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A B S T R A C T

Determining early-stage prognostic markers and stratifying patients for effective treatment are two key
challenges for improving outcomes for melanoma patients. Previous studies have used tumour transcriptome
data to stratify patients into immune subgroups, which were associated with differential melanoma specific
survival and potential predictive biomarkers. However, acquiring transcriptome data is a time-consuming and
costly process. Moreover, it is not routinely used in the current clinical workflow. Here, we attempt to overcome
this by developing deep learning models to classify gigapixel haematoxylin and eosin (H&E) stained pathology
slides, which are well established in clinical workflows, into these immune subgroups. We systematically
assess six different multiple instance learning (MIL) frameworks, using five different image resolutions and
three different feature extraction methods. We show that pathology-specific self-supervised models using 10x
resolution patches generate superior representations for the classification of immune subtypes. In addition, in
a primary melanoma dataset, we achieve a mean area under the receiver operating characteristic curve (AUC)
of 0.80 for classifying histopathology images into ‘high’ or ‘low immune’ subgroups and a mean AUC of 0.82 in
an independent TCGA melanoma dataset. Furthermore, we show that these models are able to stratify patients
into ‘high’ and ‘low immune’ subgroups with significantly different melanoma specific survival outcomes (log
rank test, P < 0.005). We anticipate that MIL methods will allow us to find new biomarkers of high importance,
act as a tool for clinicians to infer the immune landscape of tumours and stratify patients, without needing to
carry out additional expensive genetic tests.
1. Introduction

Immunotherapy has revolutionised the treatment of melanoma pa-
tients (Robert et al., 2015; Ugurel et al., 2016; Wolchok et al., 2021),
however, a decade on from the first immune checkpoint inhibitor
being approved for treatment of advanced melanoma (Huang and
Zappasodi, 2022), there are still patients who do not derive long-
lasting benefits or respond to immunotherapeutic treatment. Therefore,

Abbreviations: AUC, Area Under the receiver operating characteristic Curve; CLAM, Clustering-constrained Attention Multiple instance learning; CNN,
Convolutional Neural Network; DSMIL, Dual Stream Multiple-instance learning; H&E, Haematoxylin and Eosin; LMC, Leeds Melanoma Cohort; MIL, Multiple
Instance Learning; MSS, Melanoma specific survival; ResNet, Residual Network; SimCLR, Simple contrastive learning for learning visual features; SSL,
self-supervised learning; TCGA, The Cancer Genome Atlas; TILs, tumour infiltrating lymphocytes; TransMIL, Transformer based Multiple-instance learning; WSI,
Whole Slide Image
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determining early-stage prognostic biomarkers, understanding disease
progression and stratifying patients accordingly for effective treatment
of melanoma, have all emerged as increasingly important challenges to
address.

In 2019, Poźniak et al. (2019), used tumour transcriptomic data
to stratify melanoma patients into immune-related subsets, based on
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Fig. 1. Datasets and experimental framework. A. Patient cohorts: two independent datasets that were used for training and testing of models and the distribution of immune
subtype labels within these datasets. B. The images were processed, then three different feature extraction methods were used to generate feature embeddings. Six different MIL
aggregation mechanisms were used to get final slide-level classifications. Immune attention heatmaps were used to interpret correctly classified and misclassified cases. Survival
analysis was carried out to determine the prognostic ability of the best performing models. LMC, Leeds Melanoma Cohort; MIL, Multiple Instance Learning; TCGA, The Cancer
Genome Atlas.
the inferred abundance of 27 immune cells as described by Angelova
et al. (2015). They carried out consensus clustering to delineate three
resulting subsets with distinct immune phenotypes: a ‘high’, ‘interme-
diate’ and ‘low immune’ subgroup. The patients in the ‘high’ subgroup,
had tumours enriched in pathways involved in immune signalling
and had a significantly lower hazard of melanoma death compared
to the ‘intermediate’ and ‘low immune’ subsets. Whereas the ‘low
immune’ subgroup expressed genes enriched in pathways for the cell-
cycle, metabolism and immune suppression. Furthermore, although
the patients were enrolled before immunotherapeutic regimen became
available, the three identified immune subsets had distinct molecular
profiles which could be targeted by current or future immunothera-
pies (Acharya et al., 2020; Kjeldsen et al., 2021; Rotte, 2019). They
were also able to replicate these findings, in an independent transcrip-
tomic dataset of melanoma tumours, from the cancer genome atlas
(TCGA).

Currently, the identification of prognostic molecular biomarkers for
cancer patients, using transcriptomic data analysis, is a costly and time-
consuming process. Moreover due to the global shortage of staff in
pathology departments, particularly in the UK, where only 3% of de-
partments are fully staffed, there is a significant demand for automated
screening and triaging tools to facilitate the detection of predictive
biomarkers (The Royal College of Pathologists, 2018). The integration
of deep learning and image analysis presents a cost-effective opportu-
nity to automate the detection of prognostic biomarkers within clinical
workflows (Kacew et al., 2021). This approach utilises digitised haema-
toxylin and eosin (H&E) stained slides called whole slide images (WSIs),
which are multi-resolution, gigapixel images that contain a wealth of
diagnostic information. Several studies have successfully demonstrated
the use of deep learning techniques with H&E-stained slides to predict
genomic subtypes and the expression of specific genes. For example,
deep learning pipelines that utilise WSIs have been implemented to
classify and predict mutations for lung (Coudray et al., 2018; Yu et al.,
2020) and breast cancer subtypes (Couture et al., 2018; Rawat et al.,
2020; Qu et al., 2021; Lu et al., 2021b; Campanella et al., 2022), predict
tumor mutational burden in bladder cancer patients (Xu et al., 2019)
and detect microsatellite instability in colorectal, gastric, endometrial
and ovarian cancers (Hildebrand et al., 2021; Alam et al., 2022; Park
2

et al., 2022; Guo et al., 2023). Additionally, Sirinukunwattana et al.
(2021) showcased how deep learning applied to WSIs could be used
to predict image-based consensus molecular subtypes in colorectal can-
cer, exhibiting enhanced prognostic capabilities compared to current
grading systems.

Despite these advancements, there are a limited number of stud-
ies focusing on classifying melanoma tumors based on image-based
molecular subtypes beyond the examination of mutational burden and
individual mutations (Kim et al., 2020, 2022; Noorbakhsh et al., 2020).
In this study our objective is to classify melanoma H&E slides into
immune subtypes (Poźniak et al., 2019), that have added prognostic
ability compared to the current melanoma staging system, using deep
learning.

1.1. Related works

Through the utilisation of digitised WSIs, it has become possible
to apply computer vision algorithms with integrated computational
pipelines for the analysis of H&E stained slides. Yet, the considerable
size of these multi-gigabyte images and absence of annotation or pixel-
wise labelling presents a challenge for processing WSIs directly in an
end-to-end manner. To address this, multiple instance learning (MIL)
frameworks, where an image is treated as a bag containing many
that inherit the bag or slide-level label (Dietterich et al., 1997), have
been implemented to effectively analyse WSIs (Campanella et al., 2018,
2019; Lu et al., 2020; Courtiol et al., 2019; Lu et al., 2021a; Schirris
et al., 2021; Valieris et al., 2020). In MIL frameworks, a histopathology
image can be subdivided into smaller patches, which can be further
processed, using convolution neural networks (CNNs), to create feature
representations. Following this, different ML algorithms or mathemat-
ical aggregators, such as maximum or mean operators (Ilse et al.,
2018), can be applied to the features to generate a slide-level label
classification.

In recent years, there has been continued developments of new MIL
frameworks based on the MIL paradigm, in 2018 (Ilse et al., 2018)
added a trainable attention-based pooling operator and in 2020 (Lu
et al., 2020) further added to this work by implementing a clustering
mechanism to further separate instances for cancer subtype classifi-
cation. Li et al. (2021a) then proposed Dual-Stream MIL (DSMIL),
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applying an attention mechanism to both the instance-level stream and
the bag-level stream and using the instance with the highest attention
score to re-calibrate other instances within the bag. Moreover, Shao
et al. (2021), developed a transformer-based MIL (TransMIL) method-
ology, which processes images as sequences of instances to capture the
relationships between these instances using self-attention mechanisms.
This instance level information is then aggregated together to make
a bag-level prediction. In this study we focus on implementing these
aforementioned MIL models, because they have open source code and
are well-established baselines, but many other notable variations on
MIL models continue to be developed for computational pathology
tasks with high classification accuracy (Li et al., 2021b; Zhang et al.,
2022; Chen et al., 2022; Tourniaire et al., 2023; Lin et al., 2023).

When encoding the patches from the WSIs as inputs for MIL models,
it has become common practice to use feature extractors pretrained on
the benchmark visual recognition dataset ImageNet (Awan et al., 2018;
Courtiol et al., 2019; Kather et al., 2019; Lu et al., 2021a; Ghaffari Laleh
et al., 2022), which is comprised of millions of annotated natural im-
ages, from thousands of categories, such as food, locations, animals and
people (Deng et al., 2009). These CNN feature extractors, pretrained
using ImageNet (Deng et al., 2009) are widely available, avoiding the
need for researchers to have to train a feature extraction network
from scratch, which can require large computational resources and the
challenge of acquiring a large, diverse and high-quality annotated WSI
dataset. Nevertheless, while using pathology-agnostic features from net-
works pretrained with ImageNet has been shown to generate effective
results (Awan et al., 2018; Courtiol et al., 2019; Kather et al., 2019;
Lu et al., 2021a; Ghaffari Laleh et al., 2022), the differences between
the image domains, can lead to a reduction in accuracy for certain
pathology specific tasks. For example, Yu et al. (2020), reported that
when detecting TP53 mutational status from H&E stained images, the
classification is based on pixel intensity within the cytoplasm, which
is not represented in non-histological image datasets like ImageNet.
Furthermore (Noorbakhsh et al., 2020) found that network AUC per-
formance improved when training CNN parameters on cancer images
and noted that pre-training with cancer histology images improved
distinction between classes where differences are more subtle. However
pretraining a network can require large labelled datasets (Coudray
et al., 2018; Campanella et al., 2019; Fu et al., 2020), which are not
always available.

One solution that addresses both domain specificity and lack of
annotated pathology images is self-supervised learning (SSL). SSL is a
method which learns features from the signals within the data itself
and does not rely on manual labels, hence SSL models can be trained
using unlabelled patches from WSIs. Abbasi-Sureshjani et al. (2021)
compared the performance of models using features from a CNN pre-
trained using a Bootstrap your own latent (BYOL) (Grill et al., 2020)
SSL approach with H&E stained images, against features from a CNN
pretrained with ImageNet. While the performance of the SSL approach
and standard ImageNet approach were similar when classifying test
set images from the same scanner, the SSL feature model was able
to generalise better to images from an independent unseen dataset
from new scanners. In addition, Saillard et al. (2021) implemented
SSL to pretrain a MoCo V2 model with TCGA images to generate
feature representations for downstream MIL aggregators. They found
that using SSL feature representations, consistently improved perfor-
mance for classifying microsatellite instability (MSI) in colorectal and
gastric cancer images, compared to using features from a 50 layer
residual network (ResNet50) pretrained using supervised learning on
the ImageNet dataset. Moreover (Schirris et al., 2021), demonstrated
how using a histopathology-specific feature extractor, pretrained using
simple contrastive learning for learning visual features (SimCLR Chen
et al., 2020 [an SSL approach]), improved classification of MSI and
homologous recombination deficiency in breast and colorectal cancer
3

datasets. t
1.2. Contributions

In this study, we comprehensively assess the performance of six
different MIL models, using three different feature extraction methods
and five different patch resolutions on classifying melanomas into the
subgroups delineated by Poźniak et al. (2019) (see Fig. 1).

Our contributions are as follows: (1) We show that using a SSL
pathology-specific ResNet18 to extract features can improve model per-
formance for immune subtyping melanomas, compared to a ResNet18
and ResNet50 pretrained with ImageNet using supervised learning. (2)
We show that MIL models which apply an attention mechanism are
superior to standard max pooling MIL, but there is little difference
between these attention-based approaches. (3) We demonstrate how
10x resolution input patches are superior for classifying ‘high’ and ‘low
immune’ subtypes by providing a balance of cellular and contextual
detail, illustrating this through immune attention heatmaps. (4) We
implement survival analysis, to show the best performing MIL models
are able to stratify LMC patients into prognostic subgroups.

2. Methods

2.1. Segmentation and feature extraction

The H&E tissue in the all WSIs was segmented from the background
using the protocol designed by Lu et al. (2020). This required using
downsampled versions of the images, then converting them from a
red, green, blue (RGB) to hue, saturation, value (HSV) colour space
in order to threshold regions containing tissue from background using
the saturation channel. Morphological operations were then performed
to close gaps and holes within the segmented tissue portion of the
image and a threshold filter was then applied to remove foreground
objects that did not meet the area threshold requirements. The tissue
from the segmented images was then split into 256 pixel × 256 pixel
on-overlapping patches at five different resolutions (2.5x, 5x, 10x,
0x and 40x). We utilised three different feature extraction methods,
modified ResNet50 CNN architecture (He et al., 2016), pretrained

sing supervised learning on the ImageNet dataset (Deng et al., 2009),
ResNet18 CNN, which was also pretrained using supervised learning

n ImageNet and a ResNet18 pretrained using SSL on histopathology
mages (Ciga et al., 2021). The ResNet50 is often used as an upstream
eature extractor in MIL tasks, so was chosen as a baseline and the
esNet18 pretrained with ImageNet was implemented as a method
f comparison to the SSL ResNet18 as they have the same 18-layer
rchitecture. Adaptive mean-spatial pooling (Liu et al., 2018) was
tilised after the third residual block to modify the ResNet50, to ex-
ract 1024-dimensional feature embeddings from each patch. Whereas
he ResNet18 architectures extracted 512-dimensional feature embed-
ings from the patches. The SSL ResNet18 is a publicly available
SL model (Ciga et al., 2021) from https://github.com/ozanciga/self-
upervised-histopathology (last accessed: November 2022), which has
een trained using 57 multi-organ, multi-resolution (10x, 20x, 40x and
00x) histopathology datasets.

.2. Model architectures and training

ResNet50 CNN representations were then further compressed by a
ully connected (FC) layer, to K 512-dimensional vectors (𝐡𝑘𝑚), where

is the number of patch instances in the slide. The ResNet18 features
ere already this size, but were also passed through this FC layer. We

hen tested different MIL pooling aggregation functions for classifying

he immune subtypes from the patch embeddings.

https://github.com/ozanciga/self-supervised-histopathology
https://github.com/ozanciga/self-supervised-histopathology
https://github.com/ozanciga/self-supervised-histopathology
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2.2.1. Max pooling MIL
The baseline methodology we used was a max pooling MIL method,

referred to as a MIL model:

∀𝑚=1,…,𝑀 ∶ 𝑧𝑚 = max
𝑘=1,…,𝐾

(𝐡𝑘𝑚),

where 𝑧𝑚 is the slide-level representation for the 𝑚th slide from the M
WSIs. 𝐡𝑘𝑚 is the 𝑘th patch instance embedding from the 𝑚th slide and is
the low-dimensional patch representation with the highest probability
for a certain class, that provides the overall WSI label.

2.2.2. Attention MIL
Both of the attention-based MIL pooling functions with and with-

out gating (Ilse et al., 2018), calculate z, the slide-level representa-
tion, through the aggregation of the patch feature embeddings and
corresponding weights:

𝒛 =
𝐾
∑

𝑘=1
𝑎𝑘𝒉𝒌,

where ℎ𝑘 is the 𝑘th patch instance embedding and 𝑎𝑘 is the weight
that is derived from the neural network’s attention backbone. The
attention weights (𝑎𝑘) add to one to be invariant of the number of
patch embeddings in a slide. The weights for the attention mechanism
without gating are formulated by:

𝑎𝑘 =
exp

(

𝒘𝑻 tanh(𝑽 𝒉𝑻𝒌 )
)

∑𝐾
𝑗=1 exp

(

𝒘𝑻 tanh(𝑽 𝒉𝑻𝒋 )
)
,

where 𝐰 ∈ R𝑑×512 and 𝐕 ∈ R512×256 are the first and second FC layers
of the neural network, respectively and 𝑑 represents the dimensionality
of the input feature embeddings (1024 for the ResNet50 and 512
for the ResNet18 feature embeddings). Hyperbolic tanh element-wise
operations allow for gradient flow of both positive and negative values.

2.2.3. Gated attention MIL
Moreover, we implemented a gated attention mechanism, developed

by Dauphin et al. (2017) to introduce sigmoid non-linearity for learning
more complex relationships:

𝑎𝑘 =
exp(𝒘𝑻 tanh(𝑽 𝒉𝑻𝒌 ))⊙ 𝑠𝑖𝑔𝑚(𝑼𝒉𝑻𝒌 )

∑𝐾
𝑗=1 exp(𝒘𝑻 tanh(𝑽 𝒉𝑻𝒋 ))⊙ 𝑠𝑖𝑔𝑚(𝑼𝒉𝑻𝒌 )

,

where 𝐔 ∈ R512×256 and 𝐕 ∈ R512×256 are stacked FC layers parame-
terised by the network and form the attention backbone and ⊙ refers
to element-wise multiplications. Following the stacked FC layers, each
class has a parallel attention branch, with an attention-based pooling
function. The values from the aggregators are then used as inputs for a
softmax function, which determines the overall slide-level prediction.

2.2.4. Clustering-constrained-attention MIL
Furthermore, we evaluated clustering-constrained-attention MIL

(CLAM) developed by Lu et al. (2020). This mechanism was devel-
oped to improve feature learning between classes, by using pseudo
labels, with a support vector machine (SVM) loss function to increase
separation between the B most and B least attended patches within
an image (Lu et al., 2020). After the first fully-connected layer 𝒘𝟏,
a clustering layer is placed with 512 hidden units to perform binary
classification for each class, using sampled patch instances within the
slide. As there are no patch-level labels for the supervised clustering,
during training of the model, pseudo labels are generated from the
attention network and performance is evaluated using top-1 SVM
loss (Lapin et al., 2016).

2.2.5. Transformer based MIL
Additionally, we implemented transformer based MIL (TransMIL),

which is based on a correlated framework by Shao et al. (2021). Self
attention and multi-head attention are leveraged to incorporate spatial
information into slide-level classifications.
4
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2.2.6. Dual-stream MIL
The final MIL model we implemented was Dual stream MIL (DSMIL)

(Li et al., 2021a), which is another variation of MIL framework, which
models bag representations and instance-level representations sepa-
rately using two different streams. Within the instance-level stream,
instance-level classifiers are used on each feature embedding and a
max pooling operation is used to determine the highest-confidence
prediction - the critical instance. Subsequently, attention scores from
DSMIL are computed based on the similarity between each instance and
the critical instance, using a distance measure. These attention scores
are then used to re-calibrate and attention-weighted bag representation
to get the slide-level classification.

The original DSMIL paper (Li et al., 2021a) also incorporates SSL
feature extraction in the pipeline, however, as we wanted to compare
the features extracted using the methods described above, we do not
use this within our pipeline.

The code used to implement the CLAM, Attention, Gated-attention
and max-MIL models was adapted from the following code repository:
https://github.com/mahmoodlab/CLAMGitHubrepository (last acces-
sed: November 2022). In addition, the code used to train and assess
the DSMIL and TransMIL models was adapted from the following repos-
itories https://github.com/binli123/dsmil-wsi, https://github.com/szc
19990412/TransMIL and https://github.com/secrierlab/HistoMIL (all
last accessed: July 2023).

2.2.7. Model training
The networks were trained using a cross-entropy loss function,

comparing the slide label with the predicted slide-level label, to derive
the parameters. For all models, excluding the TransMIL model, Adam
optimiser with a learning rate of 2 × 10𝑒−4, and weight decay of
1×10𝑒−5 were applied. For the TransMIL model, following the author’s
implementation (Shao et al., 2021), we utilised a Lookahead opti-
miser (Zhang et al., 2019) with rectified Adam (RAdam) optimiser (Liu
et al., 2021) with a learning rate of 2 × 10𝑒−4, and weight decay of
1 × 10𝑒−5. Dropout with a probability of 0.5 was used after each layer
f the attention backbone of the CLAM, attention and gated-attention
odels and after the FC layer in the max-MIL model. Dropout was

pplied in the Nystrom self-attention module (Xiong et al., 2021) of
he TransMIL models. In addition, within the DSMIL models, dropout
as applied after the first linear layer in the instance-level classifier
nd applied before the first linear layer in the bag-level classifier.

We trained models using the three immune subgroups found by Poź-
iak et al. (2019) and also examined training models using only the

high immune’ and ‘low immune’ subgroups. We implemented 10-fold
onte Carlo cross validation, where each fold was split with 80% of

ata being used for training data and 10% being kept for both the test
nd validation datasets (see Table 1 & Table 2). Datasets were split at
patient-level, to prevent different slides from the same patient being

n the train, test and validation sets. Furthermore, during training, to
itigate class imbalances between subtypes, a slide was sampled pro-
ortional to the inverse of the frequency of its ground truth class. The
odels were trained for a minimum of 50 epochs, with early stopping

f the validation loss did not improve for 20 epochs continuously, to
revent overfitting. Additionally we experimented with increasing the
topping time from 50 to 300 epochs for a subset of models to test
hether increased numbers of bag instances, due to images being at a
igher resolution, led to the slower convergence of models.

To assess model performance, we calculated the mean area under
he receiver operating characteristic curve (AUC) with 95% confidence
ntervals (CI). When calculating performance for the three immune
ubgroups, the AUC scores were calculated for individual classes by
inarising classifications, then averaging the AUC for each class. A clas-
ification threshold of 0.5 was implemented. In addition, we calculated
he balanced accuracy and F1 scores for the LMC models with the
ighest AUC values for the binary classification task. Balanced accuracy

s a weighted accuracy measurement that accounts for differences in

https://github.com/mahmoodlab/CLAMGitHubrepository
https://github.com/binli123/dsmil-wsi
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
https://github.com/szc19990412/TransMIL
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class sizes within the dataset, by using both the summation of the recall
and specificity divided by two. The F1 score is a similar metric which
takes the harmonic mean of precision and recall and is bound between
[0,1], where 1 represents maximum precision and recall values, and 0
represents minimum precision and recall values. We calculated these
additional metrics to assess how imbalance within the dataset was
impacting performance. We defined the positive class as the minority
‘high immune’ class to observe whether the models were biased towards
the majority ‘low immune’ class.

2.3. Visual attention maps

Visual attention maps were developed by using the attention weight
scores (𝑎𝑘) for the patch embeddings. The attention scores were then
scaled with the highest (1.0), being the most highly attended patch
for the predicted slide-level label and the lowest (0.0) being the least
attended patch for the predicted slide-level label. The scores were then
converted to an RGB colourmap which is overlaid over the WSI, with
red tiles indicating highly attended patches and blue tiles indicating
low attention, which contribute less to the subtype label prediction.

2.4. Survival analysis

Melanoma specific survival (MSS) years were calculated using the
time of melanoma diagnosis to the time of melanoma death as stated
by death certificate, general practitioner records, hospital records, sum-
mary care records, or obituary. Patients who were alive without these
events or died from unrelated reasons were right censored. ‘High’ and
‘low immune’ labels were derived from each type of MIL model with
the best AUC performance for classifying the LMC test set (N = 230)
nd the TCGA test set (N = 89). As Monte Carlo cross validation was
sed, not all cases were sampled in the test set. We examined up to
1 years follow-up, with median follow-up years for the LMC dataset
eing 5.43 years and 2.67 years for the TCGA dataset.

A Kaplan–Meier estimator (Kaplan and Meier, 1958) was then used
o estimate the survival probability:

(𝑡) =
∏

𝑡𝑖≤𝑡

(

1 −
𝑑𝑖
𝑛𝑖

)

where 𝑆(𝑡) denotes the estimated survival at time 𝑡, 𝑑𝑖
𝑛𝑖

denotes the prob-
bility of an event occurring at each observed time point, 𝑑𝑖 represents
he number of melanoma deaths observed at time 𝑡𝑖, 𝑛𝑖 represents the
umber of individuals ‘at risk’ just before time 𝑡𝑖 and ∏

𝑡𝑖≤𝑡 represents
he product over the observed times 𝑡𝑖. A pairwise log-rank test was
hen used to measure if there was a significant difference between the
urvival distributions of the ‘high immune’ and ‘low immune’ subsets.

A univariate Cox proportional-hazards model (Cox, 1972; Breslow,
975) was implemented to assess the association between the predicted

high immune’ and ‘low immune’ subgroups and the MSS in the LMC
ataset. Where the univariate Cox proportional model can be denoted
y:

(𝑡|𝑋) = ℎ0(𝑡) ⋅ exp(𝛽𝑋)

here ℎ(𝑡|𝑋) represents the hazard rate at time 𝑡 for an individual
ith covariate values 𝑋, ℎ0(𝑡) is the baseline hazard function, which

s unspecified and is estimated non-parametrically, 𝛽 is the regression
oefficient estimated by the model and 𝑋 is the covariate value (the
redicted immune subgroup) for the individual.

Multivariate Cox regression analysis was carried out with American
oint Committee on Cancer (AJCC) staging version 7 (Balch et al.,
009), age, sex and melanoma site (limbs vs. rest) as possible confound-
ng factors. The multivariate Cox proportional-hazards model can be
epresented as:

(𝑡|𝑋) = ℎ0(𝑡) ⋅ exp(𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑝𝑋𝑝)

where 𝑋1, 𝑋2,… , 𝑋𝑝 are the covariates for the individual and 𝛽1, 𝛽2,… ,
𝛽𝑝 are the regression coefficients estimated from the model. Patients
with missing data in any covariate were dropped from the models. P
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values < 0.05 were considered statistically significant.
Table 1
LMC dataset splits, showing the number of WSIs labelled with the three different
immune subgroups found by Poźniak et al. (2019), within the training, validation and
test sets, when carrying out Monte Carlo 10-fold cross validation. LMC, Leeds Melanoma
Cohort; WSI, Whole slide image.

Immune subtype Train Validation Test

Low 204 26 26
Intermediate 209 26 26
High 120 15 15

Table 2
TCGA dataset splits, showing the number of digitised WSIs labelled with the three
different immune subgroups found by Poźniak et al. (2019), within the training,
validation and test sets, when carrying out Monte Carlo 10-fold cross validation. TCGA,
the cancer genome atlas; WSI, Whole slide image.

Immune subtype Train Validation Test

Low 92 11 11
Intermediate 98 12 12
High 39 5 5

3. Datasets

The primary dataset we used for our work was from the Leeds
Melanoma Cohort (LMC) (Newton-Bishop et al., 2015, 2009). This
is a population ascertained cohort, including 667 digitised WSIs of
melanoma primaries (667 slides, 667 patients). The labels for the
images were delineated by clustering the transcriptomes, based on the
inferred abundance of 27 immune cell types. All slides come from
Formalin-Fixed Paraffin-Embedded (FFPE) blocks and were scanned
in batches using a Leica Biosystems Aperio Digital Pathology Slide
Scanner, at 0.25 micrometers-per-pixel (m.p.p.). The tumour transcrip-
tomic data that was used to develop the immune subgroup labels was
produced from the archived FFPE tumour blocks, using Illumina Array
DASL HT12.4 and normalised using standard methods as described in
the study by Nsengimana et al. (2018) (see Table 1).

We also utilised a second, independent, publicly available dataset
from the Cancer Genome Atlas (TCGA), which contains tissue speci-
mens from multiple hospitals across the world (Heath et al., 2021).
The WSIs (285 slides, 257 patients) are from both primary (177 slides,
176 patients) and metastatic melanomas (107 slides, 81 patients) from
regional cutaneous or subcutaneous tissue (including satellite and in-
transit metastases), regional lymph nodes and distant metastases. All
lesions included in our comparison against the LMC dataset were from
metastatic patients, as metadata from the primary melanoma cases
suggested they had worse survival compared to metastatic patients,
with patients being biased towards late diagnosis. The immune labels
for the TCGA images were formulated, using RNAseq expression data
from these cases and assigning them to the subtype cluster centroid
which had the strongest Spearman’s correlation (Poźniak et al., 2019).
The WSIs and corresponding RNAseq data are available from the NIH
genomic data commons (https://portal.gdc.cancer.gov [date last ac-
cessed: November 2022]). We selected H&E stained FFPE diagnostic
slides (eliminating frozen sections) and images which were scanned
in at 0.25 micrometers-per-pixel (m.p.p.), to see if our results were
replicable in a second dataset (see Table 2).

4. Results

4.1. Predicting high, intermediate and low immune subtypes

Initial experiments were carried out by training the models using
the three subgroups determined by Poźniak et al. (2019). The three
subgroups are the ‘high immune’ class, which corresponds to patients
with a greater inferred immune cell infiltration in the primary tumour
and better associated patient survival outcomes, the ‘intermediate im-
mune’ class which corresponds to less inferred immune cell infiltrate

https://portal.gdc.cancer.gov
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Fig. 2. Confusion matrices for the model predictions of the ‘low’, ‘intermediate’ and ‘high’ cases on the 10-fold test sets. A. Predictions from the best performing model for classifying
the three subtypes using the LMC dataset. B. Predictions from the best performing model for classifying the three subtypes using the TCGA dataset. LMC, Leeds Melanoma Cohort;
TCGA, The Cancer Genome Atlas.
Fig. 3. Performance comparison of the six different types of MIL models when classifying the melanoma immune subtypes in the two datasets. Box-plots showing the 10-fold test
AUCs for each model type, when carrying out the 2 immune subtyping task (‘high immune’ and ‘low immune’ [in blue]) and three immune subtyping task (‘high’, ‘intermediate’
and ‘low immune’ [in orange]). The boxes show the quartile values and the whiskers extend to data points within 1.5x of the interquartile range. The input features for the
models were extracted using the SSL ResNet18. AUC, Area Under the receiver operating characteristic Curve; LMC, Leeds Melanoma Cohort; MIL, multiple instance learning; SSL,
self-supervised learning; TCGA, The Cancer Genome Atlas.
in the primary tumour and the ‘low immune’ class which had the
least inferred immune cell infiltrate in the tumour and worst survival
response of patients. Moreover, each subgroup was enriched for differ-
ent pathways, for example the ‘high immune’ class was enriched for
pathways involved with immune cell signalling and the ‘low immune’
class was enriched for pathways cell-cycle, metabolism and immune
suppression. Therefore we worked under the assumption that each
group had a distinct immune genetic signature, which would confer
a distinct histological pattern, that could be determined using a ResNet
CNN for feature extraction.

We found that the model with the highest AUC for classifying the
three subtypes using the LMC dataset, was an attention MIL model
with a mean test AUC of 0.61 (95% CI 0.57–0.65) (Figs. 2A & 3).
Whereas, for the TCGA dataset, a gated attention MIL model had the
best AUC performance, with a mean test AUC of 0.68 (95% CI 0.63–
0.73) (Figs. 2B & 3). Both models used features from 10x resolution
patches, extracted using the SSL histopathology specific ResNet18. Due
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to the limited performance when classifying the three immune subtypes
(Fig. 3), we examined confusion matrices for the top performing mod-
els, noticing the main misclassifications were between ‘intermediate
immune’ and ‘high immune’ and the ‘intermediate immune’ and ‘low
immune’ cases (Fig. 2. Due to these errors, we simplified the task
to a binary problem of classifying the ‘high immune’ against ‘low
immune’ subtypes (Fig. 3), as we believed ‘high’ and ‘low’ images were
more likely to have discriminable features, due to inferred immune
infiltrate within the tumour being much more polarised, compared to
the ‘intermediate’ subtype. Therefore, we decided to look at whether
MIL models could classify ‘high’ and ‘low immune’ cases into prognostic
groups.

4.2. Comparison of MIL models

We evaluated the performance of six different MIL models on the
classification tasks (Fig. 3). In general, the results indicate that the
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Fig. 4. Model performance when altering the feature extraction method and resolution of input patches for models trained with the LMC dataset. Mean test AUC with 95% CI
of MIL (A), attention MIL (B), gated attention MIL (C), CLAM (D) and TransMIL (E) and DSMIL (F) models for classifying ‘high’ and ‘low immune’ subtypes for the LMC primary
melanoma dataset (n slides = 667, n patients = 667), when altering patch resolution and feature extraction method. AUC, Area Under the receiver operating characteristic Curve;
CI, confidence interval; CLAM, Clustering-constrained-Attention Multiple-instance learning; DSMIL, Dual Stream Multiple-instance learning; LMC, Leeds Melanoma Cohort; MIL,
multiple instance learning; SSL, self-supervised learning; TransMIL, Transformer based Multiple-instance learning.
standard max pooling MIL model gives the poorest performance for our
subtyping tasks (Fig. 3A-D). We also observed that during the Monte
Carlo 10-fold cross validation process, the max pooling MIL model
exhibited the greatest variability in performance. This was evident
through the presence of wide 95% CI (Figs. 4 and 5), as well as
substantial interquartile ranges (Fig. 3). Within our results, the max
pooling MIL model trained using 20x ResNet18 ImageNet features,
generated the largest 95% confidence intervals. This model achieved
a mean test AUC of 0.50 through 10-fold cross validation, with a 95%
confidence interval spanning from 0.37 to 0.64. Moreover, we found
the difference in test mean AUC values for this model type had a wide
range, with the lowest test AUC being 0.46 (95% CI 0.40, 0.52) and
the highest being 0.71 (95% CI 0.67, 0.75) for classifying the ‘high’
7

and ‘low immune’ cases in both datasets (Figs. 4A & 5A). Max pooling
MIL relies on the highest probability scored patch for the positive class
being used to represent the slide-level prediction and can have a high
sensitivity to outliers. As melanoma is a highly heterogeneous tumour,
it might not be possible for a single patch to fully represent the diverse
immune context for the different immune subtype classes, leading to
poor performance in comparison to the other MIL methods presented.

In contrast the best performing model, for classifying ‘high’ and ‘low
immune’ subtypes within the LMC dataset, was a DSMIL model, which
utilised 40x ResNet50 ImageNet features and achieved a mean test AUC
value of 0.80 (95% CI 0.76, 0.84) (Fig. 4F). However, we found that
the TransMIL and DSMIL models, trained and tested with 10x ResNet18
ImageNet SSL features from the LMC had similarly high performance,
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Fig. 5. Model performance when altering the feature extraction method and resolution of input patches for models trained with the TCGA dataset. Mean test AUC with 95% CI of
MIL (A), attention MIL (B), gated attention MIL (C), CLAM (D), TransMIL (E) and DSMIL (F) models for classifying ‘high’ and ‘low immune’ subtypes within the TCGA metastatic
tumour dataset (n slides = 285, patients = 257), when altering patch resolution and feature extraction method. AUC, Area Under the receiver operating characteristic Curve; CI,
confidence intervals; MIL, multiple instance learning; CLAM, Clustering-constrained-Attention Multiple-instance learning; DSMIL, Dual Stream Multiple-instance learning; TCGA, The
Cancer Genome Atlas; TransMIL, Transformer based Multiple-instance learning.
with both models achieving a mean test AUC of 0.79 (95% CI 0.74,
0.84) for classifying the ‘high’ and ‘low immune’ WSIs (Fig. 4E-F).
Whereas for the TCGA tumours, the best performing model was an
attention MIL model, which achieved a mean test AUC value of 0.82
(95% CI 0.75, 0.89) for classifying ‘high immune’ and ‘low immune’
from 10x patches (Fig. 5B).

When examining the difference in performance between the two
datasets we also note that for the two immune subtype classification
task, the TCGA dataset (Fig. 3B & D) test AUC values have a greater
interquartile range (excluding the 10x max pooling MIL model results)
compared to the LMC dataset results. This could be reflective of the
dataset size, as the TCGA dataset only has five ‘high immune’ cases in
each fold, therefore, can be more sensitive to noise or different subsets
8

within the heterogeneous dataset. Additionally, the classification task
can be more challenging for this dataset as the cases come from both
primary tumours and metastatic lesions, which are more advanced tu-
mours from different body sites, so will contain heterogeneous imaging
biomarkers. Moreover, the TCGA images come from multiple hospitals
across the world, so the tissue processing and imaging protocols may
be different, leading to the introduction of non-salient artefacts when
classifying the images.

4.3. Comparison of feature extraction strategies

When deploying MIL models, feature extraction is a key compo-
nent within the pipeline. Often off-the-shelf CNNs pre-trained with
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Fig. 6. Mean 10-fold test AUC performance with 95% CI of MIL models classifying ‘high’ and ‘low immune’ subtypes with different epoch stopping lengths during training. A.
Results from models trained with ResNet18 SSL feature extractor embeddings from the LMC dataset. B. Results from models trained with ResNet18 SSL feature extractor embeddings
from the TCGA dataset. AUC, Area Under the receiver operating characteristic Curve; CI, confidence intervals; LMC, Leeds Melanoma Cohort; SSL, self-supervised learning; TCGA,
The Cancer Genome Atlas.
the ImageNet dataset are utilised for this step, therefore we wanted
to examine how using different feature extraction strategies affected
model performance. We found that using an SSL ResNet18 pre-trained
with pathology specific images increased AUC performance at 10x
and 20x patch resolutions for all the models, with the exception of
the max pooling MIL models, DSMIL models and the TransMIL model
trained and tested with the TCGA dataset (Figs. 4B-E and 5B-D). In
addition, the SSL ResNet18 pre-trained with pathology specific images
improved performance for the CLAM (Fig. 4D) and attention MIL
(Fig. 4B) models trained and tested with 40x resolution LMC WSIs
and the CLAM (Fig. 5C) and gated attention MIL (Fig. 5D) models
trained and tested with the TCGA dataset. In addition, there was a
competing trend when using ResNet50 ImageNet features, with five
of the MIL models (excluding the CLAM model) trained with the LMC
dataset having increased performance as the resolution of input patches
was increased. Conversely, the best resolution when utilising ResNet50
ImageNet features from the TCGA dataset appears to peak at 20x for the
majority of models (Fig. 5B-F). Models that utilise ResNet18 ImageNet
features appear to under-perform for most resolutions, but the LMC
MIL, LMC attention MIL, LMC gated attention MIL, LMC CLAM and
TCGA MIL models have better performance when utilising 5x patches
with this feature extraction method (Figs. 4A-D & 5A).

4.4. Comparison of resolutions

We compared how input patch resolution affected model perfor-
mance for the two datasets. For the LMC dataset, when using features
from the ResNet50 pretrained with ImageNet and the SSL ResNet18
pretrained using pathology images, performance improves when using
10x, 20x or 40x patches (Figs. 4 and 5). Furthermore, as mentioned
previously, different feature extraction methods, appeared to perform
the better at different resolutions. This is exemplified in Fig. 4C, which
shows the mean test AUC values with 95% CIs of the gated attention
MIL models. The models using the pathology specific SSL ResNet18
features have the highest performance using 10x resolution patches
(mean AUC = 0.79 [95% CI 0.74, 0.84]), the models using feature
embeddings extracted with a ResNet50 pretrained with ImageNet have
the best performance when using 40x patches as input (mean AUC
= 0.80 [95% CI 0.76, 0.84]) and yet the models using ResNet18
ImageNet features have the best performance when using 5x patches
(mean AUC = 0.69 [95% CI 0.68, 0.79]). We also see differences
between the datasets, for example, models that utilise features from the
ResNet18 pretrained with ImageNet tend to have the highest mean AUC
performance when using 5x input patches from LMC WSIs (Fig. 4A-D).
Whereas the optimum resolution for the TCGA dataset WSIs is more
variable for the ImageNet pretrained ResNet18 (Fig. 5).

We also wanted to examine whether the trend in increased per-
formance using 10x input patches for features, could be due to faster
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model convergence during training caused by reduced numbers of
patch embeddings in lower resolution images. To test this hypothesis,
we experimented with increasing the minimum stopping count, when
training the 40x embedding models, from 50 epochs to 300 epochs
(Fig. 6). We believed that this would increase likelihood of model
convergence, in models that were trained using a greater number of
feature embeddings. When monitoring mean test AUC, we found that
running the models for longer did lead to an incremental increase in
performance for both TCGA and LMC max MIL, TransMIL, LMC CLAM
and TCGA DSMIL models, nevertheless, in other cases it led to the
opposite, with the models trained for longer with higher resolutions,
exhibiting a decrease in mean AUC performance. We found this for the
DSMIL, attention and gated attention MIL models trained with LMC
data, with all models performing worse when increasing the number
of epochs a model was trained for (Fig. 6). Moreover, we found that
most of the models trained with 10x input patch embeddings exhibited
higher mean AUC performance compared to models utilising 40x fea-
ture inputs. This was despite the latter being trained for an extended
duration, with the exception of the max pooling MIL models and LMC
attention MIL models. This implies that the enhanced performance of
models trained with 10x patch embeddings cannot be attributed to
quicker model convergence and is more likely to be associated with
improved feature representations at this resolution.

Finally, to further investigate how resolution and feature extraction
methods affected performance, we examined the confusion matrices of
the three LMC models with the best AUC performance metrics (Fig. 7).
Here, we saw that although the DSMIL model, which used 40x input
features extracted using a ResNet50 pretrained with ImageNet had the
highest AUC performance, this model also had the greatest number of
misclassifications of ‘high immune’ cases with a 57.3% classification
accuracy for this subtype (Fig. 7A). In contrast the TransMIL and
DSMIL models which used ResNet18 SSL 10x features had accuracies
of 70% and 74.7% respectively, for classifying the ‘high immune’ cases.
Moreover, we calculated balanced accuracy and F1-scores for these
models, to examine performance with respect to the imbalance in our
dataset (Table 3). Here, we found that the LMC DSMIL model trained
and tested with 10x resolution ResNet18 SSL features had the highest
mean balanced accuracy of 0.74 (95% CI 0.69, 0.79) and highest F1
score of 0.67 (95% CI 0.61, 0.73) of the three models. In contrast, the
LMC DSMIL model trained and tested with 40x resolution ResNet50
ImageNet features had the lowest mean balanced accuracy of 0.71 (95%
CI 0.66, 0.76) and F1 score of 0.61 (95% CI 0.53, 0.69), suggesting
that this model is biased towards classifying the ‘low immune’ majority
class.

4.5. Immune attention heatmaps for interpretability

Furthermore, we developed immune attention heatmaps, for three
of the MIL models with highest mean AUC performance, showing where
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Fig. 7. Confusion matrices for the model predictions of the ‘low’, and ‘high’ cases on the 10-fold test sets. A. Predictions from the LMC DSMIL model trained with 40x resolution
ResNet50 ImageNet features. B. Predictions from the LMC DSMIL model trained with 10x resolution ResNet18 SSL features. C. Predictions from the LMC TransMIL model trained

with 10x resolution ResNet18 SSL features. DSMIL, Dual-Stream Multiple-instance learning; LMC, Leeds Melanoma Cohort; SSL, self-supervised learning; TransMIL, Transformer-based
Multiple-instance learning.
Table 3
Mean 10-fold test performance metrics with 95% CI for the three models with the highest mean test AUCs for classification
of ‘high’ and ‘low immune’ LMC cases. The DSMIL 40x model, indicates the DSMIL model trained with ResNet50 ImageNet
feature embeddings from 40x patches. The DSMIL 10x and TransMIL 10x model indicate the DSMIL and TransMIL models,
which were trained using a SSL ResNet18 feature embeddings from 10x patches. AUC, Area Under the receiver operating
characteristic Curve; CI, Confidence intervals; DSMIL, Dual Stream Multiple-instance learning; LMC, Leeds Melanoma Cohort;
SSL, self-supervised learning; TransMIL, Transformer based Multiple-instance learning.

Model AUC (95% CI) Balanced accuracy (95% CI) F1 score (95% CI)

DSMIL 40x 0.80 (0.76, 0.84) 0.71 (0.66, 0.76) 0.61 (0.53, 0.69)
DSMIL 10x 0.79 (0.74, 0.84) 0.74 (0.69, 0.79) 0.67 (0.61, 0.73)
TransMIL 10x 0.79 (0.74, 0.84) 0.73 (0.68, 0.78) 0.66 (0.60, 0.72)
the patches with the highest and lowest attention weights were located.
This was to gain a better understanding of model performance. In
Fig. 8, we compare heatmaps from a ‘high immune’ LMC case, that
were generated from attention scores from DSMIL models trained with
different feature embedding inputs. For both models we found that high
attention patches are concentrated in similar regions (the red areas),
where there are tumour infiltrating lymphocytes (TILs), the smaller
darkly stained circular cells, confluent with tumour cells. Moreover, we
saw this replicated in the TCGA attention MIL model results, with high
attention patches containing both TILs and tumour cells (Fig. 10).

We also examined correctly classified ‘low immune’ cases and found
that high attention patches came from regions that contained tumour
cells with large nucleoli, nests of melanocytes and an absence of TILs
(Figs. 9 and 10). When examining the differences between the two
DSMIL models trained and tested with different features, we show that
the model trained with 40x features from the ResNet50 feature extrac-
tor, assigns high attention patches to both informative tumour, but also
uninformative regions as shown in magnified section under the H&E-
stained image in Fig. 9. This region is a large blood vessel in the dermis,
which is unlikely to have prognostic value, suggesting models trained
with pathology-agnostic features are less likely to attend to salient
cellular regions and can be ‘distracted’ by regions with more staining.
Whereas the DSMIL model trained using pathology-specific 10x embed-
dings, has less high attention scores in this area, with more high atten-
tion scores being learnt for embeddings from the tumour region. In ad-
dition, for all TCGA and LMC models we saw that low attention patches
came from uninformative regions that had not been removed through
thresholding, for example regions that contained a lot of white back-
ground, or black shadowy regions produced during image scanning.

Moreover, we examined cases that were misclassified to further
our understanding of the potential limitations of the MIL models and
the experimental design of this study. In Fig. 11, the DSMIL model
which used 40x features extracted using a ResNet50 pretrained with
ImageNet, misclassified the LMC ‘high immune’ case as ‘low immune’,
even though the high attention patches appear to focus on darker
stained regions which could be TILs. While this would indicate a ‘high
immune’ case, the heavy staining can cause difficulty in pathological
interpretation since it reduces the variation in staining within a nucleus,
when variation in haematoxylin intensity within a nucleus can be
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a useful indicator of malignancy (Clarke and Treanor, 2017). High
variation in nuclear staining is caused by clumped chromatin suggests
a disorder to the chromosomal arrangement. By contrast benign nuclei
often have very a smooth chromatin pattern, which is shown as little
variation in haematoxylin staining, therefore heavy staining creates
difficulty in determining whether darker cells are benign melanocytes,
malignant melanocytes, or TILs. Additionally, the stretched, elongated
morphology of the cells that surround the darker cells, indicate this
case could be a rare spindle cell variant of melanoma, which are less
represented in our dataset. We also show a TCGA ‘high immune’ case
(Fig. 11), which was also misclassified as ‘low immune’. Here, although
the high attention regions show some lymphocyte infiltration, the high
attention feature patches come from outside the darker tumour region
in pink areas that show necrosis. Moreover, visual inspection of the
tumour region shows there is less TIL infiltration in the dense tumour
regions compared to nodal lymphocytes. Highlighting the significant
challenge of representing the heterogenous landscape of metastatic and
primary melanoma tumours, using labels derived from transcriptomic
data sampled using a 0.6-mm microarray needle biopsy (Nsengimana
et al., 2018).

4.6. Prognostic associations of model predictions

We assessed the prognostic ability of each of the different types
MIL models, for stratifying the images into ‘high immune’ and ‘low
immune’ subsets. We only show the MIL models which achieved the
highest mean test AUC performance on the LMC dataset. The Kaplan
Meier plot (Fig. 12) shows the survival distributions of the ‘high’ and
‘low immune’ subtypes were significantly different (log rank test P <
0.05), for all models apart from the attention MIL model (Fig. 12B),
showing strong evidence that the models are able to stratify patients
into groups associated with MSS.

Univariate and multivariate Cox proportional hazard models were
also implemented to assess the prognostic ability of the models for
stratifying patients into ‘high immune’ and ‘low immune’ subsets. The
‘high immune’ subgroup as predicted by all models apart from the
attention MIL model, had a significantly lower hazard of melanoma
death compared to the ‘low immune’ patient subgroups (Table 4). More-
over when adjusting for clinical predictors (age, sex, tumour site, AJCC
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Fig. 8. Comparison of correctly classified LMC ‘high immune’ tumours using different input features. Immune attention heatmaps with the original H&E stained WSI and four
patches that contributed the most (red) to the ‘high immune’ subtype prediction and four patches that contributed the least (blue). The heatmap and high attention patches in the
top panel are from a DSMIL model, which used 40x input features that were generated from a ResNet50 pretrained with ImageNet. The heatmap and high attention patches in the
panel below are from a DSMIL model, which used 10x input features that were generated from a ResNet18 pretrained using SSL with histopathology WSIs. DSMIL, Dual Stream
Multiple-instance learning; H&E, Haematoxylin and eosin; LMC, Leeds Melanoma Cohort; SSL, self-supervised learning; TCGA, The Cancer Genome Atlas; WSI, whole slide image.
Fig. 9. Comparison of correctly classified LMC ‘low immune’ tumours using different input features. Immune attention heatmaps with the original H&E stained WSI and four
patches that contributed the most (red) to the ‘low immune’ subtype prediction and four patches that contributed the least (blue). We also highlight a region from the H&E stained
image that the models show different levels of attention. The heatmap and high attention patches in the top panel are from a DSMIL model, which used input features that were
generated from a ResNet50 pretrained with ImageNet. The heatmap and high attention patches in the panel below are from a DSMIL model, which used input features that were
generated from a SSL ResNet18. DSMIL, Dual Stream Multiple-instance learning; H&E, Haematoxylin and eosin; LMC, Leeds Melanoma Cohort; SSL, self-supervised learning; WSI,
whole slide image.
stage), by using a multivariate model, we also observed a significantly
lower hazard of melanoma death for patients in the ‘high immune’ sub-
group compared to ‘low immune’ subgroup (Table 4), when using max
pooling MIL, gated attention MIL, TransMIL and DSMIL models. Overall
the TransMIL model, had the greatest prognostic ability for stratifying
patients when adjusting for covariates, with a HR = 2.27 and P < 0.005
(95% CI 1.52–3.45). This exceeds the HR value, when using the ground
truth subgroup labels to stratify patients using a multivariate model
(HR = 1.72 [95% CI 1.15, 2.63]), as shown in Table 4, suggesting that
image features could have a stronger association with survival, than the
immune subgroup features derived from the transcriptomic data.
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5. Discussion

5.1. Overview of findings

Recent studies (Poźniak et al., 2019; Nsengimana et al., 2018) have
shown that melanoma patients can be stratified into subgroups, with
added prognostic value compared to the current melanoma staging
system (Gershenwald and Scolyer, 2018). However, these studies are
carried out using transcriptomic data, which can be expensive and
time consuming to analyse. Here we show that routinely used H&E
images can be used to develop models that classify patients into these
immune subgroups. We show that image-based MIL models can be
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Fig. 10. Correctly classified ‘high’ and ‘low immune’ TCGA tumours. Immune attention heatmaps with the original H&E stained WSI and four patches (red) that contributed the
most and least (blue) to the subtype predictions. Input features were generated using 10x feature embeddings from the SSL ResNet18 and an attention MIL model was used for the
slide-level classification. H&E, Haematoxylin and eosin; MIL, multiple instance learning; SSL, self-supervised learning; TCGA, The Cancer Genome Atlas; WSI, whole slide image.
Fig. 11. Incorrectly classified ‘high immune’ LMC and TCGA tumours. Immune attention heatmaps with the original H&E stained WSI and four patches (red) that contributed the
most and least (blue) to the incorrect ‘low immune’ subtype prediction. For the LMC WSI, the input features were generated using 40x feature embeddings from the ResNet50
pretrained with ImageNet and a DSMIL model was used for the slide-level classification. For the TCGA WSI input features were generated using 10x feature embeddings from the
SSL ResNet18 and an attention MIL model was used for the slide-level classification. DSMIL, Dual Stream Multiple-instance learning; H&E, Haematoxylin and eosin; LMC, Leeds
Melanoma Cohort; MIL, multiple instance learning; SSL, self-supervised learning; TCGA, The Cancer Genome Atlas; WSI, whole slide image.
developed to stratify patients into ‘high’ and ‘low immune’ subgroups
in two independent datasets, with high performance. Moreover, by
utilising MSS data, we show that MIL models, can stratify patients
into prognostically significant groups with higher HRs than the original
ground truth labels (Fig. 12 & Table 4). We also show feature inputs
are important for improving model performance, in terms of both
patch resolution and feature extraction methodology (Figs. 4 and 5).
We highlight the importance of attention-based methods for improving
model performance, with the attention MIL model achieving superior
results for the TCGA dataset and the DSMIL model generating superior
results for the LMC dataset.

5.2. Challenges using transcriptomic ground truth labels

We also outline a unique challenge associated with using ground
truth labels derived from transcriptomic data. The immune subtype
labels exhibit spatial bias, because they originate from a small region
12
within the tumour where a 0.6-mm microarray needle was used to
extract cores containing mRNA. This presents a challenge for our study,
as MIL models utilise patches from the entirety of the segmented tissue,
yet the ground truth labels come from a small region in the tumour
tissue. This issue is further complicated by the highly heterogeneous
nature of the melanoma landscape, in both primary and metastatic
lesions. Moreover as mentioned by Nsengimana et al. (2018), the
transcriptomic sample can be contaminated by tissue outside of the
tumour region, as might have been the case for the misclassification
illustrated in Fig. 11. Here, it is possible that the sample was con-
taminated by nodal lymphocytes, leading to the ground truth label of
‘high immune’, when the tumour region in the WSI actually contained
few TILs, leading to the image being misclassified by the attention
MIL model. Nevertheless, our findings equally show that attention
MIL models can overcome this in some cases, by focusing on regions
that give contextual information. For example in Figs. 8 and 10, the
‘high immune’ 10x attention patches contain both tumour cells and
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Fig. 12. Prognostic associations of the ‘high’ and ‘low immune’ subtypes from the LMC dataset (N = 230), using labels generated from (A) max pooling MIL model trained with
ResNet18 ImageNet embeddings from 5x patches, (B) attention MIL model trained with SSL ResNet18 feature embeddings from 20x patches, (C) gated attention MIL model trained
with SSL ResNet18 feature embeddings from 10x patches, (D) CLAM model trained with SSL ResNet18 feature embeddings from 10x patches, (E) TransMIL model trained with SSL
ResNet18 feature embeddings from 10x patches, (F) DSMIL model trained with ResNet50 ImageNet feature embeddings from 40x patches. Kaplan–Meier estimator with 95% CI
was used to estimate the survival probability, and pairwise log-rank test was used to test the significance between the subgroups. CI, confidence intervals; LMC, Leeds Melanoma

Cohort; MIL, multiple instance learning; SSL, self-supervised learning.
Table 4
The prognostic value of the ‘high immune’ and ‘low immune’ subtypes in univariable and multivariable analyses from the LMC dataset, when
using test set labels (N = 230), derived from the highest performing MIL models. HR and 95% CI for MSS are shown with P values. The first
row gives shows the HR for the ground truth labels in the test set. The model results that are shown are a max pooling MIL model trained with
ResNet18 ImageNet embeddings from 5x patches, an attention MIL model trained with SSL ResNet18 feature embeddings from 20x patches,
a gated attention MIL model trained with SSL ResNet18 feature embeddings from 10x patches, a CLAM model trained with SSL ResNet18
feature embeddings from 10x patches, a TransMIL model trained with SSL ResNet18 feature embeddings from 10x patches and a DSMIL model
trained with ResNet50 ImageNet feature embeddings from 40x patches. AJCC, American Joint committee on cancer; CI, confidence intervals;
CLAM, Clustering-constrained Attention Multiple instance learning; DSMIL, Dual Stream Multiple-instance learning; HR Hazard, ratio; LMC,
Leeds Melanoma Cohort; MSS, melanoma specific survival; MIL, multiple instance learning; SSL, self-supervised learning; TransMIL, Transformer
based Multiple-instance learning.

Method Characteristic adjusted HR (95% CI) P

Ground truth labels – 1.85 (1.22, 2.78) 0.005**
Age, sex, tumour site, AJCC stage 1.72 (1.15, 2.63) 0.01*

MIL – 1.69 (1.20, 2.63) 0.02*
Age, sex, tumour site, AJCC stage 1.88 (1.20, 2.94) 0.01*

Attention MIL – 1.39 (0.94, 2.41) 0.10
Age, sex, tumour site, AJCC stage 1.04 (0.70, 1.56) 0.26

Gated attention MIL – 1.72 (1.15, 2.63) 0.01*
Age, sex, tumour site, AJCC stage 1.79 (1.19, 2.70) 0.01*

CLAM – 1.75 (1.16, 2.63) 0.01*
Age, sex, tumour site, AJCC stage 1.49 (0.98, 2.27) 0.06

TransMIL – 2.00 (1.33, 3.03) <0.005**
Age, sex, tumour site, AJCC stage 2.27 (1.52, 3.45) <0.005**

DSMIL – 1.92 (1.22, 3.03) <0.005**
Age, sex, tumour site, AJCC stage 1.96 (1.25, 3.13) <0.005**

* Indicates P values < 0.05.
** Indicates P values < 0.005.
immune cells. This indicates that the model has not solely focused
on lymphocyte-rich regions outside of the tumour area, but may have
utilised regions that contain tumor cells for context.

5.3. MIL models attend to regions with prognostic value

In 1989, Clark et al. (1989) attempted to characterise TILs into
categories based on their presence and positioning within primary
13
melanomas, finding they had prognostic value. Subsequently, a meta-
analysis by Sun et al. (2020) corroborated that a ‘brisk’ TIL grade,
where there is robust infiltration of TILs throughout the entire tumour
or surrounding the tumour base, is associated with improved patient
prognosis. Despite the discernible prognostic value of TILs, they con-
tinue to be excluded from the current AJCC staging system due to
lack of standardisation and interobserver variation during TIL grading.
Nevertheless, in 2023, a study by Chatziioannou et al. (2023), demon-
strated how deep learning can be harnessed to standardise the scoring
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of TILs in primary melanomas and provide a prognostic tool that is
complementary to AJCC staging. Our results add to this evidence, as we
show that MIL models attend to regions containing TILs in the correctly
classified ‘high immune’ WSIs (Figs. 8 and 10), reinforcing this evidence
that TILs have a prognostic signal.

In addition, in Table 4 and Fig. 12 we show that the TransMIL
model, which was trained and tested with 10x SSL ResNet18 features,
had the highest HR for stratifying the ‘high’ and ‘low immune’ subtypes.
This suggests that the classifications from this model are based on
stronger prognostic indicators than the other MIL models, as they
lead to improved patient stratification. We believe that this improved
prognostic ability could be from the combination of cellular context
from 10x resolution SSL ResNet18 features and the introduction of
neighbourhood information through the model’s self-attention mech-
anism. This neighbourhood information and lower resolution context
could be vital for capturing spatial relationships and configurations of
TILs. Moreover, the higher HR of the TransMIL model compared to the
original ground truth labels (Table 4) suggests that using MIL models
with all the patches from a WSI, may improve patient stratification into
groups based on survival, due to reduced sensitivity to noise compared
to the spatially biased ground truth labels.

5.4. The importance of feature inputs and model selection

A previous rigorous benchmarking study by Ghaffari Laleh et al.
(2022) examined the difference in performance of different MIL models
for different cancer subtyping tasks. However, our study examines the
often overlooked effects of how input patch resolution and feature
extraction method can influence performance for six different MIL
frameworks. Here we systematically show, for the task of immune
subtyping of melanomas, that MIL models which use attention mech-
anisms have higher AUC performance than max pooling MIL models.
Meanwhile, there does not appear to be a significant difference in mean
test AUC performance between the attention-based MIL model meth-
ods, suggesting that more rigorous benchmarking studies are required
to determine which MIL models are superior and should be used as
appropriate baselines for cancer subtyping tasks.

Our results also indicate that, for both datasets and the majority of
MIL models, 10x resolution input patches lead to the best performance
when classifying ‘high’ and ‘low immune’ cases. This is an important
finding, as resolving the optimum resolution used for prediction of
molecular tumour biomarkers, remains an open question for many
classification tasks with no clear consensus (Couture, 2022). Moreover,
many studies cite using 20x or 40x input patches to carry out their
tasks, which may both increase processing and model training time
and decrease model performance. Using high attention patches and
immune attention heatmaps, we show the importance of tumoural
context as well as cellular detail, and how 10x resolution patches
provide a balance of lower-level immune cell features and higher-
level tissue architecture. Nevertheless, we also concede that the SSL
ResNet18 developed by Ciga et al. (2021) was trained on images of 10x,
20x, 40x and 100x resolutions, which may have led to compromised
performance when classifying 2.5x and 5x resolution images with the
SSL feature extractor. In addition, melanoma tumours vary greatly in
inter and intra-histological appearance, therefore pretraining with a
dataset of melanoma histology slides could improve upon our results.

A surprising outcome from our study, was that the DSMIL model
that had the highest mean AUC, for the classifying ‘high’ and ‘low
immune’ cases from the LMC dataset, was trained using 40x resolution
embeddings, from a modified ResNet50 pretrained on the ImageNet
dataset. This result aligns with the general trend for MIL models trained
using LMC ResNet50 ImageNet embeddings, which showed increased
performance as resolution increased (as shown in Fig. 4). These findings
also suggest that the modified ResNet50 feature extractor pretrained
with ImageNet, can excel at capturing generic lower-level features
14

in 40x patches, which may be more informative for classification
of melanoma WSIs, compared to using SSL with pathology-specific
datasets. This result is further supported by the heatmaps shown in
(Figs. 8 and 9), where the 40x DSMIL model is shown attending to
prognostic areas within the tumour. Yet, we also saw in Fig. 9 that the
model learned high attention scores for uninformative regions, such as
a blood vessels, suggesting this model is might be overfitting to noise
caused by heavy staining or other artefacts in the image (as seen in
Fig. 11 also). Furthermore, when comparing the F1 score and balanced
accuracy of this model to the same model that had been trained using
10x pathology specific embeddings, we found that the F1 score, and
balanced accuracy were superior for the model trained with 10x SSL
ResNet18 features. This suggests that the DSMIL model, trained with
40x features from the modified ResNet50, has a bias towards ‘low
immune’ cases and a poor ability to classify ‘high immune’ cases, which
could be caused through mistaking TILs for melanocytes at the high
resolution (Fig. 11), or making classification errors due to non-salient
features (Fig. 9). Additionally, when examining prognostic ability of the
models, we also saw that the TransMIL model which was trained and
tested with 10x SSL ResNet18 features, had a higher HR for stratifying
the ‘high’ and ‘low immune’ subtype (Table 4). Here we determine
that while the DSMIL model using 40x ResNet50 features had the
highest mean test AUC performance, it shows weaker performance for
classifying ‘high immune’ cases and stratifying patients compared to
models that use 10x SSL ResNet18 features.

The superiority of 10x SSL ResNet18 features for classifying the
‘high’ immune subtype in both datasets also supports the evidence (Sail-
lard et al., 2021; Abbasi-Sureshjani et al., 2021; Yu et al., 2020; Noor-
bakhsh et al., 2020) that the feature extraction methodology can be im-
portant for capturing subtle differences in biological subtypes and im-
prove classifier performance. Moreover, using a pathology-specific pre-
trained network addresses some of short-comings of MIL frameworks
compared to classical weakly supervised models which are trained
directly on images, while having the benefit of using a MIL model which
focuses on tumour regions (Ghaffari Laleh et al., 2022). These results
indicate that while using a MIL model with an attention mechanism is a
major improvement over a standard max pooling MIL mechanism, the
model inputs used are also equally important.

5.5. Limitations and future directions

Deciphering the ‘intermediate immune’ subgroup remains a chal-
lenge, due to the tumour heterogeneity and complexity within this
group. To tackle this problem we may need to look at further divid-
ing this subgroup, as a previous study by Nsengimana et al. (2018)
found two distinct subgroups which overlap with this ‘intermediate’
group, or use techniques to learn more discriminant representations
of the images, such as deep Fisher Discriminant analysis (Díaz-Vico
and Dorronsoro, 2020). Moreover, it may be important to consider
how we frame this problem, as although we are treating it as a clas-
sification task, due to overlap of the groups, it could be more useful
to look at it as a regression-based problem as (Nahhas et al., 2023)
reported when predicting multiple molecular biomarkers across nine
cancer types. Conversely, implementing an ordinal loss function, which
would rank the subtypes, penalising misclassification between ‘high’
and ‘intermediate’ or ‘low’ and ‘intermediate’ less, may prevent these
errors as seen in Fig. 2.

We also believe that a multi-resolution approach, which incorpo-
rates multiple levels of cellular and tissue detail could further improve
on our approach. We have seen that both 10x and 40x DSMIL mod-
els are able to correctly classify different cases, suggesting there is
informative morphology at both resolution levels. Li et al. (2021a),
showed how combining embeddings from multiple resolutions through
concatenation led to improved performance of the DSMIL model and
this has also been shown in other MIL models which we did not explore
in this work (Li et al., 2020; Chen et al., 2022). We also recognise that

using a patch-based approach can prevent a model learning contextual
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information that is important in heterogeneous tissues. In future work,
we aim to modify our approach using a graph neural network, by
connecting adjacent patches and creating a hierarchy across resolu-
tions, similar to Zormpas-Petridis et al. (2019) when implementing
cell-based melanoma graphs. In this way, we will also develop a tool
that works in a similar way to a clinician, examining cellular detail and
making diagnostic decisions based on the surrounding information from
multiple magnifications, rather than an individual local patch-level.

Moreover while we were able to classify patients into significant
groups with clinical outcomes in the LMC dataset (TransMIL model:
Log rank P < 0.005, HR = 2.27, [95% CI 1.52, 3.45]), we were unable
o replicate a significant result in the TCGA dataset. This could be
ue to insufficient data, as we had a reduced test dataset (N = 84)
ompared to the transcriptomic dataset used in the original paper (N =
89) (Poźniak et al., 2019), or due to the regions outside the tumour,
eading to misclassifications. However, the significant prognostic value
hen using the LMC trained TransMIL model, suggests there could be
n even stronger signature if training a model with the imaging data
nd survival data alone. Therefore, in future works, we also hope to
ompare the prognostic value of the transcriptomic subgroups against
e novo subgroups found through using the imaging biomarkers from
he WSI image data.

. Conclusion

To the best of our knowledge our work is one of the first exten-
ive studies that attempts to subtype melanoma histopathology images
ased on immune genetic signatures from transcriptomic data. Through
urvival analysis we show how MIL models can be used with clinical
tility to stratify patients into prognostic groups. This is also one of
he first studies to comprehensively show the importance of resolution
or context and pathology-specific feature extraction methods for im-
roving MIL model performance. On the other hand we also highlight
otential pitfalls to using transcriptomic ground truth labels and give
xamples of potential errors in image classification tasks. Overall we
how how MIL models can be used as a tool to flag potential prognostic
iomarkers and stratify patients into prognostic groups, without the
eed for additional genetic tests.
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