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Abstract—Monitoring in-car VR motion sickness (VRMS) 

by neurophysiological signals is a formidable challenge due to 

unavoidable motion artifacts caused by the moving vehicle and 

necessary physical movements by the user to interact with the 

VR environment. Therefore, this paper for the first time 

investigates if resting-state neurophysiological features and self-

reports of stress levels collected prior to exposure to a motion-

simulated in-car VRMS induction platform could predict final 

motion sickness ratings. Our results of linear regression 

modeling show that the traditional EEG power spectrum was 

the only resting-state feature set that could predict in-car VRMS 

ratings. Further, the best regression result was achieved by beta 

power spectrum in the left parietal area with adjusted 

R2=22.6% versus 11.6% in the right. This result not only 

confirmed the left parietal involvement in motion sickness 

susceptibility observed in a previous resting-state fMRI study, 

but also advanced that methodology to mobile 

neurotechnologies, represented by mobile EEG, referenced by 

other types of resting-state features. Together, this study may 

offer a new mobile neurotechnology-based approach to predict 

passengers’ VRMS levels before they start to use VR apps in a 

moving vehicle. 
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I. INTRODUCTION  

Passengers travelled over 873 billion km in the UK in 
2019, with imminent advances such as autonomous cars (a 
market expected to reach $42 billion by 2025), as well as high-
speed public transit like HS2, meaning that this figure will 
further increase. Consequently, more people will be 
passengers wanting to fill their travel time usefully, rather than 
it just being wasted. However, many travellers get sick when 
they read, work, or play games while in motion, and therefore 
fail to use their travel time productively. This is especially 
pertinent when they use VR headset to perform 
aforementioned in-car activities [1], [2].  

Motion sickness caused by the use of VR in a vehicle 
(termed in-car VR motion sickness, in-car VRMS for short) is 
a new type of motion sickness that challenges all existing 
methodologies of monitoring and mitigation that are rooted in 
either pure motion sickness (that is, pure physical motion-
induced motion sickness) or pure cybersickness (that is, pure 
visually-induced motion sickness). Therefore this study for 

the first time investigated if resting-state neurophysiological 
features and self-reports of stress levels collected prior to 
exposure to a motion-simulated in-car VRMS induction 
platform could predict final motion sickness ratings. These 
neurophysiological features are 1) resting-state EEG features 
(including traditional power spectrum and inter-trial 
coherence) extracted from vestibular regions and 2) cognitive 
load estimated from pupillometry and forehead 
photoplethysmography (PPG).  

If this study is successful and  suggesting that it is feasible 
to predict passengers’ in-car VRMS susceptibility through 
their resting-state neurophysiological signals collected prior to 
the in-car VR experience, then a personalized in-car VRMS 
mitigation countermeasure can be developed to make the 
consumption of VR in a moving vehicle a comfortable 
(motion sickness free) and productive experience. For 
example, if an individual’s  susceptibility to motion sickness 
is low, then standalone behavioural treatments (like music, 
airflow and smell) [3]–[5] are perhaps adequate without the 
need to redesign the existing VR contents; otherwise perhaps 
a context-aware VR app that can more strongly mitigate in-car 
VRMS, such as through synchronizing the car movements and  
VR content presentation [6] would be necessary. This is 
especially pertinent given estimates that the market of in-car 
VR applications will reach 14$ billon globally by 2027. 

II. RELATED WORK AND OUR CONTRIBUTIONS 

Visual-vestibular sensory conflict theory is a widely-
accepted proposal to explain the aetiology of motion sickness 
[7]. Mounting evidence has shown that neural biomarkers 
extracted from vestibular areas are significantly associated 
with the perceived severity of motion sickness, no matter if it 
is pure cybersickness (such as VRMS) [8]–[10] or pure 
motion sickness [11]. However, these biomarkers are all 
extracted while exposed to a  motion sickness inducing 
stimuli, very few studies focused on the feasibility of using 
resting-state neural biomarkers to predict motion sickness. A 
more recent study is the first study on this topic [12]. Authors 
adopted resting-state MRI to understand the different brain 
activity patterns between participants who are susceptible and 
resistant to pure motion sickness. They found that the left 
parietal area is significantly correlated with participants’ 
susceptibilities evaluated by the motion sickness susceptibility 
questionnaires (MSSQ) based on their past experience [13]. 



Built on this early evidence, our goal was to take one step 
further to investigate if resting-state mobile neurotechnology-
based biomarkers (that is, low-density resting-state EEG 
features in the vestibular region) could predict participants’  
motion sickness ratings obtained through a motion-simulated 
in-car VR platform rather than self-reported motion sickness 
history (such as MSSQ). Also, evidence has shown that 
peripheral physiological signals and emotions are associated 
with motion sickness [8], [14], [15]. Therefore, our study 
compared  two additional types of resting-state features (that 
is, cognitive load estimated from peripheral physiological 
signals and self-reported stress levels) with EEG features, in 
order to justify EEG features more fairly. 

III. SIMULATED IN-CAR VRMS INDUCTION PLATFORM 

A. System Architecture 

As can be seen in Fig. 1, our simulated in-car VRMS 
induction platform consists of a PC, a rotating chair (RotoVR), 
a PC-powered biometric sensors built-in VR headset (HP VR 
headset Reverb G2 Omnicept Edition) as well as a mobile 
EEG device (StarStim8, Neuroelectrics, Spain).  

The PC is equipped with a NVIDIA GeFore RTX 2070 
GPU that can run HP Reverb G2 Omnicept Edition at full 
resolution (that is, 4320 x 2160 pixels combined / 2160 x 2160 
per eye). This headset was chosen for this study as it can  
estimate real-time cognitive load by its built-in biometrics 
sensors (Tobii eye-tracking sensors and forehead near-
infrared green light PPG sensor) and a PC-based machine 
learning model. This machine learning model was built based 
on 738 participants with an average classification accuracy of 
79.08% without calibration. HP researchers claimed that this 
model is novel and can reliably estimate cognitive load in the 
general population in comparison to past research. More 
details can be found in HP’s technical report [16]. StarStim8 

is an 8-channel mobile EEG acquisition system with a high-
resolution, high-speed analog-to-digital converter (24-bit at 
500Hz sampling rate). StarStim supports WiFi, but 
communication failure occurs occasionally, therefore we used 
a USB cable instead throughout the whole study. However, 
this brought on a problem, that is, the EEG USB cable can be 
entangled between the PC and the rotating chair when the 
rotating chair was rotating. Thus, we selected RotoVR rotating 
chair (RotoVR 1.0, London, UK) which is equipped with a 
USB hub at its chair shaft by which the EEG USB cable is 
separated from the PC and relatively stationary with the chair 
but the EEG signals can still be transmitted  (relayed) to PC 
end by another USB cable connected with the  fixed chair 
base. More importantly, RotoVR comes with a VR SDK 
which can be used by VR app developers to control RotoVR’s 
rotation directly through a widely-used VR development 

engine — Unity 3D.  

B. In-car VRMS Induction Paradigm 

According to Griffin’s model of motion sickness [17], 
motion sickness can be classified into three categories. Type 
I: motion sickness caused by motion that is felt but not seen, 
such as traditional car sickness – reading a book in a moving 
car. Type II: motion sickness caused by motion that is seen but 
not felt, such as pure cybersickness [18]. Type III: motion 
sickness caused when both visual and vestibular systems 
detect motion but they are uncorrelated with each other, such 
as Coriolis rotation, that is, during constant speed rotation of 
the body and head rotation about an axis other than the axis of 
rotation of the body [19],  motion sickness experienced when 
using in-car VR therefore is just a 21st century version of 
Cortiolis rotation. What is distinctive about in-car VRMS is 
that the discrepancy  between visual and vestibular systems 
can be caused by uncorrelatedvisual motion presented in VR 
and physical body  motion induced by car turns simulated by 

 
Fig. 1 The system architecture of our in-car VRMS induction platform, where the cognitive load was estimated by a VR 

built-in commercial machine learning model through combined PPG and pupillometry signals (see [16]). 



yaw rotations of  the RotoVR rotating chair in this study), 
without necessarily requiring the body and head to rotate on 
different axes. 

Our in-car VRMS induction was based on the mixture of 
a visual tunnel travel tasks presented in VR that elicited self- 
froward motion and physical yaw rotations  by the rotating 
chair. This mixture causes the visual system to receive sensory 
input for linear motion while the vestibular system receives 
sensory input for angular motion, resulting in conflict between 
visual and vestibular sensory inputs. This paradigm can be 
viewable by this Youtube link: 
https://youtu.be/aw_ZT_c6qeo).  

The rotation frequency of the chair was random but less 
than 0.2Hz, which is a commonly-used frequency range to 
induce motion sickness [20]. The tunnel travel task was 
adapted from a well-established multitasking cognitive task, 
NeuroRacer [21], where the participant’s multitasking 
performance was assessed by challenging visual 
discrimination ability in the context of visuomotor tracking. 
For the visual discrimination (sign task), participants were 
instructed to selectively respond to the target sign (green 
circle) as fast as possible by pressing the trigger button on the 
left VR controller and ignoring other non-target signs 
including green pentagons and squares; blue and red circles, 
pentagons, and squares. For the visuomotor tracking (hitting 
task), participants were required to hit the centre of the grey 
box as accurately as possible by moving the thumbstick on the 
right VR controller. The position of the grey box was 
randomly placed on the circumference of the tunnel cross-
section (see the screenshot over the PC icon in Fig. 1). 

We adopted a multitasking cognitive task-integrated 
tunnel travel task rather than a pure tunnel travel task because 
this cognitive task contains an adaptive staircase algorithm 
(see our previous paper [22]) to adjust the difficulty of the task 
so that participant’s cognitive load can be maintained 
approximately the same. Simply, we do not hope that the 
cognitive load during in-car VRMS induction would be a 
variable as cognitive load is a co-founding factor that can 
affect participant’s susceptibility [23]. 

 
Fig. 2 The resting-state EEG paradigm where participants were instructed to 
listen to a piece of soft music by pressing a button on the VR controller after 

their heart rate is loaded and displayed to them. This simple biofeedback 

mechanism can better help them get into the resting-state mood. In this 
screenshot, "New Text" is where the 5-minute countdown timer would be if 

this was an ongoing experiment. 

 

C. The Resting-State Paradigm 

The "resting state" here specifically refers to asking 

participants to listen to a piece of soft music (copyrighted 

from a local beauty salon in China) with their eyes open 

viewing a blue bulletin board (see Fig.2), during which the 

rotating chair remained stationary. This bulletin board can 

display a participant’s heart rate to them through a textbox 

(such as “Heart Rate: 77”) next to the heart shape at the top, 

thus can better help participants get into the resting-state 

mood. This approach differs from past resting-state research 

in which participants were solely verbally instructed to do not 

think of anything [12]. 

 

IV. METHOD 

A. Participants 

Thirty-nine gender-balanced non-VR/PC game players 
aged between 20-30 were recruited (19 females and 20 males), 
where non-VR/PC game players were defined as spending less 
than 2 hours a month engaging in  VR and PC games. 

B. Experimental Procedure  

Before the 30-min in-car VRMS induction, the 5-min 

resting-state of EEG signals were recorded, and at the same 

time pupillometry and forehead PPG signals were collected. 

During the in-car VRMS induction, participants’ self-reports 

of VRMS ratings (that is, fast motion sickness scale [24], 

FMS for short) were collected every 3 minutes, where FMS 

is a scale of 0 (unnoticeable nausea and general discomfort) 

to 20 (intolerable nausea and general discomfort). According 

to our ethics committee’s suggestion, a threshold of FMS=10 

was set to induce moderate in-car VRMS, otherwise we had 

to stop the ongoing experiment immediately. FMS ratings 

obtained right before the end of VRMS induction (or right 

before they dropped out) were used for statistical analysis. 

The full study protocol was approved by the ethics committee 

of the University of Glasgow (No. 300200243). Participants 

read the privacy notice and participant information sheet 

onsite and gave informed consent prior to participation. 

Participants received £10 per hour for participation. 

C. EEG Settings, Pre-processing and Feature Extraction 

Four conductive gel-based wet electrodes were used and 

placed at the vestibular region of interest. To be more 

specific, that is, P3 and P4-based parieto-insular vestibular 

cortex (PIVC) and CP5 and CP6-based temporoparietal 

junction (TPJ) [11], [25]–[27], as shown in Fig. 3. The ground 

and reference electrodes were connected and placed on the 

right earlobe by an ear clip.  

 

 
Fig. 3 The system-generated EEG channel location by EEGLab 

 

For EEG pre-processing, a low-pass filter with a cutoff 

frequency of 30 Hz and high-pass filter with a cutoff 

frequency of 0.1 Hz were applied to remove power line noise 

https://youtu.be/aw_ZT_c6qeo


and DC drift, respectively. The filtered EEG data were then 

corrected using the mean of each channel and then 200-s long 

EEG data right before the end of resting-state EEG was 

extracted as the targeted resting-state EEG for further feature 

extraction. Ultimately, all 200-s long targeted resting-state 

EEG epochs were segmented into 100 2-s epochs and all 

epochs were cleaned of excessive peak-to-peak deflections, 

amplifier clippings, and other artifacts, using a voltage 

threshold of 100 μV. 

TABLE I.  SUMMARY OF EEG FEATURES USED IN THIS STUDY 

Region of interest Feature Implication 

Left and Right PIVC 

(P3 and P4) ; 
Left and Right TPJ 

(CP5 and CP6) 

Power spectrum 

Averaged amplitude 

changes of EEG segments 
in a certain frequency 

band 

Inter-trial 

coherence (ITC) 

Averaged phase changes 

between EEG segments in 
a certain frequency band 

 

EEG features shown in Table I were extracted 

respectively, where the definitions for EEG frequency bands 

were: Delta (0.1–3 Hz), Theta (4–7 Hz), Alpha (8–12 Hz) and 

Beta (13–30 Hz). As the traditional power spectrum and ITC 

features measure amplitude and phase information of the 

EEG dynamics, respectively, we can compare the resting-

state features of EEG in terms of amplitude and phase to 

examine which one can better predict in-car VRMS.  

All EEG pre-processing and feature extraction procedures 

were carried out in a batch processing manner through 

custom MATLAB scripts and/or EEGLab v2022. (an open-

source MATLAB plugin developed by Swartz Center for 

Computational Neuroscience; www.sccn.ucsd.edu/eeglab). 

D. Predictive Model 

A linear regression modeling procedure with stepwise 
algorithm-based predictor selection function in SPSS 28.0.0.0 
was used. Since the sample size is N=39 (this is, the number 
of participants), and the number of potential predictor is N=16 
(that is, the number of EEG features, N=the number of EEG 
channels*the number of EEG frequency bands=4*4=16), 
therefore, in order to avoid violating the principle of 
approximately ten samples per predictor in the regression [28], 
[29], we adopted stepwise regression to select maximum 3 
best predictors to build our final linear regression model. The 
statistical significance threshold was set as p < 0.05. 

V. RESULTS 

A. Resting-state Cognitive Load and Stress Levels 

Neither resting-state cognitive load nor stress levels could 
establish a significant regression relationship with FMS 
ratings with adjusted R2=-0.024, F1,38=0.116 and p=0.735 for 
cognitive load and adjusted R2=0.039, F1,38=2.562 and 
p=0.118 for stress levels. As shown in Fig. 4 (a) and (b), their 
histograms of regression residuals  do not belong to normal 
distribution.  

 
(a)                                                                                                                 (b) 

 
                                                     (c)                                                                                                                        (d)          
Fig. 4 The results of predicting FMS ratings using linear regression model and resting-state neurophysiological features (a) - (c) the histograms of 

regression residuals using resting-state cognitive load, stress level and EEG P3-Beta power, respectively. (d) the scatter plot of original FMS and 

predicted FMS ratings using resting-state EEG P3-Beta power. 

http://www.sccn.ucsd.edu/eeglab


B. Resting-state EEG features 

1) Power spectrum: We found that beta power at P3 

could establish the best regression model to predict FMS 

ratings with adjusted R2=0.226, F1,38=12.105 and p=0.001. 

The specific coefficients are as follows: 

 

FMS=15.057+336.666*P3Beta _Power                          (1) 

 

Where, 15.057 is the constant with p<0.001, 336.666 is 

the regression coefficent with p=0.001. The histogram of 

regression residuals and predicted FMS ratings can be found 

in Fig. 4 (c) and (d).   

Note: In our stepwise regression analyses, P3Beta_power is 

the EEG feature showing the best regression relationship, but 

not the only one that can establish a significant regression 

model, such as P4Beta_power with adjusted R2=0.116, 

F1,38=5.986 and p=0.019. The specific coefficients are as 

follows: 

 

FMS=12.149+235.686*P4Beta _Power                          (2) 

 

Taken Sakai et al [12]’s findings together, these results 

confirmed that resting-state brain activity patterns in the left 

parietal area indeed can predict motion sickness 

susceptibility. 

2) ITC: We did not find any ITC features that could 

achieve a significant regression relationship to predict FMS 

ratings. 

VI. DISCUSSION 

A. Resting-state EEG vs Resting-state non-EEG features 

In our previous study [14], we found that peripheral 

physiological features (such as heart rate and fingertip 

temperature) outperformed EEG features in predicting 

motion sickness when recorded throughout exposure to 

sickness inducing stimuli; however the present work found  

the opposite in the context of resting-state analyses, 

indicating the uniqueness of resting-state EEG signals on 

predicting motion sickness if compared to resting-state 

peripheral signals. Taken together, these results suggest that 

EEG signals are more suitable for predicting motion sickness 

prior to its onset thereby supporting the prevention of motion 

sickness, while peripheral signals are more suitable for real-

time monitoring of motion sickness symptoms during 

exposure. However, neither type of signal established a 

strong regression model, according to their adjusted R2 values 

(<0.3 while strong one should be >0.7).  

B. Resting-state EEG vs stimuli-related EEG features 

In a previous study [8], we found that stimuli-related EEG 

features could achieve a strong regression model with an 

adjusted R2=0.875; while the present work established a weak 

one with an adjusted R2=0.226. Our reasoning behind this 

phenomenon is that this is a normal situation that can reflect 

the causality of EEG features in describing the severity of 

motion sickness, after all stimuli-related EEG features are 

much closer to the timing of self-reported sickness ratings.  

Note, we did not cite other studies in this section because 

we managed to compare our results in the context of similar 

motion sickness stimuli (tunnel travel), the same EEG device 

(StarStim8) and a similar group of participants (20-30 yrs 

non-VR/PC game players). 

C. Limitation 

Although we found that resting-state P3Beta Power  could 

predict VRMS induced by our motion-simulated in-car VR 

platform, it is still unknow whether this finding can be 

transferred to other in-car VR platforms (and other VRMS 

induction paradigms). Particularly, since wearing discomfort 

per se also can trigger VRMS (such as, the tightness of the 

VR headset), other VR headsets may not show the same EEG 

pattern. However, we still believe that our finding is 

representative because the brain region and EEG frequency 

band are all consistent with previous studies where authors 

used different neuroimaging technique (such as fMRI [12]) 

and VR headsets (such as Quest 2 [8]) than ours. However, 

this finding, from an applied perspective, is not user-friendly 

because of the use of conductive gel and an EEG cap. 

Therefore, future study should incorporate a comparative 

analysis involving state-of-the-art VR display technologies to 

highlight the uniqueness of our EEG-based finding. For 

example, as in [30], if the VR display is free of vergence-

accommodation conflict, will the VRMS be milder? Another 

example, as in [31], if the contents or graphics can be 

processed in a way analogous to the human brain, will the 

VRMS be cured? 

VII. CONCLUSION 

The emerging in-car VR use cases highlight the need for 

a way to predict passengers’ VRMS levels in advance of their 

journeys to avoid severe symptoms of VRMS later on. To do 

so, this paper investigated the feasibility of using resting-state 

EEG features to predict the final in-car VRMS ratings 

obtained through a simulated in-car VR platform. We found 

that indeed resting-state EEG features are able to predict 

those sickness ratings, and the best prediction result was 

achieved by beta power in the left parietal area. 
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