A constellation design for orbiting solar reflectors to enhance terrestrial solar energy

Çelik, O. and McInnes, C. R. (2024) A constellation design for orbiting solar reflectors to enhance terrestrial solar energy. Acta Astronautica, 217, pp. 145-161. (doi: 10.1016/j.actaastro.2024.01.031)

[img] Text
317607.pdf - Published Version
Available under License Creative Commons Attribution.

4MB

Abstract

Orbiting solar reflectors (OSRs) are flat, thin and lightweight reflective structures that are proposed to enhance terrestrial solar energy generation by illuminating large terrestrial solar power plants locally around dawn/dusk and during night hours. The incorporation of OSRs into terrestrial energy systems may offset the daylight-only limitation of terrestrial solar energy. However, the quantity of solar energy delivered to the Earth’s surface remains low due to short duration of orbital passes and the low density of the reflected solar power due to large slant ranges. To compensate for these, this paper proposes a constellation of multiple reflectors in low-Earth orbit for scalable enhancement of the quantity of energy delivered. Circular near-polar orbits of 1000 km altitude in the terminator region are considered in a Walker-type constellation for a preliminary analysis. Starting from a simplified approach, the equations of Walker constellations describing the distribution of the reflectors are first modified by introducing a phasing parameter to ensure repeating pass-geometry over solar power farms. This approach allows for a single groundtrack optimisation to define the constellation, which was carried out by a genetic algorithm for single and two reflectors per orbit with an objective function defined as the total quantity of energy delivered per day, to existing and hypothetical solar power projects around the Earth. When full-scale constellations are considered with a number of reflectors, the quantity of solar energy delivered is substantial in the broader context of global terrestrial solar energy generation.

Item Type:Articles
Additional Information:This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 883730). CRM is also supported by the Department of Science, Innovation and Technology (DSIT) and the Royal Academy of Engineering under the Chair in Emerging Technologies programme.
Keywords:Space-based solar energy, orbiting solar reflectors, satellite constellations, astrodynamics, genetic optimisation.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:McInnes, Professor Colin and Celik, Dr Onur
Authors: Çelik, O., and McInnes, C. R.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Acta Astronautica
Publisher:Elsevier
ISSN:0094-5765
ISSN (Online):1879-2030
Published Online:30 January 2024
Copyright Holders:Copyright © 2024 The Authors
First Published:First published in Acta Astronautica 217: 145-161
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
308703SOLSPACEColin McInnesEuropean Commission (EC)883730ENG - Systems Power & Energy
306654Royal Academy of Engineering Chair in Emerging TechnologiesColin McInnesRoyal Academy of Engineering (RAE)CIET1819\TUA\15ENG - Systems Power & Energy