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Abstract—Deep learning enables effective predictions. But 
deep structures face some challenges on human 
interpretability compared to conventional techniques, e.g., 
fuzzy inference systems. It motivates more research works to 
alleviate the black box nature of deep structures with 
performance maintained. This paper proposes a fuzzy-
embedded recurrent neural network (FE-RNN) to improve 
interpretability of the underlying neural networks. It is a 
parallel deep structure comprising an RNN and a Pseudo 
Outer-Product based Fuzzy Neural Network (POPFNN) that 
share a common set of input and output linguistic concepts. 
The inference processes undertaken are associated by RNN 
using fuzzy rules in the embedded POPFNN. Fuzzy IF-THEN 
rules provide better interpretability of the inference process 
of the hybrid networks. It allows an effective realisation of a 
data driven implication using RNN in the modelling of fuzzy 
entailment within a fuzzy neural networks (FNN) structure. 
FE-RNN obtains more consistent results than other FNN in 
the experiment using the Mackey-Glass dataset. FE-RNN 
achieves about 99% correlation for forecasting prices of 
market indexes. Its interpretability is also discussed. FE-RNN 
then acts as a prediction tool in a financial trading system 
using forecast-assisted technical indicators optimised with 
Genetic Algorithms. It outperforms the benchmark trading 
strategies in the trading experiments.

Keywords—Fuzzy neural networks, deep neural networks, 
fuzzy-embedded recurrent neural network, data driven 
implication, financial assets trading.

1. INTRODUCTION

Deep learning is a type of machine learning methods 
that utilises multiple layers of neural networks to extract 
useful information from data. The information is abstracted 
by performing various transformations to the data that can 
help support the modelling or prediction of data. However, 
these transformations are done through many levels of 
mathematical computations, that pose a great challenge in 
critical tasks required in learning to model a complex 
problem. Fortunately, recent technological breakthroughs 
bring greater computational power at relatively low costs, 
making the deep learning to be a highly viable research 
field. As deep learning techniques advance, many complex 
modelling tasks can be accurately and reliably conducted. 

Deep learning-based approaches are introduced for 
prediction tasks on time series analysis [33],[34]. As the 
deep learning models grow in complexity with stacking of 
more layers, it encounters some challenges on the human 
interpretability on the insights how deep learning structures 
derive the results [30],[36],[43]. It is not easy to interpret 
the reasoning behind the models, that are in a black box 
manner with hidden representations and calculations in the 
network [32],[37]. Interpretability is an important 
requirement for many critical domains and legal 
compliance systems, e.g., medical domain applications and 
financial systems [10]. But there is yet consensus on the 
definitions of interpretability in machine learning, as 
different meanings are presented for different domains and 
scenarios [30]. Interpretability could refer to the ability to 
comprehend and explain how a model performs the 
decision-making process [27], or could refer to providing a 
qualitative understanding of the relationship between input 
and output features [22],[30]. The eXplainable Artificial 
Intelligence (XAI) attracts a lot of research interests 
recently to help the interpretability of deep learning 
[10],[21]. A Long Short-Term Memory (LSTM) model is 
introduced to identify malicious behaviours and 
cyberattacks for Internet of Things (IoT) networks [21], 
that uses four methods to extract features from the dataset 
classes and generate explanations defined by human. The 
detected features for the classes of cyberattacks are plotted 
into figures, but it may have some learning curves for some 
users to understand how to interpret the plots. A Kronecker 
convolutional neural network architecture is employed for 
classification of kidney stones in medical image processing 
[29], where knowledge with good interpretability can be 
accumulated. An architecture is presented to improve the 
interpretability of neural networks by splitting the 
networks into levels, which constitute one or several layers, 
to provide insights into the layers [17]. There are 
hierarchical representations of the input windows to help 
users gain better visibility of multiple layers structure in 
neural networks. But there may be a smaller version of 
black box in the LSTM layer in each level when deriving 
the hidden state. The meta-predictor is introduced to 
extract interpretable meta-features from neural 
architectures and regression models [30], that uses slightly 
different definitions of the interpretability, for 
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understandability by users equipped with basic knowledge 
of neural architectures. 

Some systems make use of fuzzy logic or Bayesian 
logic to draw inferences and make decisions. Rules of 
fuzzy logic are usually specified by domain experts, 
providing interpretable insights of the knowledge in the 
form of fuzzy rules [35]. By observing the firing of the 
rules during the use of the fuzzy system, it achieves better 
interpretability [24],[32]. Fuzzy logic is capable of dealing 
with inaccurate, uncertain, or ill-defined data similar to 
human experts [13],[31],[49]. However, manually curating 
fuzzy rules for a complex model is deemed to be tedious 
and challenging. In recent years, fuzzy neural networks 
(FNN) or neuro-fuzzy computing (NFC) have been 
introduced as an alternative to traditional fuzzy systems 
[8],[26],[39]. 

Neural networks and fuzzy logic are integrated in FNN 
as a hybrid paradigm, that can mimic some aspects of 
human reasoning [3]. The fuzzy rules and membership 
functions make the neural networks interpretable or 
translatable [47]. The semantic transparency and 
interpretability of fuzzy logic can be incorporated with the 
learning capability of neural networks [28]. It can make use 
of fuzzy logic for processing inputs or outputs that are 
coupled with deep learning models to allow accelerating 
the training of deep learning with fuzzy logic systems [37], 
when the data are noisy, heterogeneous, incomplete, or 
vague. As a useful approach, fuzzy neural networks are 
broadly adopted in fields to solve practical problems in 
various applications. A nonstationary FNN consisting of 
fuzzy logic and neural networks is introduced for clustering 
and regression problems [47]. A multilayer FNN is 
reported for the tasks of image clustering [42], while 
another work of FNN is described for medical images 
super resolution [41]. FNN is employed for robotic 
controls as a complex nonlinear application [48]. Das et al. 
[7] present their work on fuzzy-neuro model for data 
classification and feature reduction in data analytics. An 
adaptive FNN is introduced in the application of anomaly 
detection on measurement information of underwater 
acoustic ranging errors of autonomous underwater vehicles 
[44]. A self-organizing FNN is presented for the nonlinear 
system modeling [36].

FNN systems are also reported in prediction tasks 
according to past events or time series data. A multi-layer 
adaptive FNN is presented for student performance 
prediction in four online courses [40]. A prediction model 
using time-series recurrent neural network is reported for 
the stock price prediction [25]. Ferdaus et al. introduce a 
rule-based FNN learning system with two multi-objective 
evolutionary algorithms to forecast time-varying stock 
indexes [11]. A type-3 fuzzy aggregator is ensembled with 
the neural networks to be a prediction method on time 
series data of Humanitarian Data Exchange and Dow Jones 
[6]. A multi-functional recurrent FNN is introduced for the 
Chaotic time series prediction that utilises Takagi-Sugeno-

Kang (TSK) fuzzy rules [28]. A residual deep fuzzy system 
is presented with several time-series datasets including 
subway passenger flow, traffic flow, and chaotic time 
series, etc. [24]. A type-2 FNN is tested with the Henon 
chaotic time series prediction [23]. The bankruptcy 
prediction and financial distress prediction are reported 
using the fuzzy convolutional neural networks [15].  

There exists a large area of interest in the application of 
machine learning in prediction systems that involve 
constant changes in data, patterns, and trends, such as the 
prediction of financial markets [25],[45] etc. Trend 
reversals of time series financial data can be predicted 
through analysing technical indicators [18],[45],[46]. 
Various machine learning (ML) or evolutionary algorithms 
are utilized to optimise the parameters to improve the 
accuracy of time series predictions. Genetic algorithms 
(GA) are employed as the optimisation algorithms in the 
predictions of financial trading systems [45]. Several ML 
regression algorithms optimised by GA are introduced for 
stock price forecasting [46]. An approach using recurrent 
neural networks (RNN) is optimised by GA to predict daily 
price movements of three market indexes [12]. The 
implementation of such predictions can reap financial 
benefits in the financial trading markets. 

Even though FNN systems provide interpretability for 
human experts without prior knowledge in machine 
learning, it is not easy to understand how the systems draw 
conclusions in the output layer based on the input data. The 
mechanism and behaviour of FNN systems are only known 
by designers. It lacks transparency to users on how rules 
are generated and how data links are connected from 
multiple layers of FNN systems, which is similar to other 
black box machine learning models [4]. Black box nature 
of these models is difficult be directly explained [1]. As 
such, it is not easy for users to know how to tune the 
parameters and how to explore the maximum performance 
potentials of the FNN systems. FNN systems still fall 
behind deep learning models in terms of their predictive 
ability in complex modelling tasks when there are 
significant data shifts.

The main contributions of this paper are as follows. 

A fuzzy-embedded recurrent neural network (FE-
RNN) architecture is proposed to learn incrementally and 
inference on unseen time-series data using a developed 
pseudo-online incremental learning. It is able to 
incorporate newly acquired knowledge into classes of rules 
through the proposed learning process of FE-RNN, with 
the merged membership functions or derived new classes 
of membership functions. FE-RNN performs the 
inferencing and data prediction using a deep RNN with 
back-propagation through time. Its predictive performance 
is compared against those of several other architectures 
reported in literature. The RNN within an embedded FNN 
is used to derive the data driven implication to map the 
input and output fuzzy spaces. The data driven implication 
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mimics closely the entailment of data from the input to the 
output spaces. In this paper, we use the definition of 
interpretability as the qualitative understanding of the 
relationship between input and output features in the form 
of IF-THEN rules according to the membership functions 
derived.

To evaluate the performances of the proposed FE-
RNN, several experiments are conducted. It is first 
assessed based on its forecasting ability on Chaotic 
Mackey-Glass time-series datasets. Two performance 
metrics are used in the benchmark assessment: root mean 
square error (RMSE); and Pearson’s product-moment 
correlation coefficient (Pearson’s R) between the predicted 
results and the actual results of the time series data. The 
experiment results according to the performance metrics of 
the FE-RNN will be analysed. Next, the FE-RNN is 
employed to predict the daily prices of three market 
indexes. The experiment results and interpretability of FE-
RNN will be discussed in detail.   

Next, the proposed FE-RNN is used as a stock price 
predictor alongside a GA optimised trading-decision 
strategy, named as the GA-optimised forecast-assisted 
Moving Average Convergence-Divergence Histogram 
(GA-fMACDH). In this paper, we illustrate the procedure 
to derive the GA-fMACDH strategy, and account for the 
whipsaw effects to reduce the unnecessary transactions. It 
is then benchmarked against the vanilla GA optimised 
MACDH (GA-MACDH) trading strategy, the 
conventional buy and hold strategy, and Tactical Buy and 
Hold (TBH) trading strategy reported in [45] using 
SeroFAM neuro-fuzzy network with GA-optimised 
fMACDH indicator in various high-volume exchange-
traded funds (ETF). The result comparisons will be 
performed in terms of the improvements of investment 
returns and maximum drawdown. 

The remaining parts of the paper are organised as 
follows. Section 2 introduces related works on RNN, 
online and offline learning of fuzzy systems. Section 3 
presents the architecture and implementation of the 
proposed FE-RNN. Section 4 describes the benchmark 
experiments based on the chaotic time series data. Section 
5 depicts the GA-fMACDH trading-decision system that 
utilises the predictions from the proposed FE-RNN to make 
judicious trading decisions. Section 6 concludes this paper.

2. BACKGROUND KNOWLEDGE

In this section, the background knowledge on the 
RNN and several types of fuzzy systems is introduced 
that are relevant to the design of FE-RNN. 

2.1. Recurrent Neural Networks

The RNN concept was introduced as a network that was 
able to perform back-propagation through time, which 
requires a hidden state to capture a representation of the 

previous inputs. The computation of the gradients in RNNs 
involves long products of matrices. It may result in 
exploding gradients or vanishing gradients, which may 
obstruct the learning capability of the RNN. Hence, many 
techniques have been reported to counter these issues, such 
as Long short-term memory (LSTM) and Gated Recurrent 
Units (GRU) [5]. The GRU RNN has two gates: reset gate 
and update gate, having less parameters and higher training 
efficiency compared to those of LSTM. There is a gating 
mechanism of GRU for hidden states allowing the network 
to decide if the hidden states should be updated and reset. 
This mechanism allows for the network to selectively 
capture observations and reset the hidden state. For a GRU 
RNN, the information of the previous timestep is captured 
within the hidden state. 

2.2. Online and Offline Learning of Fuzzy Systems

Computationally, the values in fuzzy systems are 
encoded as floating-point values between 0 and 1. These 
values are called degree of membership according to the 
membership functions (MF), where it quantifies the grade 
of the element to the corresponding fuzzy set. The 
antecedent is the cause of a fuzzy rule, and the consequent 
is the effect of the fuzzy rule. 

Fuzzy systems are generally categorised into two 
different systems, Mamdani and TSK fuzzy systems. 
Mamdani fuzzy systems generally perform better in 
interpretability, while TSK systems generally perform 
better in precision. They differ in the fuzzy rules that are 
composed of, particularly the consequents of the fuzzy 
rules. The consequent of the Mamdani fuzzy rules is in 
linguistic terms, with being more interpretable. While the 
fuzzy rules in the TSK fuzzy systems use a linear piece-
wise function of inputs as the consequent, with being 
harder to interpret. This paper uses the Mamdani fuzzy 
system that embeds the fuzzy rules within a RNN to 
associate the inference of RNN with the fuzzy counterpart.

In offline learning systems, the whole training data is 
available during the design phase. This means that the 
structure can be optimised for the current training data set 
and can optimally predict for unseen data. However, the 
structure is fixed after the design phase. Having a fixed 
structure may require to be redesigned and retrained when 
new data having a significantly different distribution, as 
seen in ANFIS [16]. For some time-critical applications, 
online fuzzy systems may be more suitable. Online 
learning fuzzy systems evolve their structure whenever 
new data arrives. These systems attempt to incorporate new 
data into their existing fuzzy clusters or create a new fuzzy 
cluster if needed. Online learning fuzzy systems often 
make use of one-pass clustering techniques, such as 
evolving fuzzy clustering method (EFCM) [19]. As the 
number of fuzzy clusters can change throughout the system 
operations, the underlying structure can also be evolved.
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3. PROPOSED FE-RNN ARCHITECTURE

The proposed FE-RNN architecture is described in 
detail in this section. FE-RNN differs from a typical FNN 
structure by having an RNN layer as the inference layer. A 
typical architecture of a FNN has five layers: input layer, 
condition layer (also known as antecedent layer), rule-base 
layer (also known as inference layer), consequence layer 
and output layer, e.g., the Pseudo Outer-Product based 
Fuzzy Neural Network (POPFNN) [50]. Similarly, the 
deep FE-RNN architecture developed in this paper also has 
five layers. It aims to provide a data-driven entailment in 
the observed input and output relationships of the model, 
as well as the interpretability by the fuzzy system on 
operation of the RNN. This dual aspect of implication and 
explanation is achieved by embedding the fuzzy system 
with the RNN, allowing both networks to share the same 
input and output linguistic vocabulary.

As both the fuzzy system and the deep structure are 
incrementally tuned according to the same data, we can 
exploit the complementary relations of both systems by 
employing the fuzzy system to explain the data driven 
inference operation of the RNN. It combines the accuracy 
in the realisation of the high fidelity of the data driven 
implication capabilities of RNN and the interpretability of 
FNN. In the FE-RNN, a multi-input single-output (MISO) 
architecture is assumed. The high-level architecture of the 
developed FE-RNN with five layers is shown in Fig. 1.

Fig. 1. Architecture of FE-RNN.

Layer 1: Input Layer

This layer is the input linguistic layer, receiving the 
crisp input values. Each neuron in this layer represents one 
feature of the input data into the system. The inputs are 
transmitted to the second layer, i.e., the condition layer.

Layer 2: Condition Layer

The neurons in this layer are the input-label neurons. 
They are the antecedents of the fuzzy rules with their own 

individual parameters for their membership functions, 
generated by the clustering technique employed by the 
system. The values in this layer are fuzzified and then 
passed on to the third layer. 

Layer 3: Inference/Rule-base Layer

Neurons in this layer represent the fuzzy rules of the 
system. The linguistic terms – fuzzy memberships of the 
input and output linguistic variables form the vocabulary to 
the rule layer as well as the deep RNN. The fuzzy rules are 
generated using pseudo outer product (POP). The deep 
RNN is trained on the fuzzy membership values of the 
inputs and expected output. In the example of stock trading 
context, the inputs will be the trading volume, stock price, 
price changes, and momentum at time t. The expected 
output will be predicted price at the look-ahead time. 
Similarly, when using the deep RNN to forecast new data, 
the new data at time t are then fuzzified and passed to the 
deep RNN, where the output is then defuzzified to get the 
actual predicted output value.

Layer 4: Consequence Layer

The neurons in this layer are called the output-label 
neurons. They are the consequents of the fuzzy rules and 
deep RNN inferencing of the previous layer.

Layer 5: Output Layer

Each neuron in this layer represents one feature of the 
output data derived from the system. In this layer, 
defuzzification occurs to transform and derive the final 
inferencing results.

The overall system framework for the proposed FE-
RNN is shown in Fig. 2. It shows the organisation of the 
different modules of FE-RNN and its respective data 
pathways during the training phase, inference phase and 
the interpretation phase. 

In the training phase, the offline data is used to generate 
the parameters of the FE-RNN system. In the inference 
phase, the online data is passed through the system to 
generate the forecasted data. In the interpretation phase, the 
online data and forecasted data are used to provide 
interpretation of the system.
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Fig. 2. Data Pathways inside FE-RNN.

The FE-RNN is first trained through the learning 
modules on the top half of Fig. 2. The training data is used 
for the generation of the model. The learning algorithms 
employed by FE-RNN are split into two major parts: 
pseudo-online incremental learning used in the fuzzy 
structure, and back-propagation through time used in the 
deep RNN structure. These two parts will be presented 
individually in Sub-sections 3.1 and 3.2.

After the training and the generation of MFs, the input 
data is taken in the FE-RNN with inference process 
starting, shown in the bottom half of Fig. 2. The inference 
process of the FE-RNN is split into three steps: (1) 
fuzzification of inputs, (2) prediction using the data driven 
implementation of associative implication which is based 
on the deep GRU RNN within FE-RNN, and (3) 
defuzzification of the predicted outputs. The output is 
derived from FE-RNN next. The three steps of the 
inferencing process will be presented in the next sub-
sections. 

Lastly, the interpretation process of FE-RNN is done 
using the fuzzified inputs and raw output of the RNN to 
look up in the fuzzy rule base to understand the fired fuzzy 
rules. Thus, we are able to interpret the complex 
calculations within FE-RNN using simple fuzzy IF-
THEN rules.

3.1. Pseudo-online Incremental Learning in FE-RNN

There are two steps for the pseudo-online incremental 
learning in FE-RNN as follows, that will be described in 
Sub-sections 3.1.1 and 3.1.2 next.

• Incremental membership function generation using 
a modified two-phase DIC algorithm adapted from 
[8]. The first phase is for the membership function 
generations, while the second phase is for the 
membership function merger. 

• Incremental rule generation using POP and Hebbian 
weights adapted from [50] with another two phases: 
identifying the winning clusters in Phase 1 and 
updating the rule-base in Phase 2.

3.1.1. Step 1 - Incremental MF generation

In the first step of the pseudo-online incremental 
learning in FE-RNN, the DIC algorithm is a bottom-up 
approach where the MF clusters are generated and grown 
to incorporate new training data [8]. In the FE-RNN 
learning process, a new singleton MF(centre value 𝛤𝑛𝑒𝑤, 
width 𝜎𝑛𝑒𝑤) is created for the first training data. For the 
singleton MF, its centre value 𝛤𝑛𝑒𝑤 = τ and its width 𝜎𝑛𝑒𝑤 
= 1𝑒―10, where τ is the value of this data point. 

Next, all relevant fuzzy rules are identified using the 
POP learning process [50]. Every training data is fed into 
the input layer and output layer simultaneously, where the 
membership values of each input layer node and output 
layer node are derived by their corresponding membership 
functions. It then produces the firing strength of each rule 
node in the inference/rule-base layer. The rule Hebbian 
weights of the links connecting the rule nodes and the 
output layer nodes are also updated accordingly. 

The iteration is kept ongoing for all training data in the 
first phase of MF generations. If the next training data can 
fit in any current MF, then all relevant fuzzy rules will be 
identified for it and the rule Hebbian weights will be 
updated as well. However, if it does not fit in any current 
MF, then another new singleton MF will be generated 
accordingly with the centre value 𝛤𝑛𝑒𝑤 = value of this data 
point.  

The second phase of the incremental membership 
function generation is the MF merger that merges two 
relatively close membership functions according to the 
merging condition, as shown in Eq. (1). 

𝑎𝑏𝑠 𝛤𝑝
𝑙𝑒𝑓𝑡 𝛤𝑝

𝑟𝑖𝑔ℎ𝑡

2
―  𝛤𝑝+1

𝑙𝑒𝑓𝑡 𝛤𝑝+1
𝑟𝑖𝑔ℎ𝑡

2
<  

𝛤1
𝑙𝑒𝑓𝑡 𝛤1

𝑟𝑖𝑔ℎ𝑡
2

 
𝛤𝑚

𝑙𝑒𝑓𝑡 𝛤𝑚
𝑟𝑖𝑔ℎ𝑡

2
2 ×(𝑚 1)

         

(1)

where the pth MF and (p+1)th MF are two neighbouring 
MFs; 𝛤𝑝

𝑙𝑒𝑓𝑡 and 𝛤𝑝
𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre of 

the pth MF respectively; 𝛤𝑝+1
𝑙𝑒𝑓𝑡  and 𝛤𝑝+1

𝑟𝑖𝑔ℎ𝑡 are the left centre 



6

and right centre of the (p+1)th MF respectively; m is the 
total number of membership functions belonging to the 
feature; 𝛤𝑚

𝑙𝑒𝑓𝑡 and 𝛤𝑚
𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre 

of the mth MF respectively.

The second phase starts calculating the distance 
between the centres of the first MF and the last MF of the 
m number of MF. For each MF, it iterates through every 
neighbouring MF to check if their distance fulfils the 
merging condition. 

If a neighbouring MF pair fulfils the merging condition, 
these two MF will be merged into one MF, that is adapted 
from [8]. The parameters for the merged MF are given in 
Eq. (2).

𝛤𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 =  𝛤𝑝

𝑙𝑒𝑓𝑡 

𝛤𝑛𝑒𝑤
𝑟𝑖𝑔ℎ𝑡 =  𝛤𝑝+1

𝑟𝑖𝑔ℎ𝑡 

𝜎𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 =  𝜎𝑝

𝑙𝑒𝑓𝑡 
   

  
(2)

𝜎𝑛𝑒𝑤
𝑟𝑖𝑔ℎ𝑡 =  𝜎𝑝+1

𝑟𝑖𝑔ℎ𝑡 

where 𝛤𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 is the left centre of the merged MF; 𝛤𝑛𝑒𝑤

𝑟𝑖𝑔ℎ𝑡 is 
right centre of the merged MF; 𝜎𝑛𝑒𝑤

𝑙𝑒𝑓𝑡 is the left width of the 
merged MF; 𝜎𝑛𝑒𝑤

𝑟𝑖𝑔ℎ𝑡 is the right width of the merged MF;  
𝜎𝑝

𝑙𝑒𝑓𝑡 is the left width of the pth MF; 𝜎𝑝+1
𝑟𝑖𝑔ℎ𝑡 is the right width 

of the (p+1)th MF.

Algorithm 1: FE-RNN Training Dataflow

Result: Trained FE-RNN model

/* generate membership functions and rulebase */

for i in trainingData do

if i fits in current membership functions then

expand current membership function;

else

generate new membership function;

end

if winning clusters have existing rule then

update rule with firing strength;

else

create new rule;

end

for rule in ruleBase do

if rule is current firing rule then

continue

else

apply forgetting factor to rule;

end

end

end

/* performing merging of nearby clusters*/

calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓0, 𝑚𝑓𝑛);
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for 𝑚𝑓𝑎in membershipFunctions do

for 𝑚𝑓𝑏in membershipFunctions do

calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓𝑎, 𝑚𝑓𝑏);

if  𝑚𝑓𝑎 and 𝑚𝑓𝑏 are close enough then

merge 𝑚𝑓𝑎 and 𝑚𝑓𝑏;

update rulebase;

recalculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓0, 𝑚𝑓𝑛);

else

continue

end

end

end

/*prepare RNN training data*/

for i in trainingData do

fuzzify i using final membership functions;

end

/*perform RNN training*/

for i = 0; i < maxEpochs; i = i + 1 do

perform backpropagation using fuzzified data;

end

Algorithm 1. Pseudocode of the FE-RNN training.

Next, the rule base is updated to cater for the changes 
in the MFs due to the MF merger. Those rules with the 
same antecedent and consequent have their weights added 
together. 

The iteration is repeated for every MF, till all MF pairs 
that fulfil the merging condition are merged and their rule 
bases are updated. It marks the completion of the 
incremental MF generation process for FE-RNN to derive 
the final MF. All the training data are fuzzified using the 
final MF. The fuzzified data will be used to train the RNN 
networks in the FE-RNN training process.

The modified discrete incremental clustering algorithm 
is adapted from [8] and highlighted in Algorithm 1. The 
first for loop is to generate the MF and rule base iteratively. 
For every training data, if the membership value of the 
input or output layer node is less than its threshold (i.e., 
0.5), it is deemed unfit for the current clusters of MF. 
Hence, a new singleton MF is created. 

Next, all MFs under the same input/output layer nodes 
are updated with the new width 𝜎𝑛𝑒𝑤 as shown in Eq. (3). 

𝜎𝑛𝑒𝑤 =
τ 0.5×( max datap min datap )

2ln (100)
         

(3)

where datap are the existing data points of the same 
input/output layer nodes. 

On the contrary, when the membership value of the 
training data is within [0.5, 1), it is deemed fit for the 
current MF. The current MF will be expanded. The 
expanded MF is a two-sided Gaussian function with the left 
centre 𝛤′𝑙𝑒𝑓𝑡 and right centre 𝛤′𝑙𝑒𝑓𝑡, respectively shown in 
Eq. (4).

𝛤′𝑙𝑒𝑓𝑡 =  𝛤𝑙𝑒𝑓𝑡 ― 𝜑 × (𝛤𝑙𝑒𝑓𝑡

― 𝜏) 
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𝛤′𝑟𝑖𝑔ℎ𝑡 =  𝛤𝑟𝑖𝑔ℎ𝑡 ― 𝜑 ×

𝜏 ―  𝛤𝑟𝑖𝑔ℎ𝑡     
     

(4)

where 𝛤𝑙𝑒𝑓𝑡 and  𝛤𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre 
of the original MF before expansion, respectively; φ is the 
plasticity parameter of the original MF; τ is the value of the 
training data.

After the expansion of MF, the value of φ is reduced 
by 1/3 to decrease the amount of the expansion shown in 
Eq. (5). 

𝜑 =  𝜑 ×  2
3

         

(5)

3.1.2. Step 2 - Incremental rule generation

As the second step of the pseudo-online incremental 
learning in FE-RNN, the incremental rule generation 
algorithm is also a bottom-up approach using POP and 
Hebbian Learning adapted from [50], that consists of two 
phases as follows.

The first phase is to identify the winning clusters. At 
each iteration for the data in this phase, the algorithm 
identifies the winning MF clusters for each input and 
output layer node based on the computations in Eq. (6).

𝑢𝑐𝑖(𝑥𝑖) = max 𝜇𝑖, 𝑗(𝑥𝑖)

𝑢𝐷(𝑦) = max 𝜇𝑙(𝑦)
        

(6)

where 𝑢𝑖, 𝑗(𝑥𝑖) is the membership value of the jth MF of the 
ith input layer node; 𝑢𝑙(𝑦) is the membership value of the 
output layer node; 𝑐𝑖 is the winning cluster for the ith input; 
and D is the winning cluster for the target value.

The winning clusters for the input layer nodes are 
selected and denoted with C consisting of a vector of 𝑐𝑖. 

The winning cluster for the output layer node is then 
selected and denoted with D.

The second phase is to update the rule base. In this 
phase, the rule base will be updated according to the 
identified winning clusters. Each rule is defined as an 
ordered pair {C, D}, where C is the antecedent of the rule 
and D is the consequent of the rule. Each rule is also tagged 
with a pseudo-weight 𝑤{𝐶, 𝐷}, which represents its 
importance.

The firing strength of the rule, 𝑓𝑟𝑢𝑙𝑒 is computed using 
POP shown in Eq. (7). 

𝑓𝑓𝑤 = min (𝜇𝐶𝑖(𝑥𝑖)), 
𝜇 =  𝑢𝐷(𝑦)

𝑓𝑟𝑢𝑙𝑒 = 𝑓𝑓𝑤 ×  𝜇
       

(7)

where 𝑓𝑓𝑤 is the forward rule firing strength as the 
minimum value among all membership values in the rule 
antecedent C; 𝜇 is the backward rule firing strength, as the 
membership value of the corresponding output layer node.

In the iteration of each data, if there is a rule with the 
same antecedent and consequent as those of the winning 
clusters C and D, the pseudo-weight of the rule will be 
increased to be 𝑤{𝐶, 𝐷} = 𝑤{𝐶, 𝐷} + 𝑓𝑟𝑢𝑙𝑒 according to the 
Hebbian Learning Rule, where 𝑓𝑟𝑢𝑙𝑒 is the firing strength 
of this data at the current iteration. Otherwise, a new rule 
is created. Its weight is the firing strength of this rule, as 
𝑤{𝐶,𝐷} = 𝑓𝑟𝑢𝑙𝑒. 

For other rules that are not fired, the pseudo-weights are 
decreased by an amount dictated by the dynamic forgetting 
factor 𝜆 as: 𝑤{𝐶, 𝐷} = 𝑤{𝐶, 𝐷} ×  𝜆. The computation of the 𝜆 
value is shown in Eq. (8). 

𝜆 = 𝑒
―

|𝑝―𝑙𝑒
5 |+1

𝑛𝑖𝑒 × 𝑛𝑟

     
(8)

where p is the current iteration; 𝑙𝑒 is the last iteration when 
the rule e was fired; 𝑛𝑖𝑒 is the number of times the rule e 
was fired; and 𝑛𝑟 is the total number of rules in the rule-
base. 
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The forgetting factor is adapted from [8]. In order to 
ensure that the weightage of rules is not drastically 
reduced, the value of 𝜆 is set in the range of 0.9 and 0.99, 
shown in Eq. (9). 

𝜆 =
0.9,               𝑖𝑓 𝜆 ≤ 0.9
𝜆,      𝑖𝑓 0.9 < 𝜆 < 0.99
0.99,          𝑖𝑓 𝜆 ≥ 0.99 

       

       
(9)

Lastly, the pseudo-weights 𝑤{𝐶, 𝐷} are normalised, as 
inspired by the concept of lateral inhibition.

3.2. Back-propagation through Time in FE-RNN

Besides the pseudo-online incremental learning for the 
fuzzy structure of FE-RNN, the back-propagation through 
time is another block in the learning module of FE-RNN, 
that is used for the deep RNN structure. The parallel deep 
embedded structure used in this paper is a five-layer 
structure: one input layer, three fully connected 100-neuron 
GRU layers, and an output layer. The input layer of the 
deep structure shares the same vocabulary as the condition 
layer of FE-RNN. As such, the fuzzified membership 
values become the input of the deep structure. Similarly, 
the output layer of the deep structure shares the same 
vocabulary as the consequent layer of the FE-RNN. That is 
the output of the deep structure is the input to the fuzzified 
membership values of the consequent layer. The learning 
starts after the pseudo-online incremental learning of the 
membership functions. The model is trained with the 
fuzzified membership values of the input data and target 
data. It is trained with a lookback window as 25 timesteps 
using the adaptive moment estimation (Adam) optimizer. 
The decay rate of gradient moving average for the Adam 
solver is set 0.9 (default value), with the squared gradient 
decay rate chosen 0.999. The total training time is set as 30 
epochs. The initial learning rate is set as 0.005, which is 
reduced by half every 3 epochs. The value of the L2 
regularisation factor is chosen as the default value 0.001 
for the GRU training in MATLAB. Table I shows the 
training parameters used for the model. The input and 
target data for the GRU RNN prediction will be discussed 
in the next sub-section.

Table I

PARAMETERS USED IN 
DEEP STRUCTURE TRAINING

Lookback Window (timesteps) 25

Optimiser Adam

Gradient Threshold 50

Initial Learning Rate 0.005

Learning Rate Reduction Factor 2

Learning Rate Reduction Period (epochs) 3

L2 Regularisation Factor 0.0001

Adam Gradient Decay Factor 0.9

Adam Squared Gradient Decay Factor 0.999

Training Time (epochs) 30

3.3. Inference Process of FE-RNN

The inferencing process of FE-RNN includes three steps 
as follows.

3.3.1. Fuzzification of Inputs

Firstly, the input is fed from the input layer of FE-RNN 
to the condition layer. The equations for the input layer are 
described in Eq. (10). 

𝑓𝐼
𝑖 =  𝑥𝑖 

𝑜𝐼
𝑖 = 𝑓𝐼

𝑖 
     

           (10)

where 𝑓𝐼
𝑖 and 𝑜𝐼

𝑖 are the ith input and output of the input 
layer; 𝑥𝑖 is the ith feature of the data input.
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For every input in the condition layer, it goes through 
fuzzification by obtaining the membership values from 
each MF. In FE-RNN, each MF is a two-sided Gaussian 
function. The output of the condition layer is expressed by 
Eq. (11).

𝑓𝐼𝐼
𝑖, 𝑗 =  𝑜𝐼

𝑖 

oII
𝑖, j =

e𝑥𝑝
𝑓𝐼𝐼

𝑖, 𝑗 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡 

2

2 × 𝜎𝑖, 𝑗
𝑙𝑒𝑓𝑡

2 ,       𝑓𝑜𝑟 𝑓𝐼𝐼
𝑖, 𝑗 < 𝛤𝑖, 𝑗

𝑙𝑒𝑓𝑡  

                                      1            ,      𝑓𝑜𝑟 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡 ≤ 𝑓

𝐼𝐼

𝑖, 𝑗
≤ 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡

e𝑥𝑝
𝑓𝐼𝐼

𝑖, 𝑗 𝛤𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡 

2

2 × 𝜎𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡

2 ,      𝑓𝑜𝑟  𝑓𝐼𝐼
𝑖, 𝑗 > 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡 

      

              (11)

where 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡 and 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡 are the left and right centres of the 
jth MF for the ith feature respectively; 𝜎𝑖, 𝑗

𝑙𝑒𝑓𝑡 and 𝜎𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡 are 

the left and right widths of the jth MF for the ith feature 
respectively; 𝑓𝐼𝐼

𝑖, 𝑗 and 𝑜𝐼𝐼
𝑖, 𝑗 are the input and output for the 

jth MF for the ith feature of the condition layer respectively.

3.3.2. Prediction using Deep GRU RNN

The output from the condition layer is concatenated 
together, with the first element being the first MF from the 
first input feature, and the last element being the last MF 
from the last input feature. Then, the input is fed into the 
GRU RNN model which has been trained using the 
parameters shown in Table I. The model takes the input 𝑓𝐼𝐼𝐼 
and the hidden states that contain the extracted information 
of the previous 24 timesteps to compute the output. The 
output 𝑜𝐼𝐼𝐼 is the prediction derived from the GRU RNN 
model. The input and output of the inference layer are 
given in Eq. (12). 

   𝑓𝐼𝐼𝐼 =  𝑐𝑜𝑛𝑐𝑎𝑡(oII
1, 1, 

oII
1, 2, … oII

i, j)         
            (12)

where oII
𝑖, j is the output for the jth MF of the ith feature of 

condition layer; 𝑓𝐼𝐼𝐼 and 𝑜𝐼𝐼𝐼 are the input and output of the 
inference layer in the GRU RNN model respectively.

3.3.3. Defuzzification of Predicted Outputs

Finally, the output of the inference layer is assigned as 
the input to the consequence layer of FE-RNN. The output 
of the consequence layer is derived subsequently. The 
process of the consequence layer is shown in Eq. (13). 

𝑓IV
j  =  oIII

j  

oIV
 j  =   𝑓IV

 j  
      
            (13)

where oIII
j  is the corresponding output for the jth MF of the 

output; 𝑓IV
j  and 𝑜IV

j  are the input and output of the jth output 
MF in the consequence layer respectively.

Then, the output of the consequence layer is passed on 
next as the input of the output layer. Defuzzification occurs 
in the output layer. The defuzzification is performed on the 
aggregated areas based on the corresponding inferred 
membership values using the centre-of-area method. The 
equation for the defuzzification is described in Eq. (14). 

𝑓V
j  =  oIV

𝑖, j  

𝑜𝑣 =  
𝑛𝑜𝑢𝑡

𝑗=1
𝑓V

j ∗
𝛤𝑗

𝑙𝑒𝑓𝑡 𝛤𝑗
𝑟𝑖𝑔ℎ𝑡

2
∗ 

(𝜎𝑗
𝑙𝑒𝑓𝑡 𝜎𝑗

𝑟𝑖𝑔ℎ𝑡)

2
 

𝑛𝑜𝑢𝑡

𝑗=1
𝑓V

j ∗ 
(𝜎𝑗

𝑙𝑒𝑓𝑡 𝜎𝑗
𝑟𝑖𝑔ℎ𝑡)

2
 

 

      
           (14)

where 𝑓V
j   is the membership value of the jth output MF; 𝑜𝑣 

is the final crisp value of the prediction; 𝛤𝑗
𝑙𝑒𝑓𝑡 and 𝛤𝑗

𝑟𝑖𝑔ℎ𝑡 
are the left and right centres of the jth output MF 
respectively; 𝜎𝑗

𝑙𝑒𝑓𝑡 and 𝜎𝑗
𝑟𝑖𝑔ℎ𝑡 are the left and right widths 

of the jth output MF respectively. 

As the output MF is a two-sided Gaussian function, the 
centre and widths are approximated by obtaining the mean 
of both left and right values for each centre and width. 
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4. BENCHMARK EXPERIMENTS

A series of experiments are conducted to evaluate the 
performance of the proposed deep FE-RNN architecture. 
The experiments include forecasting data from the chaotic 
Mackey-Glass time series dataset and daily financial ETF 
prices. The proposed FE-RNN is an architecture that deals 
with regression problems. Hence, the performance metrics 
of RMSE and Pearson’s R are used for the quantitative 
evaluations in the experiments.

RMSE is an evaluation metric used to measure the 
differences between values predicted by a model and the 
actual values observed, shown in Eq. (15). The lower the 
RMSE, the higher the accuracy of the prediction model. 

𝑅𝑀𝑆𝐸 =  

1
𝑛

𝑛

𝑖=1
(𝑜𝑖 ― 𝑦𝑖)2 

       
            (15)

where n is the length of the sequence to be predicted; 𝑜𝑖 is 
the predicted output at the ith timestep; and 𝑦𝑖 is the actual 
observed value at the ith timestep.

The Pearson’s R is another evaluation metric used in 
regression analysis to measure the strength of the 
relationship between the relative movements of two 
variables. The value of the Pearson’s R ranges between -1 
to 1. Its score of 1 signifies that the variable is perfectly and 
positively correlated to the other variable, meaning that an 
upward movement in the first variable results in an 
upwards movement in the second variable. Conversely, A 
Pearson’s R score of -1 signifies that the data is perfectly 
and negatively correlated to the other data, meaning that an 
upward movement in the first data is matched by a 
downwards movement in the second data. The Pearson’s R 
can be calculated in Eq. (16). 

𝑅 =  
𝑛

𝑖=1
(𝑜𝑖 𝑜)2 (𝑦𝑖 𝑦)2

(
𝑛

𝑖=1
(𝑜𝑖 𝑜)2) (

𝑛

𝑖=1
(𝑦𝑖 𝑦)2)   

 

      
            

(16)

where n is the length of the sequence to be predicted; 𝑜𝑖 is 
the predicted output at the ith timestep; 𝑜 is the mean of the 
predicted outputs; 𝑦𝑖 is the actual observed value at the ith 
timestep; and 𝑦 is the mean of the actual observed values.

For the experiments on the chaotic Mackey-Glass time 
series dataset, FE-RNN is compared against other 
Mamdani and TSK fuzzy systems, and a deep 3-layered 
100-neuron GRU RNN.

4.1. Chaotic Mackey-Glass Time Series

For the experiment on the chaotic Mackey-Glass time 
series, the hypothesis is that due to the good online learning 
ability and interpretability of the proposed FE-RNN, it 
should be able to achieve stable and consistent prediction 
accuracy under different look-ahead time windows. 
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Table II

RESULTS OF MACKEY-GLASS EXPERIMENTS

t+1 t+2 t+4

Architectu
re

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o. 
of 
R
ul
es

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o. 
of 
R
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es

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o. 
o
f 
R
ul
e
s

Proposed 
FE-RNN

5.
52

99
.5
0

4
2
3

6.
05

99
.3
8

4
3
9

6.
54

99
.1
0

4
6
0

Mamdani Systems 

PIE-
RSPOP 
[14]

2.
29

99
.4
9

5
3
3

6.
68

96
.2
5

2
2
4

9.
08

92
.6
1

2
4
1

ieRSPOP 
[8]

2.
37

99
.4
5

7
0
1

3.
59

98
.7
5

7
0
1

6.
23

96
.2
4

7
0
1

EFuNN 
[19]

1.
10

98
.7
0

1
3

2.
95

98
.4
0

1
8

4.
78

97
.5
0

3
2

SAFIN 
[39]

6.
70

99
.4
0

8
5

23
.0
0

97
.9
0

8
5

67
.0
0

93
.2
0

8
5

TSK Systems 

ANFIS 
[16]

0.
05

10
0.
00

1
3

0.
16

10
0.
00

1
5

58
.1
0

99
.9
0

1
7

DENFIS 
[20]

0.
03

10
0.
00

1
3

0.
13

10
0.
00

1
3

83
.1
0

99
.9
0

1
3

Deep Structure

Vanilla 
GRU 
RNN

0.
03

99
.2
0

- 4.
52

97
.9
9

- 7.
27

94
.7
2

-
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To validate the experiment hypothesis, the chaotic 
Mackey-Glass time series is generated using the Mackey-
Glass equation [2], which is a nonlinear time-delay 
differential equation, shown in Eq. (17): 

𝑑𝑥𝑡

𝑑𝑡
= 𝛽

𝑥𝑡―𝜏

1 𝑥𝑛
𝑡―𝜏

― 𝛾𝑥𝑡,      𝛾, 𝛽, 
𝑛 > 0       

             
(17)

where the parameters 𝛾, 𝛽, 𝑛  are constant values; and 𝑥𝑡―𝜏 
is the value of the variable 𝑥𝑡 at time (t − τ); 𝜏 is the delayed 
timesteps from the time t. In the experiment of this paper, 
we use 𝛾 = 0.1, 𝛽 = 0.2, 𝑛 = 10, 𝜏 = 17 as the constant 
values. Depending on the value settings of these 
parameters, the Mackey-Glass equation illustrates the 
appearance in a range of complex chaotic dynamics with 
periodic oscillations [2]. 

The chaotic Mackey-Glass time series can be 
formulated using {𝑥𝑡―𝑚+1,𝑥𝑡―𝑚+2,𝑥𝑡―𝑚+3,…,𝑥𝑡} as the 
inputs to predict the future value 𝑥𝑡+𝑘, where m is the look-
back time window; k is the look-ahead time window; and t 
is the index of the time series. We set the following 
parameters: m = 6, 𝑥0= 1.2, and k = 1, 2, 4 for the three 
different experiments. The three different experiments 
benchmark the FE-RNN forecasting ability for look-ahead 
time windows of t+1, t+2, and t+4, respectively. 

For each experiment, a total number of 1000 data points 
is used. The first 500 data points are used as the training 
set, and the remaining 500 data points are the testing set. 
The 1000 data points are plotted alongside their 
corresponding predicted values by FE-RNN; But only the 
data points of the testing set are used in the computation of 
the values of RMSE and Pearson’s R. The training 
parameters for FE-RNN can be found in Table I.

The Mackey-Glass experiment results of FE-RNN and 
other benchmarking methods adapted from [14] are shown 
in Table II. The experiments are conducted 30 times using 
different random initial weights, with the mean values 
utilized in the comparisons. It is seen that the TSK fuzzy 
systems outperform the Mamdani fuzzy systems. TSK 
systems have a lower RMSE score and a higher Pearson’s 
R score, except for the t+4 experiment, where the TSK 
systems have much higher RMSE. It shows that the two 
TSK systems, ANFIS and DENFIS, are good at correlating 
and having predicted values following the movements of 
the actual values. But the accuracy of the predicted values 
gets notable drops with a larger look-ahead time at t+4. 
Furthermore, TSK systems are not as interpretable as 

Mamdani systems as they do not make use of the complete 
fuzzy to fuzzy if-then rule structure. When compared 
against other Mamdani systems, FE-RNN has a higher 
Pearson’s R score consistently in all experiments, that 
indicates its capability to perform consistently in the 
prediction tasks for future values. EFuNN [19] has the 
overall lowest RMSE score and generates the fewest rules. 
Compared to the vanilla GRU RNN deep structure, FE-
RNN manages to perform better on the consistency of 
Pearson’s R score while being interpretable. At t+4 
forecasting, FE-RNN obtains higher R values than those of 
four Mamdani systems and vanilla GRU RNN by up to 
7.0%. The number of rules of FE-RNN shown in Table II 
are derived from the learning mechanism to cover the 
regions of data distribution. Only relevant rules will be 
fired at a time, that are activated in the right region of data 
distributions for the data driven applications. FE-RNN has 
similar Pearson’s R as TSK fuzzy systems, while having 
similar number of fuzzy rules to Mamdani systems, overall 
achieving a good level of balance on interpretability for 
deep networks with little reduction in performance.

Fig. 3. Results of FE-RNN for t+1 Mackey Glass Benchmark.
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Fig. 4. FE-RNN Results for t+2 Mackey Glass Benchmark.

In the t+1 experiment, the GRU RNN model obtains the 
accuracy close to the ANFIS [16] and DENFIS [20] under 
the category of TSK fuzzy systems. However, the GRU 
RNN model suffers in larger performance loss when the 
look-ahead time is increased as compared to the FE-RNN, 
seen in the lower R score in the t+2 and t+4 experiments. 
The overall performance of FE-RNN is more consistent 
when the look-ahead time is increased.

Although the FE-RNN architecture does not perform as 
good as other fuzzy systems benchmarked on the RMSE 
score, the FE-RNN performs well in terms of the Pearson’s 
R score, meaning FE-RNN excels in predicting trends as 
compared to other fuzzy systems. This is likely caused by 
the ability of the deep RNN inference system to capture 
time-dependencies in data. The FE-RNN also manages to 
perform similarly, if not better than the vanilla GRU RNN 
model, while increasing the interpretability of the structure 
compared to the vanilla GRU RNN. 

The predicted results for the Mackey-Glass time series 
by the developed FE-RNN can be seen in Fig. 3 - Fig. 5 for 
t+1, t+2 and t+4 predictions, respectively. The red plots are 
the mean prediction values after the 30 times of experiment 
with random initial weights. The blue plots are the mean 
values added with the standard deviations. The orange 
plots are the mean values minus the standard deviations. 
The purple plots are for the target data. It is observed from 
Figs. 3 - 5 that the FE-RNN is able to achieve good 
prediction accuracy close to the actual data.

Fig. 5. FE-RNN Results for t+4 Mackey Glass Benchmark.

         Table III

            STOCK PRICE 
FORECASTING EXPERIMENT

Stock Training data size Testing data size

S&P 500 1,467 2,507

DJIA 1,467 2,507

HSI 1,443 2,456

4.2. Daily Stock Price Forecasting

In the next experiment, the daily price stock forecasting 
is used to illustrate the ability of FE-RNN to model time 
series data. For this experiment, we benchmark FE-RNN 
for predicting multiple high-volume indexes in the stock 
market. The experiment evaluates the look-ahead periods 
from 1 day to 7 days. The indexes that we are attempting 
to forecast in this benchmark experiment include the 
Standard & Poor’s S&P 500 index (^GSPC), DJIA index 
(^DJI), and the Hang Seng Index (^HSI). The daily pricing 
data is sourced from Yahoo! Finance and split into training 
and testing datasets. The training dataset is the data from 
24th March 2005 – 19th January 2011 for daily stock closing 
prices. The testing dataset is the data from 20th January 
2011 – 5th January 2021 for daily stock closing prices, as 
shown in Table III. The training parameters are shown in 



15

Table I.

4.2.1. Data Pre-processing

For the data pre-processing of this experiment, the input 
and output used for FE-RNN are formulated in Eq. (18). 

𝑥1 = 𝑉 

𝑥2 = 𝑝𝑡 =  
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡
 

𝑥3 = 𝑝𝑡 =  𝑝𝑡

― 𝑝𝑡―1 =  
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡
― 

𝑝𝑡―1 𝑝𝑟𝑒𝑓, 𝑡―1

𝑝𝑟𝑒𝑓, 𝑡―1
      

 
            (18)

𝑥4 = 𝑝𝑡 =  𝑝𝑡

― 𝑝𝑡―1 =  
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡
+ 

𝑝𝑡―2 𝑝𝑟𝑒𝑓, 𝑡―2

𝑝𝑟𝑒𝑓, 𝑡―2
 

𝑦 = 𝑃𝑡+1 =  
𝑝𝑡+1 𝑝𝑟𝑒𝑓, 𝑡+1

𝑝𝑟𝑒𝑓, 𝑡+1
 

where V is the volume of units of the stock bought and sold;
 𝑝𝑡 is the normalised price of the stock at time t; 𝑝𝑡 is the 
velocity of the price or the rate of change of 𝑝𝑡 at time t; 𝑝𝑡 
is the momentum of the price, or the rate of change of 𝑝𝑡 at 
time t; 𝑝𝑡 is the closing price of the stock; and 𝑝𝑟𝑒𝑓, 𝑡 is the 
reference price of the stock at time t.

Fig. 6. Reference Pricing Method used in Stock Prediction.

Generating the input and output values requires a 
reference price point, as shown in Fig. 6. The reference 
price for time t is a closing price of time somewhere 
between t-21 to t-8, depending on the sequencing of the 
data. Having a reference point for the prediction allows FE-
RNN to perform predictions based on the delta changes of 

values, instead of the absolute values. After the prediction 
of the value is done, the reference price is then used again 
to derive the actual crisp prediction value. Finally, the 
predictions are benchmarked using the Pearson’s R score 
and RMSE of a 5-day moving average between the 
prediction and actual data values.

4.2.2. Multi-day Look-ahead Forecasting Analysis

We generate one model for each look-ahead forecast 
target. In total, 21 models are generated, with seven models 
for each of the three indexes. The results of the experiment 
are tabulated in Table IV. 

As expected, the prediction of the FE-RNN is the best 
when predicting t+1 values for all three indexes observed 
in Table IV. The Pearson’s R score goes lower as the look-
ahead period increases. Similarly, the RMSE score also 
increases as the look-ahead period increases. Interestingly, 
the correlation during 1 day to 7 days look-ahead 
predictions for the US market manages to be above 99%, 
while the Hong Kong market drops to 96.4% when 
attempting to predict prices 7 days into the future. 
Although the correlation scores are good, the predicted 
value still lags behind the actual value by 2-5 days, as can 
be seen in the t+7 lagged prediction results of FE-RNN for 
S&P 500 index as shown in Fig. 7. 

Deng et al. [9] present their neutral network model 
named Multivariate Empirical Mode Decomposition 
LSTM (MEMD-LSTM) that use three market indexes in 
the experiments: S&P 500, HSI, and Shanghai Stock 
Exchange (SSE), using the metrics of mean absolute 
percentage error (MAPE), RMSE, and directional 
symmetry (DS). The experiment results of other three 
neutral network models are also introduced, including 
backpropagation neural networks (BPNN), LSTM, and 
Empirical Mode Decomposition LSTM (EMD-LSTM) to 
predict values on t+1, t+3, t+5, t+10, etc. [9]. Their 
experiment datasets and timeframes are different from 
those of FE-RNN. The experiment datasets for S&P 500 in 
[9] are: 1845 training data from 4th January 2010 to 2nd May 
2017; 462 validation data from 3rd May 2017 to 5th March 
2019 to tune the network parameters; and 462 testing data 
from 6th March 2019 to 31st December 2020. Their 
experiment datasets for HSI are: 1504 training data from 
4th January 2010 to 17th February 2016; 376 validation data 
from 18th February 2016 to 28th August 2017; and 376 
testing data from 29th August 2017 to 8th March 2019. 

In this paper, the four neural network models, BPNN, 
LSTM, EMD-LSTM, and MEMD-LSTM are employed to 
benchmark with FE-RNN and illustrate the predictions 
with multiple look-ahead time. It is observed in Table IV 
that FE-RNN outperforms these four neural network 
models in terms of RMSE when predicting the t+1 values. 
FE-RNN obtains lower RMSE values by 21.6% - 74.6% 
for S&P 500 index, and 8.1% - 60.0% for HSI index. The 
t+2 prediction value on S&P 500 index by FE-RNN is even 
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better than the t+1 predictions of the other four models. 
While MEMD-LSTM model has lower RMSE values in 
t+3 and t+5 predictions, there is no Pearson’s R value 
reported in [9]. It is not so straightforward to compare the 
correlations in the predicted values with FE-RNN in the 
multiple look-ahead time windows. These four benchmark 
neural network models, BPNN, LSTM, EMD-LSTM, and 
MEMD-LSTM focus more on accuracy, without analysis 
on the interpretability of their networks. It is different from 
FE-RNN, that puts architecture design considerations on 
both accuracy and interpretability.

   

         Table IV

           RESULTS OF FE-RNN IN 
MULTI-DAY LOOK-AHEAD FORECASTING 

Model S&P 500 DJIA HSI

Forec
ast 

Target

RMS
E

R 

(×1
0-2)

RMS
E

R 

(×1
0-2)

RMS
E

R 

(×1
0-2)

 Our 
FE-

RNN

t+1 28.22
1

99.9
2

293.6
95

99.8
5

298.0
61

99.5
6

t+2 34.90
0

99.8
5

399.9
06

99.7
2

504.8
97

98.7
3

t+3 46.87
5

99.7
3

529.2
95

99.5
1

609.8
49

98.3
3

t+4 52.17
0

99.6
7

578.5
94

99.4
2

680.1
35

97.8
5

t+5 58.75
4

99.5
8

612.1
25

99.3
4

772.4
44

97.2
6

t+6 63.32
3

99.5
0

637.9
20

99.2
8

816.1
79

96.8
8

t+7 66.56
9

99.4
6

683.6
41

99.1
8

850.5
54

96.3
8

BPNN 
[9]

t+1 111.1
62

- - - 620.9
24

-

t+3 153.5
25

- - - 636.5
40

-

t+5 165.5
74

- - - 650.7
75

-

Single 
LSTM 

[9]

t+1 67.72
4

- - - 425.8
22

-

t+3 69.95
3

- - - 436.9
77

-

t+5 74.68
4

- - - 442.8
16

-

EMD-
LSTM 

[9]

t+1 56.45
3

- - - 351.4
24

-

t+3 58.10
6

- - - 365.7
85

-

t+5 60.85
9

- - - 379.2
78

-

MEM
D-

LSTM 
[9]

t+1 36.01
9

- - - 324.2
92

-

t+3 38.56
8

- - - 331.8
33

-

t+5 39.97
5

- - - 337.8
92

-
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Fig. 7. Lagged Prediction on t+7 of S&P 500 index.

Fig. 8. Semantic Values of Rules Fired in FE-RNN for SPY 
prices.

Observed results of this experiment, FE-RNN manages 
to predict the daily prices with a high degree of correlation 
(> 96%), even when attempting to predict multiple 
timesteps ahead. FE-RNN can infer price movements and 
predict future pricing directions in the stock market well.

4.3. Interpretability of FE-RNN Inference Process

We attempted to interpret the inference process of FE-
RNN, using an example of the daily stock prices of an ETF 
trust, SPDR S&P 500 ETF Trust (SPY). The rules fired 
with the highest firing strength are recorded and analysed. 
The main rules fired in the t+1 prediction for the SPY from 
30/10/2019 to 9/6/2020 are shown in Fig. 8. 
Understandably, it is observed that the input price is largely 
correlated with the predicted price. We can also observe 

the impact of the other input features. For example, when 
the volume of the ETF is low, we can infer that the price 
change for the next day will be close to 0.

Fig. 9. Semantic Values of Rules Fired in FE-RNN on 
20/03/2020.

We can use the fired rules to explain the predicted price 
for the SPY ETF on 20/03/2020 shown in Fig. 9. It is 
observed that FE-RNN predicts the peak of the pricing for 
the SPY. The rule can be interpreted as: “IF the volume is 
very high AND the price is very low AND the price change 
is very high AND the price momentum is very high, THEN 
the predicted price is very high”. Intuitively, this also 
means that we can interpret the deep RNN network 
signaling that there is a strong bullish trend, so the price 
will increase the next day. Hence, by observing the fired 
rules with the fuzzified input and output values, we can 
interpret the inference process of FE-RNN in the form of 
human explainable IF-THEN rules. The same 
interpretability principles are applicable to all the scenarios 
in the inference process explained using the fired rules. As 
there is little consensus at the moment according to the 
literature review [30], in this paper, we use the definition 
of interpretability as the qualitative understanding of the 
relationship between input and output features in the form 
of IF-THEN rules according to the membership functions 
derived. Our analyses illustrate the interpretability in 
qualitative terms achieved by FE-RNN, that increases the 
interpretability and tackles the black box nature of RNN, 
where it may not be so straightforward to achieving with 
normal RNN architecture. But the drawback of our current 
analysis on the interpretability of FE-RNN is that the 
quantitative measurements are missing. It is one of the 
limitations of this work to be addressed in our future work. 

        Table V

           ASSETS DATA USED IN GA-FMACDH TRADING
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Stock Training 
Dates

Training 
Data Size

Testing 
Dates

Testing 
Data 
Size

SPY 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

VGK 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

VWO 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

AGG 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

XAU 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

IYE 24/03/2005 
– 
19/01/2011

1,462 20/01/2011 
– 
05/01/2021

2,507

5. TREND TRADING USING GA-FMACDH

In order to further evaluate the performance of the 
developed FE-RNN, we incorporate FE-RNN in a financial 
stock trading system. The prices of the assets in the 
portfolio are predicted by FE-RNN within a Moving 
Average Convergence-Divergence Histogram (MACDH) 
trading strategy adapted from [38], that employs GA to 
optimise the parameters of the trading strategy. The trading 
strategy consisting of FE-RNN is denoted as the GA-
fMACDH strategy. We use GA-fMACDH to perform 
trading on six financial assets, namely: 

• SPY, tracking the investment performance of 
the S&P 500 Index since January 1993,

• Vanguard European Stock Index Fund ETF 
(VGK), tracking the stock investment 
performance to companies in the developed 
economies of Europe since August 2002,

• Vanguard Emerging Markets Stock Index 
Fund ETF (VWO) tracking the performance of 
an index composed of companies in emerging 

market countries since June 2006, 
• iShares Core US Aggregate Bond ETF (AGG) 

tracking the index performance to measure 
investment returns of the total U.S. 
investment-grade bond market since 
September 2003,

• Philadelphia Gold and Silver Index (XAU) 
composing of 30 companies involved in the 
gold or silver mining industry since January 
1979,

• iShares US Energy ETF (IYE) tracking the 
investment performance of component 
companies in the energy segment including oil 
companies, services, and pipelines, etc. since 
June 2000. 

These six financial assets cover and track the 
performances of different market segments. The data size 
and time frames for these six financial assets for 
experiments are shown in Table V. 

In the experiments, we assume that there is no slippage; 
this means that we can fill the order to purchase the assets 
at the closing price of the next day. The returns of the GA-
fMACDH are compared against the buy and hold strategy 
and GA-MACDH strategy without using forecasted prices. 
The maximum drawdown across the testing period is also 
used to evaluate the performance of the trading strategy. 
The maximum drawdown is defined as the maximum 
percentage drop in the total returns from the start to the end 
of a period. It can be used to represent the risk profile of 
the portfolio, where a large maximum drawdown may 
mean the current strategy not be suitable for risk-averse 
investors.

5.1. MACD and MACDH

The Moving Average Convergence-Divergence 
(MACD) is a technical indicator used by many technical 
analysts for observing the market trends. The MACD is one 
of the simple and reliable technical indicators available in 
practice. However, the MACD is a lagging indicator. 
Hence, the MACDH has been developed to reduce the time 
lag of the MACD. The MACDH describes the rate of 
change of the MACD by subtracting the exponential 
moving average (EMA) from the MACD, as shown in Eq. 
(19): 

𝑀𝐴𝐶𝐷 =  𝑀𝐴𝐶𝐷
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
=  𝐸𝑀𝐴𝑓𝑎𝑠𝑡 ―𝐸𝑀𝐴𝑠𝑙𝑜𝑤 

𝑀𝐴𝐶𝐷𝐻 = 𝑀𝐴𝐶𝐷 ―  𝐸𝑀
𝐴𝑠𝑖𝑔𝑛𝑎𝑙(𝑀𝐴𝐶𝐷) 

         
               

(19)
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where MACD(fast, slow, signal) is the MACD value 
calculated using fast and slow as the window size for 𝐸𝑀
𝐴𝑓𝑎𝑠𝑡 and 𝐸𝑀𝐴𝑠𝑙𝑜𝑤 at time t respectively; 𝐸𝑀𝐴𝑠𝑖𝑔𝑛𝑎𝑙
(𝑀𝐴𝐶𝐷) is the EMA of MACD values using a window of 
size signal; and MACDH at time t is the EMA of window 
size signal subtracted from the MACD value.

The MACDH now represents a second-ordered 
oscillator that measures the rate of change of momentum. 
As such, when the MACDH crosses over the zero axis, 
assuming the absence of time lag, it represents that the 
momentum of the price action has peaked and it is the start 
of a reversal.

5.2. Forecast-assisted MACD and MACDH

As the MACDH indicator provides a good signal for 
trend reversals, we incorporate the forecasted prices from 
FE-RNN to reduce the time lag of the indicator. The 
fMACDH indicator uses the forecast-assisted EMA 
(fEMA). The fEMA uses exponentially weighted historical 
prices and reversed exponentially weighted forecasted 
prices to reduce the time lag, as shown in Fig. 10. Half of 
the prices come from the historical prices from t-13; while 
the other half ending at t+7 is sourced from the forecasted 
prices, with a maximum forecast period of 7 days look-
ahead using the proposed FE-RNN. Take note that the 
value of weights in the example shown in Fig. 10 serves as 
only an illustration to better understand the distribution 
between forecasted and historical prices without 
quantitative values.

The forecasted prices are put through further pre-
processing before being used in the fEMA. The forecasted 
prices are extracted and converted into delta change values, 
which are then applied to the last seen closing price. The 
pre-processing to the forecasted price can be formulated in 
Eq. (20). 

𝑦(𝑡 + 𝑘) = 𝑦(𝑡)
+(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡 + 𝑘) ―

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡 + 𝑘 ― 1))        

                (20)

where 𝑦(𝑡 + 𝑘) is the processed forecasted price at time 
t+k; 𝑦(𝑡) is the actual historical price at time t; and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡
(𝑡 + 𝑘) is the latest forecasted price for time t+k.

The equations for computing the fEMA, fMACD and 
fMACDH are described in Eq. (21).

𝑓𝐸𝑀𝐴(𝑤𝑖𝑛𝑑𝑜𝑤
) =
𝐸𝑀𝐴𝑑ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙(𝑦)  𝐸𝑀𝐴𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑦))

2
 

𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =

max 𝑤𝑖𝑛𝑑𝑜𝑤
2

,7  

𝑑ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 =
𝑤𝑖𝑛𝑑𝑜𝑤 ― 𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

         
               

(21)

𝑓𝑀𝐴𝐶𝐷
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤) = 𝑓𝐸𝑀𝐴
(𝑓𝑎𝑠𝑡) ― 𝑓𝐸𝑀𝐴(𝑠𝑙𝑜𝑤) 

𝑓𝑀𝐴𝐶𝐷𝐻(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
= 𝑓𝑀𝐴𝐶𝐷(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤) ―  𝐸𝑀𝐴𝑠𝑖𝑔𝑛𝑎𝑙(𝑓𝑀𝐴𝐶𝐷)

where fMACD(fast, slow, signal) is the forecast-assisted 
MACD value calculated using fast and slow as the window 
size for fEMAfast and fEMAslow at time t respectively; dforecast 
is the number of forecasted daily price used in fEMA; 
dhistorical is the number of historical daily price in fEMA; 
and fMACDH is the forecast-assisted MACDH at time t 
that is the EMA of window size signal subtracted from the 
fMACD value.

Fig. 10. Distribution of weights in a 21-day fEMA.

5.3. Accounting for Whipsaw Effects

As the vanilla MACDH trading strategy is solely 
dependent on the MACDH value, it is susceptible to the 
whipsaw effects. This is where the MACDH frequently 
fluctuates at the zero axis, causing the system to buy and 
sell stocks very frequently without a significant amount of 
return. This makes the trading system less profitable as a 
larger portion of the profits would be lost to the 
commission leaks when there are unnecessarily frequent 
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changes in the trading position. To account for this, we 
introduce a price percentage oscillator fMACDH%, that 
represents the price movement relative to the price in terms 
of percentage, shown in Eq. (22).

𝑓𝑀𝐴𝐶𝐷𝐻%
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙) =

|  𝑓𝑀𝐴𝐶𝐷𝐻(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
0.5∗(𝑓𝐸𝑀𝐴(𝑓𝑎𝑠𝑡) 𝑓𝐸𝑀𝐴(𝑠𝑙𝑜𝑤))|        

                
(22)

As such, the trading strategy is modified such that the 
trade signal is only valid when fMACDH% is larger than the 
oscillation threshold, 𝑎. The modified trading strategy is 
formulated in Eq. (23). 

𝑃(𝑡) =  
1,  𝑖𝑓 𝑓𝑀𝐴𝐶𝐷𝐻% > 𝑎 ∩ 𝑓𝑀𝐴𝐶𝐷𝐻 > 0  
0,  𝑖𝑓 𝑓𝑀𝐴𝐶𝐷𝐻% > 𝑎 ∩ 𝑓𝑀𝐴𝐶𝐷𝐻 ≤ 0
𝑃(𝑡 ― 1),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

         

              (23)

where 𝑃(𝑡) is the position held at time t; 𝑃(𝑡) = 1 is a buy 
decision; 𝑃(𝑡) = 0 is a sell decision; and 𝑃(𝑡) = 𝑃(𝑡 ― 1) 
means a hold decision without buying and selling stocks. 
The modified trading strategy only allows the buying and 
selling of financial assets and does not consider a short 
position as an option in this experiment.

           Table VI

              PARAMETERS OBTAINED BY 
GA OPTIMISATION

Assets GA-fMACDH GA-MACDH

𝑓𝑎𝑠𝑡 𝑠𝑙𝑜𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 𝛼 𝑓𝑎𝑠𝑡 𝑠𝑙𝑜𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 𝛼

SPY 15 19 7 0.0018 11 49 9 0.0119

VGK 16 37 9 0.0075 22 32 17 0.0014

VWO 12 24 7 0.0040 26 43 17 0.0033

AGG 13 20 7 0.0010 9 29 7 0.0020

XAU 12 35 6 0.0062 15 27 5 0.0020

IYE 24 46 17 0.0088 7 42 4 0.0111

5.4. Trading Parameters Optimisation using GA

GA is used to optimise the parameters long, short, 
signal, and 𝑎 in the modified trading strategy. In the GA 
fitness function, the fitness score (the value that we are 
attempting to maximise) is the final portfolio value. The 
final portfolio value includes the deduction of 0.08% for 
each transaction to account for the transaction commission 
fees. The algorithm stops when there is no improvement in 
the best performing population for 50 generations. The first 
500 days of the dataset are used as the training data for the 
GA to benchmark the score of the population. The 
parameters are derived using GA shown in Table VI. It can 
be observed that the derived parameters generally follow 
the trend of signal < fast < slow. 

5.5. Results & Analysis

The results on the investment returns and max 
drawdown of the modified trading strategy are shown in 
Table VII. The results are benchmarked with GA-
MACDH, as well as the buy and hold strategy. The 
improvements on the investment returns made by GA-
fMACDH over GA-MACDH, and GA-fMACDH over buy 
and hold strategy are shown in Table VIII. It is observed 
that GA-fMACDH outperforms GA-MACDH in all 
financial assets by 1.30% to 229.47% higher returns in the 
experiment. The FE-RNN based GA-fMACDH also 
outperforms the buy and hold strategy in five financial 
assets: SPY, VGK, VGO, XAU, and IYE by 48.54% to 
137.90% higher returns; while the buy and hold strategy 
outperforms slightly the GA-fMACDH in the AGG ETF 
by 2.92% in return. However, the GA-fMACDH has a 
lower maximum drawdown on average when compared 
against the buy and hold strategy with -3.30% to -34.90%. 
This means that the GA-fMACDH is more defensive and 
exits a position when the price drops a lot. The FE-RNN 
based GA-fMACDH strategy can perform well when the 
underlying equity is volatile, as it produces more 
opportunity for the trading system. 

Table VII
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EXPERIMENT RESULTS COMPARISONS ON RETURNS AND MAX 
DRAWDOWN

Asse
t

Return Max Drawdown

GA-
fMACD
H

(%)

GA-
MACDH 
(%)

Buy 
and 
Hold 
(%)

GA-
fMACD
H (%)

GA-
MACD
H (%)

Buy 
and 
Hol
d 
(%)

SPY 238.46 8.99 189.9
2

23.61 18.08 34.1
0

VG
K

153.02 15.55 23.71 17.60 32.59 41.5
7

VW
O

146.05 72.35 8.15 28.66 24.94 43.7

AG
G

9.09 7.79 12.01 6.28 6.99 9.58

XA
U

118.17 60.68 23.82 48.14 56.25 83.0
4

IYE 8.70 -26.48 -
47.18

58.70 55.43 78.2
1

Table VIII

IMPROVEMENTS ON INVESTMENT RETURNS

Asset FE-RNN based trading TBH trading 
strategy [45]

GA-fMACDH 
over GA-MACDH 
(%)

GA-fMACDH 
over Buy and Hold 
(%)

TBH over 
Buy and Hold 
(%)

SPY 229.47 48.54 7.59

VGK 137.47 129.31 49.13

VWO 73.70 137.90 31.46

AGG 1.30 -2.92 45.41

XAU 57.49 94.35 -

IYE 35.18 55.88 -

For the illustration purposes of the trading outcomes, the 
improvements on the investment returns made by FE-
RNN-based GA-fMACDH are compared to those of the 
TBH trading strategy using SeroFAM neuro-fuzzy network 
with GA-optimised fMACDH indicator reported in [45] on 
the same four financial assets as shown in Table VIII. It is 
observed that FE-RNN based GA-fMACDH strategy 
makes much larger returns over its counterparts than those 
of the TBH over the Buy and hold strategy. But there are 
some differences on the timeframes and transaction 
commission fees of TBH strategy, that are 1st March 2017 
– 31st March 2021 with 0.1% commission per transaction 
[45]. While the timeframe of the experiments in this paper 
is from 24th March 2005 to 5th Jan 2021 as shown in Table 
V; and the transaction commission fees used in this paper 
is 0.08%. As such, strictly speaking, it is not a fair 
companion. It only helps us sense to certain extends and 
demonstrate qualitatively how well the FE-RNN based 
GA-fMACDH can improve the trading returns. 

6. CONCLUSION

      In this paper, the FE-RNN is proposed by embedding 
the features of a fuzzy system together with a deep RNN. 
The dual-view of this embedding allows the fuzzy 
association in FE-RNN to provide the better interpretation 
of RNN encoding and decoding. It employs the deep RNN 
to learn and compute the data driven implication for the 
fuzzy association from the input to the output fuzzy spaces. 
Such an approach permits a more accurate realisation of 
entailment in the fuzzy inference process. 

Several experiments are conducted to evaluate the 
functions and performance of FE-RNN. In the first 
experiment for the prediction tasks of chaotic Mackey-
Glass time series, FE-RNN is compared with seven 
benchmark models. FE-RNN obtains higher Pearson’s R 
scores up to 7% consistently in all experiments than those 
of the Mamdani systems and Vanilla GRU RNN. FE-RNN 
achieves more consistent RMSE accuracy when predicting 
multiple days of look-ahead time windows, compared to 
the notable drops on RMSE of the TSK systems. It shows 
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that FE-RNN gets more balanced performance and 
interpretability consistently. 

In the second experiment for multiple days look-ahead 
forecasting of FE-RNN, three market indexes, S&P 500, 
DJI, and HSI are utilized for t+1 to t+7 days predictions. 
FE-RNN obtains the best results when predicting t+1 
values. It achieves high R values consistently at different 
look-ahead days forecasting. FE-RNN also outperforms 
four benchmarking neutral network models in RMSE for 
t+1 predictions, with lower RMSE values by 21.6% to 
74.6% for S&P 500 index, and 8.1% to 60.0% for HSI 
index. 

In the last experiment, FE-RNN is used as a price 
predictor in the stock trading system using the GA-
fMACDH trading strategy. The design of the stock trading 
system incorporates FE-RNN, GA optimization 
algorithms, GA-fMACDH optimized by GA, and 
countermeasure of the whipsaw effects in trading. With 
transaction commission fees included, it is employed to 
trade six financial assets: SPY, VGK, VGO, AGG, XAU, 
and IYE. The experiment results of FE-RNN based GA-
fMACDH trading system are compared to GA-MACDH, 
as well as buy and hold strategies. It is observed that the 
GA-fMACDH trading system achieves 1.30% to 229.47% 
higher returns than those of GA-MACDH trading model 
for all financial assets. It also obtains 48.54% to 137.90% 
higher returns than those of the buy and hold strategy for 
five assets, except for AGG. The GA-fMACDH trading 
system has lower maximum drawdown compared to the 
buy and hold strategy for all six assets. The improvements 
on the returns of FE-RNN based GA-fMACDH trading 
system are observed higher than those of the TBH trading 
strategy using SeroFAM neuro-fuzzy network [45].  

The fuzzy rules embedded within the FE-RNN system 
provide a method of interpreting the underlying deep RNN, 
since both embedded structures share the same vocabulary 
in the input and output fuzzy spaces. It allows the 
interpretation of the operations in the deep network 
structure during the encoding and decoding phases with the 
help of the embedded fuzzy structure. Hence, providing the 
much-needed transparency for the deep learning structure. 
The duality of the embedding also allows the deep structure 
to learn and recall the empirical data driven implication for 
the embedded fuzzy system. The FE-RNN assisted GA-
fMACDH trading system illustrates promising results and 
would be a useful tool for analysts and investors. 

Future works will be done for the deep structure of FE-
RNN to improve the prediction capability of the system, 
such as using a convolutional neural network or performing 
pruning on the deep RNN. Other latest works in literature 
are reported on deep neural networks with improved 
interpretability. As a part of the future works, we will 
explore to learn and ensemble such deep neural networks 
into the architecture. Other research directions will be also 
explored for the development of an evolving neural 

network that enables FE-RNN as an online system. It could 
explore the tagging between fuzzy rules and the GRU 
nodes within the deep structure to gain a deeper and causal 
understanding of the encoding and decoding of the deep 
structure. Currently the interpretability of FE-RNN is only 
explained and measured in qualitative terms. It will be an 
important future work to evaluate and benchmark the 
interpretability in quantitative terms. It could also explore 
the capabilities of FE-RNN within other forecast assisted 
trading strategies using other technical indicators 
optimised by evolutionary algorithms, such as the Relative 
Strength Index, Price Percentage Oscillator, and Bollinger 
Bands. The system will be assessed by a wider range of 
financial market assets including ETF, stocks, or market 
indexes. 
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Highlights

• The proposed FE-RNN learns incrementally and inferences on unseen time-series data

• The FE-RNN is assessed on chaotic time-series datasets for its forecasting ability

• An embedded fuzzy network provides interpretability of the neural network structure

• The FE-RNN based GA-fMACDH strategy performs well on returns and maximum drawdown
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