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1. Introduction

The late Nobel laureate, Prof. Richard Smalley, once emphasized
that “energy is the single most important issue we face today”
and global energy demand is rapidly increasing fourfold.[1,2]

Indeed, the majority of the world’s energy is consumed by
China and the United States, with India following closely
behind.[3,4] To address these escalating energy needs, solar

energy presents a viable solution, offering
the potential to profoundly improve the
lives of communities worldwide.[5–7]

Photovoltaic (PV) systems, which convert
sunlight directly into electricity, are a
means to harness the sun’s renewable, sus-
tainable, and low-carbon energy source.[8]

These systems often achieve high efficiency
in their conversion process.[9] However,
one of the key challenges in promoting
the widespread adoption of this technology
is the cost of solar electricity compared to
conventional energy sources.[10]

Grid-connected PV systems are cost-
effective renewable energy solutions that
do not require batteries and mainly consist
of a PV array generator and an inverter for
converting direct current (DC) electricity to
alternating current (AC).[11,12] Furthermore,
they can be configured to supply energy to
primary loads, with all excess electricity
being sold to the grid or even bought back
from the grid when PV supply is insuffi-
cient.[13] Alternatively, all the energy gener-
ated from the PV system can be sold directly
to the grid.[14] In all cases, the difference
between the price of buying and selling elec-
tricity from the grid is a substantial factor in

determining the optimum size of grid-connected PV systems.[15,16]

Therefore, evaluating the economic feasibility of a PV system
is extremely important.[17] For example, users need to know
their expected return on investment (ROI), which is a measure
of profitability, and funding agents need means to analyze
proposed technology development.[18] Similarly, technology
developers need to understand how they will compete relative
to other technologies.[19] Moreover, regulators and policymakers
(who help define the economics of energy production) require
reliable information.[20] The capital cost of a PV system, its oper-
ation and maintenance costs, and its expected energy yield must
be considered systematically so that a comparison with conven-
tional fossil fuels can be made.[21] Consequently, one needs a
method to compare energy costs fairly. Therefore, we developed
a generalized framework for predicting the feasibility of a grid-
connected PV system for utility-scale applications. Our predic-
tion framework considers the amount of electricity consumption
using several metrics, including gross domestic product (GDP),
prices of electricity, population growth, and weather data.

Recent literature highlights key advancements in the adoption
of solar PV systems, showcasing their diverse applications
and economic considerations. The paper titled “Adoption of
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In this research article, the objective is to determine the return on investment
(ROI) of photovoltaic (PV) power plants by employing machine learning (ML)
techniques. Special focus is done on the levelized cost of electricity (LCOE) as a
pivotal economic parameter crucial for facilitating economic decision-making and
enabling quantitative comparisons among different energy generation technolo-
gies. Traditional methods of calculating LCOE often rely on fixed singular input
values, which may fall short in addressing uncertainties associated with assessing
the financial feasibility of PV projects. In response, a dynamic model that inte-
grates essential demographic, energy, and policy data, is introduced encom-
passing factors such as interest rates, inflation rates, and energy yield, which are
anticipated to undergo changes over the lifetime of a PV system. This dynamic
model provides a more accurate estimation of LCOE. The comparative analysis of
ML algorithms indicates that the auto-regression integration moving average
(ARIMA) model exhibits a high accuracy of 93.8% in predicting consumer elec-
tricity prices. The validation of the model is highlighted through two case studies
in the United States and the Philippines underscores the potential impact on
LCOE values. For instance, in California, LCOE values could vary by nearly 30%
(5.03 cents kWh�1 for singular values vs 7.09 cents kWh�1 using our ML model),
influencing the perceived risk or economic feasibility of a PV power plant.
Additionally, the ML model estimates the ROI for a grid-connected PV plant in the
Philippines at 5.37 years, in contrast to 4.23 years using traditional methods.
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Floating Solar Photovoltaics on wastewater management system:
AUnique Nexus of water-energy Utilization, low-cost clean Energy
Generation, and Water Conservation” (Clean Technologies and
Environmental Policy) explores the innovative integration of
floating solar PV with wastewater management, emphasizing
the synergies between water and energy utilization, cost-effective
clean energy generation, and sustainable water conservation
practices.[22] Additionally, the study “Grid parity analysis of pho-
tovoltaic systems considering feed-in tariff and renewable energy
certificate schemes in Hong Kong” (Renewable and Sustainable
Energy Reviews) critically assesses the grid parity of PV systems
in Hong Kong, considering factors like feed-in tariff mechanisms
and renewable energy certificate schemes. These works contribute
significantly to understanding the multifaceted benefits and eco-
nomic viability of solar PV systems, offering valuable insights into
unique applications and policy considerations that resonate with
the objectives of our present study.[23]

The motivation of our manuscript stems from the imperative
to address the dynamic and intricate nature of factors influencing
the economic viability of PV systems. In addition, the traditional
methods often rely on static inputs, neglecting the evolving land-
scape of variables such as population growth, inflation rates, and
demographic shifts, however, the deployment of ML algorithms
in predicting the levelized cost of electricity (LCOE) offers a pio-
neering approach, enabling us to capture the nuanced interplay
of these dynamic elements. Moreover, the frontier of ML appli-
cations in the realm of PV system economics, our research seeks
to bridge the gap between conventional singular input method-
ologies and the transformative potential of advanced analytics. By
employing ML algorithms, we aspire to provide a more accurate
and adaptive framework for LCOE predictions, thus contributing
to a comprehensive understanding of the long-term financial via-
bility of PV systems and advancing the discourse in renewable
energy economics.

1.1. Organisation of the Article

Our article is divided into 7 Sections. Section 2 reviews the liter-
ature on calculating the LCOE of grid-connected PV systems.
Section 3 describes our methodology for calculating the LCOE
and ROI of a grid-connected PV system using various ML algo-
rithms and briefly discusses our proposed model. Section 4
includes the data explanation and steps of data pre-processing.
Section 5 presents the results of our energy prediction models
using various ML techniques and provides comparisons with sin-
gular input demographic variables. Next, in Section 6 we discuss
our results, and concluding remarks are presented in Section 7.

1.2. Key Contributions

The following are our key contributions to the existing body of
knowledge on PV systems’ economic evaluation: 1) We highlight
the crucial impact of considering dynamic factors in estimating
the LCOE. Our research demonstrates a significant difference
between LCOE estimations using singular inputs versus those
obtained using ML models that consider dynamic variables.
This insight underscores the need for a more comprehensive
approach to LCOE calculation, one that incorporates changing

demographic and economic factors; 2) Development of a
dynamic model for LCOE estimation, which incorporates impor-
tant dynamic variables such as demographic, energy and policy
data, including interest rates, inflation rates and energy yield,
improving traditional methods relying on fixed singular input
values; 3) Comparative analysis of ML algorithms for predicting
consumer electricity prices; 4) Validation of the proposed model
through case studies. Our work is supported by practical valida-
tion using two case studies from different geographic regions
(the United States and the Philippines); and 5) Demonstrating
a substantial difference in LCOE calculations using the tradi-
tional approach versus the proposed ML model. We show that
the LCOE value increases substantially when employing the
ML model compared to the traditional method using singular
inputs. This underlines the importance of considering dynamic
factors in such estimations for more realistic and accurate assess-
ments of PV systems’ long-term financial viability.

2. Literature Review

Numerous examples in the literature describe the statistical and
probabilistic models for calculating the LCOE and ROI of PV sys-
tems. For example, K. Branker et al.[24] argued that there is a lack
of understanding of the calculations involving assumptions and
justifications for the estimation of LCOE, thus proving that poor
assumptions lead to contradictory results for the calculations of
energy ROI of a PV system. In their paper, they calculated the
LCOE to reduce the assumptions-based model and represent a
more accurate one. Nevertheless, their study was limited to sin-
gular inputs for calculating the LCOE.

Amore detailed calculation of LCOE by Chul-Yong Lee et al.[25]

presented a stochastic model for calculating LCOE for solar PV
systems installed in the Philippines. Their results depicted that
for a commercial solar panel, the LCOE ranged from a minimum
of 10 to 18 ¢ kWh�1. Moreover, they performed a sensitivity
analysis to validate their results. However, their study lacked
the optimized LCOE value and only discussed a range of possible
LCOE values in their model.

Another study for a utility-based system installed in IESCO,
Pakistan, conducted by Ahsan Khan et al.[26] showed an analysis
for forecasting day ahead load demand using the auto-regressive
(AR), moving average (MA), and auto-regressive integrated mov-
ing average (ARIMA) model for the statistical modelling for the
load demand. In addition, they performed a comparative analysis
using artificial neural networks (ANN) and bagged regression
tree (BRT) models. Although their results for forecasting the load
demand using various ML techniques are precise but lack the
estimation of LCOE and hence, the energy ROI of the model.

Again, Geissmann et al.[27] showed a probabilistic approach
for computing the LCOE of a nuclear plant and a gas power proj-
ect. Furthermore, they implemented a Monte Carlo simulation to
determine the dependency of singular input parameters on the
model’s final results. However, their study used singular inputs
and lacked dependency on demographic variables. Further,
Georgitsioti et al.[28] discussed the formula used to calculate
the LCOE based on singular values for domestic PV systems
in the UK, and the financial benefits that can be gained from
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a domestic PV system under the “Feed in Tariff (FiT)” PV sup-
porting policy in the UK.

3. Methodology

The methodology section of our article outlines all the essential
steps for calculating the LCOE and ROI of a grid-connected PV
system. Furthermore, this section provides information on the
ML algorithms employed for forecasting the LCOE using demo-
graphic variables. We also introduce our proposed model, which
was used to estimate the LCOE and the ROI of utility-based grid-
connected solar energy systems[29] installed in Sacramento
(California) and Butuan City, Philippines.

3.1. Calculating the LCOE

A valuable parameter for comparing the cost of electricity produc-
tion from any energy generation system over its lifetime is the
levelized cost of electricity (LCOE).[30] According to the US’s
National Renewable Energy Laboratory (NREL), the LCOE is
defined as the “net present value of the unit-cost of electricity
over the lifetime of a generating asset”.[31] It serves as a compar-
ative measure of various power sources, aiming to provide a con-
sistent basis for comparison. It offers an economic assessment of
the average total cost to build and operate a power-generating
asset over its lifetime, divided by the total energy output of
the asset over that lifetime. This is typically defined as the average
cost ($) per kWh of useful electrical energy generated by the
power generating system throughout its years of operation.
Mathematically, the LCOE can be calculated as follows

LCOE ¼ SystemLifetimeCost; Lt
Lifetime Energy ProductionCost;Et

(1)

Lt ¼ It þ Ct þ St (2)

Et ¼ E0ð1� dÞt (3)

where, It represents the initial costs, including expenses related
to equipment, land and other setup necessities. The total costs
paid at the beginning of the project, such as annual operation
and maintenance costs, are denoted as Ct. Lastly, St signifies
the salvage value, which is the use value of the project at the
end of its lifetime. Similarly, the lifetime energy production cost
(Et) is defined as Et = E0ð1� dÞt, where E0 refers to the initial
rated energy output and the system degradation factor is repre-
sented by ð1� dÞt. This formula accounts for the gradual
decrease in energy output over time due to factors such as aging
and wear of the PV system components.[32]

Traditional methods of calculating LCOE relied on using sin-
gular input values for each of the variables above.[33] For instance,
using the benchmark prices reported for 2017, a 50MW utility-
scale PV power plant installed in California would cost $56 mil-
lion, corresponding to $1.12W�1 (31% module, 69% balance of
systems). This system would produce approximately 86 GWh of
energy in the first year. Assuming that the discount rate is 5.5%,
the federal tax rate is 30%, the state tax rate is 8%, the evaluation
period is 25 years, and the system degradation is 0.5%, then the
LCOE of this system is 5.83 c kWh�1. A careful consideration of

these numbers, as mentioned above, shows that many assump-
tions have already been made to determine the LCOE of this
system.

Nevertheless, a case study of a PV system installed in Spain
indicates that estimating the LCOE using traditional methods
may lead to inaccurate estimations. This is particularly relevant
as factors such as inflation rate, discount rate, degradation rate,
and consumer price of electricity (CPE) are likely to vary during
the lifetime of a PV project (typically 25 years). In Spain, LCOE
analysis proved inadequate when an excessive number of projects
were developed based on overly optimistic assumptions regarding
panel failure rates and other performance factors.[34] A more com-
prehensive examination of the uncertainties associated with these
assumptions might have averted significant losses.

Furthermore, the straight-line depreciation method is esti-
mated for allocating the consumer price of electricity over its use-
ful life.[35] Under this approach, the consumer price of electricity
is divided by the estimated useful life of solar panels to determine
the annual depreciation expenses.[36] The resulting annual depreci-
ation amount remains constant throughout the asset’s useful life.
This method provides a systematic and simple way to allocate the
cost of an asset over time, making it widely used for financial
reporting and calculations like LCOE for renewable energy projects.
Therefore, in our study, we employed straight-line depreciation to
ensure a consistent and transparent approach to for accounting the
depreciation of relevant assets in LCOE calculations.

3.2. Calculating the ROI

After determining the LCOE, the next step is to calculate the ROI
for the PV system. To do this, it is necessary to compare the
LCOE with conventional electricity prices.[37] However, this
parameter is likely to change over the project’s lifetime. As
the input parameters continuously change and are strongly
dependent on the system’s location, we propose using ML tech-
niques to accurately determine the ROI of a PV system. ML tech-
niques can effectively capture the complex relationships between
various factors and adapt to changing input conditions, making
them well-suited for predicting the ROI of the PV system with
higher accuracy.

Mathematically, the ROI of a PV system can be calculated
using ROI = TC=BI, where TC represents the total cost of the
PV system, and BI denotes the annual benefit from the installa-
tion of the PV system. Here, the total cost of the PV system refers
to the initial investment required for the PV system, including
costs related to equipment, land, installation and other setup
necessities. It is also sometimes called the capital expenditure
(CAPEX) cost. Therefore, the ROI parameters estimate the num-
ber of years a client can expect to achieve an ROI for installing a
PV system. A review of the literature reveals that the methods for
calculating the ROI used by researchers worldwide often rely
heavily on assumptions, leading to imprecise cost analysis
estimations.[38]

3.3. ML Algorithms

Considering the factors previously discussed, we introduce ML
techniques for calculating the LCOE and ROI of PV systems.
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In this subsection, we explore the ML techniques that can be
used to accurately forecast the LCOE.[39] ML, a branch of com-
puter science, employs computational training algorithms to
make predictions based on known input datasets.[40] ML can
be broadly classified into three main categories: supervised,
unsupervised, and reinforcement ML algorithms.[41] In super-
vised ML, the computer learns from labelled input data provided
by the user, while in unsupervised ML, the computer identifies
patterns within unlabelled data.[42] Additionally, reinforcement
ML involves a trial-and-error learning approach where the agent
(computer) iteratively makes decisions based on feedback it
receives.[43] For this study, we focus on supervised ML, specifi-
cally employing regression techniques to predict the LCOE of PV
systems. Subsequently, we calculate the ROI of the PV systems
based on the predicted LCOE. Finally, we compare the LCOE val-
ues calculated using various approaches, incorporating fixed
input values for different parameters to highlight the advantages
of our proposed method.

3.4. Our Proposed Model

In a majority of previous studies, researchers have calculated the
LCOE and ROI using singular input values, typically assuming
that the CPE will increase by 5–10% over the lifetime of the solar
plant. However, we argue that the estimation of LCOE should
account for variations in CPE due to factors such as population
growth, inflation rate, and interest rate over time.[44]

Consequently, we propose an algorithm that accurately considers
these dynamic variables. Using historical data, we apply ML algo-
rithms to estimate the LCOE, taking into account the aforemen-
tioned factors. To validate our model, we extract historical data
from two regions, California in the USA and Butuan City in the
Philippines and compute the error function of various ML
techniques to identify the most suitable MLmodel. Figure 1 illus-
trates our proposed system, encompassing the required input
parameters, relevant variables and ML algorithms used to deter-
mine the ROI of a PV plant.

The input parameters for our model were selected based on
their significant influence on the LCOE. They include demo-
graphic, energy, and policy data, such as interest rates, inflation
rates, and energy yield, which are expected to change over a PV
system’s lifetime. Each of these parameters carries a specific
physical meaning in the context of LCOE calculations:
1) Interest rates: They influence the financial feasibility of PV
projects by affecting the cost of capital; 2) Inflation rates: They
impact the value of money over time, influencing the real costs
of the PV system across its lifecycle; and 3) Energy yield: It rep-
resents the amount of energy produced by the PV system, a key
determinant of its cost-effectiveness.

We appreciate that there could be other potential influencing
factors. However, we focused on these parameters due to their
direct and significant impact on LCOE. Moreover, including too
many variables could increase the complexity of the model with-
out necessarily improving its predictive accuracy. Also, it was
essential for us to select parameters for which reliable historical

Figure 1. The figure demonstrates our proposed model for determining the LCOE and ROI for a utility-connected solar home system. The parameters
required for estimating the LCOE, such as solar panel cost ($), the balance of system cost ($), system lifetime (years), operation andmaintenance cost ($)
and the energy yield ($ kWh�1) are indicated. Moreover, the steps to evaluate the dependent variable (CPE) are mentioned using three steps. The first step
involves determining the dataset and data preprocessing, followed by the second step, which discusses independent variables such as GDP, Population
growth, inflation rate, interest rate, etc., that are used for estimating the defined dependent variable (CPE). The third step describes variousML techniques
for accurately forecasting the energy ROI.
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data were available, as the ML model’s performance depends on
the quality of the training data.

4. Data Explanation

This section provides detailed information about the selected
dataset values necessary for accurately estimating the LCOE
and ROI of utility-based grid-connected PV systems. Initially,
we discuss data extraction, plotting of datasets, and the heatmap
for independent and dependent variables, which helps determine
the correlation matrix.

4.1. Data Extraction

To predict the LCOE and ROI, it is crucial to obtain real-time data
from reputable sources such as the environmental investigation
agency (EIA),[45] international renewable energy agency
(IRENA),[46] bureau of economic analysis (BEA),[47] and interna-
tional energy agency (IEA).[48] Moreover, the CPE data was
extracted from EIA, followed by the statistical data on population
growth and the gross domestic product extracted from the web-
sites BEA and IRENA. It is worth mentioning that some of the
data were available on a quarterly or annual scale, however, to
maintain the unity in the data comparison, the data was extrapo-
lated using Python’s generative adversarial networks (GAN)
framework to obtain the complete data on an annual scale.
For our study, we collected historical data for Sacramento,
California, USA. The datasets comprise independent demo-
graphic variables such as the consumer price index (CPI) as a
measure of the inflation rate (X1), population growth (X2),
and gross domestic product (GDP) (X3). In contrast, the depen-
dent variable (Y) is represented by the average CPE
(cents kWh�1).[49] The timescale for the extracted dataset is
monthly. Table 1 presents the respective dependent and indepen-
dent variables’ dataset of demographic values, ranging from
January 2005 to December 2021.

Additionally, it is worth mentioning the input parameter selec-
tion. For the various time series forecasting ML techniques, the
selection highly depends on a particular domain and those
parameters are only considered which are believed to influence
the targeted variables, herein the CPE significantly. The indepen-
dent variables have a meaningful relationship with the depen-
dent variables. For instance, the input parameters, such as
GDP, CPI, inflation rate, weather data, time of day, day of the
week, and seasonal indicators, each of these parameters is
expected to influence the energy consumption pattern over the
system’s lifetime.

Moreover, some of the other potential influencing factors are
excluded due to the fact including too many variables or param-
eters in the ML models leads to the increased complexity of the
model, overfitting, and results in reduced interpretability of our
proposed model. Therefore, the selection of the parameters
incorporates a critical balance between the meaningful factors
and thus, avoids unnecessary complexity.

Exclusion of other potential influencing factors: The selection
of input parameters is a crucial step in time series forecasting,
and it requires careful consideration. While it’s essential to
include relevant factors, it may not be feasible or necessary to

include all potential influencing factors. Including too many
parameters can lead to overfitting, increased complexity, and
reduced interpretability of the model. Therefore, the selection
process involves striking a balance between including meaning-
ful factors and avoiding unnecessary complexity.

4.2. Statistical Representation of the Dataset

Initially, the collected raw dataset is non-uniform and contains
noise, disturbances, irregularities, seasonality, trends, or patterns
associated with it. Therefore, it is essential to understand
these parameters before inputting them into our ML model.
Subsequently, Figure 2 depicts the plot of dependent and inde-
pendent variables used to estimate the dependent variable, i.e.,
the CPE. The dataset plot shows that parameters such as popu-
lation growth, the CPI, GDP, and CPE have a linear relationship.

Table 1. The table showcases an example of data extracted from various
online websites such as EIA, IRENA, BEA, IEA, etc. The dataset consists of
the dependent variable (CPE) and independent variables (Consumer price
of the index, interest rate, GDP, population growth) over 15 years. The
time resolution for the extracted dataset is in months.

Date X1 X2 X3 Y

Inflation Population
growth

Gross domestic
product

CPE
[¢ kWh�1]

01/01/2005 200.35 294957.00 128234.50 12.19

01/02/2005 201.20 295167.33 128717.47 12.33

01/03/2005 201.85 295377.67 129200.43 12.12

01/04/2005 202.50 295588.00 129683.40 12.57

01/05/2005 201.85 295838.67 130635.33 13.4

01/06/2005 201.20 296089.33 131587.27 13.16

01/07/2005 202.10 296340.00 132539.20 13.43

01/08/2005 203.00 296588.67 133226.70 12.14

01/09/2005 204.45 296837.33 133914.20 11.3

01/10/2005 205.90 297086.00 134601.70 11.28

01/11/2005 204.65 297302.67 136682.93 12.8

01/12/2005 203.40 297519.33 138764.17 12.91

– – – – –

– – – – –

01/01/2021 303.67 331949.00 312120.20 21.43

01/02/2021 304.39 331973.00 310499.27 22.53

01/03/2021 306.90 331997.00 308878.33 23.37

01/04/2021 309.42 332021.00 307257.40 22.75

01/05/2021 309.46 332113.00 309934.50 23.11

01/06/2021 309.50 332205.00 312611.60 22.46

01/07/2021 310.33 332297.00 315288.70 23.34

01/08/2021 311.17 332392.67 319178.13 23.44

01/09/2021 312.22 332488.33 323067.57 21.97

01/10/2021 313.27 332584.00 326957.00 22.77

01/11/2021 314.54 332639.00 327936.67 23.83

01/12/2021 315.81 332694.00 328916.33 23.22
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However, the CPE parameter has seasonality, noise, and irregu-
larities associated with it. The chosen dataset ranges from
January 2005 to December 2021.

4.3. Heat-Map for the Correlation Matrix

In ML, feature selection is a method in which we consider only
those independent features in our model that contribute signifi-
cantly to estimating the dependent variable. Accordingly, we use
the heat map of the correlation matrix to distinguish between the
independent variables and the dependent variables. Figure 3
shows the heatmap for the parameters of the inflation rate, pop-
ulation, GDP, and CPE. The CPE and gross domestic product
(GDP) have a correlation value of 0.91, indicating a strong rela-
tionship between these variables and their importance in estimat-
ing CPE. However, the population growth parameter exhibits a
correlation value lower than 0.85, suggesting a weaker relation-
ship with CPE. In fact, including the population growth data led
to no change in the final outcome of our results, however, did
lead to an increased computational time of the proposed model.

5. Results

In this section, we discuss the implementation of various ML
techniques using the aforementioned datasets and parameters
to train and test our proposed model for accurately forecasting
the LCOE and ROI of utility-based solar home systems.

Additionally, we compare the results from our ML models with
time series forecasting models such as autoregressive integrated
moving average (ARIMA), long short-term memory (LSTM), and
seasonal autoregressive integrated moving average (SARIMA).
The results presented here focus on two locations: Sacramento,
California, USA, and Butuan City, Philippines. We specifically
chose these locations due to the availability of high-quality

(a)

(c) (d)

(b)

Figure 2. The statistical representation of the dataset for independent variables a) Consumer Price of Electricity (CPE), b) Population growth,
c) Consumer Price Index d) Gross Domestic Product (GDP), seasonality and noise for the city of Sacramento in California, USA.

Figure 3. The correlationmatrix showcases the heatmap for evaluating the
inter-dependency of variables concerning each other. The chosen param-
eters for the correlation matrix are inflation rate, population growth, gross
domestic product and CPE. The lighter colour (green) depicts the least
significance, whereas the darker colour (blue) shows the most significant
parameter.
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datasets for demographic variables. Furthermore, parameters
such as CPE are consistent in these regions and do not vary based
on rates determined by the government or industry. This consis-
tency allows for a more reliable evaluation of our proposed model
and its performance in predicting the LCOE and ROI for solar
home systems.

5.1. LR Model

For predicting the dependent variable CPE ($), we first applied
the supervised learning ML model, specifically the linear regres-
sion (LR) model. The LRmodel determines the best-fit linear line
between the independent and dependent variables. We have
already defined the dependent and independent variables in
the methodology section, and subsequently used the LR model
with input (dependent) variables such as population growth, CPI,
and GDP to calculate the dependent variable, i.e., CPE. Figure 4
shows the scattered plot of actual values concerning the predicted
CPE in a linear relation. Accordingly, the LR model predicts the
output values for the CPE over the next ten years.

The actual versus predicted plot for the CPE showed an accu-
racy of less than 85%, and the error loss function showed a root
mean square error (RMSE) value of more than 10%. According to
the literature,[50] the accuracy should have a value of more than
90%, and RMSE should be less than 10% for the LR model to
predict the values accurately. The limitation of such poor accu-
racy is that the input data for the independent variables was lim-
ited, and we only used three independent variables. To address
this, we used high-quality data and added several independent
variables.

5.2. LR Model with Multiple Variables

To improve the accuracy of our LR model, we incorporated mul-
tiple independent variables and increased the duration of each
variable, i.e., from January 2005 to December 2021. It is worth

mentioning that there were instances where the data was avail-
able in quarterly or annual resolutions. However, to enhance the
accuracy of the LRmodel, the input data should be consistent and
have the same time resolution. Accordingly, we employed a tool
called generative adversarial networks (GAN), a subclass of ML in
which two neural networks are considered.

As a result, the GAN model produces the best ML model
among these two neural networks. One of the advantages of
the GAN model is its ability to improve the quality of the model
even with poor datasets. Additionally, to predict the dependent
variable CPE, we divided the dataset into 80% and 20% to train
and test the LR model with multiple variables. Figure 5 show-
cases the results for the predicted values versus the actual values
after executing the LR model with multiple variables. The overall
accuracy for the LR model with multiple variables is 87%.

The accuracy achieved using the aforementioned model is
within the limit of more than 85%. However, the model under
consideration is not ideal for accurately forecasting the LCOE and
ROI parameters of the utility-based solar home system, as it may
still lead to ambiguity regarding the exact assumption of the ROI
in terms of the year. Therefore, it is essential to identify an ML
method with an accuracy of at least 90%.[51] In this regard, we
implemented LSTM time series forecasting to improve the accu-
racy of the ML model and reduce the loss error function.

5.3. LSTM Model

Another ML model, the long short-term memory (LSTM) model,
was applied to enhance accuracy. The LSTMmethod belongs to a
subset of ANNs within the domains of AI and deep neural net-
works. Additionally, the LSTM model is a recurrent neural net-
work (RNN) used for analyzing time series forecasting. In our
model, we aim to predict the energy ROI, making time series
forecasting crucial for accurately predicting the ROI of the

Figure 4. The scattered plot of the predicted values to the actual values for
the consumer price electricity (¢ kWh�1) using the supervised learningML,
subcategory, LR model. Herein, the dependent variable CPE is predicted
linearly to the actual values of the parameter under consideration.

Figure 5. The figure shows the result of forecasting the dependent variable
CPE (¢ kWh�1) using the LR model with multiple input independent var-
iables. The curve demonstrates the accuracy of the LR model with multiple
variables. The curve in blue depicts the actual values of the CPE, whereas
the curve in orange depicts the forecasted values. The curve is the relation
of actual versus predicted values of the CPE over the period.
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installed system. Consequently, our results are extended by
applying the LSTM model with multiple independent variables.

Our results, demonstrated in Figure 6, show the dataset
divided into 70% for training and 30% for testing. The LSTM
model with multiple variables achieves an RMSE of 3.237%
and an accuracy of 91%. The larger error in the early years of
the LSTM model can be attributed to several factors. As men-
tioned earlier, the LSTMmodel is a type of RNN designed to cap-
ture long-term dependencies in sequential data. Initially, the
model may struggle to capture these dependencies, leading to
higher errors in the early stages of the time series. As the
LSTM model progresses through the time series and continues
to train, it gradually learns the underlying patterns and relation-
ships in the data. This learning process enables the model to bet-
ter capture long-term dependencies and adapt to the time series’
dynamics. Consequently, the model’s predictions become more
accurate over time, leading to a convergence of the error.

Figure 6 demonstrates the plot of the train and test of the
LSTM model with multiple variables for predicting the depen-
dent variable CPE (¢ kWh�1) for Sacramento, California, USA.
Moreover, the predicted values of the CPE from the model are
incorporated to calculate the LCOE and ROI of the utility-based
solar home system. Though the LSTM model with multiple var-
iables achieved an accuracy of 91%, however, to obtain a more
accurate model, we performed the ARIMA model test as dis-
cussed in the following subsection.

5.4. ARIMA Model

Next, we applied the ARIMA model to forecast the dependent
variable, i.e., CPE. In general, an ARIMA model is a model that
is fitted to the dth order differenced time series, ensuring that the
resulting differenced time series is stationary. A stationary time
series is one in which the mean, variance, autocorrelation, and

other statistical features remain constant across time. We will
apply the ARIMA model for time series forecasting in the study
under consideration. Additionally, we used a similar dataset as
input to test our ARIMA model.

Apart from the high accuracy of the ARIMA model, there are
several reasons for implementing it. First, ARIMA is a paramet-
ric model that offers interpretable coefficients that can be used to
understand the underlying time series process. Second, the
ARIMA model is highly flexible, as it can be applied to a wide
range of time series data, including stationary, non-stationary,
and seasonal data. Furthermore, ARIMAmodels can be extended
to handle exogenous variables, making them valuable in forecast-
ing scenarios where other factors may impact the time series.
Lastly, ARIMA models are robust to missing data and outliers,
and numerous libraries and software packages provide built-in
ARIMA functions.

Before applying the ARIMA model, we tested the Dickey–
Fuller algorithm, a parameter used to check the stationarity of
the input dataset. The results of the Dickey–Fuller test indicate
whether the dataset is stationary or not, based on the condition
that the p-value (probability of the null hypothesis) should be very
small. In our case, the model yielded a p-value of 0.23, which
suggests that the dataset is stationary. In the ARIMA model,
the autoregression (AR) part uses previous values to make future
predictions, the moving average (MA) part uses past errors for
making future predictions, and the integrated (I) component rep-
resents the difference between the AR and MA.

In order to weigh each factor under consideration, we also
incorporated statistical tests such as the t-test and F-test for
assessing the significance of the individual coefficients of the
AR, MA, and the constant term for each factor. The t-test deter-
mines the t-value for each coefficient, which expresses how far
from zero the coefficient is in terms of standard errors.
Indicating that the coefficient is statistically significant at the
chosen level of significance (often 5% or 1%), a high t-value
(generally larger than 2 or 2.5) is required. On the contrary,
the combined significance of a set of model coefficients is evalu-
ated using the F-test. The F-test is specifically used to test
whether a subset of the coefficients–typically all the coefficients
in a particular order–are equal to zero. When the p-value is low
(often less than 0.05), the null hypothesis can be rejected and the
subset of coefficients is jointly significant.

Furthermore, the model runs a set of interactions based on the
hit-and-trial method for calculating the most appropriate values
for p (number of autoregressive terms), q (number of lagged fore-
cast errors in the forecast equation), and d (number of nonsea-
sonal differences required for stationarity). The results are
analyzed using Akaike’s Information Criterion (AIC), which
helps determine the predictors for the regression model.
Subsequently, the model searches for the minimum AIC score
and the (p, q, and d) values. Using our input data in the ARIMA
model resulted in a minimum AIC score of 3214.29 and (p, q, d)
values of (1, 0, 1), respectively.

In addition, the dataset was split into training (70%) and test-
ing (30%) portions, along with the order (1, 0, 1) to apply the
ARIMA model. Figure 7 demonstrates the actual (blue curve)
vs predicted (orange curve) values for CPE, and the grey area
highlights the confidence interval of 95% using these input val-
ues in our ARIMA model. It is worth mentioning that a

Figure 6. The curve describes the plot of actual versus predicted values of
the CPE (¢ kWh�1) using the LSTM model with multiple variables. Herein,
the dataset is divided into train and test of 70% and 30%, respectively. The
input data for the output result is for Sacramento, California, USA. Also,
the blue curve here shows the values for the train, while the orange curve
here shows the testing of the models.
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confidence interval is a set of values surrounding a point estimate
of a performance metric for a model (such as accuracy, precision,
recall, etc.) that encapsulates the range of values in which the
actual value of the performance metric is anticipated to reside
with a given degree of confidence. The yellow-colored dotted
lines indicate the range of the predicted values. We achieved
an accuracy of 93.8% and forecasted CPE values up to 2030.
Therefore, our proposed model achieved a maximum of
93.8% accuracy and was the most appropriate model for predict-
ing the LCOE parameter among other ML techniques.

Accordingly, after determining the most appropriate model
for predicting one dependent variable, i.e., CPE, we applied
the same procedure for calculating the different other dependent
variables (as mentioned in Figure 1), such as solar panel cost ($),
the balance of system cost ($), system lifetime (years), operations
and maintenance cost ($), energy yield ($/kWh), and incentives
($). Therefore, the dataset was collected for various independent
variables such as the type of solar panel, number of solar panels,
the area required, the life span of devices, energy consumption,
solar energy generated, associated breakdown costs, etc. From
the literature, we considered two case studies from
Sacramento, USA, and Butuan City, Philippines to make a
detailed comparison of our proposed model. The dataset of
the demographic variables ranges from a duration between
2005 to 2021.

6. Discussions

The use of ML techniques for calculating the LCOE and ROI of a
PV system is driven by the recognition of a significant difference
in estimating these economic parameters when dynamic demo-
graphic variables are considered as opposed to relying on singu-
lar inputs. Several existing software tools estimate these

economic parameters (e.g., PVWatts, EnergySage, Solar-
Estimate, Google Project Sunroof, RETScreen, HOMER
Energy, Solar Design Tools, PVSOL, Clean Power Estimator).
However, these tools often assume constant demographic varia-
bles over the system’s lifetime, which we argue is not an accurate
method for estimating the LCOE and ROI of a PV system. Our
research aims to demonstrate the benefits of considering
dynamic demographic variables in these estimates.

The specific advantages of ML over traditional methods are:
1) Adaptability: ML models can handle variables that change
dynamically over time, allowing for a more realistic and accurate
prediction of LCOE; 2) Complex interactions: ML can capture
complex non-linear interactions between variables, facilitating
a deeper understanding of how different parameters impact
LCOE; and 3) Predictive power: ML models demonstrated better
predictive performance in our case studies. The ARIMA-based
ML model achieved an accuracy rate of 93.8% in predicting
CPE, a significant improvement over traditional methods.

We implemented time-series forecasting ML techniques, such
as ARIMA, to predict future values based on historical data.
These techniques analyze patterns, trends, and seasonality
within the data to make accurate predictions, which are not pos-
sible using traditional methods. While it is true that the theoreti-
cal derivation of LCOE/ROI with dynamic influencing factors
could be done using multi-step calculations and approximations,
this approach has limitations: 1) Accuracy: Approximations may
lead to errors, which can accumulate over time; 2) Efficiency: ML
techniques simplify the process and improve the efficiency of cal-
culations, especially when dealing with large datasets or multiple
variables; and 3) Model complexity: Multi-step calculations with
dynamic parameters can result in complex models that are diffi-
cult to manage, whereas ML models can handle this complexity
more efficiently.

The results of applying ML for estimating the CPE show that
the ARIMA model yielded the highest accuracy. Accordingly, the
independent variables for other parameters, such as solar panel
cost, balance of system cost, system lifetime, operation andmain-
tenance costs, and energy yield, were accurately forecasted for
evaluating the LCOE of a utility-based grid-connected solar home
system.[52] Furthermore, we extracted the dataset consisting of
demographic variables for two locations: California (USA) and
Butuan City (Philippines), and compared the results from our
proposed model with the case studies available in the literature.
It is worth mentioning that previously, case studies calculating
the LCOE used single inputs rather than multiple variables,
and the application of an ML approach is scarcely found in
the literature. Therefore, to our knowledge, our proposed model
is the first approach to accurately forecast the LCOE using an ML
framework.

Moreover, here, we also emphasize the prerequisites for the
adaptability of our proposed ML model. The LR model and LR
with multiple variables model would perform better under the
condition that it is not linked to the time series and have more
independent variables. In addition, the data available in our pro-
posed ML model plays a vital role in a way that leads to improved
accuracy. While LR model performs without time series, the
LSTM and ARIMA models perform better with time series fore-
casting as it allows the model to account for the trends, season-
ality and noise in the dataset. Furthermore, it is essential to strike

Figure 7. The curve depicts the actual vs forecasted values for CPE
(¢ kWh�1) for Sacramento, California, USA, using the Autoregressive inte-
grated moving average (ARIMA) model. The area shaded with grey dem-
onstrates the confidence interval of the forecasted values of CPE. The
orange curve shows the predicted values, whereas the blue curve shows
the actual values of the CPE and accordingly, the time resolution of the
dataset is in months ranging between a period of 2010 till 2030.
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a balance between flexibility and stability to ensure that the
model can handle changing data while avoiding needless retrain-
ing that may bring instability or overfitting.

The first case study under consideration involves a 25-year
project lifetime for a 20MW grid-connected PV utility system
installed in the city of Sacramento, California, USA. The overall
performance of the system is 197 peak watts per square meter.
The estimated initial investment to install a PV system is $54
million, with a contribution of 2.7 $W�1, consisting of 65%mod-
ules and a 35% balance of systems. The direct purchase cost of
the components involved in the PV utility system is $23.856 mil-
lion, and subsequently, the calculated values for the operation
and maintenance cost of the PV system are shown in Table 2,
totaling $6.50 million over 25 years. These values are forecasted
using the ARIMA model and ML techniques. The chosen PV
module for the system is Monocrystalline-PERC (Passivated
Emitter and Rear Cell), with an efficiency of 19.1%.
Incorporating these input values into the equations mentioned
in the methodology section, we calculated the net energy

production as 738.537 GWh and the net present value of electric-
ity as 383.169 GWh. The forecasted value of the Levelized total
cost of electricity is $27.180 million. Therefore, considering all
the input values from the literature but integrating the values
of CPE from our proposed model, we obtain the LCOE to be
7.09 ¢ kWh�1, whereas the LCOE using singular inputs gives a
value of 5.83 ¢ kWh�1. Similarly, using the equations mentioned
in the methodology section, the forecasted ROI for the PV utility-
based grid-connected system is 14 years.

In addition, to validate our proposedmodel, we used 6the data-
set from another case study for a solar PV farm in a specific loca-
tion in Butuan City, Philippines.[53] Similar to the previous case
study, we took the initial dataset, such as the power capacity of
the solar farm being 5MW with an investment of 300 million
pesos (to make a comparison with the first study, all costs are
converted to USD). Furthermore, we integrated the associated
costs and energy yield to calculate the solar farm’s LCOE param-
eter and ROI. According to the results of the case study for a
duration of 20 years, the useful energy production is
4.18 kWh d�1 with an ROI of 4.23 years. However, their study
used singular inputs to calculate these values. Consecutively,
applying the ARIMA-based ML model in our proposed model,
we predicted the LCOE value of 8.90 ¢ kWh�1 and the ROI
was calculated as 5.37 years.

Accordingly, analyzing the two case studies reveals that the
demographic variables of any country will undoubtedly change
over time. Moreover, the discrepancy in values using singular
inputs and our proposed model indicates that the LCOE and
ROI calculated using singular inputs result in errors and miscal-
culated estimations of the ROI for solar home systems.

Nevertheless, there are limitations to our proposed model and
framework. Firstly, the effectiveness of our ML model largely
depends on the data’s consistency with historical trends.
When the model is applied to a new location, the essential pre-
requisite is to have a robust dataset for that specific region, cov-
ering demographic variables, energy yield, inflation rates and
interest rates, among other things. The model performs opti-
mally when data patterns in these variables remain similar to past
trends.

However, situations where our model might not work as
expected could include drastic policy changes or economic shifts
in the region under study. For instance, sudden regulatory
changes influencing energy costs or dramatic changes in infla-
tion rates or demographic shifts can alter the data’s underlying
patterns significantly. In such situations, the model would need
re-training to adapt to the new data trends.

Retraining the model is not difficult but does require an
updated and comprehensive dataset that reflects the altered cir-
cumstances. The re-training process involves feeding this new
data into the model and running the analysis again. While this
process may take time and resources, it is an integral part of
maintaining the model’s accuracy and reliability over time.[54]

7. Conclusion

In conclusion, the CPE encapsulates the average electricity cost
per unit (kWh) for consumers, influenced by various dynamic
factors such as inflation rate, population growth, and gross

Table 2. The table showcases the calculation of the LCOE and the ROI of
the PV system for the duration of 25 years.

Year Production
[GWh]

NPV of
electricity
[GWh]

Direct
purchase cost
[million$]

Operation &
maintenance cost

[million$]

Levelized
total cost

[$]

0 � � 23.856 � 23.856

1 31.343 29.569 � 0.26 0.245

2 31.187 27.757 � 0.26 0.231

3 31.032 26.055 � 0.26 0.218

4 30.878 24.458 � 0.26 0.206

5 30.724 22.959 � 0.26 0.194

6 30.571 21.552 � 0.26 0.183

7 30.419 20.231 � 0.26 0.173

8 30.268 18.990 � 0.26 0.163

9 30.117 17.826 � 0.26 0.154

10 29.967 16.734 � 0.26 0.145

11 29.818 15.708 � 0.26 0.137

12 29.670 14.745 � 0.26 0.129

13 29.522 13.841 � 0.26 0.122

14 29.376 12.993 � 0.26 0.115

15 29.229 12.196 � 0.26 0.108

16 29.084 11.449 � 0.26 0.102

17 28.939 10.747 � 0.26 0.097

18 28.795 10.088 � 0.26 0.091

19 28.652 9.470 � 0.26 0.086

20 28.509 8.889 � 0.26 0.081

21 28.368 8.344 � 0.26 0.076

22 28.226 7.833 � 0.26 0.072

23 28.086 7.353 � 0.26 0.068

24 27.946 6.902 � 0.26 0.064

25 27.807 6.479 � 0.26 0.061

Total 738.537 383.169 23.856 6.50 27.180
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domestic product. In contrast, the LCOE calculates the average
cost of electricity production per unit over the lifetime of a power
generation system, such as a PV system. Our model establishes a
relationship between CPE and LCOE, with CPE acting as a
benchmark for estimating the LCOE of a PV system, providing
context for cost-effectiveness comparisons with conventional
electricity prices. By dynamically considering factors influencing
CPE, our model aims to enhance LCOE estimation accuracy,
thereby aiding in ROI determination for PV system installation
and contributing to a better understanding of long-term financial
viability.

However, it’s crucial to acknowledge the limitations of our
study. The model’s reliance on historical data and assumptions
about future trends introduces uncertainties. Additionally, the
case study focus on California and the Philippines may limit
the generalization of results to other regions. Furthermore, while
our approach recognizes the dynamic nature of parameters such
as population growth, past electricity costs, inflation, and gross
domestic product, it may not encompass all potential variables
influencing electricity costs.

The implications of our study are twofold. On a practical level,
our model offers a valuable tool for decision-makers, assisting in
informed choices regarding PV system investments. The theoret-
ical contribution lies in the incorporation of ML techniques,
showcasing the potential of advanced analytics in refining eco-
nomic models for sustainable energy projects. Our results, dem-
onstrating a significant difference in LCOE estimations between
singular inputs and ML-based approaches, underscore the
importance of considering dynamic factors in economic analy-
ses. In essence, our study emphasizes the necessity of account-
ing for dynamic inputs for more accurate and reliable LCOE
estimations, essential for evaluating the long-term financial via-
bility of PV systems.

Therefore, we conclude that most existing studies rely on sin-
gular values. However, our argument emphasizes that many of
these parameters are dynamic. Factors such as population
growth, average past cost of electricity, inflation rate, gross
domestic product, and other demographic variables significantly
impact the cost of electricity. As a result, we developed a model
that allows for the calculation of LCOE based on these dynamic
input factors. Our results demonstrate a clear difference in esti-
mating the LCOE of a PV system using singular inputs, yielding
an LCOE of 5.83 ¢ kWh�1. In contrast, when applying the
ML model, the LCOE increases to a value of 7.09 ¢ kWh�1.
This comparison highlights the distinction between calculating
the LCOE using singular inputs and employing ML and artificial
intelligence-based algorithms. Ultimately, our study reveals a
substantial difference in LCOE estimations, emphasizing the
importance of considering dynamic factors.
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