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Abstract

Inverse problems involving partial differential equations (PDEs) are widely used in science and engineering. Although such
roblems are generally ill-posed, different regularisation approaches have been developed to ameliorate this problem. Among
hem is the Bayesian formulation, where a prior probability measure is placed on the quantity of interest. The resulting posterior
robability measure is usually analytically intractable. The Markov Chain Monte Carlo (MCMC) method has been the go-to
ethod for sampling from those posterior measures. MCMC is computationally infeasible for large-scale problems that arise

n engineering practice. Lately, Variational Bayes (VB) has been recognised as a more computationally tractable method for
ayesian inference, approximating a Bayesian posterior distribution with a simpler trial distribution by solving an optimisation
roblem. In this work, we argue, through an empirical assessment, that VB methods are a flexible and efficient alternative
o MCMC for this class of problems. We propose a natural choice of a family of Gaussian trial distributions parametrised
y precision matrices, thus taking advantage of the inherent sparsity of the inverse problem encoded in its finite element
iscretisation. We utilise stochastic optimisation to efficiently estimate the variational objective and assess not only the error in
he solution mean but also the ability to quantify the uncertainty of the estimate. We test this on PDEs based on the Poisson
quation in 1D and 2D. A Tensorflow implementation is made publicly available on GitHub.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The increased availability of measurements from engineering systems allows for the development of new and
he improvement of existing computational models, which are usually formulated as partial differential equations.
nferring model parameters from observations of the physical system is termed the inverse problem [1–3]. In this

work, we consider the inverse problem where the quantities of interest (for example, some material properties) and
the observations (e.g., the displacement field) are related through elliptic PDEs. Most inverse problems are non-linear
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and ill-posed, meaning that the existence, uniqueness, and/or stability (continuous dependence on the parameters)
of the solution are violated [1–3]. These issues are often alleviated through some regularisation, like Tikhonov
regularisation [4], that imposes assumptions on the regularity of the solution. Alternatively, the specification of
the prior in the Bayesian formulation of inverse problems provides a natural choice for regularisation, and any
given regularisation can be interpreted as a specific choice of priors in the Bayesian setting [5]. Furthermore, the
Bayesian formulation provides not only a qualitative but also a quantitative estimate of both epistemic and aleatoric
uncertainty in the solution. In particular, the mean of the posterior probability distribution corresponds to the point
estimate of the solution while the credible intervals capture the range of the parameters consistent with the observed
measurements and prior assumptions. For these reasons, Bayesian methods have gained popularity in computational
mechanics for experimental design and inverse problems with uncertainty quantification; see, e.g., the recent papers
by Abdulle and Garegnani [6], Pandita et al. [7], Pyrialakos et al. [8], Ni et al. [9], Sabater et al. [10], Huang et al.
[11], Ibrahimbegovic et al. [12], Tarakanov and Elsheikh [13], Michelén Ströfer et al. [14], Carlon et al. [15], Wu
et al. [16], Uribe et al. [17], Rizzi et al. [18], Arnst and Soize [19], Beck et al. [20], Betz et al. [21], Chen et al.
[22], Asaadi and Heyns [23], Huang et al. [24], Karathanasopoulos et al. [25], Babuška et al. [26] and Girolami
et al. [27].

The Bayesian formulation of inverse problems is also the focal point of probabilistic machine learning, and in
recent years significant progress has been made in adapting and scaling machine learning approaches to complex
large-scale problems [28,29]. One of the leading models for Bayesian inverse problems is Gaussian processes
(GPs) which define probability distributions over functions and allow for incorporating observed data to obtain
posterior distributions. Given that most posterior distributions in Bayesian inference are analytically intractable,
approximation methods need to be resorted to. Two classical approximation schemes are the Markov Chain Monte
Carlo (MCMC) and the Laplace approximation. The MCMC algorithm proceeds by creating a Markov Chain whose
stationary distribution is the desired posterior distribution. Although MCMC provides asymptotic convergence in
distribution, devising an efficient, finite-time sampling scheme is challenging, especially in higher dimensions [30].
Application-specific techniques such as parameter space reduction and state space reduction have been proposed
in the literature to help scale up MCMC methods, but these low-rank approximations are not specific to MCMC
methods only [31]. Due to the asymptotic correctness of MCMC, we use it as a benchmark for the experimental
studies in this paper. Meanwhile, the Laplace approximation finds a Gaussian density centred around the mode of
the true posterior, utilising the negative Hessian of the unnormalised posterior log-density [5]. The Hessian is a large
dense matrix, where forming each column requires multiple PDE solves; to make such calculations feasible, low-
rank approximations are typically used [32,33]. Evidently, the Laplace approximation is not suitable for multi-modal
posterior distributions due to the uni-modality of the Gaussian distribution.

1.1. Related work

In recent years, advances in variational Bayes (VB) methods have allowed for Bayesian inference to be
successfully applied to large data sets. Variational Bayes translates a sampling problem that arises from applying the
Bayes rule into an optimisation problem [34–36]. The method finds a solution that minimises the Kullback–Leibler
(KL) divergence between the true posterior distribution and a trial distribution from a chosen family of distributions,
for instance, multivariate Gaussian distributions with a specific covariance structure. The strong appeal of VB is
that one can explicitly choose the complexity of the trial distribution, i.e., its number of free parameters, such that
the resulting optimisation problem is computationally tractable, and the approximate posterior adequately captures
important aspects of the true posterior.

Further scalability of VB methods is due to advancements in sparse approximations and approximate inference.
For instance, sparse GP methods such as Nyström approximation or fully independent training conditional method
(FITC) rely on lower-dimensional representations that are defined by a smaller set of so-called inducing points
to represent the full GP [37–43]. Using this approximation for a data set of size N , algorithmic complexity
is reduced from O(N 3) to O(N M2), while storage demands go down from O(N 2) to O(N M), where M is a
user selected number of inducing variables. To widen the applicability of VB to large datasets and non-conjugate
models (combinations of prior distributions and likelihoods that do not result in a closed-form solution), stochastic
variational inference (SVI) was proposed [44–46]. Sub-sampling the original data and Monte Carlo estimation of
the optimisation objective and its gradients, allows for calibrating complex models using large amounts of data.
2
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Multiple further extensions to the sparse SVI framework were proposed, leveraging the Hilbert space formulation
of VB [47], introducing parametric approximations [48], applying the Lanczos algorithm to efficiently factorise the
covariance matrix [49], transforming to an orthogonal basis [50,51], and adapting to compositional models [52].

The choice of prior is a central task in designing Bayesian models. If the prior is obtained from a domain expert,
t is not necessarily less valuable than the data itself; one way of thinking about a prior is by considering how many
bservations one would be prepared to trade for a prior from an expert — if the expert is very knowledgeable,
hen one might be prepared to exchange a large part of a dataset to get access to that prior. Translating the expert
nowledge into a prior probability distribution is a challenging task, and due to practical considerations, certain
hoices of priors are preferred for their simplicity and analytic tractability. When inferring values of parameters
ver a spatial domain, as is typically the case in finite elements, GP priors offer a natural way to incorporate the
nformation about the smoothness and other known properties of the solution. We note that while other Bayesian

odels, such as Bayesian neural networks are gaining interest, it is very difficult to impose functional priors in such
odels, challenging the effective use of expert knowledge and leading to unrealistic uncertainty estimates [53,54].

.2. Contributions

In this work, we advocate for the use of GP priors with stochastic variational inference as a principled and
fficient way to solve the inverse problems arising in computational mechanics. We show, through an extensive
mpirical study, that variational Bayes methods provide a flexible and efficient alternative to MCMC methods in
he context of Bayesian inverse problems based on elliptic PDEs while retaining the ability to quantify uncertainty.

hile similar directions have been explored in previous work, the focus there is on specific applications, such
s parameter estimation problems in models of contamination [55] or proof-of-concept on particular 1D inverse
roblems [56].

We extend the previous works in multiple aspects, focusing on improving the utility of VB in inverse problems
rising from elliptic PDEs and providing a thorough discussion of the empirical results that can be used by
ractitioners to guide their use of VB in applications. Specifically, we argue that the efficiency of the VB
lgorithms for PDE based inverse problems can be improved by taking into account the structure of the problem,
s encoded in the FEM discretisation of the PDE. Motivated by previous uses of precision matrices as a way
f describing conditional independence [57,58], we leverage the sparse structure of the problems to impose
onditional independence in the approximating posterior distribution. This choice of parametrisation results in sparse
atrices, which improve the computational and the memory cost of the resulting algorithms. Such parametrisation,

ombined with stochastic optimisation techniques, allows the method to be scaled up to large problems on 2D
omains. Through extensive empirical comparisons, we demonstrate that VB provides high-quality point estimates
nd uncertainty quantification comparable to the estimates attained by MCMC algorithms but with significant
omputational gains. Finally, we describe how the proposed framework can be seamlessly combined with existing
olvers and optimisation algorithms in the finite element implementations.

The main concern related to VB in statistics stems from the fact that it is constrained by the chosen family of trial
istributions, which may not approximate the true posterior distribution well. If the choice of the trial distributions
s too restrictive, the estimate of the posterior mean is biased while the uncertainty may be underestimated [59–61].
urthermore, as noted in previous work, the commonly used mean-field factorisation of the trial distributions does
ot come with general guarantees on accuracy [62]. However, VB has been demonstrated to work well in practice
n a variety of settings [35,63–65]. Recent work on VB has provided some tools for assessing the robustness of the
B estimates [62].

.3. Overview

The rest of the paper is structured as follows. In Section 2, we define Bayesian inverse problems and detail some
nference challenges related to their ill-posedness. In Section 3, we give a presentation of the variational Bayes
ramework, with strong focus on sparse parametrisation resulting from conditional independence. We give details
f the experiments and the evaluation criteria, and discuss obtained results for each experiment in Section 4. Lastly,
ection 5 concludes the paper and discusses some promising directions for future work.
3
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2. Bayesian formulation of inverse problems

In this section, we review the Bayesian formulation of inverse problems by closely following Stuart [3].

.1. Forward map and observation model

We are interested in finding κ ∈ K, an input to a model, given y ∈ Y , a noisy observation of the solution of the
model, where K,Y are Banach spaces.2 The mapping is given by

y = G(κ)+ η, (1)

where G : K→ Y , η ∈ Y is additive observational noise. We focus on problems where G maps solutions of elliptic
partial differential equations with input κ ∈ K into the observation space Y . For a suitable Hilbert space U , which
we make concrete later, let A :K → U be a possibly non-linear solution operator of the PDE. For a particular
κ ∈ K, the solution u ∈ U is

u = A(κ). (2)

To obtain observations y, we define a projection operator P :U → Y . Consequently, (1) can be written out in full
as

y = P(A(κ))+ η. (3)

2.2. Inference

We solve the inverse problem (1) for κ by finding κ such that the data misfit, ∥y − G(κ)∥Y , is minimised. As
already mentioned in the introduction, this is typically an ill-posed problem: there may be no solution, it may not
be unique, there may exist a dimensionality mismatch between the observations and the quantity being inferred,
and it may depend sensitively on y. To proceed, we choose the Bayesian framework for regularising the problem to
make it amenable to analysis and practical implementation. We describe our prior knowledge about κ in terms of
a prior probability measure µ0 on the subspace of K and use Bayes’ formula to calculate the posterior probability
measure, µy , for κ given y. The relationship between the posterior and prior is expressed as

dµy

dµ0
(κ) =

1
Z (y)

exp(−Φ(κ; y)), (4)

here dµy

dµ0
is the Radon–Nikodym derivative of µy with respect to µ0, and Φ is the potential function which is

determined by the forward problem (1), specifically G and η. To ensure that µy is a valid probability measure, we
have Z (y) =

∫
K exp(−Φ(κ; y))dµ0(κ).

From here on, we assume that (Y, ∥ · ∥Y ) = (Rny , ∥ · ∥), where ∥ · ∥ is the Euclidean norm, and we treat data y
and η as vectors, i.e. y and η. We specify the additive noise vector η as the zero-mean Gaussian with covariance
matrix Γ such that

η ∼ N (0,Γ = σ 2
y I),

where σy is the standard deviation of the measurement noise and I is the identity matrix. We can write Φ
conveniently as

Φ(κ; y) =
1
2
∥G(κ)− y∥2

Γ , (5)

here ∥ · ∥Γ is the norm induced by the weighted inner product.3

We restrict the space of solutions K to be a Hilbert space and place a Gaussian prior measure on κ with mean
and covariance operator Cκ such that

µ0(κ) ∼ N (m, Cκ ). (6)

or detailed assumptions on µ0, G, and η that are required for deriving the posterior probability measure, we refer
he reader to Stuart [3, Sec. 2.4].

2 Respective norms for Banach spaces K, Y are ∥ · ∥K and ∥ · ∥Y .
3 For any self-adjoint positive operator T , weighted inner product is ⟨·, ·⟩ = ⟨T −1/2

·,T −1/2
·⟩, and the induced norm is ∥·∥ = ∥T −1/2

·∥.
T T

4
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2.2.1. Algorithms
The objective is to find the posterior measure µy conditioned on the observations, as dictated by Bayes’s rule.

The forward map (1) and the respective functions must be discretised. In Bayesian inference there are two possible
approaches for discretisation: (1) apply the Bayesian methodology first, discretise afterwards, or (2) discretise first,
then apply the Bayesian methodology [3].

The first approach develops the solution of the inference problem in the function space before discretising it. A
widely used algorithm of this form is the pre-conditioned Crank–Nicholson (pCN) MCMC scheme, where proposals
are based on the prior measure µ0 and the current state of the Markov chain. The pCN method is a standard
choice for high-dimensional sampling problems, as its implementation is well-defined and is invariant to mesh
refinement [66,67]. Since we will use this algorithm as one of the baselines, a summary of the algorithm is provided
in Appendix C.1. Recently, infinite-dimensional MCMC schemes that leverage the geometry of the posterior to
improve the efficiency have been proposed, see Beskos et al. [68]. Other than MCMC schemes, some variational
Bayes formulations in function space have been proposed (for example, Minh [69] and Burt et al. [54]), though
currently they do not offer a viable computational alternative to the finite-dimensional formulation of variational
inference.

The second approach proceeds by first discretising the problem and then deriving the inference method. This
approach forms the basis of almost all inference procedures developed in engineering: MCMC algorithms such as
Metropolis–Hastings [70,71] or Hamiltonian Monte Carlo (HMC) [72], the Laplace approximation, or variational
Bayes [34,73] are used to approximate the posterior. In the discretised formulation, HMC has achieved recognition
as the gold standard for its good convergence properties, favourable performance on high-dimensional and poorly
conditioned problems, and universality of implementation that enables its generic use in many applications through
probabilistic programming languages (e.g., Stan [74]). Therefore, along with the pCN scheme mentioned above,
our baseline for inference methods includes the HMC method, and we provide a summary of the HMC scheme in
Appendix C.2.

For the rest of the exposition in this paper, we will focus on algorithms in the finite-dimensional case, where
we discretise κ to yield a vector κ . In finite dimensions, probability densities with respect to the Lebesgue measure
can be defined, thus leading to a more familiar form of the Bayes’s rule:

p(κ | y) =
p( y | κ) p(κ)

p( y)
∝ p( y | κ) p(κ), (7)

here p(κ | y) is the posterior density, p( y | κ) is the likelihood of the observed data y for a given discretised κ

nd is determined by the discretised forward problem (1) and noise η. The prior density for κ , which itself may
epend on some (hyper-) parameters ψ , is denoted by p(κ). Next two sections focus on discussing p( y | κ) and

p(κ), respectively.

.3. Poisson equation and likelihood

Let us consider a specific forward problem where u is the solution to the Poisson problem:

−∇ · (exp(κ(x))∇u(x)) = f (x), (8)

here x ∈ Ω ⊂ Rd , with d ∈ {1, 2, 3}, κ(x) ∈ R is the log-diffusion coefficient, u(x) ∈ R is the unknown, and
f (x) ∈ R is a deterministic forcing term. The boundary conditions have been omitted for brevity. We are given ny

noisy observations y ∈ Rny of the solution u at a finite set of points, {xi }
ny
i=1. The observation points are collected

in the matrix X ∈ Rny×d . Although this PDE is linear in u for a given κ , the methodology in this paper applies
to non-linear cases and can be extended for time-dependent cases such as the inverse problem of inferring initial
conditions of a system given observations of the system at a later time.

We discretise the weak form of the Poisson problem (8) with a standard finite element approach. Specifically,
the domain of interest Ω is subdivided into a set {ωe}

ne
e=1 of non-overlapping elements of size h = maxe diam(ωe)

such that:

Ω =

ne⋃
ωe . (9)
e=1

5
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The unknown field u(x) is approximated with Lagrange basis functions φi (x) and the respective nodal coefficients
u = (u1, . . . , unu )⊤ of the nu non-Dirichlet boundary mesh nodes by

uh(x) =
nu∑

i=1

φi (x)ui . (10)

The discretisation of the weak form of the Poisson equation yields the linear system of equations

A(κ)u = f , (11)

here A(κ) ∈ Rnu×nu is the stiffness matrix, κ ∈ Rnκ is the vector of log-diffusion coefficients, f ∈ Rnu is the nodal
ource vector. The stiffness matrix of an element with label e is given by

Ae
i j (κe) =

∫
ωe

exp(κe)
∂φi (x)
∂x

·
∂φ j (x)
∂x

dx , (12)

here the log-diffusion coefficient κe of the element is assumed to be constant within the element. The source
vector is discretised as:

fi =

∫
Ω

f (x)φi (x)dx . (13)

Hence, according to the observation model (5) the likelihood is given by

p( y | κ) = p( y | u(κ)) = N (PA(κ)−1f, σ 2
y I) , (14)

here the matrix P represents the discretisation of the observation operator P .
Then the mapping from the coefficients κ to the solution u is u(κ) = A(κ)−1f. The marginal distribution of u is

iven by:

p(u) =
∫

p(u | κ)p(κ)dκ , (15)

here p(u | κ) is deterministic as defined in (11) but κ appears in it non-linearly, implying that the inference is
ot analytically tractable.

Throughout the experiments in the later sections, we either set Dirichlet (essential) boundary conditions
verywhere (for example u(x) = 0 on ∂Ω ), or assume Neumann (natural) boundary conditions on parts of the
oundary. The choice will be made explicit in each experiment. To compute the likelihood, we solve the Poisson
roblem (8) for u(x) using the finite element method (FEM).

.4. Prior

As discussed above, we place a Gaussian measure on κ , µ0(κ) ∼ N (m, Cκ ). Properties of samples from the
easure depend on mean m and on the spectral properties of the covariance operator Cκ . We restrict the space

f prior functions to L2(Ω ,R). Then, operator Cκ can be constructed from the covariance function, k(x, x′) =[(
κ(x)− m(x)

)(
κ(x′)− m(x′)

)]
as:

(Cκγ )(x) =
∫
Ω

k(x, x′)γ (x′)dx′, (16)

or any γ ∈ L2(Ω ,R). This formulation is what is commonly referred to as a Gaussian process (GP) with mean
unction m(·), which we assume to be zero, and covariance function k(·, ·) such that

κ ∼ GP
(
m(·), k(·, ·)

)
. (17)

Even though the process is infinite-dimensional, an instantiation of the process is finite and reduces to a
ultivariate Gaussian distribution by definition. The covariance function is typically parametrised by a set of

yperparameters ψ . One popular option, which satisfies assumptions about µ0 as per Stuart [3], is the squared
xponential kernel (also called the exponentiated quadratic or the radial basis function (RBF) kernel):

kSE(x, x′) = σ 2
κ exp

(
−

r2

2

)
, (18)
2ℓκ
6
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where r = ∥x−x′∥2 is the Euclidean distance between the inputs. It depends on two hyper-parameters ψ = {σκ , ℓκ},
the scaling parameter σκ , and the length-scale ℓκ . Note that, kSE(·, ·) is an infinitely smooth function, which implies
that so is κ(·). The RBF kernel imposes smoothness and stationarity assumptions on the solution; in addition, such
choice of kernel offers a way to regularise the resulting optimisation problem. However, depending on the expert
knowledge of the true solution, other kernels may be used to impose other assumptions such as periodicity.

Both conditioning and marginalisation of the GP can be done in closed form. In particular, consider the joint
model of the values κ at training locations X and the unknown test values κ∗ at test locations X∗:[

κ

κ∗

]
∼ N

(
0,

[
Kψ (X,X) Kψ (X,X∗)
Kψ (X∗,X) Kψ (X∗,X∗)

])
, (19)

here Kψ (X,X∗) is the matrix resulting from evaluating k(·, ·) at all pairs of training and test points. The conditional
istribution of the function values κ∗ given the values κ at X is:

κ∗ | κ ∼ N
(
κ̃∗, K̃

)
, (20)

where

κ̃∗ = K
(
X∗,X

)
[K(X,X)]−1 κ

K̃ = K
(
X∗,X∗

)
−K

(
X∗,X

)
[K(X,X)]−1 K

(
X,X∗

)
.

(21)

he marginal distribution can be recovered by finding the relevant part of the covariance matrix; for example, the
arginal of κ given X is κ ∼ N

(
0,Kψ (X,X)

)
.

In this work, we place a zero-mean Gaussian process prior on κ(x) and assume the squared exponential kernel
ith length-scale ℓκ and fixed variance σ 2

κ = 1. As mentioned in the previous section, we assume that κ(x) is
onstant on each element of the mesh (we use the same mesh as for discretising u(x) and f (x)). We place the prior
n κ so that the centroids of the elements are the training points of the GP:

p(κ) = N (0,Kψ (X,X)). (22)

. Variational Bayes approximation

.1. Variational Bayes

We assume that any hyper-parameters ψ of the prior are fixed, and are only interested in the posterior distribution
f κ . The variational approach proceeds by approximating the true posterior p(κ | y) according to (7) with a trial
ensity q(κ), which is the minimiser of the discrepancy between a chosen family of trial densities Dq and the true
osterior distribution p(κ | y) [34,36]. A typical choice for the measure of discrepancy between distributions is the
ullback–Leibler (KL) divergence (which due to the lack of symmetry is not a metric). To find the approximate
osterior distribution we have:

q∗(κ) = argmin
q(κ)∈Dq

KL(q(κ) ∥ p(κ | y)). (23)

xpanding the KL divergence term we obtain

KL(q(κ) ∥ p(κ | y)) =
∫

q(κ) log
q(κ)

p(κ | y)
d(κ)

= Eq
[
log q(κ)

]
− Eq

[
log p(κ | y)

]
= Eq

[
log q(κ)

]
− Eq

[
log

p( y, κ)
p( y)

]
= Eq

[
log q(κ)

]
− Eq

[
log p( y, κ)

]
+ log p( y).

(24)

he last term of the KL divergence, the log-marginal likelihood log p( y), is usually not analytically tractable.
owever, we use the fact that the KL divergence is non-negative to obtain the bound[ ] [ ]
log p( y) ≥ Eq log p( y, κ) − Eq log q(κ) . (25)

7
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This inequality becomes an equality when the trial density q(κ) and the posterior p(κ | y) are equal. To minimise
the KL divergence, it is sufficient to maximise Eq

[
log p( y, κ)

]
− Eq

[
log q(κ)

]
, which is commonly referred to as

he evidence lower bound (ELBO). The ELBO term can be rewritten as

ELBO(q) = Eq
[
log p( y | κ)+ log p(κ)

]
− Eq

[
log q(κ)

]
= Eq

[
log p( y | κ)

]
− KL(q(κ) ∥ p(κ)).

(26)

o summarise, the task now becomes:

q∗(κ) = arg max
q(κ)∈Dq

Eq
[
log p( y | κ)

]
− KL(q(κ) ∥ p(κ)). (27)

To maximise the ELBO with a gradient-based optimiser, we need to evaluate it and its gradients with respect
o the parameters of q(κ). Although the KL divergence term of the ELBO is often available in closed form,

q
[
log p( y | κ)

]
involving the likelihood is generally not available. It can be approximated using a Monte Carlo

pproximation with NSVI samples from the trial density q(κ) as follows:

Eq
[
log p( y | κ)

]
≈

1
NSVI

NSVI∑
i=1

log p( y | κ (i)), (28)

here κ (i) is the i th sample from q(κ). This is done through a reparametrisation trick, as described in Appendix B.1.
ur empirical tests show that the value of NSVI in the range of 2–5 provides fast convergence of the optimisation,

greeing with previous literature [63]. This approach is often referred to as stochastic variational inference (SVI).
he Monte Carlo approximation is in line with the work in Barajas-Solano and Tartakovsky [56] but in contrast
ith the analytic approximation based on the Hessian calculations proposed in Tsilifis et al. [55].

.2. Specification of trial distribution

The specification of the approximating family of distributions determines how much structure of the true posterior
istribution is captured by the variational approximation. To model complex relationships between the components
f the posterior, a more complex approximating family of distributions is needed. As the richer family of distributions
s likely to require more parameters, the optimisation of the usually non-convex ELBO becomes harder. A balance

ust be struck in this trade-off: the family should be rich enough, but the optimisation task should still be
omputationally tractable.

A practical and widely used variational family is the multivariate Gaussian distribution, parametrised by the
ean vector and the covariance matrix. One of the key benefits of this choice is that the KL divergence term of the
LBO in (26) is available in closed form for a GP prior. The choice of the parametrisation of the covariance matrix
etermines how much structure, other than the mean estimate, is captured by the variational family. We discuss this
n more detail in the next section.

Numerous approaches have been proposed to extend the trial distribution beyond the Gaussian family. A standard
pproach in situations when the true posterior distribution is likely to be multimodal is to consider mixtures of
ariational densities [75]. A more recent development is embedding parameters of a mean-field approximation in a
ierarchical model to induce variational dependencies between latent variables [76,77].

.2.1. Gaussian trial distribution
Choosing the trial distribution q(κ) as a multivariate Gaussian N (µ,Σ ) requires optimisation over the mean µ

nd the covariance matrix Σ . The flexibility in choosing how we specify both of these parameters, especially the
ovariance matrix, enables us to balance the trade-off between the expressiveness of the approximating distribution
nd the computational efficiency.

The richest specification corresponds to parametrising the covariance matrix Σ using its full Cholesky factor L,
i.e.,

q(κ) ∼ N (µ, LL⊤). (29)

This choice results in a dense covariance matrix that may be able to capture the full covariance structure between the
inputs (i.e. each input may be correlated with every other input). Parametrising the components of L automatically
8
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ensures that the covariance matrix Σ is positive definite as necessary. The number of parameters to optimise grows
as O(n2

κ ) and this leads to a difficult optimisation task that needs to be carefully initialised and parametrised. We
refer to this parametrisation as full-covariance variational Bayes (FCVB).

A much more efficient choice is a diagonal covariance matrix, which is often referred to as mean-field variational
ayes (MFVB). By limiting the number of parameters that need to be optimised, the optimisation task becomes

impler and the number of parameters grows only as O(nκ ). While more computationally efficient and easier to
nitialise, MFVB ignores much of the dependence structure of the posterior distribution.

.3. Conditional independence and sparse precision matrices

Instead of parametrising the covariance matrix Σ , or its Cholesky decomposition L, in physical systems it is
often advantageous to parametrise the precision matrix, Q, where Q = Σ−1. While a component of the covariance

atrix Σ expresses marginal dependence between the two corresponding random variables, the elements of the
recision matrix reflect their conditional independence [78]. Or, more specifically, for two components κi and κ j
f a Gaussian random vector κ we note

p(κi , κ j ) = p(κi )p(κ j ) ⇔ Σi j = 0 , (30)

here Σi j denotes the respective component of Σ . Furthermore, defining the vector κ−{i, j} from the random vector κ

y removing its i th and j th component, we note

p(κi , κ j | κ−{i, j}) = p(κi | κ−{i, j})p(κ j | κ−{i, j}) ⇔ Qi j = 0 . (31)

hat is, Qi j = 0 if and only if κi is independent from κ j , conditional on all other components of κ .
A succinct way to represent conditional independence is using an undirected graph whose nodes correspond to

he random variables [5]. A graph edge is present between two graph vertices i and j if the corresponding random
ariables are not conditionally independent from each other, given all the other random variables. Or, expressed
ifferently, the edges between the graph vertices correspond to non-zeros in the precision matrix. In our context,
ach graph vertex represents a finite element and graph edges are introduced according to geometric adjacency of
he finite elements as determined by the mesh. To this end, we define the 1-neighbourhood of a finite element as
he union of the element itself and of elements sharing a node with the element. The n-neighbourhood is defined
ecursively as the union of all 1-neighbourhoods of all the elements in the (n− 1)-neighbourhood. We introduce an
dge between two graph vertices when the respective elements are in the same n-neighbourhood.

Fig. 1 shows examples of adjacency graphs and the structure of the corresponding precision matrices Q for 5
andom variables resulting from a discretisation of a 1D domain with 5 finite elements. In the considered examples
he random variables represent the constant log-diffusion coefficient in the elements. As shown in Figs. 1b and 1c
hoosing a larger n-neighbourhood for graph construction leads to a denser precision matrix. For instance, from
he structure of the precision matrix in Fig. 1b, which assumes a 1-neighbourhood structure, we can read for the
og-diffusion coefficient of element j the following conditional independence relationship:

Qik = 0 ∧ Qil = 0 ∧ Qim = 0⇒ p(κi | κ j , κk, κl , κm) = p(κi | κ j ) . (32)

hen the coefficient of element j is given, the coefficient of the neighbouring element i is independent from all the
emaining coefficients. This is intuitively plausible and in line with physical observations. Clearly, the covariance
atrices corresponding to the given sparse precision matrices are dense. Hence, in the considered case the coefficient

f element i may still be correlated to the coefficient of element m, i.e. p(κi | κm) ̸= p(κi ). This correlation will
ost likely be relatively weak given the large distance between the two elements, but knowing the coefficient of

lement m will certainly restrict the range of possible values for the coefficient of element i .
After obtaining the structure of the precision matrix, which is sparse but, in general, not banded, one can

eorder the numbering of the elements in the finite element mesh to reduce its bandwidth. This allows for efficient
inear algebra operations. See Cuthill and McKee [79] for an example of a reordering algorithm. Once a minimum
andwidth ordering with bmin has been established, we use the property that the bandwidth of the Cholesky factor

L Q of matrix Q is less than or equal to the bandwidth of Q [80]. Finally, the parameters we optimise are the
omponents of the lower band of size bmin of matrix LQ , so that the approximating distribution reads

q(κ) ∼ N
(
µ, (L L⊤)−1

)
. (33)
Q Q

9
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Fig. 1. An example of a 1D bar discretised with five elements and two different conditional independence assumptions.

Fig. 2. Sparse precision matrix parametrisation for a 2D problem. A 2-neighbourhood structure is assumed for conditional independence.
The structure of the adjacency matrix depends on the specific element numbering. By renumbering the elements, one can obtain a banded
adjacency matrix, which is then used to parametrise the Cholesky factor of the precision matrix, as described in Section 3.2.1.

This process of devising a parametrisation for the precision matrix for a more complex mesh in 2D is illustrated
in Fig. 2. This approach is computationally efficient – the number of parameters grows as O(nκ ) – and is able to
apture dependencies between all the random variables.

.4. Stochastic optimisation

To maximise the ELBO in (27), we use the ADAM algorithm [81]. ADAM is a member of a larger class of
tochastic optimisation methods that have become popular as tools for maximising non-convex cost functions. These
ethods construct a stochastic estimate of the gradient to perform gradient descent-based optimisation. ADAM, a

tochastic gradient descent algorithm with an adaptive step size is one popular algorithm that exhibits a stable
10
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behaviour on many problems and is easy to use without significant tuning. The algorithm uses a per-parameter step
size, which is based on the first two moments of the estimate of the gradient for each parameter. Specifically, the
step size is proportional to the ratio of the exponential moving average of the 1st moment to the square root of
the exponential moving average of the non-centred 2nd moment. At any point, the exponential moving average is
computed with decay parameters β1 and β2 for the 1st and 2nd moment, respectively. We adopt the parameter values
suggested in Kingma and Ba [81]: β1 = 0.9 and β2 = 0.99. The speed of convergence is further controlled by the
learning parameter α which is used to regulate the step size for all parameters in the same way. In our experiments,
we set it to 0.01 and let it decay exponentially every 2500 steps (1000 for MFVB), with the decay rate of 0.96.
While the ADAM algorithm performs well on a variety of problems, it has been shown that the convergence of this
algorithm is poor on some problems [82]. We discuss alternative approaches as potential future work in Section 5.

To monitor convergence, we use a rule that tracks an exponentially weighted moving average of the decrease in
the loss values between successive steps, and stops when that average drops below a threshold. The use of such
an adaptive rule gives us a way to track the convergence of the algorithm and provides a conservative estimate for
the time it takes for the optimisation to converge. This rule can be adapted based on the available computational
budget.

3.5. The algorithm

The maximisation of the ELBO in (26) involves finding the parameters of the trial distribution q(κ), i.e. its
mean µ and Cholesky factor L Q , that minimise KL divergence between q(κ) and the posterior p(κ | y). Algorithm

shows the required steps to compute the ELBO and its gradients with respect to the parameters of the trial
istribution. Different from the discussion so far, in Algorithm 1 it is assumed that there are multiple independent
bservation vectors yi with i ∈ {1, 2, . . . , Ny}.

Algorithm 1: ELBO estimation and its gradient with respect to the parameters of the trial distribution.
Input: Current parameters µ and L Q of q(κ)
Output: ELBO and its gradients with respect to the parameters of q(κ)

1 Sample [κ (1), κ (2), . . . , κ (NSVI)] from q(κ)
2 for each κ (i) do
3 Solve for u(κ (i)) and obtain gradients with respect to κ using the FEM

4 p(y | κ (i))←
∏Ny

j=1 p( y j | u(κ (i)), σ 2
y ) and propagate its gradient with respect to κ (i)

5 ELBO ← N−1
SVI

∑NSVI
i=1 log p( y | κ (i))+ KL(q(κ) ∥ p(κ)) and propagate the gradient with respect to the

parameters of q(κ) using the reparametrisation trick (see Appendix B.1 and Kingma and Welling [63])
6 return ELBO, ∇ELBO

4. Examples

We evaluate the efficacy of variational inference first for 1D and 2D Poisson equation examples; a benchmark
roposed by Aristoff and Bangerth [83]; and lastly on a multimodal example of the steady-state heat equation.
e discretise the examples with a standard finite element method using linear Lagrange basis functions. We

ompare against two sampling-based inference schemes, Hamiltonian Monte Carlo (HMC) and pre-conditioned
rank–Nicholson Markov Chain Monte Carlo (pCN); both are known to be asymptotically correct as the number
f samples increases. The evaluation criteria we use focus on three aspects of an inference scheme: the accuracy
ith respect to capturing the mean and the variance of the solution; propagation of uncertainty in derived quantities
f interest; and the time until convergence of the solution.

To assess the propagation of uncertainty in derived quantities of interest, we consider a summary quantity for
hich a point estimate alone may not be informative enough for downstream tasks. In particular, we compute the

og of total boundary flux through the boundary Γb:

r (κ) = log
∫
Γb

eκ(s)
∇u(s) · n ds, (34)

here n is a unit vector normal to the boundary Γ .
b

11
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Fig. 3. Mean κ error norm for the Poisson 1D problem (left), as defined in (35), and expected solution error norm (right), as defined in (36).
Both quantities are estimated using 10,000 samples from the inferred posterior distribution of κ . Quantitatively, the sampling methods (HMC
and pCN) and VB produce comparable results in both metrics, except MFVB parametrisation which captures the mean of κ very well, but
fails to account for the uncertainty as manifested in high error norm in the solution space. For a qualitative comparison, see Fig. 4 where
each row of results corresponds to a different value of the true prior length-scale ℓκ .

To quantitatively assess the inference of κ , we obtain S samples from the posterior distribution of κ , {κ (s)
}

S
s=1.

For synthetic experiments, where we know the true κ which generated the observations, we compute the mean κ

error norm. The computation is the Euclidean norm of the error between the true value, κ true, and the mean of the
obtained samples:

Mean κ error =
 1

S

S∑
s=1

κ (s)
− κ true


2
. (35)

urther, we compute the expected error in the solution space. This measures how close the solutions corresponding
o the samples of κ are to the true solution u(κ true). Specifically, we compute

Mean u(κ) error =
1
S

S∑
s=1

u(κ (s))− u(κ true)


2. (36)

.1. Poisson 1D

For this experiment, we assume the unit-line domain, which is discretised into 32 equal-length elements. We
mpose Dirichlet boundary conditions on both boundaries, specifically we set u(0) = u(1) = 0; the forcing is

constant everywhere f (x) = 1. Unless specified otherwise, all experiments in this section use Ny = 5 observations
per sensor and the sensor noise σy = 0.01. Sensors are located on each of the discretisation nodes. For the prior
on κ , we choose a zero-mean Gaussian process with squared exponential kernel (see Section 2.4 for details). We
compare the results for three specifications of the prior length-scale, ℓκ ∈ {0.1, 0.2, 0.3}. The length-scale used to

enerate the data is ℓκ = 0.2. For inferences made using data generated by a shorter length-scale, see Appendix A.

.1.1. VB performs competitively based on error norms
Fig. 3 shows the mean κ error norm (35) and the expected solution error norm (36) obtained from 10,000 posterior

amples of κ from Hamiltonian Monte Carlo (HMC), pre-conditioned Crank–Nicholson MCMC (pCN), as well as
B inference with different parametrisations of the covariance/precision matrix. It is evident that for prior length-

cales ℓκ ∈ {0.2, 0.3}, the mean κ error norms computed by the variational Bayes methods are very close to the
stimates from HMC and pCN. For prior ℓκ = 0.1, the mean κ error norm computed by MFVB is lower than other
B methods and MCMC methods. This is most likely due to MFVB being a much easier optimisation task compared

o other VB methods with more optimisation parameters that capture dependencies. For the expected solution error
orm, MFVB posterior consistently underestimates the uncertainty in κ , thus ignoring possible values of κ which are
onsistent with the data. This is further confirmed in the qualitative assessment of uncertainty in the next section.
12
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While MCMC methods are asymptotically correct, in practice, devising efficient samplers for high-dimensional
problems within a limited computational budget is still a challenging task and requires substantial hand-tuning. To
affirm that all the VB methods provide a good estimate of the mean of κ , as compared to MCMC methods, is
better demonstrated by inspecting Fig. 4 which shows not only the mean but also the posterior uncertainty, which
we discuss next.

4.1.2. VB adequately estimates posterior variance
Fig. 4 shows the true values of κ (red), the posterior means (black) and plus and minus two times the standard

deviation (blue shaded regions) estimated by HMC, pCN, and variational inference with mean-field (MFVB), full
covariance (FCVB), and precision matrix (PMVB) parametrisations for different values of prior length-scales.

We observe that the posterior variance estimates computed by HMC, pCN, and full covariance VB are
qualitatively very similar, with the estimated uncertainty increasing with increasing distance from the fixed boundary.
However, the MFVB solution greatly underestimates posterior variance while computing a reasonable estimate of
the posterior mean. The over-confidence of MFVB means that values of κ that are consistent with the observed

ata are ignored; this may lead to poor calibration if the MFVB posterior is used as the true κ in downstream tasks
or in other contexts. For the PMVB parametrisation, the uncertainty is underestimated to a much lesser extent.

To demonstrate the dependence structure captured by each method, Fig. 5 shows the heatmap of the corresponding
precision matrices. Visual inspection suggests that the precision structure inferred using FCVB matches that of
MCMC methods while MFVB does not consider covariance relationships by design. The PMVB parametrisation,
that takes into account the structure of the problem offers a trade-off between capturing the majority of the
correlations in the problem but allowing for more efficient inference due to the sparsity in the resulting matrix.
Qualitatively, the PMVB uses only a fraction of the entries in the precision matrix in comparison to the FCVB
while consistently achieving a similar ELBO, as demonstrated in Fig. 10.

The observations above are further confirmed by the density plot of our quantity of interest: the log of the total
flux on the boundary, shown in Fig. 6. For this example, we compute the flux on the left boundary at x = 0 and
show the posterior distribution of this quantity. For longer prior length-scales, FCVB and PMVB agree with the
estimates obtained from pCN and HMC, whereas mean-field VB underestimates the uncertainty. For the short prior
length-scale (ℓκ = 0.1), both PMVB and MFVB underestimate the uncertainty as compared with HMC, pCN, and
FCVB schemes. The posterior distribution of FCVB approximately agrees with the MCMC schemes.

For the results obtained using the PMVB scheme, we used the 10-neighbourhood structure to define the adjacency
matrix and the non-zero elements of the precision matrix, Q (see Section 3.3). The order of the neighbourhood
structure, which corresponds to the precision matrix bandwidth, determines how much dependence within κ is
captured by the approximating posterior distribution. In Fig. 7, we show how the estimate of the mean and the
variance of κ changes for different orders of neighbourhood structure. As expected, with the increasing bandwidth,
the posterior estimate of κ gets closer to the estimate of FCVB, HMC, and pCN (shown in Fig. 4). While there is a
significant change in the uncertainty estimate when we increase the bandwidth from 2 to 10, it is less pronounced
when we change it from 10 to 20. For this reason, we choose the value of 10 for the PMVB parametrisation in 1D.

4.1.3. VB estimates improve with more observations and decreasing observational noise
The consistency of the posterior refers to the contraction of the posterior distribution to the truth as the data

quality increases, i.e. either the number of observations increases or observation noise tends to zero. A recent line
of work [84–86] showed the posterior consistency for the estimates obtained using popular MCMC schemes such as
pCN or unadjusted discretised Langevin algorithm for Bayesian inverse problems based on PDE forward mappings.
While similar results are not available for VB methods in infinite-dimensional case, consistency and Bernstein–von
Mises type results have been shown for the finite-dimensional case, including Bayesian inverse problems [87,88].
Empirically, our experiments show that for the given family of trial distributions the VB posterior distribution
contracts to the true κ .

Firstly, we show that increasing the number of observations, Ny , results in a more accurate estimate. Given that
the observations, { yi }

Ny
i=1, are independent of each other, the likelihood term of the ELBO (see Eq. (26)) is the

product of the individual likelihood terms:

p( y1, . . . , yNy | κ) =
Ny∏

p( yi | κ). (37)

i
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Fig. 4. Top row in each of the three panels show true values of κ (red), posterior means (black) and plus and minus two times the standard
eviation (blue shaded regions) for HMC, pCN, and VB variants for different values of prior length-scales ℓκ . The bottom rows show the
ata (black), true solution u (green), solutions for different samples of κ (blue). For the PMVB estimate, the bandwidth is set to 10. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ℓ

Fig. 5. Precision matrices for each of the considered methods, where true ℓκ = 0.2 and each row corresponds to a different value of prior
κ .

Fig. 6. Log of the boundary flux at the left boundary node (x = 0) for the 1D Poisson example. For PMVB, the precision matrix bandwidth
of 10 is used.

Secondly, by decreasing the observational noise σy we expect the posterior distribution to get closer to the ground
truth and with lower uncertainty. Fig. 8 shows the true values of κ (red), the posterior mean estimates (black) and
plus and minus two times the standard deviation (blue shaded regions) obtained by different variants of variational
Bayes for varying numbers of observations (top panel) and different values of observational noise (bottom panel).
We can see that MFVB underestimates the posterior variances and these estimates do not depend on the number
of observations (top panel in Fig. 8) or the amount of observational noise (bottom panel in Fig. 8). However, the
FCVB and PMVB uncertainty estimates get narrower with increasing number of observations and with decreasing
observational noise, which is a desirable behaviour that should be exhibited by any consistent uncertainty estimation
method. We can also see that the true solution is contained within the uncertainty bounds for all numbers of
observations and noise levels for the full covariance parametrisation. This is not the case for the mean-field VB,
providing another indication of uncertainty underestimation for this parametrisation.

4.1.4. VB is an order of magnitude faster than HMC
For HMC estimates, we obtain 200,000 samples out of which the first 100,000 are used to calibrate the sampling

scheme and are subsequently discarded. Table 1 provides the run-times for HMC, MFVB, FCVB, and PMVB. For
the HMC column, we also report (shown in brackets) the range of effective sample sizes (ESS) across different
components of κ . For details on ESS, we refer the reader to [30, Ch. 11]. Even with conservative convergence
criteria (described in Section 3.4), the computational cost of VB algorithms is up to 25 times lower than that of

HMC. To emphasise the computational efficiency of the variational inference, we show the posterior estimates for
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Fig. 7. True values of κ (red), posterior means (black) and plus and minus two times the standard deviation (blue shaded region) for different
atrix bandwidths of the precision matrix parametrisation of VB. Bandwidth corresponds to the order of neighbourhood structure considered
hen parametrising Q. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

rticle.)

Table 1
Run-times for different inference schemes in hours for the Poisson 1D problem. For VB methods,
NSVI = 3. The column for HMC includes the range of effective sample sizes (ESS) across different
components of κ .

True ℓκ Prior ℓκ Time (h)

HMC MFVB FCVB PMVB

0.1 0.1 15.2 (871–3244) 1.1 3.6 2.1
0.2 11.1 (1043–4006) 0.7 2.7 2.1
0.3 7.2 (1130–5408) 0.6 2.3 2.0

0.2 0.1 15.2 (1600–4700) 0.6 2.2 1.8
0.2 10.4 (1067–3468) 0.6 2.3 2.0
0.3 7.0 (1487–3969) 0.5 1.7 1.8

different number of Monte Carlo samples in the estimation of ELBO. Fig. 9 shows that on a qualitative level, a
low number of samples is sufficient to obtain a good estimate. In particular, even with 2 Monte Carlo samples, the
estimates are very similar to the case where NSVI = 20. However, a lower number of samples may result in slower
convergence of the optimisation scheme. Fig. 10 shows that for the FCVB and PMVB parametrisations, where the
number of optimised parameters is larger than for MFVB, increasing the number of SVI samples may speed up the
convergence of the optimisation. The effect is not as strong for the MFVB parametrisation.
16
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Fig. 8. True values of κ (red), posterior means (black) and plus and minus two times the standard deviation (blue shaded regions) for VB
with different parametrisations for different number of observations per sensor, Ny ∈ {1, 10, 100} (top panel), and for different values of
sensor noise σϵ ∈ {0.1, 0.01, 0.001} (bottom panel). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

4.2. Poisson 2D

We consider a 2D Poisson problem on the unit-square domain with a circular hole as shown in Fig. 11, with
boundary conditions as indicated in the same figure. The problem is discretised with 208 linear triangular elements
and 125 nodes. The forcing term is assumed to be constant throughout the domain, f (x) = 1. Unless specified
otherwise, all experiments in this section use Ny = 5 observations per sensor and the sensor noise σy = 0.001
note that for the 1D example we used σy = 0.01). The sensors are located at each node of the mesh. As in the
D example, we assume a zero-mean GP prior on κ with square exponential kernel with varying length-scale, ℓκ ,
s discussed in Section 2.4.

Firstly, the results in Fig. 12 show that the mean κ error of VB methods is very similar to the sampling methods
pCN and HMC). Similarly to the 1D case, the expected solution error norm is highest for MFVB estimate,

ndicating the lack of capturing the possible values of κ for which the solutions, u(κ), are consistent with the
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Fig. 9. True values of κ (red), posterior means (black) and plus and minus two times the standard deviation (blue shaded regions) of VB
ith different parametrisations for varying number of Monte Carlo samples when computing ELBO. Three different length-scales for the
rior are shown: 0.1, 0.2, 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)
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Fig. 10. Negative ELBO trace plot for both MFVB and FCVB for different values of NSVI. For this example, true ℓκ = 0.2 and prior
κ = 0.1.

Fig. 11. Left: Specification of the domain for the 2D Poisson problem. Note that we impose Dirichlet boundary conditions u(x, y) = 0 when
x = 1 or y = 1. We impose Neumann boundary conditions on the rest of the boundary. Right: a triangular discretisation of the domain.

Fig. 12. Mean κ error norm for the Poisson 2D problem (left), as defined in (35), and expected solution error norm (right), as defined
n (36). Both quantities are estimated using 10,000 samples from the inferred posterior distribution of κ . Quantitatively, the sampling methods

(HMC and pCN) and VB produce comparable results in both metrics, except MFVB parametrisation which captures the mean of κ well (as
demonstrated in the mean κ error norm), but fails to account for the uncertainty as manifested in high error norm in the solution space.

or a qualitative comparison, see Figs. 13–15.

bserved data. The results also show that both errors are lowest when the prior ℓκ matches the length-scale used to
generate the data.

Figs. 13–15 show the results for the posterior mean and the standard deviation of κ , the solution u(κ) correspond-
ing to the mean of the posterior. We consider three configurations with prior length-scale ℓκ ∈ {0.1, 0.2, 0.3}, where
he length-scale used to generate the data is ℓκ = 0.2. In all cases, the estimates of the posterior mean of κ and the
orresponding solutions u are very close to the true values. Similarly to the 1D case discussed in Section 4.1, the

ariance estimates between HMC and FCVB are consistent, especially for longer prior length-scales. There seems to
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Fig. 13. Posterior mean and standard deviation for κ and the corresponding u for 2D Poisson example with prior length-scale ℓκ = 0.1.
The bottom row shows the structure of the precision matrix for each inference scheme.

Fig. 14. Posterior mean and standard deviation for κ and the corresponding u for 2D Poisson example with prior length-scale ℓκ = 0.2.
The bottom row shows the structure of the precision matrix for each inference scheme.

be a discrepancy between the estimates obtained using MFVB and those obtained by other methods. The estimates
obtained using precision-matrix parametrisation are qualitatively very close to the FCVB and MCMC estimates.

The bottom rows of Figs. 13–15 show the precision matrices for the inferred posterior distributions. As in the
one-dimensional examples, the precision matrices of FCVB and PMVB capture similar dependence structure as
the one obtained using HMC, implying that PMVB closes the gap between the over-simplified MFVB and the full
covariance VB in terms of the captured dependence relationships while retaining a sparse structure.

For the quantity of interest, we compute the log of the total flux along the right boundary of the domain
(x = 1), and the results are shown in Fig. 16. Unlike the 1D case, the posterior estimates of the boundary flux are
approximately the same for all the considered methods, except for the mean-field estimate when prior ℓκ = 0.1,

where the MFVB estimate is biased as compared to the other methods.
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Fig. 15. Posterior mean and standard deviation for κ and the corresponding u for 2D Poisson example with prior length-scale ℓκ = 0.3.
The bottom row shows the structure of the precision matrix for each inference scheme.

Fig. 16. Log of the total flux computed along the right boundary (x = 1). For PMVB, the precision matrix is parametrised using the
econd-order neighbourhood structure, as shown in Fig. 2.

The empirical computational cost for these experiments is given in Table 2. For the HMC experiments, we
btained 250,000 samples, out of which the first 125,000 were used to calibrate the sampling scheme and discarded
fterwards. The timing results show that HMC takes an order of magnitude longer than variational Bayes, with
ome variation that depends on the parametrisation.

.3. Inverse problem benchmark

We evaluate the effectiveness of VB methods on a recently proposed benchmark for Bayesian inverse prob-
ems [83]. The benchmark aims to provide a test case that reflects practical applications, but at the same time is
asy to replicate. Like above, the test case is a Poisson inverse problem where the task is to recover log-diffusion,
, from a finite set of noisy observations. The problem domain is a unit square, the forcing function f (x) = 10 is
onstant throughout the domain, and the solution of the PDE is imposed to be zero on all four boundaries.

The benchmark discretises κ using 64 quadrilateral elements, such that κ is constant for each individual element
as shown in Fig. 17. The forward solution of the PDE is obtained after discretising u using 32 × 32 bilinear
quadrilateral elements. The locations where the solution is observed are placed on a uniform grid of 169 points
21
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Table 2
Run-times for different inference schemes in seconds. The number of Monte Carlo samples is
NSVI = 5 for all MFVB, FCVB, and PMVB. The column for HMC includes the range of effective
sample sizes (ESS) across different components of κ .

True ℓκ Prior ℓκ Time (h)

HMC MFVB FCVB PMVB

0.1 0.1 240.6 (930–11 200) 6.4 29.6 28.1
0.2 295.5 (1537–11 067) 6.6 32.6 28.9
0.3 242.0 (1057–6068) 7.3 27.3 30.6

0.2 0.1 242.7 (1102–18 235) 6.2 34.3 27.2
0.2 264.3 (1304–9848) 7.4 33.7 34.0
0.3 221.9 (1192–6356) 7.8 31.3 34.0

(13 × 13). The measurements are corrupted by the Gaussian noise with standard deviation σy = 0.05. The authors
f the benchmark provide the measurements as well as the true log-diffusion coefficient κ which generated the
bservations. The true log-diffusion coefficient, shown in Fig. 17, is zero throughout the domain, except two regions,
here the value is log(10) and log(0.1). It is these two jumps that make it a non-trivial test case.
Unlike in the previous examples, we place a prior on κ which does not induce any spatial correlation between

ny of the κ coefficients. The role of the prior is to express our belief about the ranges of the coefficients, rather
han any dependencies. Although authors place N (µ = 4, σ 2

= 4) for each component of κ independently, we
choose N (µ = 0, σ 2

= 1) as most of the coefficients of the true κ are at the baseline level equal to zero, and the
fact that the κ corresponds to the diffusion parameter on the log-scale, a priori we do not expect such high variance.

We performed the inference using HMC, MFVB, FCVB, and PMVB. The means and standard deviations of
inferred log-diffusion coefficients, together with the PDE solutions corresponding to the inferred means, are shown
in Fig. 17. The results suggest that the mean estimates of all three methods do capture the jumps and the overall
structure of κ . Specifically, the FCVB estimate of the mean of κ is closest to the true value. As for uncertainty
quantification, the MFVB and PMVB estimates are closer to the HMC estimate (our assumed ground truth for the
uncertainty) than the FCVB estimate. The FCVB estimate seems to overestimate the uncertainty at a few locations.
This is potentially due to being stuck in a local optimum during the optimisation procedure, which for FCVB
involves high-dimensional exploration.

4.4. Multimodal Poisson 1D

One of the advantages of VB is the flexibility of the choice of the trial distribution. To illustrate this, we consider
the Poisson equation on the domain Ω = (0, 1) given by

exp(κ)∇2u(x) = 2, (38)

where exp(κ) is the conductivity, and the Dirichlet boundary conditions are u(0) = 0 and u(1) = u R .
We are interested in inferring the constant conductivity, exp(κ), and the right boundary condition u R , having

obtained multiple measurements of u(x) at x = 0.5. We show the solution of this problem in the top part of Fig. 18
where we consider two different combinations of κ and u R that result in the same solution u(0.5). This implies that
there are multiple combinations of the two unknown parameters that result in the same solution at the observation
point, making the inference problem ill-posed.

To proceed, we place a prior distribution which is motivated by the domain knowledge: if conductivity is high,
so will be the solution u R at the right boundary. A mixture model provides a convenient way of encoding this
prior information in a probability distribution. Specifically, we place the following prior consisting of two bivariate
Gaussian distributions on the log of conductivity and the log of boundary condition u R :(

κ

log u R

)
=

1
2
N

((
log 0.1

log 1× 10−8

)
, 0.5

(
1 0
0 1

))
+

1
2
N

((
log 2.0
log 1.0

)
, 0.5

(
1 0
0 1

))
(39)
he contour plot of this prior is shown in the bottom-left part of Fig. 18.
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T

Fig. 17. Posterior mean and standard deviation for κ and the corresponding u for the benchmark example with independent prior for each
coefficient of κ : κi ∼ N (0, 1).

Fig. 18. Multimodal Poisson 1D. Top: the solution, u (blue) is shown for two different conductivities and boundary conditions on the right.
wo measurements that were taken at the centre of the domain are marked as crosses. Bottom left: joint prior distribution for conductivity

and the Dirichlet boundary condition on the right at x = 1. Bottom right: the posterior distribution inferred from the prior distribution and
the two measurements (shown in the top panel). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Assuming a Gaussian measurement noise with σy = 0.05, we take two samples of the temperature at the
bservation point. Following the variational Bayes approach, we restrict the family of trial distributions to be
n equally weighted mixture of bivariate Gaussian distributions, each with its own mean and covariance matrix,
arametrised by the Cholesky factor. As there is no closed-form expression for the KL divergence between the prior
nd members of the family of trial distributions, we estimate the KL divergence term in the ELBO using Monte
arlo sampling. As shown in the bottom right panel of Fig. 18, the resulting posterior distribution is bimodal. The
istribution is consistent with the physical intuition which we expressed in the prior.

This illustrative example shows that when a proposed model exhibits multi-modality, the flexibility of the
ariational Bayes methodology allows for specifying a family of trial distributions that can capture that property.

. Conclusions

In this paper, we have presented the variational inference framework for Bayesian inverse problems and
nvestigated its efficacy on problems based on elliptic PDEs. Computationally, variational Bayes offers a tractable
lternative to the intractable MCMC methods, and provides consistent mean and uncertainty estimates on the
roblems inspired by questions in computational mechanics. VB recasts the integration problem associated with
ayesian inference into an optimisation problem. As such, it is naturally integrated with existing FEM solvers,
sing the gradient calculations from the FEM solvers to optimise the ELBO in VB. Furthermore, the geometry
f the problem encoded in the FEM mesh is utilised through the use of a sparse precision matrix that defines
he conditional independence structure of the problem. Our results on the 1D and 2D Poisson problems support the
laims of accuracy and scalability of VB. We note that the inferred variance is important in uncertainty quantification
ith a probabilistic forward model (for a different load case).
More specifically, our results show that

• the mean of the variational posterior provides an accurate point estimate irrespective of the choice of the
parametrisation of the covariance structure,
• the variational approximation with a full-covariance or precision matrix structure adequately estimates posterior

uncertainty when compared to HMC and pCN which are known to be asymptotically correct,
• parametrising the multivariate Gaussian distribution using a sparse precision matrix provides a way to balance

the trade-off between computational complexity and the ability to capture dependencies in the posterior
distribution,
• variational Bayes provides a good estimate for the mean and the variance of the posterior distribution in a

time that is an order of magnitude faster than HMC or pCN,
• the multivariate Gaussian variational family is flexible enough to capture the true posterior distribution with

high accuracy,
• the VB estimates may be used effectively in downstream tasks to estimate various quantities of interest, and
• variational Bayes method is flexible enough to model multimodal posteriors, as illustrated on the steady-state

heat equation.

Our work may be extended in a number of natural ways that allows for greater adaptivity to the specific
roblems encountered in applications and integration within existing frameworks. Firstly, taking advantage of fast
mplementations of sparse linear algebra routines would further improve the scalability of VB with the structured
recision matrix, as proposed in our work. Secondly, casting the inverse problem in a multi-level setting and
aking advantage of low-dimensional projections has potential to further improve computational efficiency [89,90].
hirdly, the results provided in this paper use standard off-the-shelf optimisation routines; further computational

mprovements may be achieved using customised algorithms. As a further extension, in some applications it may
e informative to consider the uncertainty in the forcing function so that the forward mapping is stochastic, as
iscussed in [27]. Finally, one of the aims of our work is to take advantage of the advances in Bayesian inference
nd adapt the novel algorithms to inverse problems in computational mechanics. As such, any further developments
n VB as applied to machine learning and computational statistics problems may be directly applied using the

ramework proposed in this paper.
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Fig. A.19. Mean κ error norm for the Poisson 1D problem (left), as defined in (35), and expected solution error norm (right), as defined
in (36). Both quantities are estimated using 10,000 samples from the inferred posterior distribution of κ . Quantitatively, the sampling methods
(HMC and pCN) and VB produce comparable results in both metrics, except MFVB parametrisation which captures the mean of κ very

ell, but fails to account for the uncertainty as manifested in high error norm in the solution space. For a qualitative comparison, see Fig. 4
here each row of results corresponds to a different value of the true prior length-scale ℓκ .

. Implementation

Codes for performing all forms of variational Bayes inference presented in this paper are available on Github
t https://github.com/jp2011/bip-pde-vi. The user must provide their own PDE solver which accepts κ as input

parameter and computes log p( y | κ), together with its gradient with respect to κ .
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ppendix A. Short length-scale results

Figs. A.19–A.21 show the performance of the proposed method on data generated using a short length-scale.
he equivalent plots for a longer length-scale are shown in the main text.

ppendix B. Variational inference

.1. Reparametrisation trick

Reparametrisation trick allows computing the gradients of quantities derived from samples from a probability
istribution with respect to the parameters φ of that probability distribution. This holds for probability distributions
here samples can be obtained by a deterministic mapping, parametrised by φ, of other random variables.
Let ϵ be a set of random variables. We assume that samples of κ ∼ q(κ;φ) are given by a deterministic mapping

κ = t(φ, ϵ). (B.1)
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Fig. A.20. Top row in each of the three panels show true values of κ(x) (red), posterior means (black) and posterior variances (blue shaded
egions) for HMC and VB variants for different values of prior length-scales ℓκ . The bottom rows show the data (black), true solution u
green), solutions for different samples of κ (blue). For the PMVB estimate, the bandwidth is set to 10. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.21. Precision matrices for each of the considered methods, where true ℓκ = 0.1 and each row corresponds to a different value of
rior ℓκ .

he KL divergence between approximating distribution q(κ) and the prior p(κ) is often available in closed form and
o are its gradients with respect to φ. To estimate the gradients of the Monte Carlo estimate of the log-likelihood
f the data,

Eq
[
log p( y | κ)

]
≈ N−1

SVI

NSVI∑
i=1

log p( y | κ (i)), (B.2)

e can use the chain rule of differentiation to obtain

∇φ N−1
SVI

NSVI∑
i=1

log p( y | κ (i)) = N−1
SVI

NSVI∑
i=1

∇κ log p( y | κ (i)) · ∇φ t(φ, ϵ(i)). (B.3)

ppendix C. Markov Chain Monte Carlo

.1. Pre-conditioned Crank–Nicholson scheme

We consider the pre-conditioned Crank–Nicholson scheme proposed by Cotter et al. [66]. We summarise the
rocedure in Algorithm 2.

.2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo [72] is a variant of Metropolis–Hastings [70,71] which takes advantage of the gradients
f the target distribution in the proposal, allowing for a more rapid exploration of the sample space, even in a high-
imensional target space. For each component κ i of the target space, the scheme adds a ‘momentum’ variable φ j
note that this is different from φ used in Appendix B.1). Subsequently, κ and φ are updated jointly in a series of
pdates to propose a new sample (κ∗,φ∗) that is then accepted or rejected.

The proposal is largely driven by the momentum variable. The proposal step starts with drawing a new value of
from p(φ) which needs to be specified. Then in a series of user-specified steps, L , the momentum variable φ is

updated based on the gradient of the log of the target density, and κ is moved based on the momentum. Usually,

the distribution of the momentum variable is N (0,M), where M is the so called ‘mass’ matrix. A diagonal matrix
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Algorithm 2: PRE-CONDITIONED CRANK–NICHOLSON MCMC [66]
Input: Φ(κ, y) = − log p( y | κ): likelihood of the data, µ0(κ): prior measures, β: corresponds to the

amount of innovation in the proposal. If the value is small, there is little innovation and the
proposed sample will be close to the previous sample.

Output: A list of samples from µy(κ).
1 for t ← 1, 2, . . . do
2 Sample ξ (t)

∼ µ0(κ)

3 v(t)
←

√(
1− β2

)
κ (t)
+ βξ (t)

4 κ (t+1)
←

⎧⎨⎩v(t) with probability min
(

1, exp
(
Φ(κ (t)

; y)− Φ(v(t)
; y)

))
κ (t) otherwise

5 return [κ (1), κ (2), . . . ]

Algorithm 3: HAMILTONIAN MONTE CARLO as presented in Gelman et al. [30]
Input: p(κ | y): unnormalised target density, p(φ): momentum density and its mass matrix M, L: leapfrog

steps, ϵ: scaling factor
Output: A list of samples from p(κ | y).

1 for t ← 1, 2, . . . do
2 Sample φ from p(φ)
3 for i ← 1 to L do
4 κ∗← κ t−1

5 φ← φ + 1
2ϵ

d log p(κ∗| y)
dκ

6 κ∗← κ∗ + ϵM−1φ

7 φ← φ + 1
2ϵ

d log p(κ∗| y)
dκ

8 r ← p(κ∗|y)p(φ∗)
p(κ t−1| y)p(φt−1)

9 κ t
←

{
κ∗ with probability min(r, 1)
κ t−1 otherwise

10 return [κ1, κ2, . . . ]

is often chosen to be able to efficiently sample from the momentum distribution. The full steps of the procedure
are given in Algorithm 3.

The performance of the algorithm can be tuned in three ways: (i) choice of the momentum distribution p(φ),
which in the version above requires specifying the mass matrix, (ii) adjusting the scaling factor of the leapfrog
step, ϵ, and (iii) the number of leapfrog steps, L . Gelman et al. [30] suggest setting ϵ and L so that ϵL = 1. They
uggest tuning these so that the acceptance rate is about 65%. As for the mass matrix, the authors suggest that it
hould approximately scale with the inverse covariance matrix of the posterior distribution, (Cov(κ | y))−1. This
an be achieved by a pre-run from which the empirical covariance matrix can be computed.
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