latency and EE optimization of the
system performance are explored here based on all these
elements.

Therefore, in this study, we examine EE and its relationship
to latency (they are not independent). We formulate a joint
optimization problem for maximizing the EE and minimizing
the latency and propose and investigate suboptimal solutions
for the problem.We begin by formulating the EE optimization
problem for a range of RUCs, find the best RUC analytically,
and update the optimization problem accordingly. Finally,
we use the best strategy to jointly optimize latency and EE.
The novel contributions of this study are summarized as
follows:

• We propose and formulate a joint EE and latency
optimization problem that includes a range of RUCs and
minimum rate constraints. The impact of repetitions is
also included.

• We compare and analyze the performance of RUCs in
terms of EE to determine which (if any) is the best.
A comparison is performedmathematically, and the sim-
ulation results are provided. The problem formulation is
then simplified and reformulated for the best RUC with
the smallest number of subframes and the best EE.

• We propose suboptimal solutions for the formulated
joint optimization problem:
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TABLE 1. Summary of notations.

– The shortest job first (SJF) strategy: SJF is exploited
here as an allocation and scheduling strategy for
minimizing the latency in a system with repetitions.

– Proposed joint EE and latency scheduler: The
scheduler is denoted as the ‘‘best score,’’ which is
a hybrid scheduler that allocates resource units to
users according to latency and EE.

– A generalized multi-dimensional form of the ‘‘best
score’’ scheduler.

Finally, the proposed solutions were compared with
other benchmarks, and their performances were assessed
through simulations of the NB-IoT application case.

III. ENERGY EFFICIENCY
In current and future wireless communication systems,
the two fundamental objectives are a high data rate and
EE. As decreasing energy consumption by sacrificing the
data transmission rate or vice versa is not a satisfactory
solution, there has always been a need to optimize both
the energy consumption and data rate. One of the main
goals in the IoT context is the optimization of EE; that is,
the number of bits transmitted with a single Joule (bit/J)
[31]. In a communication system, EE is the ratio between
the data transmission rate and consumed power. Therefore,
to derive EE, we must express the rate, possibly through
the Shannon capacity bound. Power is typically composed
of two parts: transmitted power (P) and consumed circuit
power (PC ). There are other variants of the definition of EE,
for example, taking into account various characteristics of
the communication system, such as the use of PC values
depending on the transmitted power and rate [32], but these
variations are usually suited to specific systems, scenarios
and optimization procedures.

Here, we focus onOFDMAwaveforms, which are the basis
of 4G and 5G mobile systems, and adopt the conventional

definition of EE as the ratio between the rate and consumed
power [33], [34].

It is challenging to optimize the EE of a mobile system,
particularly in the case of an interference scenario, where the
numerator of the EE represents the well-known non-convex
sum rate of the interference cells. The EE comprises rate,
circuit power, and transmission power, each of which affects
it differently. In addition, these elements can have different
impacts depending on the scenario, channel conditions, and
the interference state. In general, we observed the following.

• Regarding the relationship between the rate and signal-
to-interference-and-noise ratio (SINR).
– For one user, as the SINR increases, the rate clearly

increases, i.e., maximizing the SINR is equivalent
to maximizing the rate.

– For multiple users, maximizing the sum of the
SINRs is not equivalent to maximizing the sum of
the rates, because of the log relation in the rate
equation. This means that in the case of interfering
users, the sum rate is not optimized by maximizing
the sum SINR.

• Regarding the relation between rate and transmission
power.
– In the absence of interference, increasing the power

leads to an increase in the SINR and, consequently,
the rate.

– In the case of interference, when rate optimization
is performed for a single user in a cell independently
from the other external cells and interfering users,
increasing the power will lead to an increase in
the rate for this main/target user, but may have a
negative impact on the others.

– In the case of interference and rate maximization
for the entire system, i.e., jointly for all users,
we achieve the well-known sum throughput maxi-
mization problem, which is a non-convex problem.
The optimal rate can be achieved at a very high
or very low transmission power, according to the
scenario and power setup for the users (e.g., if the
power control setup and power control parameters
are the same for all users in each cell, or if the
system is interference-limited or noise-limited).
In some scenarios, the maximum sum rate is
achieved at the maximum transmit power or very
close to it, in others at low transmit power, and in
yet others at power values adjusted to compensate
for path loss [35].

In the literature, many aspects of the relationship between
EE, rate, transmission power, and circuit power have been
investigated, and a summary is provided below.

• EE and circuit power: PC is an important factor for
EE behavior—more than what can be expected from a
superficial analysis, as can be seen in [31], [33], [34],
[36], and [37]. Moreover, it has been proven that adding
or removingPC from the EE equation affects the way the
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TABLE 2. Summary of the main relations between EE, SE, and PT while
considering the presence of PC and interference.

EE changes with respect to the rate and power, at least
in the abs of interference [37].

• EE and transmission power (PT ):
– In the case of no interference: Either EE decreases

as PT increases when we remove PC from the EE
equation, or EE has a unique maximum when PC is
included. In general, in the case of no interference,
a minimum PT does not mean a maximum EE,
unless PC is neglected.

– In the case of interference: As PT affects both the
rate—which is a non-convex function of PT—and
EE, the relationship between PT and EE becomes
more complicated, and in general, we cannot say
that the minimum PT corresponds to the maximum
EE.

• EE and rate (or spectral efficiency): The relationship
between the EE and Spectral Efficiency (SE) can be
obtained by writing the transmit power and EE as a
function of the spectral efficiency.
– In the case of no interference: Either EE decreases

as spectral efficiency increases if we remove PC
from the EE equation, or EE has a unique maximum
when PC is included [37], [38].

– In the case of interference: Because of the noncon-
vexity of the sum rate, the EE is non-convex, and
maximizing the rate does not mean maximizing the
EE, as can be seen in the examples in [39].

A summary of the main relations is presented in Table 2.
In general, in the case of interference scenarios, the EE

optimization problem is difficult to solve and analyze, and
one of the main reasons is the presence of the sum rate at
the EE numerator. Adding binary scheduling variables further
complicates the problem, making it combinatorial [34],
whereas adding OFDM allocation constraints makes it
NP-hard [40]. Another aspect is the allocation constraints,
constituted by the so-called RUCs, which are the typical
predefined sets of SCs and SFs allowed for device resource
allocation. These RUCs are defined in the specifications
and designed to provide a limited but important degree of
flexibility in the occupation of the frequency/time-domain
resource grid.

Several methods can be used to represent the EE of the
entire system. The representation also depends on the final
objective and constraints, i.e., the optimization of the global
performance of the system or fairness for types/groups of

users. We show two approaches to EE formulation [41]:
the first is used to calculate the EE for the entire system,
not distinguishing between groups of users with differing
EE requirements, and it aims to maximize the overall
performance of the system. The simplified EE formula has
the following structure:

EE =

∑
u R

(u)∑
u(PC + P(u))

, (1)

where u is the index of the generic users,R(u) is the rate of user
u, and P(u) is the transmission power. The second approach is
used to distinguish between EE for each group of users and/or
separate EE priorities and requirements while considering
the total system performance, and is the sum (or average) of
the individual EEs. Therefore, the EE can be expressed as
follows:

EE =

∑
u

R(u)

PC + P(u)
. (2)

It is important to highlight that the work presented in this
paper is focused on the uplink of OFDM mobile systems
because we are interested in optimizing the EE of the IoT
devices.

IV. MODEL AND PROBLEM FORMULATION
The system is characterized by a set C of seven hexagonal
cells served by the respective Base Stations (BSs, such as
eNBs or gNBs) and the network layout is shown in Fig. 1.
The single cell is split into three 120 degrees sectors, and each
sector comprises a set of devicesUc, transmitting in the same
band, which constitutes the most common sectorization used
in the design of mobile systems, as it assures an advantageous
trade-off between frequency reuse and interference reduction.
In the numerical results, a cell with a single 360 degrees sector
is considered to simulate a condition with high interference.
The cell size is defined by the cell radius R, which is also
related to the inter-site distance (ISD, the minimum distance
between two BSs) by the geometric relation R = 0.577 · ISD.
The resources are composed of SCs in the S domain and SFs
in T domain. The S domain or band is shared by all seven
sectors, generating mutual interference: the performance is
always measured in the center cell, which is in the worst
interfering condition, and all the parameters are equal in all
the cells. Table 1 lists all variables and notations.

The optimization problem contains the joint optimization
of the EE and latency and is expressed by the maximization
of the weighted difference between the EE function fE (.) and
latency function fL(.) [31], [42], that is,

fOPT (x
(u)
c,t,s) = w1 · fE (x

(u)
c,t,s) − w2 · fL(x

(u)
c,t,s) (3)

where w1 and w2 are two positive weights that also include
different scaling owing to the unit of measurements, and
the binary (0/1) allocation variable x(u)c,t,s determines the
assignment of each Resource Element (RE) (t, s) (t is the SF
within the scheduling interval T and s the SC in the available
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FIGURE 1. Layout of the cells, each one comprising three sectors. The red
X markers represent the base stations, while the blue circles represent
the active devices in the simulations.

set S) in each cell c to device u and it is the variable on which
we will maximize the EE optimization function fE (x

(u)
c,t,s).

Let us consider the expression of the overall system EE
[bit/J] as the first step in building the optimization function
in (3).

EE = fE (x
(u)
c,t,s)

=

∑
c∈C

∑
u∈Uc

∑
t∈T

∑
s∈S x

(u)
c,t,sR

(u)
c,t,s∑

c∈C
∑

u∈Uc (PC +
∑

t∈T
∑

s∈S x
(u)
c,t,sPc,t,s)(u)

. (4)

The total rate assigned to each device in the numerator is
subject to a constraint on the minimum rate R(u)min,c, which is
usually assumed in this type of problem:∑

t∈T

∑
s∈S

x(u)c,t,sR
(u)
c,t,s ≥ R(u)min,c, ∀u ∈ Uc, ∀c ∈ C . (5)

In the problem formulation, the rate of device u in cell c at SF
t and SC s is computed by Shannon’s bound in [bit/s] and is
reduced by the number of repetitions r (u)c for each user (the
total transmission time of the bits is expanded from TS to r

(u)
c ·

TS ), as

R(u)c,t,s =
1

r (u)c · TS
· log2

×

(
1+

P(u)c,t,sCH
(u)
c,c,t,sTS∑

a∈C,a̸=c
∑

j∈Ua P
(j)
a,t,sCH

(j)
a,c,t,sx

(j)
a,t,sTS + kTE

)
,

(6)

where the terms P(u)c,t,s and P
(j)
a,t,s denote the transmitted power

of the considered and interfering devices, respectively (for
each cell a excluding c because it is not admitted intracell
interference), and TE is the BS receiver total equivalent
noise temperature. In addition, CH (u)

c,c,t,s is the channel gain
between device u and its BS in cell c at the given RE (t ,s)

and CH (j)
a,c,t,s is the channel gain between device j belonging

to cell a and BS c, which configures the role of the channel
in the uplink SINR. The repetitions have a clear impact on
the rate, reducing it, because the same message is assumed
to be repeated to increase its reliability at the receiver.
However, they contribute in proportion to the increase in
energy consumption.

An alternative formulation of the EE function is expressed
by the average EE per device (denoted as EES ) instead of the
global EE, which differs in the expansion of the sums at the
denominator and numerator of (4) in the single EEs [bit/J] of
each device, that is,

EES = fES (x
(u)
c,t,s)

=
1
NU

∑
c∈C

∑
u∈Uc

∑
t∈T

∑
s∈S x

(u)
c,t,sR

(u)
c,t,s

PC +
∑

t∈T
∑

s∈S x
(u)
c,t,sP

(u)
c,t,s

, (7)

where NU is the total number of devices.
In optimization function (5) and (6), it is clear that the

problem has two fundamental parts: scheduling (allocation
of resources in the grid, or x(u)c,t,s) and power allocation. Con-
sidering the powers P(u)c,t,s and P

(u)
a,t,s, we make an important

assumption of uniform power allocation for the subsequent
steps of the formulation. Therefore, the transmitted power of
each device user is divided equally among the SCs of the
allocated RU because we are interested in optimizing EE
through RUC allocation. The impact of this perspective is
clarified by the suboptimal solution proposed in Section V.
In addition, the EE function is associated with the

following constraints. non-overlapping devices in the same
cell, that is, no intracell interference, or∑

u∈Uc

x(u)c,t,s ≤ 1, ∀s ∈ S, ∀t ∈ T , ∀c ∈ C, (8)

This guarantees that resource elements are used by only one
device within the same cell.

A. THE NB-IoT CASE: SPECIFIC CONSTRAINTS
In the following section, we present NB-IoT-specific con-
straints and analyze the optimal RUC. As the resources
consist of SCs and SFs organized in RUs, in NB-IoT
and technologies with predefined RUCs, we introduce the
following additional constraints:

1) The allocation and shape of the RUs force the scheduler
to choose one of the predefined RUCs or none [43].
In the NB-IoT case, there are four RUCs, as listed
in Table 3. However, these relations can be easily
extended to any other case in which the RUCs have
a rectangular shape. These constraints can be written
according to the variables of our formulation and are
reported in the appendix. These are not reported here
because they become redundant after the choice of a
single RUC, as explained in section IV-B.

2) Number of repetitions, from minimum to maximum,
according to the specifications of the considered
technology. In the case of the NB-IoT, the number of
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TABLE 3. Main RUC parameters (in the time and frequency domains) of
the LTE NB-IoT.

repetitions r (u)c should be a power of 2 to a maximum
of 128. The relations

r (u)c = 1 h(u)0 + 2 h(u)1 + 4 h(u)2 + 8 h(u)3 + · · · , (9)

and

7∑
q=0

h(u)q = 1, (10)

use the binary (0, 1) allocation variables h(u)q for q =

{0, 1, · · · , 7} for indicating 2q the allocated number of
repetitions of the same message at each device.

To express the latency function fL(.) in (3), we extend the
formulation in [43] by including the impact of the repetitions;
in fact the different components of the latency are the (1)
schedulingwaiting time, (2) transmission time of the assigned
RUC, (3) time due to the repetitions of the transmission
for increasing the SINR at the receiver. The transmission of
the SFs allocated to a device, including possible repetitions,
occurs consecutively and it can be expressed as

fL(x
(u)
c,t,s)

= −

∑
c∈C

∑
u∈Uc

∑
t∈T

t

·

∑
s∈S (x

(u)
c,t,s − x(u)c,t−1,s − |x(u)c,t,s − x(u)c,t−1,s|)

2N (u)
c,t−1 + ϵ

, (11)

whereN (u)
c,t−1 is the number of SCs allocated to user (u) at time

(t − 1) and cell c (see also the appendix). In (11) we have
the sum of all the times in which each device transmission
is completed (ϵ is a constant arbitrarily small to avoid the
denominator in (11) being equal to zero). In the equation, the
latency is controlled by the allocation variable x for user u and
cell, SF and SC, (c, t, s) respectively: the last allocated time
slot gives the only term different from zero in the sum and
determines the scheduling and transmission time, including
repetitions. If we look at a more general model, like that
in [44], (11) expresses, as a function of the allocation variable,
a latency model equivalent to

L = tSQ + tT (12)

where L is the total latency, tSQ is the scheduling or
queuing latency, and tT is the transmission latency, including
repetitions.

FIGURE 2. The generic set of RUCs as a function of the parameter α.

B. COMPARING THE RUCs IN TERMS OF EE
We have seen that, in relevant cases such as the NB-IoT,
the RUCs have an adaptive rectangular shape. As shown in
Table 3, the different RUCs respond to different layouts in the
SC/SF grid, keeping the total number of occupied resource
elements (1 SC× 1 SF), which are 12 in the LTENB-IoT case
(except for RUC1 with eight). In this section, we investigate
whether there are differences in EE contributions from
different RUCs. Furthermore, the analysis helps identify
which RUC contributes better to the optimization of cost
function (3), which further allows the simplification of the
scheduling process.

To compare the different RUCs, we generalize the research
by introducing a parameter α for generating a generic set G
or RUCs characterized by the same number of RE, equal to
NSCm×NSFM , as shown in Fig. 2, whereNSCm is theminimum
number of SCs (1 in Table 3), NSFM is the maximum number
of SFs, and generic RUCα is characterized by NSCm × α SCs
and NSFM/α SFs for α = {1, 2, · · · , αM }. We also make the
following assumptions:

1) For each device, the channel gain is the same in all
REs that compose each RUCα, including small-scale
fading, which means that the coherence bandwidth
and time of the channel are larger than the maximum
bandwidth and maximum duration of the RUCs,
respectively. This assumption was made to simplify
the analysis; however, it did not affect the final
results.

2) Power is allocated uniformly in the RUC; therefore,
the total transmission power per device PT is divided
among the NSCm × α SCs. This assumption is
consistent with what is already specified in the problem
formulation, as we are interested in the optimization
with respect to the allocation strategy through the
variables x(u)c,t,s.

3) All devices in the network used the same α. This
assumption follows the idea that in the presence of an α

that is optimal with respect to EE, all networks should
share this choice to improve the overall result.
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The EE for a single device transmitting on α can be written
as

EE(α) =
NSCm · α · log2(1 + SINR(α))
(PC + NSCm · α · PSC (α))TS

(13)

where PSC (α) is the power allocated to a single SC, that is
PSC (α) = PT /(NSCm · α). The SINR, which is responsible
for the rate bound, as shown in (6), is expressed as a function
of α as follows.

SINR(α) =
PSC (α)TSCH

kTE +
∑

j TSPSC (α)CH
(j)
I

=
PTTSCH/(NSCm · α)

kTE + TSPTCH I/(NSCm · α)
, (14)

With respect to (6), we have omitted indices u and c for the
sake of clarity: CH is the signal power channel gain, while
CH (j)

I is the interference power channel gain, resulting in a
total term CH I . Considering the derivative,

d EE(α)
d α

=
d
d α

[
NSCm · α · log2(1 + SINR(α))
(PC + NSCm · α · PSC )TS

]
, (15)

denoting NSCm · α · PSC as PT and (PC + NSCm · α · PSC )TS
as c and by including d SINR(α)/d α, we get

d EE(α)
d α

=
1
c

(
NSCm · α · log2(1 + SINR(α))

+ −
CH · TS · PT · KTE · N 2

SCm · α

D(α)

·
1

D(α) + CH · TS · PT

)
(16)

where D(α) ≈ PT · TS ¯CHT in the interference-limited
scenario and D(α) ≈ KTE · NSCmα in the noise-limited
scenario. Therefore, for an interference-limited scenario,
we have:

SINR(α) ≈
CH

CH I
. (17)

d EE(α)
d α

≈
NSCm
c

(
log2(1 +

CH
CH1

)

− α
CHKTENSCm
¯CHT ( ¯CHT + CH )

)
(18)

and, for a noise-limited scenario,

SINR(α) ≈
PTTSCH

kTENSCm · α
, (19)

d EE(α)
d α

≈
NSCm
c

(
log2(1 + SINR) −

1
1 + (1/SINR)

)
.

(20)

Therefore, we can make the following remarks:
• SINR(α) decreases linearly with α in the noise-limited
region; that is, the associated rate decreases logarithmi-
cally with α. In interference-limited regions, SINR(α)
and the rate do not depend on α.

FIGURE 3. Energy efficiency comparison between the 4 different RUCs
defined for NB-IoT using the different schedulers.

• The energy consumed by one RUCα transmission is
equal to

PTTSNSCm · α · NSFM/α

NSCm · α
=
PTTSNSFM

α
(21)

and it decreases linearly with α, that is, a good reason
for increasing α.

• From (18), we observe that α CHKTENSCm
¯CHT ( ¯CHT+CH )

≪ PTTS ≪

1 and the derivative is positive, indicating that EE
increases with α.

• From (20), we observe that, for SINR > 1, the derivative
is always positive, indicating that EE increases with α.

Therefore, we observe that increasing α produces an
advantage from the EE perspective, because the potential rate
decreases only logarithmically and only in the noise-limited
case, whereas the consumed energy decreases linearly.

We also simulated seven cells of the layout for different
numbers of devices per cell to compare the performance of
the four specific RUCs of the NB-IoT, as shown in Fig. 3
(see also Sect. VI). It is clear that the EE of RUC4 is higher
than those of the other RUCs. For example, RUC4 EE is
3.7, 14 and 86 times higher than that of RUC3, RUC2, and
RUC1, respectively. Moreover, the worst scheduling strategy
of RUC4, that is, the round robin (RR), is better than any
strategy of the other RUCs.

1) USE OF A SINGLE RUC
We have seen that, in the presence of uniform power and RUC
allocation, the RUC with the highest α (RUCαM , 4 in the
LTE NB-IoT case) is the best from the point of view of a
single EE. Moreover, in the case of uniform power allocation,
we observe that there is no difference between the system EE
in (4) and the average of the single EEs in (7).

We also note that using the same RUC can reduce
the flexibility of allocation in terms of space occupation.
However, if the grid of available SCs× SFs can be partitioned
into a set of RUCαM without loss owing to the particular RUC
shape, this choice does not affect the function optimization.
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Under these conditions, we can reformulate the opti-
mization problem by removing the constraints concerning
the RUCs and, instead of indexes s and t for the SCs
and SFs, using only the index g to indicate the selected
RU among the set G of available ones; in fact the
entire grid SCs × SFs is partitioned into the set G of
RUC without shape loss. Therefore, we can rewrite the
EE as

fE (x(u)c,g) =

∑
c∈C

∑
u∈Uc

∑
g∈G x

(u)
c,gR

(u)
c,g∑

c∈C
∑

u∈Uc

∑
g∈G x

(u)
c,g(PC + PT )

, (22)

subject to ∑
g∈G

x(u)c,gR
(u)
c,g ≥ R(u)min,c, ∀u ∈ Uc, c ∈ C,

and the latency function as

fL(x(u)c,g) = −
NSFM
αM

·

∑
c∈C

∑
g∈G

∑
u∈Uc

g

·
(x(u)c,g − x(u)c,g−1 − |x(u)c,g − x(u)c,g−1|)

2
, (23)

where we assume that for α = αM , the corresponding RUC
occupies all the available SCs, as in the specific case of the
LTE NB-IoT, which means that the index g corresponds to a
new equivalent time index or t = g · NSFM/αM .
Then the rate is given by

R(u)c,g =
1

r (u)c TS
· log2

(
1 +

P(u)c,gTSCH
(u)
c,c,g

EI + kTENSCmαM

)
, (24)

with the interference term

EI =

∑
a̸=c,a∈C

∑
j∈Ua

PTTSCH (j)
a,c,gx

(j)
a,g

and the constraint on non-overlapping devices in the same cell
can be written as∑

u∈Uc

x(u)c,g ≤ 1, ∀g ∈ G, c ∈ C .

Finally, the repetition constraint can be written as in (9)
and (10), as follows:

r (u)c = 1 h(u)0 + 2 h(u)1 + 4 h(u)2 + 8 h(u)3 + 16 h(u)4 + · · · ,

(25)

and
7∑

q=0

h(u)q = 1, (26)

V. THE PROPOSED SOLUTIONS FOR THE JOINT
EE-LATENCY OPTIMIZATION PROBLEM
This section presents suboptimal implementations for a
feasible approximation of (3) and numerical validation of
the problem properties that we want to emphasize. Notably,
the algorithm is suitable for a system that allocates one
RB or RU (such as RUC4 in the case of the NB-IoT).

The first is a heuristic algorithm for EE optimization,
followed by a solution for the latency compatible with EE
maximization, and a novel algorithm, named ‘‘best score.’’
Finally, we present a generalized multi-dimensional version
of the ‘‘best score’’ algorithm.

A. ENERGY EFFICIENCY MAXIMIZATION
The algorithm is simple: the EE for each device is calculated
for a specific RU, the devices are ordered according to their
achieved single EE; and finally, the RU is assigned to the
device with the highest EE. This algorithm is part of the ‘‘best
score,’’ as shown in Table 4. Because the total power for each
device is fixed, maximizing EE is equivalent to maximizing
the rate or SINR for each device.

The sub-optimality of the algorithm is related to interfer-
ence optimization, which is neglected in this study. It is clear
from (6) that there is a particular configuration of mutual
interference terms that optimizes the rate in the allocation
process. Here, each cell allocates the RUs independently
without considering their impact on the others.

B. LATENCY MINIMIZATION
To minimize latency, we must minimize the scheduling
waiting time and total transmission time of the RU, including
consecutive repetitions. Given that the scheduling time
depends on the queue formed by allocating the list of
devices along the resource grid, the total transmission time
is minimized if the number of repetitions is also minimized.
Simultaneously, the number of repetitions depends on the
SINR; consequently, maximizing the SINR, as expressed for
the EE, is strictly coherent with the minimization of the
number of repetitions.

Therefore, we formulate a process for achieving overall
latency minimization, including scheduling waiting time:

1) For each device, we calculated the total transmission
time for the available RU, as was done for EE.

1) We[2)] apply a known theorem from queue theory, that
is, SJF [45], [46]: the scheduling order of the device is
selected according to its transmission time.

The second step minimizes the average waiting time for
devices in a queue by first serving the devices with the
shortest service or transmission times.

The shortcoming of this method, which makes it sub-
optimal in this context, is that it is not guaranteed that
the SINR or rate will be the same for a device along the
entire queue or resource grid according to the coherence
time of the channel. Therefore, the order with respect to
the lowest transmission time (that is, according to the best
SINR) could change when the queue is served. Nevertheless,
as we will see in the next section, the approach realizes a
best-effort strategy in which the device is immediately served
with the current instantaneous SINR, achieving a coherent
trade-off between the best rate (best EE), minimum number
of repetitions, and minimum average scheduling time at each
SF.
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TABLE 4. Procedure for suboptimal resource allocation: ‘‘best score’’.

C. SCORE MAXIMIZATION
This suboptimal solution is a combination of EE maxi-
mization and latency minimization according to (3). The
algorithm, which is reported in Table 4, operates as follows:
the scheduler starts from the first available RU in the resource
grid according to index g and computes the current SINR,
rate, EE, and latency for all unscheduled devices. Two lists
are created: in the former, the devices are ordered according
to their EE from the highest; in the latter, the devices are
ordered according to their latency from the lowest. We then
search for the device in which the weighted sum between EE
and latency is the maximum, according to weights w1 and
w2 in (3). Therefore, the current RU is allocated to the device
with the highest ‘‘best score’’ value. The scheduler moves to
the next available RU and recomputes the EE and latency,
if necessary, according to the channel variations, and the
operation is repeated until all devices are scheduled.

D. MULTI-DIMENSIONAL ALGORITHM
In this section, we propose a generalized form of the ‘‘best
score’’ algorithm, denoted as JL-EE (Joint Latency - Energy
Efficiency). The proposed algorithm performs the scheduling
function and is based on a two-dimensional matrix or array,
denoted T-EE. Each dimension of the matrix contains the
quantized NT levels of the associated parameters, latency
L in the interval {TMin,TMax} for the rows, and the NEE
levels of EE in the interval {EEMin,EEMax} for the columns
(Fig. 4). Thus, T-EE creates a set of NEE timesNT cells, each
associated with two (T ,EE) values. Note that the intervals are
ordered in the matrix from best to worst; that is, from TMin for
latency and EEMax for EE.

The algorithm has the following parameters:

• The number NT of levels of L, which means that
the interval {TMin,TMax} is divided into NT uniform
intervals 1T .

• The number NEE of levels of EE , which means that
the interval {EEMin,EEMax} is divided into NEE uniform
intervals 1EE .

• The weights w1, associated with T , and w2, associated
to EE , for computing the weighted performance values.

FIGURE 4. The T-EE 2D array and next cell selection (red arrows).

The algorithm has the following inputs:
• Set of devices i = 1, . . .NU , which represents the
operations to be scheduled.

• Set of Resource Units (RU) k = 1, . . .N(L). The set
of RUs represents the available resources, and without
loss of generality, we can imagine it as a set of
non-overlapping elements, each constituting a possible
resource choice for the scheduler. For instance, these
RUs can all be RUCα with maximum α.

• For each i-th device and k-th RU, the set of parameters
Tik and EEik . These values are typically computed
before the scheduling process on a block basis, accord-
ing to the SNR.

The algorithm is presented here as a block-based scheduler;
that is, it allocates the entire set of RUs to the NU devices and
then moves to a new block of RUs and devices. According to
the well-known strategies exploited in this field, devices that
have not been allocated to one of the blocks can be moved
to the next. Furthermore, it is straightforward to extend the
algorithm to a continuous modality by adding new devices
and resources when available and updating the corresponding
inputs.

For each device, the algorithm outputs the allocation to one
of the available RUs, or no allocation.

The algorithm steps (Fig. 5) can be described as follows.
1) Each T-EE cell (n,m) was filled with the couples

(Tik ,EEik ) which belong to the corresponding perfor-
mance parameters intervals.

2) The algorithm begins with the upper-left cell (n = 1,
m = 1), which then becomes the current cell.

3) The NC,nm couples present in the current cell (n,m)
are ordered with respect to the weighted sum of the
corresponding performance parameters:

wj = w1Tik + w2EEik , (27)

for j = 1, · · · ,NC,nm.
4) According to the ordered list in the current cell (n,m),

the corresponding RU (index k in couple (Tik ,EEik ))
is allocated to the associated device (index i in couple
(Tik ,EEik )). When a device is allocated, the other
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FIGURE 5. Flowchart of the proposed algorithm.

possible couples with the same index i can be erased
from the list if the algorithm is programmed to allocate
only one RU to each device.

5) The current cell is cancelled from the matrix, and
the algorithm checks whether all devices (or other
constraints) are allocated. If so, the algorithm ends and
it moves to the next resources/device block. If no, the
next cell (n′,m′) is selected in the matrix (moving in the
right and/or down direction, Fig. 4), and the algorithm
performs a new iteration from point (3).

The next cell selection deserves separate discussion because it
is one of the characteristic features of the algorithm. This step
is denoted as the path strategy of the algorithm in the T-EE
array. We can distinguish at least three basic path strategies,
but this choice can be easily extended to more elaborate
approaches.

• Fixed path: A predefined path among the cells in the
matrix is set before the algorithm begins.

• The next cell is the closest cell, which has the maximum
number of devices, to increase the algorithm speed and
efficiency.

• The next cell is the closest cell, which has the minimum
average weighted sum computed by averaging all values
wj (27) for the couples in each neighboring cell.

We can observe the following for characterizing this
algorithm with respect to the state-of-the-art.

• If NEE = NT = 1, the algorithm reduces to the
computation of an ordered list with respect to the
weighted sums of all possible allocation couples.

• If NEE = 1, the algorithm reduces to a pure SJF
approach.

E. COMPLEXITY ANALYSIS
In this section, we present the complexity analysis of
the proposed algorithms, that is, the best score and
multi-dimensional version of the algorithm. First, a com-
plexity analysis of the best score algorithm (Sect. V-C),
Table 4 shows two main nested loops, an outer loop and an
inner loop. The outer loop runs a number of times equal
to the number of devices within the cell; thus, O(n). The
inner loop represents the number of unscheduled devices,
which decreases by one device at each iteration of the outer
loop; thus, its complexity is O(n/2). Therefore, the overall
complexity of the algorithm isO(n·n/2), orO(n2). Regarding
the multi-dimensional algorithm (Sect. V-D) a flowchart of
the algorithm is presented in Fig. 5. First, to fill the 2D
array (Fig. 4), the complexity is O(n · m) where n represents
the number of devices, and m is the number of RUs per
scheduling frame. Second, there is a nested loop similar
to that used in the best score algorithm and its complexity
is O(n2). Therefore the overall complexity turns out to be
O(m · n+ n2).

VI. NUMERICAL RESULTS
The proposed solutions were simulated based on the channel
model, parameters and assumptions listed in Table 5. Simula-
tions were carried out for a seven-cell urban macro scenario,
and the cells caused inter-cell interference. In addition,
a full-buffer model was assumed.

All schedulers are block-based schedulers, which means
that the scheduling decision is made after analysing a block of
RUs; for each RU in the block, the EE, number of repetitions,
and transmission latency for each device are computed
according to its SINR (assumed known without errors)
and then the algorithms operate their decisions according
to the corresponding scores and strategies. The scheduling
algorithms are described in Sect. V (‘best score’, ‘SJF’,
‘best EE’, ‘JL-EE’), with the addition of the standard RR
used as a benchmark. In the T-EE matrix of the JL-EE, the
NT = 8 levels of latency correspond to the eight options for
the number of repetitions (1, 2, 4, 8, 16, 32, 64, 128) and the
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TABLE 5. Simulation parameters.

NEE = 8 levels of the EE are obtained by dividing the range
of EE values into eight uniform levels. The weights w1 and
w2 of ‘best Score’ and ‘JL-EE’ are normalised to balance
the values obtained from the transmission latency and EE,
i.e., they are equal to 0.5/TMax and 0.5/EEMax respectively.
To enhance the comparison with the proposed algorithms,
we also implemented the algorithm proposed in [29], named
here the combination-based SCheduler (CSC); this algorithm
operates in the same block as the others, selecting the
best allocation according to the score function proposed
in [29].

It is note worthy that all schedulers are subject to a
minimum rate constraint. Moreover, the transmission power
of all the devices is set to the maximum power, or is
subject to automatic transmit power control (ATPC). In all the
figures, the simulations are run for 100 independent channel
realisations and device positions. In addition, specific care
has been taken to realistically consider inter-cell interference.
For each of the 100 runs, the seven cells are subjected to
iterative repetition of the simulation until convergence of the
allocation process is achieved, as described below.

• In the initial step, a random allocation of resources
allows the computation of the interference at each device
for each RU and, consequently, of the initial SINR.

• At the end of each step, the current allocation is used to
update the values of the transmit powers of all devices
and, consequently, the value of the interference.

• The simulation is repeated until the average EE mea-
sured in the centre cell achieves a stable convergence.
The final values of EE, latency, power, and rate
measured in this cell for all devices are used as
performance results.

At the reference cell radius R = 1000 m with the device
transmit power PT fixed at the maximum value (no ATPC),
the average EE achieved by each device is presented in Fig. 6,
and the resulting latency is shown in Fig. 7. We can observe
that all of the proposed schedulers have a clear advantage

FIGURE 6. Average EE per user for RUC4 with radius R = 1000 m and
maximum transmission power.

FIGURE 7. Average latency per user for RUC4 with radius R = 1000 m and
maximum transmission power.

over RR, especially for latency. One of the key factors for
understanding these results is the role of repetitions. For the
same RU, if one device uses fewer repetitions than other
devices, this means that (i) this device has a better channel
in this RU than the others, (ii) it consumes less total energy
for transmitting all repetitions, and (iii) it will have better
latency. From the results, this is confirmed by the fact that the
performances of the simulated algorithms is similar, except
for the RR. From another point of view, this is because of the
correlation between the solutions for optimal EE and optimal
latency, making solutions for EE optimization or latency
minimization close to each other, even if designed initially
with differing objectives. When the SNR for a device is low,
the EE is usually low, and the number of repetitions increases
to achieve the required performance, thereby increasing the
transmission latency. In addition, these devices are usually
postponed in the transmission queue because this contributes
to the minimization of the overall latency (see the principle
of SJF in Sect. V).
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FIGURE 8. Average EE per user for RUC4, R = 1000 m, and number of
users Nusers = 25, 200. Power control with different values of P0 and
α = 1.

To investigate the impact of the ATPC, we consider the
following simple formulation for power control:

PTx = P0 + αPL , (28)

where PTx is the transmission power, P0 is a parameter
that indicates the desired received power, and 0 ≤ α ≤ 1
is the compensation factor for the path loss PL . First,
we investigate the impact of P0 for the minimum and
maximum number of users in the simulations (25 and 200),
and the results are presented in Figs. 8 and 9, where it can
be observed that as P0 increases, both the EE and latency
decrease even if in the latency the difference among the
algorithms is clearly more relevant. We then investigate the
impact of the number of users for two values of P0 that
achieve good latency performance and reasonable EE, that
is, −67 dBm and −77 dBm. Figs. 10 and 11 show the
resulting EE and latency, respectively, with ATPC. With
regard to EE, the results corresponding to the two key
values of P0 clearly show that the algorithms are similar
and P0 has a significant impact on EE. At the same time,
comparing this EE to the values in Fig. 6, it is clear that
the ATPC has a positive impact on EE. However, there is a
noticeable impact of each scheduler on the latency, as the
RR performance is clearly poor and the proposed algorithm
achieves a latency reduction of approximately 40% with
respect to the benchmark CSC. It should be noted that both
values of P0 achieve similar latencies and only one value is
presented.

As explained in the system model, a three-sector antenna
is used as the reference system. We now present the results
obtained using an omni-directional antenna (single sector).
It can be seen in Figs. 12 and 13 that there is a decrease in
the EE and, in particular, a substantial increase in the latency;
the reason for this is the significant increase in interference
in this type of layout.

Another relevant layout parameter is obviously the cell
radius R. In Figs. 14 and 15, we present the results when R is

FIGURE 9. Average latency per user for RUC4, R = 1000 m, and number of
users Nusers = 25, 200. Power control with different values of P0 and
α = 1.

FIGURE 10. Average EE per user for RUC4 and R = 1000 m. Power control
with P0 = −67,−77 dBm and α = 1.

doubled to 2000 m. It can be observed that the overall trend
and behaviour of the schedulers do not change because the
SINR does not change, and the same is true for R = 4000 m.

Finally, with respect to the requirements of EE and latency
compatibility with IoT cases, as discussed in Sect. I, we can
observe that:

• EE can increase considerably reducing the parameter
P0 in the ATPC, and it turns out to be very similar for all
scheduling techniques. However, reducing P0 increases
the average latency owing to the reduction in the SNR.
However, the JL-EE algorithm providesmore robustness
with respect to latency degradation as P0 decreases
(Figs. 8 and 9, Figs. 12 and 13).

• With the maximum power transmission, the latency is
similar for most of the techniques (except RR) and the
JL-EE and CSC algorithms assure, at the same time, also
the best EE (Figs. 6 and 7, Figs. 14 and 15).
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FIGURE 11. Average Latency per user for RUC4 and R = 1000 m. Power
control with P0 = −67 dBm and α = 1.

FIGURE 12. Average EE per user for RUC4 with one-sector antenna,
R = 1000 m, and maximum transmission power.

FIGURE 13. Average latency per user for RUC4 with one-sector antenna,
R = 1000 m, and maximum transmission power.

• The latency achieves the minimum values with max-
imum power or relatively high values of P0 as the

FIGURE 14. Average EE per user for RUC4 with R = 2000 m, and
maximum transmission power.

FIGURE 15. Average latency per user for RUC4 with R = 2000 m and
maximum transmission power.

SNR increases, thus reducing the repetitions. Under
these conditions, it is possible to achieve the minimum
transmission latency of a single slot (here, 1 ms), and the
linear increase in the latency as a function of the number
of devices (approximately all the results for the three
sectors cells, except RR) shows that the latency increase
is due only to the queue latency. Therefore, the correct
management of packets priorities would guarantee the
most stringent low latency requirements.

VII. CONCLUSION
In this work, we studied the relationship between EE
and latency in multi-cellular scenarios, with an emphasis
on IoT technologies. We proposed an optimization prob-
lem based on the joint optimization of energy efficiency
and latency, and discussed the mutual relations between
these key performance factors. When multiple rectangular
resource unit configurations are prescribed by the standard,
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as in the NB-IoT, we investigated their energy efficiency
and provided some guidelines for simplifying the initial
problem formulation. Then in the theoretical framework,
we incorporated an approach based on the ‘‘shortest job
first’’ from queuing theory and proposed a scheduler for
minimising latency in the presence of repetitions. Moreover,
we designed a sub-optimal joint scheduler to show that the
resulting performance outperforms the round robin scheduler,
providing the best results for all the simulated options.
Furthermore, the proposed scheduler was compared with a
benchmark algorithm. The results also confirm the expected
high correlation between EE and latency but also reveal the
space for performance enhancement and trade-offs in the
presence of a multi-cellular interference-limited scenario.
From the results, the impact of the power control and its
parameters on the EE became clear.

APPENDIX
FORMULATION OF THE SHAPE CONSTRAINTS
As part of the optimization problem described in Section IV.
In the following, we provide the constraints that force the
scheduler to allocate the RUs according to the specific shapes
provided by the 3GPP. Hence, we write constraints for both
the time and frequency domains to force the predefined values
that constitute the RU shape.

In the time dimension, for device u at a given SF t ,∑
s∈S

x(u)c,t,s = N (u)
c,t , ∀t ∈ T , u ∈ Uc, c ∈ C (29)

This implies that the number of SCs allocated to device is
equal to N (u)

c,t . Subsequently, to guarantee that the allocated
SCs are consecutive,

end−1∑
s=1

|(x(u)c,t,s − x(u)c,t,s+1)| ≤ 2, ∀t ∈ T , c ∈ C . (30)

In the frequency dimension, for device u at a given SC s,∑
t∈T

x(u)c,t,s = M (u)
c,s , ∀s ∈ S, c ∈ C (31)

The above constraint guarantees that the number of SFs
allocated to the device is M (u)

c,s . Then, the consecutive SFs
constraint can be written as:

end−1∑
t=1

|(x(u)c,t,s − x(u)c,t+1,s)| ≤ 2, ∀s ∈ S, c ∈ C . (32)

In addition, by introducing the binary RUC allocation
variable v(u)c,q (q = {1, 2, 3, 4} is the index of the four RUCs).
Because each device has only one assigned RUC, we can state
that ∑

q

v(u)c,q = 1, (33)

Moreover, the values N (u)
c,t and M (u)

c,s defined in (29) and (31)
can assume, at each SF t or SC s, only two values, that is,
0 if the SF or SC is not allocated to that device or the values

r (u)c · z(u)c , q(u)c , which are the corresponding sides of the RUCs
at time (including the repetitions) and frequency domains,
respectively (Table 3). Consequently, we should also force
the number of allocated SCs per SF to be equal to the value
r (u)c · z(u)c or zero for each device, that is,

N (u)
c,t · (N (u)

c,t − r (u)c · z(u)c ) = 0, ∀t ∈ T , ∀c ∈ C, (34)

and the number of allocated SFs per SC is equal to the value
quc or 0 for each device, that is,

M (u)
c,s · (M (u)

c,s − q(u)c ) = 0, ∀s ∈ S, ∀c ∈ C . (35)

Therefore, considering just 1 RUC per device, we have that

z(u)c = 1 · v(u)c,1 + 3 v(u)c,2 + 6v(u)c,3 + 12 v(u)c,4, (36)

q(u)c = 8 v(u)c,1 + 4 v(u)c,2 + 2v(u)c,3 + 1 · v(u)c,4. (37)

Equations (33) and (37) characterize the constraints on the
four RUCs: (33) guarantees that only one value of v(u)c,q is 1,
whereas the values from (36) and (37) force the total numbers
of SCs and SFs per device to be equal to one of the predefined
RUC shapes.
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