
Journal Pre-proofs

FE-RNN: A fuzzy embedded recurrent neural network for improving inter‐
pretability of underlying neural network

James Chee Min Tan, Qi Cao, Chai Quek

PII: S0020-0255(24)00189-0
DOI: https://doi.org/10.1016/j.ins.2024.120276
Reference: INS 120276

To appear in: Information Sciences

Received Date: 8 May 2023
Revised Date: 19 December 2023
Accepted Date: 31 January 2024

Please cite this article as: J. Chee Min Tan, Q. Cao, C. Quek, FE-RNN: A fuzzy embedded recurrent neural
network for improving interpretability of underlying neural network, Information Sciences (2024), doi: https://
doi.org/10.1016/j.ins.2024.120276

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Author(s). Published by Elsevier Inc.

https://doi.org/10.1016/j.ins.2024.120276
https://doi.org/10.1016/j.ins.2024.120276
https://doi.org/10.1016/j.ins.2024.120276

1

FE-RNN: A Fuzzy Embedded Recurrent Neural Network for
Improving Interpretability of underlying Neural Network

James Chee Min Tan1, Qi Cao2*, and Chai Quek1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798

2*School of Computing Science, University of Glasgow, UK and Singapore (corresponding author)

E-mail addresses: jame0019@e.ntu.edu.sg, qi.cao@glasgow.ac.uk, ashcquek@ntu.edu.sg.

Abstract—Deep learning enables effective predictions. But
deep structures face some challenges on human
interpretability compared to conventional techniques, e.g.,
fuzzy inference systems. It motivates more research works to
alleviate the black box nature of deep structures with
performance maintained. This paper proposes a fuzzy-
embedded recurrent neural network (FE-RNN) to improve
interpretability of the underlying neural networks. It is a
parallel deep structure comprising an RNN and a Pseudo
Outer-Product based Fuzzy Neural Network (POPFNN) that
share a common set of input and output linguistic concepts.
The inference processes undertaken are associated by RNN
using fuzzy rules in the embedded POPFNN. Fuzzy IF-THEN
rules provide better interpretability of the inference process
of the hybrid networks. It allows an effective realisation of a
data driven implication using RNN in the modelling of fuzzy
entailment within a fuzzy neural networks (FNN) structure.
FE-RNN obtains more consistent results than other FNN in
the experiment using the Mackey-Glass dataset. FE-RNN
achieves about 99% correlation for forecasting prices of
market indexes. Its interpretability is also discussed. FE-RNN
then acts as a prediction tool in a financial trading system
using forecast-assisted technical indicators optimised with
Genetic Algorithms. It outperforms the benchmark trading
strategies in the trading experiments.

Keywords—Fuzzy neural networks, deep neural networks,
fuzzy-embedded recurrent neural network, data driven
implication, financial assets trading.

1. INTRODUCTION

Deep learning is a type of machine learning methods
that utilises multiple layers of neural networks to extract
useful information from data. The information is abstracted
by performing various transformations to the data that can
help support the modelling or prediction of data. However,
these transformations are done through many levels of
mathematical computations, that pose a great challenge in
critical tasks required in learning to model a complex
problem. Fortunately, recent technological breakthroughs
bring greater computational power at relatively low costs,
making the deep learning to be a highly viable research
field. As deep learning techniques advance, many complex
modelling tasks can be accurately and reliably conducted.

Deep learning-based approaches are introduced for
prediction tasks on time series analysis [33],[34]. As the
deep learning models grow in complexity with stacking of
more layers, it encounters some challenges on the human
interpretability on the insights how deep learning structures
derive the results [30],[36],[43]. It is not easy to interpret
the reasoning behind the models, that are in a black box
manner with hidden representations and calculations in the
network [32],[37]. Interpretability is an important
requirement for many critical domains and legal
compliance systems, e.g., medical domain applications and
financial systems [10]. But there is yet consensus on the
definitions of interpretability in machine learning, as
different meanings are presented for different domains and
scenarios [30]. Interpretability could refer to the ability to
comprehend and explain how a model performs the
decision-making process [27], or could refer to providing a
qualitative understanding of the relationship between input
and output features [22],[30]. The eXplainable Artificial
Intelligence (XAI) attracts a lot of research interests
recently to help the interpretability of deep learning
[10],[21]. A Long Short-Term Memory (LSTM) model is
introduced to identify malicious behaviours and
cyberattacks for Internet of Things (IoT) networks [21],
that uses four methods to extract features from the dataset
classes and generate explanations defined by human. The
detected features for the classes of cyberattacks are plotted
into figures, but it may have some learning curves for some
users to understand how to interpret the plots. A Kronecker
convolutional neural network architecture is employed for
classification of kidney stones in medical image processing
[29], where knowledge with good interpretability can be
accumulated. An architecture is presented to improve the
interpretability of neural networks by splitting the
networks into levels, which constitute one or several layers,
to provide insights into the layers [17]. There are
hierarchical representations of the input windows to help
users gain better visibility of multiple layers structure in
neural networks. But there may be a smaller version of
black box in the LSTM layer in each level when deriving
the hidden state. The meta-predictor is introduced to
extract interpretable meta-features from neural
architectures and regression models [30], that uses slightly
different definitions of the interpretability, for

mailto:jame0019@e.ntu.edu.sg
mailto:qi.cao@glasgow.ac.uk
mailto:ashcquek@ntu.edu.sg

2

understandability by users equipped with basic knowledge
of neural architectures.

Some systems make use of fuzzy logic or Bayesian
logic to draw inferences and make decisions. Rules of
fuzzy logic are usually specified by domain experts,
providing interpretable insights of the knowledge in the
form of fuzzy rules [35]. By observing the firing of the
rules during the use of the fuzzy system, it achieves better
interpretability [24],[32]. Fuzzy logic is capable of dealing
with inaccurate, uncertain, or ill-defined data similar to
human experts [13],[31],[49]. However, manually curating
fuzzy rules for a complex model is deemed to be tedious
and challenging. In recent years, fuzzy neural networks
(FNN) or neuro-fuzzy computing (NFC) have been
introduced as an alternative to traditional fuzzy systems
[8],[26],[39].

Neural networks and fuzzy logic are integrated in FNN
as a hybrid paradigm, that can mimic some aspects of
human reasoning [3]. The fuzzy rules and membership
functions make the neural networks interpretable or
translatable [47]. The semantic transparency and
interpretability of fuzzy logic can be incorporated with the
learning capability of neural networks [28]. It can make use
of fuzzy logic for processing inputs or outputs that are
coupled with deep learning models to allow accelerating
the training of deep learning with fuzzy logic systems [37],
when the data are noisy, heterogeneous, incomplete, or
vague. As a useful approach, fuzzy neural networks are
broadly adopted in fields to solve practical problems in
various applications. A nonstationary FNN consisting of
fuzzy logic and neural networks is introduced for clustering
and regression problems [47]. A multilayer FNN is
reported for the tasks of image clustering [42], while
another work of FNN is described for medical images
super resolution [41]. FNN is employed for robotic
controls as a complex nonlinear application [48]. Das et al.
[7] present their work on fuzzy-neuro model for data
classification and feature reduction in data analytics. An
adaptive FNN is introduced in the application of anomaly
detection on measurement information of underwater
acoustic ranging errors of autonomous underwater vehicles
[44]. A self-organizing FNN is presented for the nonlinear
system modeling [36].

FNN systems are also reported in prediction tasks
according to past events or time series data. A multi-layer
adaptive FNN is presented for student performance
prediction in four online courses [40]. A prediction model
using time-series recurrent neural network is reported for
the stock price prediction [25]. Ferdaus et al. introduce a
rule-based FNN learning system with two multi-objective
evolutionary algorithms to forecast time-varying stock
indexes [11]. A type-3 fuzzy aggregator is ensembled with
the neural networks to be a prediction method on time
series data of Humanitarian Data Exchange and Dow Jones
[6]. A multi-functional recurrent FNN is introduced for the
Chaotic time series prediction that utilises Takagi-Sugeno-

Kang (TSK) fuzzy rules [28]. A residual deep fuzzy system
is presented with several time-series datasets including
subway passenger flow, traffic flow, and chaotic time
series, etc. [24]. A type-2 FNN is tested with the Henon
chaotic time series prediction [23]. The bankruptcy
prediction and financial distress prediction are reported
using the fuzzy convolutional neural networks [15].

There exists a large area of interest in the application of
machine learning in prediction systems that involve
constant changes in data, patterns, and trends, such as the
prediction of financial markets [25],[45] etc. Trend
reversals of time series financial data can be predicted
through analysing technical indicators [18],[45],[46].
Various machine learning (ML) or evolutionary algorithms
are utilized to optimise the parameters to improve the
accuracy of time series predictions. Genetic algorithms
(GA) are employed as the optimisation algorithms in the
predictions of financial trading systems [45]. Several ML
regression algorithms optimised by GA are introduced for
stock price forecasting [46]. An approach using recurrent
neural networks (RNN) is optimised by GA to predict daily
price movements of three market indexes [12]. The
implementation of such predictions can reap financial
benefits in the financial trading markets.

Even though FNN systems provide interpretability for
human experts without prior knowledge in machine
learning, it is not easy to understand how the systems draw
conclusions in the output layer based on the input data. The
mechanism and behaviour of FNN systems are only known
by designers. It lacks transparency to users on how rules
are generated and how data links are connected from
multiple layers of FNN systems, which is similar to other
black box machine learning models [4]. Black box nature
of these models is difficult be directly explained [1]. As
such, it is not easy for users to know how to tune the
parameters and how to explore the maximum performance
potentials of the FNN systems. FNN systems still fall
behind deep learning models in terms of their predictive
ability in complex modelling tasks when there are
significant data shifts.

The main contributions of this paper are as follows.

A fuzzy-embedded recurrent neural network (FE-
RNN) architecture is proposed to learn incrementally and
inference on unseen time-series data using a developed
pseudo-online incremental learning. It is able to
incorporate newly acquired knowledge into classes of rules
through the proposed learning process of FE-RNN, with
the merged membership functions or derived new classes
of membership functions. FE-RNN performs the
inferencing and data prediction using a deep RNN with
back-propagation through time. Its predictive performance
is compared against those of several other architectures
reported in literature. The RNN within an embedded FNN
is used to derive the data driven implication to map the
input and output fuzzy spaces. The data driven implication

3

mimics closely the entailment of data from the input to the
output spaces. In this paper, we use the definition of
interpretability as the qualitative understanding of the
relationship between input and output features in the form
of IF-THEN rules according to the membership functions
derived.

To evaluate the performances of the proposed FE-
RNN, several experiments are conducted. It is first
assessed based on its forecasting ability on Chaotic
Mackey-Glass time-series datasets. Two performance
metrics are used in the benchmark assessment: root mean
square error (RMSE); and Pearson’s product-moment
correlation coefficient (Pearson’s R) between the predicted
results and the actual results of the time series data. The
experiment results according to the performance metrics of
the FE-RNN will be analysed. Next, the FE-RNN is
employed to predict the daily prices of three market
indexes. The experiment results and interpretability of FE-
RNN will be discussed in detail.

Next, the proposed FE-RNN is used as a stock price
predictor alongside a GA optimised trading-decision
strategy, named as the GA-optimised forecast-assisted
Moving Average Convergence-Divergence Histogram
(GA-fMACDH). In this paper, we illustrate the procedure
to derive the GA-fMACDH strategy, and account for the
whipsaw effects to reduce the unnecessary transactions. It
is then benchmarked against the vanilla GA optimised
MACDH (GA-MACDH) trading strategy, the
conventional buy and hold strategy, and Tactical Buy and
Hold (TBH) trading strategy reported in [45] using
SeroFAM neuro-fuzzy network with GA-optimised
fMACDH indicator in various high-volume exchange-
traded funds (ETF). The result comparisons will be
performed in terms of the improvements of investment
returns and maximum drawdown.

The remaining parts of the paper are organised as
follows. Section 2 introduces related works on RNN,
online and offline learning of fuzzy systems. Section 3
presents the architecture and implementation of the
proposed FE-RNN. Section 4 describes the benchmark
experiments based on the chaotic time series data. Section
5 depicts the GA-fMACDH trading-decision system that
utilises the predictions from the proposed FE-RNN to make
judicious trading decisions. Section 6 concludes this paper.

2. BACKGROUND KNOWLEDGE

In this section, the background knowledge on the
RNN and several types of fuzzy systems is introduced
that are relevant to the design of FE-RNN.

2.1. Recurrent Neural Networks

The RNN concept was introduced as a network that was
able to perform back-propagation through time, which
requires a hidden state to capture a representation of the

previous inputs. The computation of the gradients in RNNs
involves long products of matrices. It may result in
exploding gradients or vanishing gradients, which may
obstruct the learning capability of the RNN. Hence, many
techniques have been reported to counter these issues, such
as Long short-term memory (LSTM) and Gated Recurrent
Units (GRU) [5]. The GRU RNN has two gates: reset gate
and update gate, having less parameters and higher training
efficiency compared to those of LSTM. There is a gating
mechanism of GRU for hidden states allowing the network
to decide if the hidden states should be updated and reset.
This mechanism allows for the network to selectively
capture observations and reset the hidden state. For a GRU
RNN, the information of the previous timestep is captured
within the hidden state.

2.2. Online and Offline Learning of Fuzzy Systems

Computationally, the values in fuzzy systems are
encoded as floating-point values between 0 and 1. These
values are called degree of membership according to the
membership functions (MF), where it quantifies the grade
of the element to the corresponding fuzzy set. The
antecedent is the cause of a fuzzy rule, and the consequent
is the effect of the fuzzy rule.

Fuzzy systems are generally categorised into two
different systems, Mamdani and TSK fuzzy systems.
Mamdani fuzzy systems generally perform better in
interpretability, while TSK systems generally perform
better in precision. They differ in the fuzzy rules that are
composed of, particularly the consequents of the fuzzy
rules. The consequent of the Mamdani fuzzy rules is in
linguistic terms, with being more interpretable. While the
fuzzy rules in the TSK fuzzy systems use a linear piece-
wise function of inputs as the consequent, with being
harder to interpret. This paper uses the Mamdani fuzzy
system that embeds the fuzzy rules within a RNN to
associate the inference of RNN with the fuzzy counterpart.

In offline learning systems, the whole training data is
available during the design phase. This means that the
structure can be optimised for the current training data set
and can optimally predict for unseen data. However, the
structure is fixed after the design phase. Having a fixed
structure may require to be redesigned and retrained when
new data having a significantly different distribution, as
seen in ANFIS [16]. For some time-critical applications,
online fuzzy systems may be more suitable. Online
learning fuzzy systems evolve their structure whenever
new data arrives. These systems attempt to incorporate new
data into their existing fuzzy clusters or create a new fuzzy
cluster if needed. Online learning fuzzy systems often
make use of one-pass clustering techniques, such as
evolving fuzzy clustering method (EFCM) [19]. As the
number of fuzzy clusters can change throughout the system
operations, the underlying structure can also be evolved.

4

3. PROPOSED FE-RNN ARCHITECTURE

The proposed FE-RNN architecture is described in
detail in this section. FE-RNN differs from a typical FNN
structure by having an RNN layer as the inference layer. A
typical architecture of a FNN has five layers: input layer,
condition layer (also known as antecedent layer), rule-base
layer (also known as inference layer), consequence layer
and output layer, e.g., the Pseudo Outer-Product based
Fuzzy Neural Network (POPFNN) [50]. Similarly, the
deep FE-RNN architecture developed in this paper also has
five layers. It aims to provide a data-driven entailment in
the observed input and output relationships of the model,
as well as the interpretability by the fuzzy system on
operation of the RNN. This dual aspect of implication and
explanation is achieved by embedding the fuzzy system
with the RNN, allowing both networks to share the same
input and output linguistic vocabulary.

As both the fuzzy system and the deep structure are
incrementally tuned according to the same data, we can
exploit the complementary relations of both systems by
employing the fuzzy system to explain the data driven
inference operation of the RNN. It combines the accuracy
in the realisation of the high fidelity of the data driven
implication capabilities of RNN and the interpretability of
FNN. In the FE-RNN, a multi-input single-output (MISO)
architecture is assumed. The high-level architecture of the
developed FE-RNN with five layers is shown in Fig. 1.

Fig. 1. Architecture of FE-RNN.

Layer 1: Input Layer

This layer is the input linguistic layer, receiving the
crisp input values. Each neuron in this layer represents one
feature of the input data into the system. The inputs are
transmitted to the second layer, i.e., the condition layer.

Layer 2: Condition Layer

The neurons in this layer are the input-label neurons.
They are the antecedents of the fuzzy rules with their own

individual parameters for their membership functions,
generated by the clustering technique employed by the
system. The values in this layer are fuzzified and then
passed on to the third layer.

Layer 3: Inference/Rule-base Layer

Neurons in this layer represent the fuzzy rules of the
system. The linguistic terms – fuzzy memberships of the
input and output linguistic variables form the vocabulary to
the rule layer as well as the deep RNN. The fuzzy rules are
generated using pseudo outer product (POP). The deep
RNN is trained on the fuzzy membership values of the
inputs and expected output. In the example of stock trading
context, the inputs will be the trading volume, stock price,
price changes, and momentum at time t. The expected
output will be predicted price at the look-ahead time.
Similarly, when using the deep RNN to forecast new data,
the new data at time t are then fuzzified and passed to the
deep RNN, where the output is then defuzzified to get the
actual predicted output value.

Layer 4: Consequence Layer

The neurons in this layer are called the output-label
neurons. They are the consequents of the fuzzy rules and
deep RNN inferencing of the previous layer.

Layer 5: Output Layer

Each neuron in this layer represents one feature of the
output data derived from the system. In this layer,
defuzzification occurs to transform and derive the final
inferencing results.

The overall system framework for the proposed FE-
RNN is shown in Fig. 2. It shows the organisation of the
different modules of FE-RNN and its respective data
pathways during the training phase, inference phase and
the interpretation phase.

In the training phase, the offline data is used to generate
the parameters of the FE-RNN system. In the inference
phase, the online data is passed through the system to
generate the forecasted data. In the interpretation phase, the
online data and forecasted data are used to provide
interpretation of the system.

5

Fig. 2. Data Pathways inside FE-RNN.

The FE-RNN is first trained through the learning
modules on the top half of Fig. 2. The training data is used
for the generation of the model. The learning algorithms
employed by FE-RNN are split into two major parts:
pseudo-online incremental learning used in the fuzzy
structure, and back-propagation through time used in the
deep RNN structure. These two parts will be presented
individually in Sub-sections 3.1 and 3.2.

After the training and the generation of MFs, the input
data is taken in the FE-RNN with inference process
starting, shown in the bottom half of Fig. 2. The inference
process of the FE-RNN is split into three steps: (1)
fuzzification of inputs, (2) prediction using the data driven
implementation of associative implication which is based
on the deep GRU RNN within FE-RNN, and (3)
defuzzification of the predicted outputs. The output is
derived from FE-RNN next. The three steps of the
inferencing process will be presented in the next sub-
sections.

Lastly, the interpretation process of FE-RNN is done
using the fuzzified inputs and raw output of the RNN to
look up in the fuzzy rule base to understand the fired fuzzy
rules. Thus, we are able to interpret the complex
calculations within FE-RNN using simple fuzzy IF-
THEN rules.

3.1. Pseudo-online Incremental Learning in FE-RNN

There are two steps for the pseudo-online incremental
learning in FE-RNN as follows, that will be described in
Sub-sections 3.1.1 and 3.1.2 next.

• Incremental membership function generation using
a modified two-phase DIC algorithm adapted from
[8]. The first phase is for the membership function
generations, while the second phase is for the
membership function merger.

• Incremental rule generation using POP and Hebbian
weights adapted from [50] with another two phases:
identifying the winning clusters in Phase 1 and
updating the rule-base in Phase 2.

3.1.1. Step 1 - Incremental MF generation

In the first step of the pseudo-online incremental
learning in FE-RNN, the DIC algorithm is a bottom-up
approach where the MF clusters are generated and grown
to incorporate new training data [8]. In the FE-RNN
learning process, a new singleton MF(centre value 𝛤𝑛𝑒𝑤,
width 𝜎𝑛𝑒𝑤) is created for the first training data. For the
singleton MF, its centre value 𝛤𝑛𝑒𝑤 = τ and its width 𝜎𝑛𝑒𝑤
= 1𝑒―10, where τ is the value of this data point.

Next, all relevant fuzzy rules are identified using the
POP learning process [50]. Every training data is fed into
the input layer and output layer simultaneously, where the
membership values of each input layer node and output
layer node are derived by their corresponding membership
functions. It then produces the firing strength of each rule
node in the inference/rule-base layer. The rule Hebbian
weights of the links connecting the rule nodes and the
output layer nodes are also updated accordingly.

The iteration is kept ongoing for all training data in the
first phase of MF generations. If the next training data can
fit in any current MF, then all relevant fuzzy rules will be
identified for it and the rule Hebbian weights will be
updated as well. However, if it does not fit in any current
MF, then another new singleton MF will be generated
accordingly with the centre value 𝛤𝑛𝑒𝑤 = value of this data
point.

The second phase of the incremental membership
function generation is the MF merger that merges two
relatively close membership functions according to the
merging condition, as shown in Eq. (1).

𝑎𝑏𝑠 𝛤𝑝
𝑙𝑒𝑓𝑡 𝛤𝑝

𝑟𝑖𝑔ℎ𝑡

2
― 𝛤𝑝+1

𝑙𝑒𝑓𝑡 𝛤𝑝+1
𝑟𝑖𝑔ℎ𝑡

2
<

𝛤1
𝑙𝑒𝑓𝑡 𝛤1

𝑟𝑖𝑔ℎ𝑡
2

𝛤𝑚

𝑙𝑒𝑓𝑡 𝛤𝑚
𝑟𝑖𝑔ℎ𝑡

2
2 ×(𝑚 1)

(1)

where the pth MF and (p+1)th MF are two neighbouring
MFs; 𝛤𝑝

𝑙𝑒𝑓𝑡 and 𝛤𝑝
𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre of

the pth MF respectively; 𝛤𝑝+1
𝑙𝑒𝑓𝑡 and 𝛤𝑝+1

𝑟𝑖𝑔ℎ𝑡 are the left centre

6

and right centre of the (p+1)th MF respectively; m is the
total number of membership functions belonging to the
feature; 𝛤𝑚

𝑙𝑒𝑓𝑡 and 𝛤𝑚
𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre

of the mth MF respectively.

The second phase starts calculating the distance
between the centres of the first MF and the last MF of the
m number of MF. For each MF, it iterates through every
neighbouring MF to check if their distance fulfils the
merging condition.

If a neighbouring MF pair fulfils the merging condition,
these two MF will be merged into one MF, that is adapted
from [8]. The parameters for the merged MF are given in
Eq. (2).

𝛤𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 = 𝛤𝑝

𝑙𝑒𝑓𝑡

𝛤𝑛𝑒𝑤
𝑟𝑖𝑔ℎ𝑡 = 𝛤𝑝+1

𝑟𝑖𝑔ℎ𝑡

𝜎𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 = 𝜎𝑝

𝑙𝑒𝑓𝑡

(2)

𝜎𝑛𝑒𝑤
𝑟𝑖𝑔ℎ𝑡 = 𝜎𝑝+1

𝑟𝑖𝑔ℎ𝑡

where 𝛤𝑛𝑒𝑤
𝑙𝑒𝑓𝑡 is the left centre of the merged MF; 𝛤𝑛𝑒𝑤

𝑟𝑖𝑔ℎ𝑡 is
right centre of the merged MF; 𝜎𝑛𝑒𝑤

𝑙𝑒𝑓𝑡 is the left width of the
merged MF; 𝜎𝑛𝑒𝑤

𝑟𝑖𝑔ℎ𝑡 is the right width of the merged MF;
𝜎𝑝

𝑙𝑒𝑓𝑡 is the left width of the pth MF; 𝜎𝑝+1
𝑟𝑖𝑔ℎ𝑡 is the right width

of the (p+1)th MF.

Algorithm 1: FE-RNN Training Dataflow

Result: Trained FE-RNN model

/* generate membership functions and rulebase */

for i in trainingData do

if i fits in current membership functions then

expand current membership function;

else

generate new membership function;

end

if winning clusters have existing rule then

update rule with firing strength;

else

create new rule;

end

for rule in ruleBase do

if rule is current firing rule then

continue

else

apply forgetting factor to rule;

end

end

end

/* performing merging of nearby clusters*/

calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓0, 𝑚𝑓𝑛);

7

for 𝑚𝑓𝑎in membershipFunctions do

for 𝑚𝑓𝑏in membershipFunctions do

calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓𝑎, 𝑚𝑓𝑏);

if 𝑚𝑓𝑎 and 𝑚𝑓𝑏 are close enough then

merge 𝑚𝑓𝑎 and 𝑚𝑓𝑏;

update rulebase;

recalculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑓0, 𝑚𝑓𝑛);

else

continue

end

end

end

/*prepare RNN training data*/

for i in trainingData do

fuzzify i using final membership functions;

end

/*perform RNN training*/

for i = 0; i < maxEpochs; i = i + 1 do

perform backpropagation using fuzzified data;

end

Algorithm 1. Pseudocode of the FE-RNN training.

Next, the rule base is updated to cater for the changes
in the MFs due to the MF merger. Those rules with the
same antecedent and consequent have their weights added
together.

The iteration is repeated for every MF, till all MF pairs
that fulfil the merging condition are merged and their rule
bases are updated. It marks the completion of the
incremental MF generation process for FE-RNN to derive
the final MF. All the training data are fuzzified using the
final MF. The fuzzified data will be used to train the RNN
networks in the FE-RNN training process.

The modified discrete incremental clustering algorithm
is adapted from [8] and highlighted in Algorithm 1. The
first for loop is to generate the MF and rule base iteratively.
For every training data, if the membership value of the
input or output layer node is less than its threshold (i.e.,
0.5), it is deemed unfit for the current clusters of MF.
Hence, a new singleton MF is created.

Next, all MFs under the same input/output layer nodes
are updated with the new width 𝜎𝑛𝑒𝑤 as shown in Eq. (3).

𝜎𝑛𝑒𝑤 =
τ 0.5×(max datap min datap)

2ln (100)

(3)

where datap are the existing data points of the same
input/output layer nodes.

On the contrary, when the membership value of the
training data is within [0.5, 1), it is deemed fit for the
current MF. The current MF will be expanded. The
expanded MF is a two-sided Gaussian function with the left
centre 𝛤′𝑙𝑒𝑓𝑡 and right centre 𝛤′𝑙𝑒𝑓𝑡, respectively shown in
Eq. (4).

𝛤′𝑙𝑒𝑓𝑡 = 𝛤𝑙𝑒𝑓𝑡 ― 𝜑 × (𝛤𝑙𝑒𝑓𝑡

― 𝜏)

8

𝛤′𝑟𝑖𝑔ℎ𝑡 = 𝛤𝑟𝑖𝑔ℎ𝑡 ― 𝜑 ×

𝜏 ― 𝛤𝑟𝑖𝑔ℎ𝑡

(4)

where 𝛤𝑙𝑒𝑓𝑡 and 𝛤𝑟𝑖𝑔ℎ𝑡 are the left centre and right centre
of the original MF before expansion, respectively; φ is the
plasticity parameter of the original MF; τ is the value of the
training data.

After the expansion of MF, the value of φ is reduced
by 1/3 to decrease the amount of the expansion shown in
Eq. (5).

𝜑 = 𝜑 × 2
3

(5)

3.1.2. Step 2 - Incremental rule generation

As the second step of the pseudo-online incremental
learning in FE-RNN, the incremental rule generation
algorithm is also a bottom-up approach using POP and
Hebbian Learning adapted from [50], that consists of two
phases as follows.

The first phase is to identify the winning clusters. At
each iteration for the data in this phase, the algorithm
identifies the winning MF clusters for each input and
output layer node based on the computations in Eq. (6).

𝑢𝑐𝑖(𝑥𝑖) = max 𝜇𝑖, 𝑗(𝑥𝑖)

𝑢𝐷(𝑦) = max 𝜇𝑙(𝑦)

(6)

where 𝑢𝑖, 𝑗(𝑥𝑖) is the membership value of the jth MF of the
ith input layer node; 𝑢𝑙(𝑦) is the membership value of the
output layer node; 𝑐𝑖 is the winning cluster for the ith input;
and D is the winning cluster for the target value.

The winning clusters for the input layer nodes are
selected and denoted with C consisting of a vector of 𝑐𝑖.

The winning cluster for the output layer node is then
selected and denoted with D.

The second phase is to update the rule base. In this
phase, the rule base will be updated according to the
identified winning clusters. Each rule is defined as an
ordered pair {C, D}, where C is the antecedent of the rule
and D is the consequent of the rule. Each rule is also tagged
with a pseudo-weight 𝑤{𝐶, 𝐷}, which represents its
importance.

The firing strength of the rule, 𝑓𝑟𝑢𝑙𝑒 is computed using
POP shown in Eq. (7).

𝑓𝑓𝑤 = min (𝜇𝐶𝑖(𝑥𝑖)),
𝜇 = 𝑢𝐷(𝑦)

𝑓𝑟𝑢𝑙𝑒 = 𝑓𝑓𝑤 × 𝜇

(7)

where 𝑓𝑓𝑤 is the forward rule firing strength as the
minimum value among all membership values in the rule
antecedent C; 𝜇 is the backward rule firing strength, as the
membership value of the corresponding output layer node.

In the iteration of each data, if there is a rule with the
same antecedent and consequent as those of the winning
clusters C and D, the pseudo-weight of the rule will be
increased to be 𝑤{𝐶, 𝐷} = 𝑤{𝐶, 𝐷} + 𝑓𝑟𝑢𝑙𝑒 according to the
Hebbian Learning Rule, where 𝑓𝑟𝑢𝑙𝑒 is the firing strength
of this data at the current iteration. Otherwise, a new rule
is created. Its weight is the firing strength of this rule, as
𝑤{𝐶,𝐷} = 𝑓𝑟𝑢𝑙𝑒.

For other rules that are not fired, the pseudo-weights are
decreased by an amount dictated by the dynamic forgetting
factor 𝜆 as: 𝑤{𝐶, 𝐷} = 𝑤{𝐶, 𝐷} × 𝜆. The computation of the 𝜆
value is shown in Eq. (8).

𝜆 = 𝑒
―

|𝑝―𝑙𝑒
5 |+1

𝑛𝑖𝑒 × 𝑛𝑟

(8)

where p is the current iteration; 𝑙𝑒 is the last iteration when
the rule e was fired; 𝑛𝑖𝑒 is the number of times the rule e
was fired; and 𝑛𝑟 is the total number of rules in the rule-
base.

9

The forgetting factor is adapted from [8]. In order to
ensure that the weightage of rules is not drastically
reduced, the value of 𝜆 is set in the range of 0.9 and 0.99,
shown in Eq. (9).

𝜆 =
0.9, 𝑖𝑓 𝜆 ≤ 0.9
𝜆, 𝑖𝑓 0.9 < 𝜆 < 0.99
0.99, 𝑖𝑓 𝜆 ≥ 0.99

(9)

Lastly, the pseudo-weights 𝑤{𝐶, 𝐷} are normalised, as
inspired by the concept of lateral inhibition.

3.2. Back-propagation through Time in FE-RNN

Besides the pseudo-online incremental learning for the
fuzzy structure of FE-RNN, the back-propagation through
time is another block in the learning module of FE-RNN,
that is used for the deep RNN structure. The parallel deep
embedded structure used in this paper is a five-layer
structure: one input layer, three fully connected 100-neuron
GRU layers, and an output layer. The input layer of the
deep structure shares the same vocabulary as the condition
layer of FE-RNN. As such, the fuzzified membership
values become the input of the deep structure. Similarly,
the output layer of the deep structure shares the same
vocabulary as the consequent layer of the FE-RNN. That is
the output of the deep structure is the input to the fuzzified
membership values of the consequent layer. The learning
starts after the pseudo-online incremental learning of the
membership functions. The model is trained with the
fuzzified membership values of the input data and target
data. It is trained with a lookback window as 25 timesteps
using the adaptive moment estimation (Adam) optimizer.
The decay rate of gradient moving average for the Adam
solver is set 0.9 (default value), with the squared gradient
decay rate chosen 0.999. The total training time is set as 30
epochs. The initial learning rate is set as 0.005, which is
reduced by half every 3 epochs. The value of the L2
regularisation factor is chosen as the default value 0.001
for the GRU training in MATLAB. Table I shows the
training parameters used for the model. The input and
target data for the GRU RNN prediction will be discussed
in the next sub-section.

Table I

PARAMETERS USED IN
DEEP STRUCTURE TRAINING

Lookback Window (timesteps) 25

Optimiser Adam

Gradient Threshold 50

Initial Learning Rate 0.005

Learning Rate Reduction Factor 2

Learning Rate Reduction Period (epochs) 3

L2 Regularisation Factor 0.0001

Adam Gradient Decay Factor 0.9

Adam Squared Gradient Decay Factor 0.999

Training Time (epochs) 30

3.3. Inference Process of FE-RNN

The inferencing process of FE-RNN includes three steps
as follows.

3.3.1. Fuzzification of Inputs

Firstly, the input is fed from the input layer of FE-RNN
to the condition layer. The equations for the input layer are
described in Eq. (10).

𝑓𝐼
𝑖 = 𝑥𝑖

𝑜𝐼
𝑖 = 𝑓𝐼

𝑖

 (10)

where 𝑓𝐼
𝑖 and 𝑜𝐼

𝑖 are the ith input and output of the input
layer; 𝑥𝑖 is the ith feature of the data input.

10

For every input in the condition layer, it goes through
fuzzification by obtaining the membership values from
each MF. In FE-RNN, each MF is a two-sided Gaussian
function. The output of the condition layer is expressed by
Eq. (11).

𝑓𝐼𝐼
𝑖, 𝑗 = 𝑜𝐼

𝑖

oII
𝑖, j =

e𝑥𝑝
𝑓𝐼𝐼

𝑖, 𝑗 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡

2

2 × 𝜎𝑖, 𝑗
𝑙𝑒𝑓𝑡

2 , 𝑓𝑜𝑟 𝑓𝐼𝐼
𝑖, 𝑗 < 𝛤𝑖, 𝑗

𝑙𝑒𝑓𝑡

 1 , 𝑓𝑜𝑟 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡 ≤ 𝑓

𝐼𝐼

𝑖, 𝑗
≤ 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡

e𝑥𝑝
𝑓𝐼𝐼

𝑖, 𝑗 𝛤𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡

2

2 × 𝜎𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡

2 , 𝑓𝑜𝑟 𝑓𝐼𝐼
𝑖, 𝑗 > 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡

 (11)

where 𝛤𝑖, 𝑗
𝑙𝑒𝑓𝑡 and 𝛤𝑖, 𝑗

𝑟𝑖𝑔ℎ𝑡 are the left and right centres of the
jth MF for the ith feature respectively; 𝜎𝑖, 𝑗

𝑙𝑒𝑓𝑡 and 𝜎𝑖, 𝑗
𝑟𝑖𝑔ℎ𝑡 are

the left and right widths of the jth MF for the ith feature
respectively; 𝑓𝐼𝐼

𝑖, 𝑗 and 𝑜𝐼𝐼
𝑖, 𝑗 are the input and output for the

jth MF for the ith feature of the condition layer respectively.

3.3.2. Prediction using Deep GRU RNN

The output from the condition layer is concatenated
together, with the first element being the first MF from the
first input feature, and the last element being the last MF
from the last input feature. Then, the input is fed into the
GRU RNN model which has been trained using the
parameters shown in Table I. The model takes the input 𝑓𝐼𝐼𝐼
and the hidden states that contain the extracted information
of the previous 24 timesteps to compute the output. The
output 𝑜𝐼𝐼𝐼 is the prediction derived from the GRU RNN
model. The input and output of the inference layer are
given in Eq. (12).

 𝑓𝐼𝐼𝐼 = 𝑐𝑜𝑛𝑐𝑎𝑡(oII
1, 1,

oII
1, 2, … oII

i, j)
 (12)

where oII
𝑖, j is the output for the jth MF of the ith feature of

condition layer; 𝑓𝐼𝐼𝐼 and 𝑜𝐼𝐼𝐼 are the input and output of the
inference layer in the GRU RNN model respectively.

3.3.3. Defuzzification of Predicted Outputs

Finally, the output of the inference layer is assigned as
the input to the consequence layer of FE-RNN. The output
of the consequence layer is derived subsequently. The
process of the consequence layer is shown in Eq. (13).

𝑓IV
j = oIII

j

oIV
 j = 𝑓IV

 j

 (13)

where oIII
j is the corresponding output for the jth MF of the

output; 𝑓IV
j and 𝑜IV

j are the input and output of the jth output
MF in the consequence layer respectively.

Then, the output of the consequence layer is passed on
next as the input of the output layer. Defuzzification occurs
in the output layer. The defuzzification is performed on the
aggregated areas based on the corresponding inferred
membership values using the centre-of-area method. The
equation for the defuzzification is described in Eq. (14).

𝑓V
j = oIV

𝑖, j

𝑜𝑣 =
𝑛𝑜𝑢𝑡

𝑗=1
𝑓V

j ∗
𝛤𝑗

𝑙𝑒𝑓𝑡 𝛤𝑗
𝑟𝑖𝑔ℎ𝑡

2
∗

(𝜎𝑗
𝑙𝑒𝑓𝑡 𝜎𝑗

𝑟𝑖𝑔ℎ𝑡)

2

𝑛𝑜𝑢𝑡

𝑗=1
𝑓V

j ∗
(𝜎𝑗

𝑙𝑒𝑓𝑡 𝜎𝑗
𝑟𝑖𝑔ℎ𝑡)

2

 (14)

where 𝑓V
j is the membership value of the jth output MF; 𝑜𝑣

is the final crisp value of the prediction; 𝛤𝑗
𝑙𝑒𝑓𝑡 and 𝛤𝑗

𝑟𝑖𝑔ℎ𝑡
are the left and right centres of the jth output MF
respectively; 𝜎𝑗

𝑙𝑒𝑓𝑡 and 𝜎𝑗
𝑟𝑖𝑔ℎ𝑡 are the left and right widths

of the jth output MF respectively.

As the output MF is a two-sided Gaussian function, the
centre and widths are approximated by obtaining the mean
of both left and right values for each centre and width.

11

4. BENCHMARK EXPERIMENTS

A series of experiments are conducted to evaluate the
performance of the proposed deep FE-RNN architecture.
The experiments include forecasting data from the chaotic
Mackey-Glass time series dataset and daily financial ETF
prices. The proposed FE-RNN is an architecture that deals
with regression problems. Hence, the performance metrics
of RMSE and Pearson’s R are used for the quantitative
evaluations in the experiments.

RMSE is an evaluation metric used to measure the
differences between values predicted by a model and the
actual values observed, shown in Eq. (15). The lower the
RMSE, the higher the accuracy of the prediction model.

𝑅𝑀𝑆𝐸 =

1
𝑛

𝑛

𝑖=1
(𝑜𝑖 ― 𝑦𝑖)2

 (15)

where n is the length of the sequence to be predicted; 𝑜𝑖 is
the predicted output at the ith timestep; and 𝑦𝑖 is the actual
observed value at the ith timestep.

The Pearson’s R is another evaluation metric used in
regression analysis to measure the strength of the
relationship between the relative movements of two
variables. The value of the Pearson’s R ranges between -1
to 1. Its score of 1 signifies that the variable is perfectly and
positively correlated to the other variable, meaning that an
upward movement in the first variable results in an
upwards movement in the second variable. Conversely, A
Pearson’s R score of -1 signifies that the data is perfectly
and negatively correlated to the other data, meaning that an
upward movement in the first data is matched by a
downwards movement in the second data. The Pearson’s R
can be calculated in Eq. (16).

𝑅 =
𝑛

𝑖=1
(𝑜𝑖 𝑜)2 (𝑦𝑖 𝑦)2

(
𝑛

𝑖=1
(𝑜𝑖 𝑜)2) (

𝑛

𝑖=1
(𝑦𝑖 𝑦)2)

(16)

where n is the length of the sequence to be predicted; 𝑜𝑖 is
the predicted output at the ith timestep; 𝑜 is the mean of the
predicted outputs; 𝑦𝑖 is the actual observed value at the ith
timestep; and 𝑦 is the mean of the actual observed values.

For the experiments on the chaotic Mackey-Glass time
series dataset, FE-RNN is compared against other
Mamdani and TSK fuzzy systems, and a deep 3-layered
100-neuron GRU RNN.

4.1. Chaotic Mackey-Glass Time Series

For the experiment on the chaotic Mackey-Glass time
series, the hypothesis is that due to the good online learning
ability and interpretability of the proposed FE-RNN, it
should be able to achieve stable and consistent prediction
accuracy under different look-ahead time windows.

12

Table II

RESULTS OF MACKEY-GLASS EXPERIMENTS

t+1 t+2 t+4

Architectu
re

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o.
of
R
ul
es

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o.
of
R
ul
es

R
M
SE

(×
10
-2)

R

(×
10
-2)

N
o.
o
f
R
ul
e
s

Proposed
FE-RNN

5.
52

99
.5
0

4
2
3

6.
05

99
.3
8

4
3
9

6.
54

99
.1
0

4
6
0

Mamdani Systems

PIE-
RSPOP
[14]

2.
29

99
.4
9

5
3
3

6.
68

96
.2
5

2
2
4

9.
08

92
.6
1

2
4
1

ieRSPOP
[8]

2.
37

99
.4
5

7
0
1

3.
59

98
.7
5

7
0
1

6.
23

96
.2
4

7
0
1

EFuNN
[19]

1.
10

98
.7
0

1
3

2.
95

98
.4
0

1
8

4.
78

97
.5
0

3
2

SAFIN
[39]

6.
70

99
.4
0

8
5

23
.0
0

97
.9
0

8
5

67
.0
0

93
.2
0

8
5

TSK Systems

ANFIS
[16]

0.
05

10
0.
00

1
3

0.
16

10
0.
00

1
5

58
.1
0

99
.9
0

1
7

DENFIS
[20]

0.
03

10
0.
00

1
3

0.
13

10
0.
00

1
3

83
.1
0

99
.9
0

1
3

Deep Structure

Vanilla
GRU
RNN

0.
03

99
.2
0

- 4.
52

97
.9
9

- 7.
27

94
.7
2

-

13

To validate the experiment hypothesis, the chaotic
Mackey-Glass time series is generated using the Mackey-
Glass equation [2], which is a nonlinear time-delay
differential equation, shown in Eq. (17):

𝑑𝑥𝑡

𝑑𝑡
= 𝛽

𝑥𝑡―𝜏

1 𝑥𝑛
𝑡―𝜏

― 𝛾𝑥𝑡, 𝛾, 𝛽,
𝑛 > 0

(17)

where the parameters 𝛾, 𝛽, 𝑛 are constant values; and 𝑥𝑡―𝜏
is the value of the variable 𝑥𝑡 at time (t − τ); 𝜏 is the delayed
timesteps from the time t. In the experiment of this paper,
we use 𝛾 = 0.1, 𝛽 = 0.2, 𝑛 = 10, 𝜏 = 17 as the constant
values. Depending on the value settings of these
parameters, the Mackey-Glass equation illustrates the
appearance in a range of complex chaotic dynamics with
periodic oscillations [2].

The chaotic Mackey-Glass time series can be
formulated using {𝑥𝑡―𝑚+1,𝑥𝑡―𝑚+2,𝑥𝑡―𝑚+3,…,𝑥𝑡} as the
inputs to predict the future value 𝑥𝑡+𝑘, where m is the look-
back time window; k is the look-ahead time window; and t
is the index of the time series. We set the following
parameters: m = 6, 𝑥0= 1.2, and k = 1, 2, 4 for the three
different experiments. The three different experiments
benchmark the FE-RNN forecasting ability for look-ahead
time windows of t+1, t+2, and t+4, respectively.

For each experiment, a total number of 1000 data points
is used. The first 500 data points are used as the training
set, and the remaining 500 data points are the testing set.
The 1000 data points are plotted alongside their
corresponding predicted values by FE-RNN; But only the
data points of the testing set are used in the computation of
the values of RMSE and Pearson’s R. The training
parameters for FE-RNN can be found in Table I.

The Mackey-Glass experiment results of FE-RNN and
other benchmarking methods adapted from [14] are shown
in Table II. The experiments are conducted 30 times using
different random initial weights, with the mean values
utilized in the comparisons. It is seen that the TSK fuzzy
systems outperform the Mamdani fuzzy systems. TSK
systems have a lower RMSE score and a higher Pearson’s
R score, except for the t+4 experiment, where the TSK
systems have much higher RMSE. It shows that the two
TSK systems, ANFIS and DENFIS, are good at correlating
and having predicted values following the movements of
the actual values. But the accuracy of the predicted values
gets notable drops with a larger look-ahead time at t+4.
Furthermore, TSK systems are not as interpretable as

Mamdani systems as they do not make use of the complete
fuzzy to fuzzy if-then rule structure. When compared
against other Mamdani systems, FE-RNN has a higher
Pearson’s R score consistently in all experiments, that
indicates its capability to perform consistently in the
prediction tasks for future values. EFuNN [19] has the
overall lowest RMSE score and generates the fewest rules.
Compared to the vanilla GRU RNN deep structure, FE-
RNN manages to perform better on the consistency of
Pearson’s R score while being interpretable. At t+4
forecasting, FE-RNN obtains higher R values than those of
four Mamdani systems and vanilla GRU RNN by up to
7.0%. The number of rules of FE-RNN shown in Table II
are derived from the learning mechanism to cover the
regions of data distribution. Only relevant rules will be
fired at a time, that are activated in the right region of data
distributions for the data driven applications. FE-RNN has
similar Pearson’s R as TSK fuzzy systems, while having
similar number of fuzzy rules to Mamdani systems, overall
achieving a good level of balance on interpretability for
deep networks with little reduction in performance.

Fig. 3. Results of FE-RNN for t+1 Mackey Glass Benchmark.

14

Fig. 4. FE-RNN Results for t+2 Mackey Glass Benchmark.

In the t+1 experiment, the GRU RNN model obtains the
accuracy close to the ANFIS [16] and DENFIS [20] under
the category of TSK fuzzy systems. However, the GRU
RNN model suffers in larger performance loss when the
look-ahead time is increased as compared to the FE-RNN,
seen in the lower R score in the t+2 and t+4 experiments.
The overall performance of FE-RNN is more consistent
when the look-ahead time is increased.

Although the FE-RNN architecture does not perform as
good as other fuzzy systems benchmarked on the RMSE
score, the FE-RNN performs well in terms of the Pearson’s
R score, meaning FE-RNN excels in predicting trends as
compared to other fuzzy systems. This is likely caused by
the ability of the deep RNN inference system to capture
time-dependencies in data. The FE-RNN also manages to
perform similarly, if not better than the vanilla GRU RNN
model, while increasing the interpretability of the structure
compared to the vanilla GRU RNN.

The predicted results for the Mackey-Glass time series
by the developed FE-RNN can be seen in Fig. 3 - Fig. 5 for
t+1, t+2 and t+4 predictions, respectively. The red plots are
the mean prediction values after the 30 times of experiment
with random initial weights. The blue plots are the mean
values added with the standard deviations. The orange
plots are the mean values minus the standard deviations.
The purple plots are for the target data. It is observed from
Figs. 3 - 5 that the FE-RNN is able to achieve good
prediction accuracy close to the actual data.

Fig. 5. FE-RNN Results for t+4 Mackey Glass Benchmark.

 Table III

 STOCK PRICE
FORECASTING EXPERIMENT

Stock Training data size Testing data size

S&P 500 1,467 2,507

DJIA 1,467 2,507

HSI 1,443 2,456

4.2. Daily Stock Price Forecasting

In the next experiment, the daily price stock forecasting
is used to illustrate the ability of FE-RNN to model time
series data. For this experiment, we benchmark FE-RNN
for predicting multiple high-volume indexes in the stock
market. The experiment evaluates the look-ahead periods
from 1 day to 7 days. The indexes that we are attempting
to forecast in this benchmark experiment include the
Standard & Poor’s S&P 500 index (^GSPC), DJIA index
(^DJI), and the Hang Seng Index (^HSI). The daily pricing
data is sourced from Yahoo! Finance and split into training
and testing datasets. The training dataset is the data from
24th March 2005 – 19th January 2011 for daily stock closing
prices. The testing dataset is the data from 20th January
2011 – 5th January 2021 for daily stock closing prices, as
shown in Table III. The training parameters are shown in

15

Table I.

4.2.1. Data Pre-processing

For the data pre-processing of this experiment, the input
and output used for FE-RNN are formulated in Eq. (18).

𝑥1 = 𝑉

𝑥2 = 𝑝𝑡 =
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡

𝑥3 = 𝑝𝑡 = 𝑝𝑡

― 𝑝𝑡―1 =
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡
―

𝑝𝑡―1 𝑝𝑟𝑒𝑓, 𝑡―1

𝑝𝑟𝑒𝑓, 𝑡―1

 (18)

𝑥4 = 𝑝𝑡 = 𝑝𝑡

― 𝑝𝑡―1 =
𝑝𝑡 𝑝𝑟𝑒𝑓, 𝑡

𝑝𝑟𝑒𝑓, 𝑡
+

𝑝𝑡―2 𝑝𝑟𝑒𝑓, 𝑡―2

𝑝𝑟𝑒𝑓, 𝑡―2

𝑦 = 𝑃𝑡+1 =
𝑝𝑡+1 𝑝𝑟𝑒𝑓, 𝑡+1

𝑝𝑟𝑒𝑓, 𝑡+1

where V is the volume of units of the stock bought and sold;
 𝑝𝑡 is the normalised price of the stock at time t; 𝑝𝑡 is the
velocity of the price or the rate of change of 𝑝𝑡 at time t; 𝑝𝑡
is the momentum of the price, or the rate of change of 𝑝𝑡 at
time t; 𝑝𝑡 is the closing price of the stock; and 𝑝𝑟𝑒𝑓, 𝑡 is the
reference price of the stock at time t.

Fig. 6. Reference Pricing Method used in Stock Prediction.

Generating the input and output values requires a
reference price point, as shown in Fig. 6. The reference
price for time t is a closing price of time somewhere
between t-21 to t-8, depending on the sequencing of the
data. Having a reference point for the prediction allows FE-
RNN to perform predictions based on the delta changes of

values, instead of the absolute values. After the prediction
of the value is done, the reference price is then used again
to derive the actual crisp prediction value. Finally, the
predictions are benchmarked using the Pearson’s R score
and RMSE of a 5-day moving average between the
prediction and actual data values.

4.2.2. Multi-day Look-ahead Forecasting Analysis

We generate one model for each look-ahead forecast
target. In total, 21 models are generated, with seven models
for each of the three indexes. The results of the experiment
are tabulated in Table IV.

As expected, the prediction of the FE-RNN is the best
when predicting t+1 values for all three indexes observed
in Table IV. The Pearson’s R score goes lower as the look-
ahead period increases. Similarly, the RMSE score also
increases as the look-ahead period increases. Interestingly,
the correlation during 1 day to 7 days look-ahead
predictions for the US market manages to be above 99%,
while the Hong Kong market drops to 96.4% when
attempting to predict prices 7 days into the future.
Although the correlation scores are good, the predicted
value still lags behind the actual value by 2-5 days, as can
be seen in the t+7 lagged prediction results of FE-RNN for
S&P 500 index as shown in Fig. 7.

Deng et al. [9] present their neutral network model
named Multivariate Empirical Mode Decomposition
LSTM (MEMD-LSTM) that use three market indexes in
the experiments: S&P 500, HSI, and Shanghai Stock
Exchange (SSE), using the metrics of mean absolute
percentage error (MAPE), RMSE, and directional
symmetry (DS). The experiment results of other three
neutral network models are also introduced, including
backpropagation neural networks (BPNN), LSTM, and
Empirical Mode Decomposition LSTM (EMD-LSTM) to
predict values on t+1, t+3, t+5, t+10, etc. [9]. Their
experiment datasets and timeframes are different from
those of FE-RNN. The experiment datasets for S&P 500 in
[9] are: 1845 training data from 4th January 2010 to 2nd May
2017; 462 validation data from 3rd May 2017 to 5th March
2019 to tune the network parameters; and 462 testing data
from 6th March 2019 to 31st December 2020. Their
experiment datasets for HSI are: 1504 training data from
4th January 2010 to 17th February 2016; 376 validation data
from 18th February 2016 to 28th August 2017; and 376
testing data from 29th August 2017 to 8th March 2019.

In this paper, the four neural network models, BPNN,
LSTM, EMD-LSTM, and MEMD-LSTM are employed to
benchmark with FE-RNN and illustrate the predictions
with multiple look-ahead time. It is observed in Table IV
that FE-RNN outperforms these four neural network
models in terms of RMSE when predicting the t+1 values.
FE-RNN obtains lower RMSE values by 21.6% - 74.6%
for S&P 500 index, and 8.1% - 60.0% for HSI index. The
t+2 prediction value on S&P 500 index by FE-RNN is even

16

better than the t+1 predictions of the other four models.
While MEMD-LSTM model has lower RMSE values in
t+3 and t+5 predictions, there is no Pearson’s R value
reported in [9]. It is not so straightforward to compare the
correlations in the predicted values with FE-RNN in the
multiple look-ahead time windows. These four benchmark
neural network models, BPNN, LSTM, EMD-LSTM, and
MEMD-LSTM focus more on accuracy, without analysis
on the interpretability of their networks. It is different from
FE-RNN, that puts architecture design considerations on
both accuracy and interpretability.

 Table IV

 RESULTS OF FE-RNN IN
MULTI-DAY LOOK-AHEAD FORECASTING

Model S&P 500 DJIA HSI

Forec
ast

Target

RMS
E

R

(×1
0-2)

RMS
E

R

(×1
0-2)

RMS
E

R

(×1
0-2)

 Our
FE-

RNN

t+1 28.22
1

99.9
2

293.6
95

99.8
5

298.0
61

99.5
6

t+2 34.90
0

99.8
5

399.9
06

99.7
2

504.8
97

98.7
3

t+3 46.87
5

99.7
3

529.2
95

99.5
1

609.8
49

98.3
3

t+4 52.17
0

99.6
7

578.5
94

99.4
2

680.1
35

97.8
5

t+5 58.75
4

99.5
8

612.1
25

99.3
4

772.4
44

97.2
6

t+6 63.32
3

99.5
0

637.9
20

99.2
8

816.1
79

96.8
8

t+7 66.56
9

99.4
6

683.6
41

99.1
8

850.5
54

96.3
8

BPNN
[9]

t+1 111.1
62

- - - 620.9
24

-

t+3 153.5
25

- - - 636.5
40

-

t+5 165.5
74

- - - 650.7
75

-

Single
LSTM

[9]

t+1 67.72
4

- - - 425.8
22

-

t+3 69.95
3

- - - 436.9
77

-

t+5 74.68
4

- - - 442.8
16

-

EMD-
LSTM

[9]

t+1 56.45
3

- - - 351.4
24

-

t+3 58.10
6

- - - 365.7
85

-

t+5 60.85
9

- - - 379.2
78

-

MEM
D-

LSTM
[9]

t+1 36.01
9

- - - 324.2
92

-

t+3 38.56
8

- - - 331.8
33

-

t+5 39.97
5

- - - 337.8
92

-

17

Fig. 7. Lagged Prediction on t+7 of S&P 500 index.

Fig. 8. Semantic Values of Rules Fired in FE-RNN for SPY
prices.

Observed results of this experiment, FE-RNN manages
to predict the daily prices with a high degree of correlation
(> 96%), even when attempting to predict multiple
timesteps ahead. FE-RNN can infer price movements and
predict future pricing directions in the stock market well.

4.3. Interpretability of FE-RNN Inference Process

We attempted to interpret the inference process of FE-
RNN, using an example of the daily stock prices of an ETF
trust, SPDR S&P 500 ETF Trust (SPY). The rules fired
with the highest firing strength are recorded and analysed.
The main rules fired in the t+1 prediction for the SPY from
30/10/2019 to 9/6/2020 are shown in Fig. 8.
Understandably, it is observed that the input price is largely
correlated with the predicted price. We can also observe

the impact of the other input features. For example, when
the volume of the ETF is low, we can infer that the price
change for the next day will be close to 0.

Fig. 9. Semantic Values of Rules Fired in FE-RNN on
20/03/2020.

We can use the fired rules to explain the predicted price
for the SPY ETF on 20/03/2020 shown in Fig. 9. It is
observed that FE-RNN predicts the peak of the pricing for
the SPY. The rule can be interpreted as: “IF the volume is
very high AND the price is very low AND the price change
is very high AND the price momentum is very high, THEN
the predicted price is very high”. Intuitively, this also
means that we can interpret the deep RNN network
signaling that there is a strong bullish trend, so the price
will increase the next day. Hence, by observing the fired
rules with the fuzzified input and output values, we can
interpret the inference process of FE-RNN in the form of
human explainable IF-THEN rules. The same
interpretability principles are applicable to all the scenarios
in the inference process explained using the fired rules. As
there is little consensus at the moment according to the
literature review [30], in this paper, we use the definition
of interpretability as the qualitative understanding of the
relationship between input and output features in the form
of IF-THEN rules according to the membership functions
derived. Our analyses illustrate the interpretability in
qualitative terms achieved by FE-RNN, that increases the
interpretability and tackles the black box nature of RNN,
where it may not be so straightforward to achieving with
normal RNN architecture. But the drawback of our current
analysis on the interpretability of FE-RNN is that the
quantitative measurements are missing. It is one of the
limitations of this work to be addressed in our future work.

 Table V

 ASSETS DATA USED IN GA-FMACDH TRADING

18

Stock Training
Dates

Training
Data Size

Testing
Dates

Testing
Data
Size

SPY 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

VGK 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

VWO 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

AGG 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

XAU 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

IYE 24/03/2005
–
19/01/2011

1,462 20/01/2011
–
05/01/2021

2,507

5. TREND TRADING USING GA-FMACDH

In order to further evaluate the performance of the
developed FE-RNN, we incorporate FE-RNN in a financial
stock trading system. The prices of the assets in the
portfolio are predicted by FE-RNN within a Moving
Average Convergence-Divergence Histogram (MACDH)
trading strategy adapted from [38], that employs GA to
optimise the parameters of the trading strategy. The trading
strategy consisting of FE-RNN is denoted as the GA-
fMACDH strategy. We use GA-fMACDH to perform
trading on six financial assets, namely:

• SPY, tracking the investment performance of
the S&P 500 Index since January 1993,

• Vanguard European Stock Index Fund ETF
(VGK), tracking the stock investment
performance to companies in the developed
economies of Europe since August 2002,

• Vanguard Emerging Markets Stock Index
Fund ETF (VWO) tracking the performance of
an index composed of companies in emerging

market countries since June 2006,
• iShares Core US Aggregate Bond ETF (AGG)

tracking the index performance to measure
investment returns of the total U.S.
investment-grade bond market since
September 2003,

• Philadelphia Gold and Silver Index (XAU)
composing of 30 companies involved in the
gold or silver mining industry since January
1979,

• iShares US Energy ETF (IYE) tracking the
investment performance of component
companies in the energy segment including oil
companies, services, and pipelines, etc. since
June 2000.

These six financial assets cover and track the
performances of different market segments. The data size
and time frames for these six financial assets for
experiments are shown in Table V.

In the experiments, we assume that there is no slippage;
this means that we can fill the order to purchase the assets
at the closing price of the next day. The returns of the GA-
fMACDH are compared against the buy and hold strategy
and GA-MACDH strategy without using forecasted prices.
The maximum drawdown across the testing period is also
used to evaluate the performance of the trading strategy.
The maximum drawdown is defined as the maximum
percentage drop in the total returns from the start to the end
of a period. It can be used to represent the risk profile of
the portfolio, where a large maximum drawdown may
mean the current strategy not be suitable for risk-averse
investors.

5.1. MACD and MACDH

The Moving Average Convergence-Divergence
(MACD) is a technical indicator used by many technical
analysts for observing the market trends. The MACD is one
of the simple and reliable technical indicators available in
practice. However, the MACD is a lagging indicator.
Hence, the MACDH has been developed to reduce the time
lag of the MACD. The MACDH describes the rate of
change of the MACD by subtracting the exponential
moving average (EMA) from the MACD, as shown in Eq.
(19):

𝑀𝐴𝐶𝐷 = 𝑀𝐴𝐶𝐷
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
= 𝐸𝑀𝐴𝑓𝑎𝑠𝑡 ―𝐸𝑀𝐴𝑠𝑙𝑜𝑤

𝑀𝐴𝐶𝐷𝐻 = 𝑀𝐴𝐶𝐷 ― 𝐸𝑀
𝐴𝑠𝑖𝑔𝑛𝑎𝑙(𝑀𝐴𝐶𝐷)

(19)

19

where MACD(fast, slow, signal) is the MACD value
calculated using fast and slow as the window size for 𝐸𝑀
𝐴𝑓𝑎𝑠𝑡 and 𝐸𝑀𝐴𝑠𝑙𝑜𝑤 at time t respectively; 𝐸𝑀𝐴𝑠𝑖𝑔𝑛𝑎𝑙
(𝑀𝐴𝐶𝐷) is the EMA of MACD values using a window of
size signal; and MACDH at time t is the EMA of window
size signal subtracted from the MACD value.

The MACDH now represents a second-ordered
oscillator that measures the rate of change of momentum.
As such, when the MACDH crosses over the zero axis,
assuming the absence of time lag, it represents that the
momentum of the price action has peaked and it is the start
of a reversal.

5.2. Forecast-assisted MACD and MACDH

As the MACDH indicator provides a good signal for
trend reversals, we incorporate the forecasted prices from
FE-RNN to reduce the time lag of the indicator. The
fMACDH indicator uses the forecast-assisted EMA
(fEMA). The fEMA uses exponentially weighted historical
prices and reversed exponentially weighted forecasted
prices to reduce the time lag, as shown in Fig. 10. Half of
the prices come from the historical prices from t-13; while
the other half ending at t+7 is sourced from the forecasted
prices, with a maximum forecast period of 7 days look-
ahead using the proposed FE-RNN. Take note that the
value of weights in the example shown in Fig. 10 serves as
only an illustration to better understand the distribution
between forecasted and historical prices without
quantitative values.

The forecasted prices are put through further pre-
processing before being used in the fEMA. The forecasted
prices are extracted and converted into delta change values,
which are then applied to the last seen closing price. The
pre-processing to the forecasted price can be formulated in
Eq. (20).

𝑦(𝑡 + 𝑘) = 𝑦(𝑡)
+(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡 + 𝑘) ―

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡 + 𝑘 ― 1))

 (20)

where 𝑦(𝑡 + 𝑘) is the processed forecasted price at time
t+k; 𝑦(𝑡) is the actual historical price at time t; and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡
(𝑡 + 𝑘) is the latest forecasted price for time t+k.

The equations for computing the fEMA, fMACD and
fMACDH are described in Eq. (21).

𝑓𝐸𝑀𝐴(𝑤𝑖𝑛𝑑𝑜𝑤
) =
𝐸𝑀𝐴𝑑ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙(𝑦) 𝐸𝑀𝐴𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑦))

2

𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =

max 𝑤𝑖𝑛𝑑𝑜𝑤
2

,7

𝑑ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 =
𝑤𝑖𝑛𝑑𝑜𝑤 ― 𝑑𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

(21)

𝑓𝑀𝐴𝐶𝐷
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤) = 𝑓𝐸𝑀𝐴
(𝑓𝑎𝑠𝑡) ― 𝑓𝐸𝑀𝐴(𝑠𝑙𝑜𝑤)

𝑓𝑀𝐴𝐶𝐷𝐻(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
= 𝑓𝑀𝐴𝐶𝐷(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤) ― 𝐸𝑀𝐴𝑠𝑖𝑔𝑛𝑎𝑙(𝑓𝑀𝐴𝐶𝐷)

where fMACD(fast, slow, signal) is the forecast-assisted
MACD value calculated using fast and slow as the window
size for fEMAfast and fEMAslow at time t respectively; dforecast
is the number of forecasted daily price used in fEMA;
dhistorical is the number of historical daily price in fEMA;
and fMACDH is the forecast-assisted MACDH at time t
that is the EMA of window size signal subtracted from the
fMACD value.

Fig. 10. Distribution of weights in a 21-day fEMA.

5.3. Accounting for Whipsaw Effects

As the vanilla MACDH trading strategy is solely
dependent on the MACDH value, it is susceptible to the
whipsaw effects. This is where the MACDH frequently
fluctuates at the zero axis, causing the system to buy and
sell stocks very frequently without a significant amount of
return. This makes the trading system less profitable as a
larger portion of the profits would be lost to the
commission leaks when there are unnecessarily frequent

20

changes in the trading position. To account for this, we
introduce a price percentage oscillator fMACDH%, that
represents the price movement relative to the price in terms
of percentage, shown in Eq. (22).

𝑓𝑀𝐴𝐶𝐷𝐻%
(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙) =

| 𝑓𝑀𝐴𝐶𝐷𝐻(𝑓𝑎𝑠𝑡, 𝑠𝑙𝑜𝑤, 𝑠𝑖𝑔𝑛𝑎𝑙)
0.5∗(𝑓𝐸𝑀𝐴(𝑓𝑎𝑠𝑡) 𝑓𝐸𝑀𝐴(𝑠𝑙𝑜𝑤))|

(22)

As such, the trading strategy is modified such that the
trade signal is only valid when fMACDH% is larger than the
oscillation threshold, 𝑎. The modified trading strategy is
formulated in Eq. (23).

𝑃(𝑡) =
1, 𝑖𝑓 𝑓𝑀𝐴𝐶𝐷𝐻% > 𝑎 ∩ 𝑓𝑀𝐴𝐶𝐷𝐻 > 0
0, 𝑖𝑓 𝑓𝑀𝐴𝐶𝐷𝐻% > 𝑎 ∩ 𝑓𝑀𝐴𝐶𝐷𝐻 ≤ 0
𝑃(𝑡 ― 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (23)

where 𝑃(𝑡) is the position held at time t; 𝑃(𝑡) = 1 is a buy
decision; 𝑃(𝑡) = 0 is a sell decision; and 𝑃(𝑡) = 𝑃(𝑡 ― 1)
means a hold decision without buying and selling stocks.
The modified trading strategy only allows the buying and
selling of financial assets and does not consider a short
position as an option in this experiment.

 Table VI

 PARAMETERS OBTAINED BY
GA OPTIMISATION

Assets GA-fMACDH GA-MACDH

𝑓𝑎𝑠𝑡 𝑠𝑙𝑜𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 𝛼 𝑓𝑎𝑠𝑡 𝑠𝑙𝑜𝑤 𝑠𝑖𝑔𝑛𝑎𝑙 𝛼

SPY 15 19 7 0.0018 11 49 9 0.0119

VGK 16 37 9 0.0075 22 32 17 0.0014

VWO 12 24 7 0.0040 26 43 17 0.0033

AGG 13 20 7 0.0010 9 29 7 0.0020

XAU 12 35 6 0.0062 15 27 5 0.0020

IYE 24 46 17 0.0088 7 42 4 0.0111

5.4. Trading Parameters Optimisation using GA

GA is used to optimise the parameters long, short,
signal, and 𝑎 in the modified trading strategy. In the GA
fitness function, the fitness score (the value that we are
attempting to maximise) is the final portfolio value. The
final portfolio value includes the deduction of 0.08% for
each transaction to account for the transaction commission
fees. The algorithm stops when there is no improvement in
the best performing population for 50 generations. The first
500 days of the dataset are used as the training data for the
GA to benchmark the score of the population. The
parameters are derived using GA shown in Table VI. It can
be observed that the derived parameters generally follow
the trend of signal < fast < slow.

5.5. Results & Analysis

The results on the investment returns and max
drawdown of the modified trading strategy are shown in
Table VII. The results are benchmarked with GA-
MACDH, as well as the buy and hold strategy. The
improvements on the investment returns made by GA-
fMACDH over GA-MACDH, and GA-fMACDH over buy
and hold strategy are shown in Table VIII. It is observed
that GA-fMACDH outperforms GA-MACDH in all
financial assets by 1.30% to 229.47% higher returns in the
experiment. The FE-RNN based GA-fMACDH also
outperforms the buy and hold strategy in five financial
assets: SPY, VGK, VGO, XAU, and IYE by 48.54% to
137.90% higher returns; while the buy and hold strategy
outperforms slightly the GA-fMACDH in the AGG ETF
by 2.92% in return. However, the GA-fMACDH has a
lower maximum drawdown on average when compared
against the buy and hold strategy with -3.30% to -34.90%.
This means that the GA-fMACDH is more defensive and
exits a position when the price drops a lot. The FE-RNN
based GA-fMACDH strategy can perform well when the
underlying equity is volatile, as it produces more
opportunity for the trading system.

Table VII

21

EXPERIMENT RESULTS COMPARISONS ON RETURNS AND MAX
DRAWDOWN

Asse
t

Return Max Drawdown

GA-
fMACD
H

(%)

GA-
MACDH
(%)

Buy
and
Hold
(%)

GA-
fMACD
H (%)

GA-
MACD
H (%)

Buy
and
Hol
d
(%)

SPY 238.46 8.99 189.9
2

23.61 18.08 34.1
0

VG
K

153.02 15.55 23.71 17.60 32.59 41.5
7

VW
O

146.05 72.35 8.15 28.66 24.94 43.7

AG
G

9.09 7.79 12.01 6.28 6.99 9.58

XA
U

118.17 60.68 23.82 48.14 56.25 83.0
4

IYE 8.70 -26.48 -
47.18

58.70 55.43 78.2
1

Table VIII

IMPROVEMENTS ON INVESTMENT RETURNS

Asset FE-RNN based trading TBH trading
strategy [45]

GA-fMACDH
over GA-MACDH
(%)

GA-fMACDH
over Buy and Hold
(%)

TBH over
Buy and Hold
(%)

SPY 229.47 48.54 7.59

VGK 137.47 129.31 49.13

VWO 73.70 137.90 31.46

AGG 1.30 -2.92 45.41

XAU 57.49 94.35 -

IYE 35.18 55.88 -

For the illustration purposes of the trading outcomes, the
improvements on the investment returns made by FE-
RNN-based GA-fMACDH are compared to those of the
TBH trading strategy using SeroFAM neuro-fuzzy network
with GA-optimised fMACDH indicator reported in [45] on
the same four financial assets as shown in Table VIII. It is
observed that FE-RNN based GA-fMACDH strategy
makes much larger returns over its counterparts than those
of the TBH over the Buy and hold strategy. But there are
some differences on the timeframes and transaction
commission fees of TBH strategy, that are 1st March 2017
– 31st March 2021 with 0.1% commission per transaction
[45]. While the timeframe of the experiments in this paper
is from 24th March 2005 to 5th Jan 2021 as shown in Table
V; and the transaction commission fees used in this paper
is 0.08%. As such, strictly speaking, it is not a fair
companion. It only helps us sense to certain extends and
demonstrate qualitatively how well the FE-RNN based
GA-fMACDH can improve the trading returns.

6. CONCLUSION

 In this paper, the FE-RNN is proposed by embedding
the features of a fuzzy system together with a deep RNN.
The dual-view of this embedding allows the fuzzy
association in FE-RNN to provide the better interpretation
of RNN encoding and decoding. It employs the deep RNN
to learn and compute the data driven implication for the
fuzzy association from the input to the output fuzzy spaces.
Such an approach permits a more accurate realisation of
entailment in the fuzzy inference process.

Several experiments are conducted to evaluate the
functions and performance of FE-RNN. In the first
experiment for the prediction tasks of chaotic Mackey-
Glass time series, FE-RNN is compared with seven
benchmark models. FE-RNN obtains higher Pearson’s R
scores up to 7% consistently in all experiments than those
of the Mamdani systems and Vanilla GRU RNN. FE-RNN
achieves more consistent RMSE accuracy when predicting
multiple days of look-ahead time windows, compared to
the notable drops on RMSE of the TSK systems. It shows

22

that FE-RNN gets more balanced performance and
interpretability consistently.

In the second experiment for multiple days look-ahead
forecasting of FE-RNN, three market indexes, S&P 500,
DJI, and HSI are utilized for t+1 to t+7 days predictions.
FE-RNN obtains the best results when predicting t+1
values. It achieves high R values consistently at different
look-ahead days forecasting. FE-RNN also outperforms
four benchmarking neutral network models in RMSE for
t+1 predictions, with lower RMSE values by 21.6% to
74.6% for S&P 500 index, and 8.1% to 60.0% for HSI
index.

In the last experiment, FE-RNN is used as a price
predictor in the stock trading system using the GA-
fMACDH trading strategy. The design of the stock trading
system incorporates FE-RNN, GA optimization
algorithms, GA-fMACDH optimized by GA, and
countermeasure of the whipsaw effects in trading. With
transaction commission fees included, it is employed to
trade six financial assets: SPY, VGK, VGO, AGG, XAU,
and IYE. The experiment results of FE-RNN based GA-
fMACDH trading system are compared to GA-MACDH,
as well as buy and hold strategies. It is observed that the
GA-fMACDH trading system achieves 1.30% to 229.47%
higher returns than those of GA-MACDH trading model
for all financial assets. It also obtains 48.54% to 137.90%
higher returns than those of the buy and hold strategy for
five assets, except for AGG. The GA-fMACDH trading
system has lower maximum drawdown compared to the
buy and hold strategy for all six assets. The improvements
on the returns of FE-RNN based GA-fMACDH trading
system are observed higher than those of the TBH trading
strategy using SeroFAM neuro-fuzzy network [45].

The fuzzy rules embedded within the FE-RNN system
provide a method of interpreting the underlying deep RNN,
since both embedded structures share the same vocabulary
in the input and output fuzzy spaces. It allows the
interpretation of the operations in the deep network
structure during the encoding and decoding phases with the
help of the embedded fuzzy structure. Hence, providing the
much-needed transparency for the deep learning structure.
The duality of the embedding also allows the deep structure
to learn and recall the empirical data driven implication for
the embedded fuzzy system. The FE-RNN assisted GA-
fMACDH trading system illustrates promising results and
would be a useful tool for analysts and investors.

Future works will be done for the deep structure of FE-
RNN to improve the prediction capability of the system,
such as using a convolutional neural network or performing
pruning on the deep RNN. Other latest works in literature
are reported on deep neural networks with improved
interpretability. As a part of the future works, we will
explore to learn and ensemble such deep neural networks
into the architecture. Other research directions will be also
explored for the development of an evolving neural

network that enables FE-RNN as an online system. It could
explore the tagging between fuzzy rules and the GRU
nodes within the deep structure to gain a deeper and causal
understanding of the encoding and decoding of the deep
structure. Currently the interpretability of FE-RNN is only
explained and measured in qualitative terms. It will be an
important future work to evaluate and benchmark the
interpretability in quantitative terms. It could also explore
the capabilities of FE-RNN within other forecast assisted
trading strategies using other technical indicators
optimised by evolutionary algorithms, such as the Relative
Strength Index, Price Percentage Oscillator, and Bollinger
Bands. The system will be assessed by a wider range of
financial market assets including ETF, stocks, or market
indexes.

REFERENCES

[1] A. Adadi, M. Berrada, Peeking inside the black-box: a survey on
explainable artificial intelligence (XAI), IEEE Access, (2018)
52138–52160.

[2] M. Akhmet, K. Başkan, C. Yeşil, Revealing chaos synchronization
below the threshold in coupled Mackey–Glass systems,
Mathematics, 11 (2023) 3197.

[3] M. Alateeq, W. Pedrycz, Development of two-phase logic-oriented
fuzzy AND/OR network, Neurocomputing, 482 (2022) 129–138.

[4] A.B. Arrieta, N. Díaz-Rodríguez, J.D. Ser, et al., Explainable
artificial intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI, Information Fusion, (2020)
82–115.

[5] N. Bacanin, L. Jovanovic, M. Zivkovic, et al., Multivariate energy
forecasting via metaheuristic tuned long-short term memory and
gated recurrent unit neural networks, Information Sciences, 642
(2023).

[6] O. Castillo, J.R. Castro, P. Melin, Interval type-3 fuzzy aggregation
of neural networks for multiple time series prediction: The case of
financial forecasting, Axioms, 11 (2022) 251.

[7] H. Das, B. Naik, H.S. Behera, A hybrid neuro-fuzzy and feature
reduction model for classification, Advances in Fuzzy Systems,
(2020).

[8] R.T. Das, K.K. Ang, C. Quek, ieRSPOP: A novel incremental
rough set-based pseudo outer-product with ensemble learning,
Applied Soft Computing, (2016) 170-186.

[9] C. Deng, Y. Huang, N. Hasan, Y. Bao, Multi-step-ahead stock
price index forecasting using long short-term memory model with
multivariate empirical mode decomposition, Information Sciences,
607 (2022) 297-321.

[10] W. Ding, M. Abdel-Basset, H. Hawash, A.M. Ali, Explainability
of artificial intelligence methods, applications and challenges: A
comprehensive survey, Information Sciences, 615 (2022) 238-292.

[11] M.M. Ferdaus, R.K. Chakrabortty, M.J. Ryan, Multiobjective
automated type-2 parsimonious learning machine to forecast time-
varying stock indices online, IEEE Transactions on Systems, Man,
and Cybernetics: Systems, (2022) 2874 - 2887.

23

[12] R. Gao, S. Cui, H. Xiao, W. Fan, H. Zhang, Y. Wang, Integrating
the sentiments of multiple news providers for stock market index
movement prediction: A deep learning approach based on
evidential reasoning rule, Information Sciences, 615 (2022) 529-
556.

[13] S. Hašková, P. Šuler, R. Kuchár, A fuzzy multi-criteria evaluation
system for share price prediction: A tesla case study, Mathematics,
11 (2023).

[14] A.R. Iyer, D.K. Prasad, C. Quek, PIE-RSPOP: A brain-inspired
pseudo-incremental ensemble rough set pseudo-outer product
fuzzy neural network, Expert Systems with Applications, (2018)
172-189.

[15] S.B. Jabeur, V. Serret, Bankruptcy prediction using fuzzy
convolutional neural networks, Research in International Business
and Finance, 64 (2023).

[16] J. Jang, ANFIS: adaptive-network-based fuzzy inference system,
IEEE transactions on systems, man, and cybernetics, (1993) 665-
685.

[17] M.J. Jiménez-Navarro, M. Martínez-Ballesteros, F. Martínez-
Álvarez, G. Asencio-Cortés, PHILNet: A novel efficient approach
for time series forecasting using deep learning, Information
Sciences, 632 (2023) 815-832.

[18] A.F. Kamara, E. Chen, Z. Pan, An ensemble of a boosted hybrid of
deep learning models and technical analysis for forecasting stock
prices, Information Sciences, 594 (2022) 1-19.

[19] N. Kasabov, Evolving fuzzy neural networks for
supervised/unsupervised online knowledge-based learning, IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), (2001) 902-918.

[20] N.K. Kasabov, Q. Song, DENFIS: Dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,
IEEE Transactions on Fuzzy Systems, (2002) 144-154.

[21] M. Keshk, N. Koroniotis, N. Pham, N. Moustafa, B. Turnbull, A.Y.
Zomaya, An explainable deep learning-enabled intrusion detection
framework in IoT networks, Information Sciences, 639 (2023).

[22] Z.C. Lipton, The mythos of model interpretability: In machine
learning, the concept of interpretability is both important and
slippery, Queue, 16 (2018) 31-57.

[23] J. Liu, T. Zhao, J. Cao, P. Li, Interval type-2 fuzzy neural networks
with asymmetric MFs based on the twice optimization algorithm
for nonlinear system identification, Information Sciences, 629
(2023) 123-143.

[24] Y. Liu, X. Lu, W. Peng, C. Li, H. Wang, Compression and
regularized optimization of modules stacked residual deep fuzzy
system with application to time series prediction, Information
Sciences, 608 (2022) 551-577.

[25] M. Lu, X. Xu, TRNN: An efficient time-series recurrent neural
network for stock price prediction, Information Sciences, 657
(2024).

[26] X. Meng, Y. Zhang, L. Quan, J. Qiao, A self-organizing fuzzy
neural network with hybrid learning algorithm for nonlinear system
modeling, Information Sciences, 642 (2023).

[27] T. Molnar, Interpretable machine learning – A guide for making
black box models explainable, Independently published, ISBN-13:
979-8411463330, 2022.

[28] H. Nasiri, M.M. Ebadzadeh, MFRFNN: Multi-functional recurrent
fuzzy neural network for chaotic time series prediction,
Neurocomputing, 507 (2022) 292-310.

[29] K.K. Patro, J.P. Allam, B.C. Neelapu, R. Tadeusiewicz, U.R.
Acharya, M. Hammad, O. Yildirim, P. Pławiak, Application of
Kronecker convolutions in deep learning technique for automated
detection of kidney stones with coronal CT images, Information
Sciences, 640 (2023).

[30] G.T. Pereira, I. B.A. Santos, L.P.F. Garcia, T. Urruty, M. Visani,
A.C.P.L.F. de Carvalho, Neural architecture search with
interpretable meta-features and fast predictors, Information
Sciences, 649 (2023).

[31] H. Rafiei, M. -R. Akbarzadeh-T., Reliable Fuzzy Neural Networks
for Systems Identification and Control, IEEE Transactions on
Fuzzy Systems, 31 (2023) 2251-2263.

[32] J.N. Reimann, A. Schwung, S.X. Ding, Neural logic rule layers,
Information Sciences, 596 (2022), 185-201.

[33] X. Shen, Q. Dai, W. Ullah, An active learning-based incremental
deep-broad learning algorithm for unbalanced time series
prediction, Information Sciences, 642 (2023).

[34] M. Song, Y. Li, W. Pedrycz, Time series prediction with granular
neural networks, Neurocomputing, 546 (2023).

[35] P.V.d.C. Souza, E. Lughofer, H.R. Batista, An explainable
evolving fuzzy neural network to predict the k barriers for intrusion
detection using a wireless sensor network, Sensors, 22 (2022).

[36] T. Szandała, Unlocking the black box of CNNs: Visualising the
decision-making process with PRISM, Information Sciences, 642
(2023).

[37] N. Talpur, S.J. Abdulkadir, H. Alhussian, M.H. Hasan, N. Aziz, A.
Bamhdi, Deep Neuro-Fuzzy System application trends, challenges,
and future perspectives: a systematic survey, Artificial Intelligence
Review, 56 (2023) 865–913.

[38] J. Tan, W.J. Zhou, C. Quek, Trading model: Self reorganizing
Fuzzy Associative Machine-forecasted MACD-Histogram
(SeroFAM-fMACDH), in: International Joint Conference on
Neural Networks, 2015.

[39] S.W. Tung, C. Quek, C. Guan, SaFIN: A self-adaptive fuzzy
inference network, IEEE Transactions on Neural Networks, (2011)
1928-1940.

[40] R.L. Ulloa-Cazarez, N. García-Díaz, L. Soriano-Equigua, Multi-
layer adaptive fuzzy inference system for predicting student
performance in online higher education, IEEE Latin America
Transactions, (2021) 98-106.

[41] C. Wang, X. Lv, M. Shao, Y. Qian, Y. Zhang, A novel fuzzy
hierarchical fusion attention convolution neural network for
medical image super-resolution reconstruction, Information
Sciences, 622 (2023) 424-436.

[42] Y. Wang, H. Ishibuchi, M.J. Er, J. Zhu, Unsupervised multilayer
fuzzy neural networks for image clustering, Information Sciences,
622 (2023) 682-709.

[43] D. Wu, A. Lisser, CCGnet: A deep learning approach to predict
Nash equilibrium of chance-constrained games, Information
Sciences, 627 (2023) 20-33.

24

[44] B. Xu, S. Li, A.A. Razzaqi, Y. Guo, L. Wang, A novel
measurement information anomaly detection method for
cooperative localization, IEEE Transactions on Instrumentation
and Measurement, (2021) 1-18.

[45] L.L.X. Yeo, Q. Cao, C. Quek, Dynamic portfolio rebalancing with
lag-optimised trading indicators using SeroFAM and genetic
algorithms, Expert Systems with Applications, 216 (2023) 1-18.

[46] K.K. Yun, S.W. Yoon, D. Won, Interpretable stock price
forecasting model using genetic algorithm-machine learning
regressions and best feature subset selection, Expert Systems with
Applications, 213 (2023).

[47] B. Zhang, X. Gong, J. Wang, F. Tang, K. Zhang, W. Wu,
Nonstationary fuzzy neural network based on FCMnet clustering
and a modified CG method with Armijo-type rule, Information
Sciences, 608 (2022) 313-338.

[48] K. Zheng, Q. Zhang, L. Peng, S. Zeng, Adaptive memetic
differential evolution-back propagation-fuzzy neural network
algorithm for robot control, Information Sciences, 637 (2023).

[49] Y. Zheng, Z. Xu, X. Wang, The fusion of deep learning and fuzzy
systems: A state-of-the-art survey, IEEE Transactions on Fuzzy
Systems, 30 (2022) 2783-2799.

[50] R.W. Zhou, C. Quek, POPFNN: A pseudo outer-product based
fuzzy neural network, Neural Networks, (1996) 1569-1581.

25

Highlights

• The proposed FE-RNN learns incrementally and inferences on unseen time-series data

• The FE-RNN is assessed on chaotic time-series datasets for its forecasting ability

• An embedded fuzzy network provides interpretability of the neural network structure

• The FE-RNN based GA-fMACDH strategy performs well on returns and maximum drawdown

2

CRediT author statement

James Chee Min Tan: Software, Validation, Formal analysis, Data Curation, Writing - Original draft
preparation. Qi Cao: Conceptualization, Methodology, Investigation, Writing - Review & Editing. Chai
Quek: Conceptualization, Methodology, Supervision, Writing - Review & Editing.

