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Abstract: Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the my-
ocardium with myofilament disarray and myocardial hyper-contractility, leading to left ventricular
hypertrophy and fibrosis. Where culprit genes are identified, they typically relate to cardiomyocyte
sarcomere structure and function. Multi-modality imaging plays a crucial role in the diagnosis,
monitoring, and risk stratification of HCM, as well as in screening those at risk. Following the
recent publication of the first European Society of Cardiology (ESC) cardiomyopathy guidelines, we
build on previous reviews and explore the roles of electrocardiography, echocardiography, cardiac
magnetic resonance (CMR), cardiac computed tomography (CT), and nuclear imaging. We examine
each modality’s strengths along with their limitations in turn, and discuss how they can be used in
isolation, or in combination, to facilitate a personalized approach to patient care, as well as providing
key information and robust safety and efficacy evidence within new areas of research.

Keywords: hypertrophic cardiomyopathy; multi-modality imaging; echocardiography; cardiac
magnetic resonance imaging; cardiac computed tomography; nuclear imaging

1. Background

Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the
ventricular myocardium and the identified culprit genes mainly relate to cardiomyocyte
sarcomere structure and function [1]. The recently published European Society Cardiology
(ESC) cardiomyopathy guidelines’ [2] diagnostic criteria for HCM are summarized in
Table 1.

Table 1. ESC diagnostic criteria of hypertrophic cardiomyopathy [2].

Adults

LV wall thickness ≥ 15 mm in any myocardial segment that is not explained solely
by loading conditions.
LV wall thickness of 13–14 mm requires evaluation of family history, genetic
findings, and ECG abnormalities.

Children LV wall thickness z-score > 2.

Relatives

LV wall thickness ≥ 13 mm.
In child first-degree relatives with LV wall thickness z-scores of <2, the presence of
associated morphological or ECG abnormalities should raise the suspicion but are
not diagnostic for HCM.

ECG: electrocardiogram, HCM: hypertrophic cardiomyopathy, LV: left ventricular, z-score: number of standard
deviations from predicted mean.

Historically, HCM was thought to be a disease of left ventricular outflow tract ob-
struction (LVOTO) [3] but as knowledge of the molecular basis of the disease has grown,
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and imaging techniques evolved, we now appreciate that it is a disease of myocyte hyper-
contractility and myofilament disarray associated with myocardial fibrosis, microvascular
dysfunction, and left ventricular hypertrophy (LVH) [4]. The clinical consequences include
adverse left ventricular remodelling, heart failure (HF), arrhythmias, and sudden cardiac
death (SCD) [5,6]. The prevalence of HCM is 2–5 per 1000 of the general population [7].

In up to 50% of patients, HCM is inherited as a Mendelian genetic trait and in those
who undergo genetic testing, ~40–60% are found to have a single rare gene variant identi-
fied [8]. These variants are most commonly found in the sarcomeric protein genes β-cardiac
myosin (MYH7) and cardiac myosin-binding protein C (MYBPC3) [9]. Figure 1 illustrates
the components of a cardiac sarcomere and the relevance in HCM. Variants in TNNT2
(cardiac troponin T), TNNI3 (cardiac troponin I), and TPM1 (α-tropomyosin) are less com-
mon causes of HCM and together are responsible for <10% of cases. Even less frequently,
variants are identified in ACTC1 (cardiac α-actin), MYL2 (myosin light chain 2), MYL3
(myosin light chain 3), and CSRP3 (cysteine and glycine-rich protein 3). Proposed molecular
mechanisms for explaining the hyper-contractile phenomenon include alterations in the
actin-activated β-cardiac myosin chemo-mechanical ATPase cycle, an increased number of
functionally accessible myosin heads (i.e., decrease in the super-relaxed state of myosin),
and alterations in load dependence contractility that changes the power output of cardiac
contraction [10,11]. In this article, we will build on previous reviews [12–15], published
prior to the publication of the ESC cardiomyopathy guidelines, and will outline the role
of multi-modality imaging (MMI) in the clinical pathway of HCM. We will explore each
modality in turn and discuss their strengths and weaknesses and how an MMI approach
provides a holistic and comprehensive assessment in HCM.
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ities, subtle echocardiographic abnormalities (e.g., impaired left ventricular (LV) relaxa-
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the pre-clinical phenotype, as more mechanistically targeted therapies are developed 
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(ACC) guidelines [19] define heart failure stages with reference to signs and symptoms 
and heart function. With reference to this staging in the context of genetic cardiomyopa-
thy, we propose that stage B should be separated into stages B1 and B2 to better define 
those who are asymptomatic with pre-clinical disease (Stage B1) from those who are 
asymptomatic with definite cardiomyopathy (Stage B2). The pre-clinical phenotype could 
be further sub-categorized into electrical and structural pre-clinical phenotypes rather 
than just the defined LVH diagnosis. It would enable a more nuanced delineation of these 
asymptomatic patients from Stage A patients, i.e., gene-positive patients who are pheno-
type-negative. 
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2. Role of Multi-Modality Imaging in HCM
2.1. Diagnosis and Classification

Due to an increased use of genetic testing, many patients are now seen within clinical
services with an earlier phenotype of HCM. MMI plays an important role in accurate disease
staging, particularly in the pre-clinical stage, which is recognized by ECG abnormalities,
subtle echocardiographic abnormalities (e.g., impaired left ventricular (LV) relaxation,
mitral valve abnormalities, or subtle left atrial (LA) dilatation), raised biomarker levels
(type I collagen precursors), and evidence of coronary microvascular dysfunction [16].
A well-phenotyped population is essential for clinical practice and research, particularly the
pre-clinical phenotype, as more mechanistically targeted therapies are developed [17,18].
The 2022 American Heart Association (AHA)/American College of Cardiology (ACC)
guidelines [19] define heart failure stages with reference to signs and symptoms and heart
function. With reference to this staging in the context of genetic cardiomyopathy, we
propose that stage B should be separated into stages B1 and B2 to better define those who
are asymptomatic with pre-clinical disease (Stage B1) from those who are asymptomatic
with definite cardiomyopathy (Stage B2). The pre-clinical phenotype could be further
sub-categorized into electrical and structural pre-clinical phenotypes rather than just the
defined LVH diagnosis. It would enable a more nuanced delineation of these asymptomatic
patients from Stage A patients, i.e., gene-positive patients who are phenotype-negative.

Once a clinical diagnosis of HCM is confirmed, MMI is essential in treatment deci-
sion making, including pharmacological and device therapy. HCM is classified as either
obstructive HCM (oHCM) (characterized by dynamic LVOTO) or non-obstructive HCM
(nHCM) (characterized by the absence of significant LVOTO (i.e., <30 mmHg) at rest or with
provocation). Transthoracic echocardiography (TTE) is used to classify HCM and allows
monitoring for change in the LVOT gradient and left ventricular ejection fraction (LVEF)
and guides therapy. It is essential that imaging techniques can accurately identify issues
and are also practical so that regular follow up of a large number of patients is feasible.
Resting and stress imaging provide valuable information to decipher the mechanisms
behind symptoms, helping to guide timely and effective treatment strategies.

Cardiac magnetic resonance (CMR) imaging is helpful at the diagnosis stage to exclude
conditions that can mimic HCM on echo, for example, amyloid, hypertensive heart disease
and rare conditions like Fabry disease.

Several patterns of HCM have been described including asymmetric basal septal (often
referred to as ‘classical’ HCM), reverse septal, neutral, concentric, and apical (Figure 2).
There appears to be differences in imaging findings depending on the pattern; for example,
late gadolinium enhancement (LGE) on CMR is more common with the reverse septal
pattern than the basal septal pattern [20,21].

2.2. Decision Making
2.2.1. Pharmacological

Initial therapy for oHCM has focused on lowering LVOTO with negative inotropic
agents [7]. Until recently, therapy for HCM has been focused on symptom relief with no
specific targeted therapies and few randomized controlled trials. Nevertheless, imaging
plays a key role in eligibility/selection, dose titration, and monitoring.

Non-dihydropyridine calcium channel blockers, β-blockers, and disopyramide all
have different mechanisms of action, but their mutual negative inotropic effects improve
diastolic filling time and reduce LVOTO, to alleviate symptoms [8]: despite this, none have
impacted on prognoses or rates of sudden death [22]. Recently, studies have investigated
the role of a new class of medication called cardiac myosin inhibitors (CMIs) (i.e., mava-
camten and aficamten), and further trials are being undertaken [23–28]. Echocardiographic
monitoring of LVEF is recommended in those with oHCM treated with mavacamten be-
cause of the risk of developing LV systolic dysfunction.

Surgical myectomy and septal ablation decrease LVOTO and symptoms but confer
greater risks than drug therapy given their invasive nature [29], and as we will outline,
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imaging is essential in making decisions around the suitability and timing of intervention,
as well as the actual planning and undertaking of these procedures.
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2.2.2. Risk Stratification

Decisions around the prevention of sudden cardiac death with implantable cardiac
defibrillator (ICD) implantation can be challenging. Various risk stratification tools have
been developed to guide these decisions, and all these tools require imaging data as part of
their scoring algorithm.

The European HCM risk SCD calculator incorporates maximal wall thickness (MWT),
LA diameter, maximal LVOT gradient (rest/Valsalva provoked), family history of SCD,
non-sustained ventricular tachycardia (NSVT), unexplained syncope, and age [30]. The
2020 AHA/ACC HCM guidelines include additional risk factors of LVEF ≤ 50%, apical
aneurysm, or extensive fibrosis (i.e., diffuse and extensive LGE on CMR imaging) [31].

Notably, the HCM risk SCD calculator was not validated for use after septal reduction
therapy (SRT) and does not allow for the incorporation of additional risk factors, for
example, those outlined in the AHA HCM SCD calculator [30,32].

2.2.3. Screening

The ESC cardiomyopathy guidelines [2] indicate the importance of MMI in those at
genetic risk of HCM. They advise that all first-degree relatives of patients with cardiomy-
opathy should be offered clinical screening with ECG and cardiac imaging (echocardiogram
and/or CMR). Lorenzini et al. highlight the value of CMR in screening gene carriers [33].

3. Electrocardiography

While not strictly an imaging modality, electrocardiography (ECG) remains an invalu-
able investigation in the diagnosis and follow up of structural heart disease, particularly
HCM. Most patients with HCM have abnormal ECG findings, which are non-specific and
often represent the reason for referral of asymptomatic patients undergoing sports, profes-
sional, or family screening [34]. In family screening, ECG has proven to be more sensitive
than echocardiography, indicating that the electric phenotype may precede morphological
manifestations of disease, i.e., a pre-clinical electrical phenotype [35,36]. Common ECG
abnormalities in HCM include signs of LV strain and hypertrophy, deep Q waves (partic-
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ularly in the inferior and lateral leads), diffuse T wave inversion, p wave prolongation,
intraventricular conduction abnormalities, and QTc prolongation [34].

It is well established that patients with HCM are predisposed to arrhythmia, which
may include virtually all known rhythm disturbances [34]. Electrocardiography (12-lead
ECG, ambulatory ECG, implantable loop recorders) can identify conduction disorders,
arrhythmias, repolarization abnormalities, and LVH voltage criteria.

Patients without ECG abnormalities are associated with a less severe phenotype and
more benign outcome compared to the overall HCM population [37]. In addition to the
utility for risk stratification in known disease, there is evidence that ECG abnormalities
may be evident in the absence of LVH on an echocardiogram, which means ECG remains
vital [34].

Research into novel techniques to further utilize ECG information is ongoing. Electro-
cardiographic imaging (ECGI) reconstructs the electrical activity of the heart and produces
reconstructions of the activation and recovery sequence of the heart, premature beats or
tachycardia origin, re-entrant arrhythmias, and other electrophysiological quantities of
interest. These can be reconstructed in a digitized model of the patient’s three-dimensional
heart, and could enable more personalized care [38], especially in those with HCM. Webber
et al. have proposed the integration of CMR imaging data with CMR-ECGI and have
proven both feasibility and good reproducibility and could provide novel insights into
arrhythmogenesis to enable further personalized risk stratification [39].

4. Echocardiography

Two-dimensional (2D) TTE is the initial and preferred imaging modality in HCM. TTE
is relatively inexpensive and widely available and recommended for all patients at initial
evaluation [2].

It has utility in diagnoses, monitoring, screening, and prognostication. As shown in
Figure 1, TTE enables assessing the severity and pattern of LVH, LVOTO, and mitral valve
pathology, as well as both systolic and diastolic function [13]. TTE plays an important role
in distinguishing between oHCM and nHCM.

4.1. Left Ventricular Hypertrophy

TTE is recommended in the evaluation of LV wall thickness and the determination
of which LVH pattern of HCM is present. The ESC guidelines outline that this should
be carried out by examining LV segments ‘from base to apex examined in end-diastole,
preferably in the 2D short-axis view, ensuring that the wall thickness is recorded at mitral,
mid-LV, and apical levels’ [2]. When TTE image quality is suboptimal, contrast can be used
to enhance information and is particularly useful in the detection of apical hypertrophy.
While useful, it is important to appreciate the potential risk of interobserver variability
in wall thickness measurement with TTE [40]. It is important to recognize the differences
in wall thickness and cardiac dimensions between men and women in a normal popula-
tion and St. Pierre et al. propose that as such, diagnostic criteria for cardiomyopathies
should be more sex-specific [41]. Huurman et al. demonstrated that in genotype-positive
patients referred for family screening, differences in MWT across gender are mitigated after
indexation by (body surface area) BSA or weight [42].

4.2. Left Ventricular Outflow Tract Obstruction

LVOTO occurs in up to two-thirds of patients with HCM either at rest or only on
provocation [13]. LVOTO is a dynamic phenomenon and can vary even within the same
patient and is dependent on afterload, preload, and LV contractility. Evidence of LVOTO is
seen on M-mode, colour Doppler, and pulsed (PW) and continuous wave (CW) Doppler
(Figure 3). TTE colour Doppler is used to localize turbulent flow or for aliasing, which indi-
cates increased velocity; then, CW and PW Doppler in the apical 5- or 3-chamber views can
be used to precisely localize and quantify any obstruction [13]. In all patients undergoing
rest TTE, a Valsalva manoeuvre should be performed: however, due to patients’ compli-
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ance, its efficacy can be variable. If bedside manoeuvres fail to induce LVOTO > 50 mmHg,
exercise stress echo is the most physiological instrument to evoke it.
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parasternal long axis and M-mode. (C) Colour flow showing LVOT acceleration with associated
posteriorly directed mitral regurgitation. (D) Continuous wave Doppler showing typical ‘dagger
shape’ Doppler tracing indicating LVOT obstruction.

Maximum provoked peak LVOTO ≥ 50 mmHg is considered the threshold for invasive
treatment, in patients who have refractory symptoms despite a maximally tolerated dose of
medical therapy, as it is the threshold where theoretical models examining the relationship
between the gradient and stroke volume predict that obstruction becomes hemodynamically
significant [43].

Transoesophageal echocardiography (TOE) has a role in patient selection for septal
reduction therapies, determining the precise location of septal anatomy as well as the
presence of coexisting mitral valve or papillary muscle abnormalities. Along with cardiac
CT, it can help decide if surgical myectomy or alcohol septal ablation (ASA) should be
pursued. TTE and/or TOE are essential pre-interventions to exclude aortic stenosis and
subaortic membranes. Intraoperative TOE plays a key role in guiding the management
of patients with HCM undergoing surgical myectomy and is critical for intraprocedural
guidance of mitral valve transcatheter edge-to-edge repair (TEER) to treat patients with
oHCM who are not candidates for septal reduction therapy [44].

For procedural planning of ASA, echocardiography contrast or agitated saline with
radiographic contrast can be injected into septal arteries of interest. Myocardial contrast
echocardiography plays a critical role in intraprocedural guidance of ASA. La Canna et al.
demonstrated the value of myocardial contrast three-dimensional echocardiography to
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target safe and long-term effective septal reduction with ASA in patients with oHCM
referred for isolated septal myectomy [45].

Postprocedural TOE assessment should assess if myectomy has been successful and ex-
amine for complications. TTE is used for post-procedural assessment following ASA. Some
centres assess post-procedure LVOT gradients with dobutamine and/or isoproterenol [14].

4.3. Mitral Valve Assessment

Patients with oHCM often have abnormalities of the mitral valve and the subvalvular
apparatus, which contribute to systolic anterior motion (SAM). Sherrid et al. report that
drag, the pushing force of flow, rather than the previously hypothesized Venturi forces, is
the dominant hydrodynamic mechanism for SAM [46]. Mitral regurgitation (MR) related to
SAM of the mitral valve is typically posteriorly directed and in this case, septal myectomy
alone will treat MR, without need for any valve intervention [12]. When the regurgitant jet is
eccentric, quantitative assessment, e.g., the proximal isovelocity surface area (PISA) method,
can lead to an erroneous estimation of MR severity. The presence of a central or anteriorly
directed MR jet should prompt careful evaluation, including with TOE, as MR related to
intrinsic mitral valve disease (e.g., mitral valve prolapse, chordal elongation, or rupture
with flail) can often occur in patients with HCM and must be addressed separately [2,13].
If there is any concern over intrinsic mitral valve disease, TOE or CMR may enable a
better evaluation of the mechanism of MR. LA enlargement provides important prognostic
information and the most common mechanisms are SAM-related MR and elevated LV
filling pressures [2].

4.4. Systolic Function

TTE provides information on global and regional LV and right ventricular anatomy
and function. LVEF is only one measure of LV systolic performance when hypertrophy is
present. Regional wall motion abnormalities can potentially be an early sign of disease.
LVEF ranges from normal to hyperdynamic (55 to >70%), whereas an LVEF < 50% indicates
LV systolic dysfunction and correlates with higher rates of adverse events, including
all-cause mortality and cardiac transplantation [47]. Contrast can increase reliability of
LVEF measurement, in particular, when imaging is suboptimal. Doppler myocardial
velocities and deformation parameters (speckle tracking or tissue Doppler), i.e., global
longitudinal strain, are more sensitive than LVEF in the detection of subtle ventricular
dysfunction and may help discriminate between different aetiologies of hypertrophy (e.g.,
amyloidosis, HCM, Fabry disease, and athlete’s heart). LVEF assessment with three-
dimensional (3D) TTE has been shown to correlate better with CMR compared to 2D, which
typically underestimates it. It is believed that reduction in the global longitudinal strain
(GLS) is counterbalanced by an increase in the global circumferential strain (GCS), resulting
in a biplanar strain vector more circumferentially orientated and in a normal LVEF [13].
Strain abnormalities, in particular, regional abnormalities, vary according to the degree of
LVH and could be pathological in segments even with relatively normal wall thickness [12].
These abnormalities are most likely due to underlying disarray or fibrosis and there is
evidence that given the patchy distribution of fibrosis in HCM, a segmental analysis of
the LV longitudinal strain may be even more accurate in assessing fibrosis than a global
evaluation [13]. Wabich et al. demonstrated that the segmental longitudinal strain, rather
than the GLS (with a cut-off value of −12.5%), has a higher sensitivity for the identification
of LGE on CMR, and could enable better decision making of which patients require CMR
for better risk stratification [48]. Although it is difficult to identify a prognostic cut-off value
of the GLS, a reduction below −16% is an independent predictor for HF hospitalization,
sustained ventricular arrhythmias, all-cause death, and atrial fibrillation occurrence [13].

4.5. Diastolic Function

Diastolic dysfunction is the hallmark of HCM and commonly, in symptomatic disease,
there is evidence of impaired LV relaxation, as a consequence of increased myocardial
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stiffness, and impaired LA function. Although cardiac catheterization remains the gold
standard to directly measure LV filling pressures, echocardiographic assessment of dias-
tolic function provides a surrogate. As per ESC guidelines, routine examination should
include mitral inflow assessment, tissue Doppler imaging, pulmonary vein flow velocities,
pulmonary artery systolic pressure, and LA size/volume [2]. Exercise echocardiography
provides important information regarding diastolic function. A restrictive LV filling pattern
(E/A > 2, with increased E/e’ ratio > 14) in patients with HCM is associated with HF
hospitalizations, reduced exercise tolerance, and SCD [13].

5. Cardiovascular Magnetic Resonance (CMR)

CMR plays an important role in the diagnosis, management, and risk stratification of
patients with HCM. With its high spatial resolution, it can provide detailed assessment of
anatomy, function, and tissue characterization.

5.1. Anatomy/Morphology and Function

CMR is a valuable modality to assess the thickness and distribution of LVH more
accurately. CMR is the gold standard measure for cardiac function and is particularly help-
ful when echocardiographic acoustic windows are suboptimal especially in detecting LV
apical and anterolateral hypertrophy [2] and in patients with abnormal electrocardiograms
despite an apparently normal echocardiogram [2]. Machine learning measurement using
MWT measurement with CMR in HCM has been shown to be superior to human experts
with potential implications for diagnoses, risk stratification, and clinical trials [49].

CMR has a high sensitivity for LV apical hypertrophy, aneurysms, myocardial crypts,
and papillary muscle abnormalities [50–55]. Apical HCM with an LV apical aneurysm is
very rare (2.3% of all apical HCMs), often missed with echocardiography, and associated
with an increased risk of adverse cardiovascular (CV) events compared with those with
apical HCM but without an LV apical aneurysm [56].

5.2. Guiding Treatment/Procedures

CMR can be used to guide planning prior to surgical and catheter-based interventions
(e.g., myectomy or alcohol septal ablation) in patients with HCM, especially if echocardiog-
raphy acoustic windows are suboptimal, and in patients with multi-level or biventricular
outflow obstruction [32]. CMR can also assess for mitral valve abnormalities (e.g., SAM)
and LVOTO; however, this modality will usually underestimate the dynamic LVOT gradient
compared to echocardiography. CMR helps identify anomalies of papillary muscles (e.g.,
insertion of anomalous, hypertrophied anterolateral papillary muscle directly into the ante-
rior mitral leaflet (in the absence of chordae tendinae) represents an important mechanism
of muscular midcavity obstruction), which help dictate specific surgical approaches [53].

5.3. Tissue Characterization (Multiparametric Mapping and Late Gadolinium Enhancement
Imaging)—Differentiating HCM Phenocopies

CMR can differentiate phenocopies of HCM using multiparametric mapping. Fabry
disease is typically associated with low native T1 values compared with patients with HCM
and left ventricular hypertrophy (LVH) and approximately 40–59% of patients who are
LVH-negative [57,58]. Fabry disease is also typically associated with basal inferolateral
LGE and most present with concentric LVH [57,59]. Cardiac amyloid is typically associated
with high native T1 and extracellular volume fraction (ECV) values, abnormal myocardial
nulling, and diffuse subendocardial LGE (Figure 4) [2,60]. CMR is also useful in aiding
the diagnosis for athlete’s heart and hypertensive heart disease. ECV is found to be low
in athlete’s heart compared to healthy volunteers. In athlete’s heart, as LVH increases,
ECV decreases. However, in patients with HCM, as LVH increases, ECV also increases,
suggesting that the increase in left ventricular mass (LVM) in HCM is mediated by cellular
disarray and extracellular matrix expansion [61].
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Figure 4. Hypertrophic cardiomyopathy and HCM phenocopies with tissue characterization assess-
ment using CMR. In HCM, native T1 and ECV can be either normal or mildly elevated with patchy
midwall LGE especially seen in hypertrophic regions. LGE at RV insertion points can also be present.
In cardiac amyloidosis, native T1 and ECV is significantly elevated with either subendocardial or
transmural LGE throughout the myocardium. In Fabry disease, native T1 is typically low with
elevated T2 at corresponding LGE areas with typical basal inferolateral LGE.

In HCM, T2 values at the area of LGE are found to be elevated compared to healthy
volunteers; however, T2 values at the area of LGE are significantly more elevated in Fabry
disease compared to patients with HCM [62,63]. Some patients with HCM had focal T2
abnormalities that matched areas of LGE, and these abnormalities were associated with
severe LVH [64].

5.4. LGE as Risk Stratification

Myocardial biopsy is infrequently performed and thus CMR provides a non-invasive
tool to assess myocardial fibrosis in patients with HCM [65]. When interstitial fibrosis is
present, the ECV and T1 times of the myocardium are increased [65]. Myocardial fibrosis
has prognostic value in patients with HCM.

The presence and extent of LGE, a measure for myocardial fibrosis, have prognostic
value in predicting adverse CV events (SCD, CV death, HF death, all-cause death) in
patients with HCM [66,67]. In patients with HCM, LGE weakly correlated with hypertrophy,
was inhomogeneous and asymmetric, and predominantly distributed in the interventricular
septal wall and anterior free wall at basal and mid-levels [68]. A greater extent of LGE is
associated with a poor prognosis, regardless of its location in the LV [68]. Extensive LGE
provides additional information to assess SCD risk in patients with HCM, particularly in
those otherwise judged to be at low risk [69]. LGE has also been associated with a greater
likelihood and increased frequency of ventricular tachyarrhythmias including NSVT [70].

There is a need to consider the standardization of different LGE quantification tech-
niques, even though they have comparable accuracy in predicting SCD in patients with
HCM. The most common technique is the 6 SD technique. Less common techniques include
manual quantification, the 4 SD technique, and the 2 SD technique [70,71].

Myocardial fibrosis (LGE) is progressive in some patients with HCM, with impaired
energetics and perfusion abnormalities postulated as possible mechanistic drivers of the
fibrotic process [72]. The typical perfusion abnormality in HCM is small vessel ischemia
(coronary microvascular dysfunction), which in time leads to fibrosis, although some
postulate that the remodelling of the microcirculation at the arteriolar and capillary levels
might also occur secondary to the fibrosis [73,74]. Moreover, there is growing evidence
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for the activation of fibrotic pathways occurring early in the course of the disease before
hypertrophic remodelling and microvascular dysfunction and ischemia occur [75]. Fibrosis
progression is associated with adverse cardiac remodelling and predicts an increased risk
of subsequent clinical events in HCM [72].

Myocardial LGE radiomics (i.e., shape and texture features) have been shown to be
strongly associated with SCD risk in HCM, providing incremental risk stratification beyond
current ESC or AHA/ACC risk models [76]. The ESC guidelines recommend that the
presence of extensive LGE (≥15%) may be used as part of shared decision making with
patients about prophylactic ICD implantation for low to intermediate risk patients [2].
It has been suggested that the addition of LGE to the current AHA/ACC sudden death
algorithm [31] or the HCM-SCD risk model improves stratification but there is scant robust
data on the impact of scar quantification on the personalized risk estimates generated with
the HCM-SCD risk calculators [2].

The Hypertrophic Cardiomyopathy Registry (HCMR) is the largest CMR and genetics
international prospective registry in HCM with n = 2755 patients recruited [21]. HCMR
is designed to assess the role of CMR in risk stratification in HCM, and also incorporates
genetic and biomarker data. In HCMR, sarcomere variant (+) patients were more likely to
have reverse septal curvature morphology, LGE, and no significant resting LVOTO. On the
other hand, sarcomere variant (−) patients were more likely to have isolated basal septal
hypertrophy, less LGE, and more LVOTO. Interstitial fibrosis (measured with ECV), was
present in segments both with and without LGE. Of note, serum N-terminal pro-B-type
natriuretic peptide (NT-proBNP) and cardiac troponin T levels correlated with increasing
LGE and ECV.

5.5. CMR Perfusion and Microvascular Dysfunction

CMR perfusion can detect myocardial perfusion abnormalities in patients with HCM,
felt to reflect microvascular dysfunction, which is common in patients with HCM, and
associate with hypertrophy and LGE. Apical perfusion defects are found to be universally
present in apical HCM at all stages alongside characteristic ECG changes, suggesting that
ischemia may play a disease-defining role in apical HCM [77].

First-pass perfusion CMR identifies abnormal rest perfusion in a significant proportion
of patients with HCM, with abnormalities associated with the presence and distribution
of a myocardial scar and the degree of hypertrophy [78]. Rest perfusion abnormalities
identify patients with an increased incidence of episodes of NSVT, independently from
the presence of myocardial fibrosis [78]. The regional heterogeneity of resting perfusion in
HCM is related to delayed contrast enhancement but not to systolic function [79].

In 101 patients with HCM with unobstructed coronaries using quantitative myocardial
stress perfusion imaging, global stress myocardial blood flow (MBF) and myocardial
perfusion reserve (MPR) were lower in HCM than controls. Stress myocardial blood flow
(MBF) fell with increased LV mass, MWT, and LGE (p < 0.0001). Normal segments (no
LVH/LGE) had reduced stress MBF and MPR compared to controls, suggesting it may be
an early disease marker [80]. In patients with HCM, adenosine-stress perfusion defects on
CMR were found in >40% of subjects; these perfusion defects were associated with NSVT,
higher indexed LVM (LVMi), and apical aneurysms [81].

5.6. Diffusion Imaging

Cardiac diffusion tensor imaging (cDTI) allows the in vivo characterization of myocar-
dial microstructure by quantifying the mean diffusivity (MD), fractional anisotropy (FA)
of diffusion, and secondary eigenvector angle (E2A) [82,83]. Patients with HCM showed
reduced mobility with altered diastolic conformation [83]. In patients with HCM, even
in segments with normal wall thickness, normal perfusion, and no scar, diffusion is more
isotropic than in controls, suggesting the presence of underlying cardiomyocyte disarray.
Increased E2A suggests the myocardial sheetlets adopt hypercontracted angulation in
systole. Increased MD, most notably in the subendocardium, is suggestive of regional
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remodelling, which may explain the reduced subendocardial blood flow. These findings
provide a greater understanding of HCM pathophysiology.

Microstructural alteration using cardiac diffusion tensor imaging and microvascular
dysfunction using quantitative perfusion CMR can occur in the absence of hypertrophy in
sarcomeric gene variant carriers, in whom changes are associated with ECG abnormalities.
This is potentially important in the emerging era of disease-modifying therapy in HCM [84].

5.7. Strain

CMR feature tracking reveals LV and LA dysfunction in patients with HCM, even
amongst those with normal LVEF [85]. An impaired LV strain has been associated with
elevated NT-proBNP and/or high-sensitivity cardiac troponin T in patients with HCM [85].
The CMR tissue tracking (CMR-TT)-derived LV global longitudinal peak diastolic strain rate
(PDSR) can predict adverse outcomes in patients with HCM—those with lower longitudinal
PDSR had lower freedom from major adverse cardiovascular events (MACEs) [86]. The
combination of maximum LVWT and the subradial peak strain is independently associated
with LVOTO in patients with HCM [87]. GCS (with CMR-TT) is an independent risk
indicator of ventricular arrhythmias in HCM [88].

CMR feature tracking, especially the regional circumferential strain, was associated
with (LGE) fibrosis-containing segments in HCM [89]. In patients with HCM, the 2D
peak segmental longitudinal strain is an excellent strain parameter for tissue characteri-
zation and fibrosis detection [90]. However, 2D and 3D deformation parameters are not
interchangeable, showing only modest correlations [90].

MRI tagging has also been used to help confirm the presence of contractile function
in a suspected mass, for example, in the case of focal HCM simulating a mass [91]. Fast
3-breathhold 3D tagging is feasible for regional and global strain analyses in patients with
HCM [92]. Following alcohol septal ablation in patients with symptomatic oHCM, the
reduction of LVOTO was associated with improved intramural systolic function (CMR
tagging and 3D strain), indicating reverse LV remodelling [93].

5.8. Flow

The quantification and visualization of elevated velocity in the LV is feasible in patients
with HCM, providing insights into altered hemodynamics [94]. Four-dimensional flow
CMR offers a new way to assess intraventricular diastolic flow and non-invasively evaluate
myocardial stiffness. A study integrated 4D-flow and T1-mapping analyses in HCM, and
findings suggest a mechanistic link between abnormal LVOT flow, increased LV loading,
and adverse myocardial remodelling in HCM [95].

6. Cardiac Computed Tomography (CT)

Cardiac CT allows the non-invasive evaluation of epicardial coronary artery disease in
patients with HCM. CT is helpful as an adjunct or alternative to other imaging modalities,
e.g., if TTE is non-diagnostic or CMR is not feasible.

6.1. Anatomy/Morphology

CT imaging provides high-resolution images that allow detailed assessment of patterns
and distribution of myocardial hypertrophy, and ventricular size.

6.2. Function

Biventricular volume and systolic function quantification is feasible with the new-
generation CT scanners, from dual-source scanners to wide detectors [96]. These enable the
entire cardiac volume to be covered in one heartbeat. Reduction in gantry rotation time is
associated with increased temporal resolution and improves end-systolic and end-diastolic
phase identification. However, the routine clinical use of cardiac CT for volumes and
function is debatable due to the requirement for a dedicated acquisition protocol with an
elevated radiation dose and higher doses of the contrast medium.
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6.3. Epicardial Coronary Artery Disease (CAD)

Contrast-enhanced, ECG-gated cardiac CT is an effective non-invasive modality to
evaluate for obstructive epicardial CAD, especially for those with a low-to-intermediate
probability of CAD (15–50%) [12]. Obstructive epicardial CAD is reported to be present
in 7–19% of patients with HCM [97–99]. Importantly, cardiac CT coronary angiography
(CTCA) tends to overestimate severity compared to invasive angiography [12]. Associated
coronary artery anomalies can also be detected.

Patients with HCM and chest pain have been found to have a lower prevalence of
moderate to severe epicardial coronary artery stenosis on CTCA, compared with the risk-
adjusted general population [97]. Given the high incidence of false-positive findings in
perfusion stress studies, CTCA can be useful to triage for coronary angiography in patients
with HCM and angina [98].

6.4. Three-Dimensional Reconstruction and Pre-Procedural Planning

Advanced post-processing algorithms allow for the creation of 3D reconstructions of
the heart and epicardial coronary arteries, which can aid in the understanding of complex
anatomical relationships and provide a roadmap to guide surgical or catheter-based in-
terventions. For example, in planning alcohol septal ablation for oHCM, CTCA can help
identify the target vessel for the optimum infarct location [100]. Cardiac CT can provide
important insights on septal anatomy for a safer and more effective procedure [101].

6.5. Anomalous Coronary Anatomy and Myocardial Bridges

CTCA is the reference standard for imaging anomalous coronary anatomy and my-
ocardial bridges. Myocardial bridging may cause the compression of an epicardial coronary
artery. Myocardial bridges were seen in as many as 40.7% of patients with HCM [97].
Myocardial bridges in patients with HCM are reported to be longer and deeper, when
compared to a control group [97]. The role of myocardial bridges and their association with
sudden death are unclear in patients with HCM [102].

6.6. CT-Based Fractional Flow Reserve (CT-FFR)

Whilst CTCA allows anatomical assessment of coronary lesions, CT-FFR also allows
non-invasive functional assessment of intermediate-severity coronary lesions. Patients
with HCM have slightly lower CT-FFR values in the distal vessels, even in the absence
of severe CAD—this may be due to a disproportionate increase in demand (myocardial
mass) vs. supply (coronary capacity) [103]. In patients with a larger LVM, there is an
increased discrepancy between CT-FFR and invasive FFR values [104]. CT-FFR also allows
the evaluation of the coronary artery volume to myocardial mass ratio (V/M). Patients
with HCM have been shown to demonstrate a significantly greater coronary volume, yet
have decreased V/M [103].

6.7. Dual-Energy Cardiac CT and Tissue Characterization (Late Iodine Enhancement, ECV)

Dual-energy cardiac CT, a newer form of imaging, can provide additional data on
tissue characterization. It allows the assessment of late iodine enhancement and ECV
quantification, with results comparable to CMR [105]. However, larger prospective studies
are required before this technique can be routinely applied in clinical practice [106]. Further
refinement of the contrast infusion protocol and imaging parameters is required before it can
be used routinely [107]. One case report has reported the utility of dual-energy CT delayed
myocardial enhancement to help differentiate between a true vs. false LV aneurysm [108].

6.8. Limitations: Radiation, Contrast, Vasodilators, and Image Optimization

Whilst radiation exposure is a limitation of CT, new CT technology and good heart rate
modulation can allow for lower doses of radiation exposure. An iodine contrast medium is
required, but not advised in those with reduced eGFR < 30 mL/min. Although vasodilators
such as nitroglycerin are helpful during cardiac CT imaging, these should be avoided
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when severe LVOTO is present. Image quality is best in patients with a low heart rate and
regular rhythm.

In patients less suited for CTCA—e.g., due to safety concerns (radiation, iodine con-
trast) or arrhythmia—functional tests (e.g., MRI perfusion or quantitative PET) may be
more appropriate to evaluate for coronary artery disease in HCM.

Technological advancements in CT have improved resolution, enabled functional
assessment and tissue characterization, and reduced radiation exposure whilst reducing
scan times, thus enhancing its role in HCM.

7. Nuclear Imaging

HCM can lead to inadequate blood supply to the myocardium due to microvascular
dysfunction or mechanical obstruction. Nuclear imaging includes myocardial perfusion
imaging (MPI) techniques like single-photon-emission computed tomography (SPECT)
and positron emission tomography (PET), which can define the presence and severity of
ischemia in HCM. PET can also evaluate MBF and the flow reserve. Nuclear imaging
is generally not needed to evaluate anatomy (e.g., wall thickness) due to its low spatial
resolution and radiation exposure, in contrast with TTE and CMR, which offer high spatial
resolution without radiation exposure [12].

7.1. SPECT vs. PET and Radiotracers

The preferred SPECT radiotracer is technetium-99 m due to a short half-life (6 h vs.
73 h for thallium-201) and lower radiation exposure [12]. Due to the long half-lives of both
radiotracers, SPECT stress images are acquired 15–60 min after peak stress and maximum
hyperaemia.

PET MPI is superior to conventional SPECT because of its precise built-in attenuation
correction, resulting in improved image quality, allowing for an accurate quantitative analysis
of MBF. PET scan durations are shorter due to the relatively shorter half-lives of the radiotracers
(rubidium-82: 75 s and N-13 ammonia: 10 min) [12]. PET allows a more accurate quantification
of the stress ejection fraction, transient ischemic dilatation, and MBF reserve [109].

7.2. Stress—Patterns

Stress with either exercise or vasodilators is frequently used and typically demon-
strates one of three patterns: (1) normal perfusion; (2) a reversible perfusion defect in the
area of the greatest hypertrophy; (3) diffuse subendocardial ischemia from microvascular
disease, leading to ischemic dilation of the LV and a decrease in LVEF [12]. Pattern number
3 is typically seen with concentric HCM, whilst focal areas of hypertrophy may show re-
versible perfusion defects [12]. Approximately half of patients with HCM have an abnormal
ejection fraction response to stress [110]. Some show transient ischemic dilatation [111].

7.3. Ischemia—Prevalence, Patterns, and Prognosis

MPI can detect areas of ischemia that may not be apparent on other imaging modalities.
Perfusion defects can be detected in patients with HCM even without significant epicardial
coronary artery disease. One study found a high prevalence of thallium perfusion abnor-
malities in 39% of patients with HCM despite normal epicardial coronary arteries [112].
Due to a higher uptake in hypertrophic segments, relatively abnormal perfusion can be
found in non-hypertrophied regions [113]. The presence and extent of perfusion defects
on MPI are associated with an increased risk of adverse cardiac events (e.g., cardiac arrest,
syncope) in HCM [114]. In patients with abnormal MPI tests, evaluation for epicardial
CAD should be considered.

7.4. Genotype-Positive

Patients with HCM with sarcomere myofilament gene variants have more severe
impairment of microvascular function, assessed with dipyridamole MBF using 13N-labelled
ammonia [115].
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7.5. PET MBF and Prognosis

Resting MBF is typically normal in patients with HCM. However, areas with a signifi-
cant scar may have decreased MBF [116]. The blunted augmentation of MBF during stress
compared with rest might be seen either globally or in the areas of greatest hypertrophy [12].
An abnormal MBF reserve may be seen in both hypertrophied and non-hypertrophied
areas [117]. MWT is a strong predictor of an impaired MBF reserve [118]. The MBF reserve
is prognostically important, predicting clinical deterioration and death in patients with
HCM [119].

7.6. Assessing Therapeutic Efficacy

Nuclear imaging can help evaluate treatment efficacy. For example, CCBs and surgical
myectomy can improve perfusion patterns in patients with HCM [120,121].

7.7. Hybrid Imaging Techniques

The combination of nuclear imaging with CT (e.g., PET/CT or SPECT/CT) and
MRI (e.g., PET/MRI) allows for the simultaneous assessment of anatomy/structure and
function/physiology, providing a more comprehensive evaluation [122,123]. For example,
myocardial fibrosis has been demonstrated with integrated cardiac F-18 FDG PET/MR in
patients with HCM [124].

8. Role of MMI in Clinical Research and Trials

Multi-modality imaging plays an important role in clinical research to understand
disease biology and as a surrogate efficacy endpoint in clinical trials (Tables 2 and 3).

Table 2. Randomized placebo-controlled trials with imaging outcomes.

Treatment Trial/Year/N/Duration Outcomes

Exercise

RESET-HCM (2017) [125]
NCT01127061
N = 136 randomized
N = 47 to 61 CMR follow-up
data samples
16 weeks

Echo (secondary):
↔ LVOT-G (Valsalva/exe)
CMR (secondary):
↔ Maximal LV thickness
↔ LVMi
↔ LVEDVi
↔ LVESVi
↔ LVEF
↔ Total DGE
↔ DGE % of LV mass

Losartan
NCT01150461 (2013) [126]
N = 20
1 year

CMR (primary):
↓ % LGE
CMR (secondary):
↔ LVM

N-Acetylcysteine

HALT-HCM (2018) [127]
NCT01537926
N = 35, echo (per-protocol analysis);
N = 18, CMR (per-protocol analysis)
12 months

Echo (secondary):
↔ LVESD
↔ LVMi
↔ LVM
CMR (secondary):
↔ MWT
↔ LVEDV
↔ LVESV
↔ LVEF
↔ Mean LV midwall strain
↔ Myocardial mass
↔ Enhanced myocardium
↔ % of myocardium that has scar
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Table 2. Cont.

Treatment Trial/Year/N/Duration Outcomes

Valsartan

VANISH (2021) [128]
NCT01912534
N = 178
2 years

Echo (secondary):
↑ E’ velocity
↔ S’ velocity
CMR (secondary):
↔ Max LV wall thickness
↔ LVMi
↔ LAVi
↑ LVEDV
↔ LVESV

Mavacamten

EXPLORER-HCM (2021) [23,25]
NCT03470545
N = 251
N = 35, CMR substudy
Week 30

Echo (secondary):
↓ LVOT-G (exercise)
CMR (exploratory):
↓ LVMi
↓ Max LV wall thickness
↓ LAVI max
↓ LVEF
↔ LGE

EXPLORER-CN (2023) [129]
NCT05174416
N = 81 (including N = 58 CMR
data samples)
Week 30

Echo (primary):
↓ LVOT-G (Valsalva)
Echo (secondary):
↓ LVOT-G (rest)
↓ Proportion of LVOT-G < 30 and <50
CMR (secondary):
↓ LVMi
CMR (exploratory):
↓ LVM and ↓ LV MWT
↓ Max LAVi and ↓ min LAVi

Aficamten

SEQUOIA-HCM (ongoing) [130]
NCT05186818
N = 282 (includes CMR substudy)
12/24 weeks

Echo (secondary) (12/24 weeks):
LVOT-G (Valsalva)
Proportion of LVOT-G < 30
Echo (safety):
Incidence of LVEF < 50%
Echo (exploratory) (24 weeks):
LVEF
LVESV, LVEDV
LAV
CMR (exploratory) (24 weeks):
LVMi
LVEF
Septal, free wall, MWT
LAVi
LVESV
LVEDV

FOREST-HCM (ongoing) [131]
NCT04848506
N = ? (CMR substudy)
Up to 5 years

Echo (secondary) (12-week intervals):
Peak LVOT-G at rest

Perhexilene

RESOLVE-HCM (ongoing) [132]
NCT04426578
N~60
12 months

CMR (primary):
LVH (septal thickness)
CMR (secondary):
LVM
Oxygen-sensitive CMR
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Table 2. Cont.

Treatment Trial/Year/N/Duration Outcomes

Trientine

TEMPEST (ongoing) [133]
NCT04706429
N = 154
Week 52

CMR (primary):
LVM/BSA
CMR (secondary):
LV GLS and strain rate
Wall thickness, mass, volumes, EF
Atrial volume and function
CMR (mechanistic):
LV myocardial cellular mass, LV myocardial
extracellular mass, myocardial ECV, LV LGE
PCr/ATP ratio (31P MRS) (subgroup)

Moderate-intensity exercise
training vs. usual physical
activity

EXCITE-HCM [134]
NCT05818605 (ongoing)
N~70
24 weeks

Echo (secondary):
Myocardial systolic strain
Myocardial work
PET (exploratory):
Regional myocardial perfusion
Coronary flow reserve (ratio)

↑: Increased, ↓: Decreased, ↔: Unchanged, CMR: cardiac magnetic resonance, CT: computed tomography, ECV:
extracellular volume fraction, EF: ejection fraction, GLS: global longitudinal strain, LAV: left atrial volume, LAVi:
left atrial volume index, LGE: late gadolinium enhancement, LV: left ventricular, LVEDV: left ventricular end
diastolic volume, LVEDVi: left ventricular end diastolic volume index, LVEF: left ventricular ejection fraction,
LVESV: left ventricular end systolic volume, LVESVi: left ventricular end systolic volume index, LVH: left
ventricular hypertrophy, LVM: left ventricular mass, LVM/BSA: left ventricular mass/body surface area, LVMi:
left ventricular mass index, LVOT: left ventricular outflow tract, LVOT-G: left ventricular outflow tract gradient,
MWT: maximal wall thickness, PCr/ATP: phosphocreatine/ATP ratio, PET: positron emission tomography.

Table 3. Non-randomized treatment trials with imaging outcomes.

Treatment Trial/Year/N/Duration Outcomes

Ranolazine
NCT03953989 [135]
N = 26
4 months

PET (primary):
MBF during hyperaemia
Coronary flow reserve
Coronary resistance

Non-Invasive Radiation
Ablation

NIRA-HOCM [136]
NCT04153162
N~10
3/6/12 months

CT (12 months) (secondary):
Patency of LAD artery
Presence of radiation pneumonitis
Echo (3/6/12 months) (secondary):
Aortic and mitral valve function
LVOT-G
LVEF
CMR (6 months) (secondary):
LV wall thickness

Exercise

NCT04580693 [137]
N~60
2 weeks
3 groups: endurance athletes, HCM,
healthy volunteers/control

PET (secondary):
MBF reserve
Echo (exploratory):
LVM

Transcatheter Intra-septal RF
Ablation System (TIRA
Catheter)

First-in-Man early Feasibility Study
for Transcatheter HOCM Septal
Ablation [138]
NCT04770142
N~7
1 month

Echo (primary):
LVOT-G (rest/Valsalva)
LVOT diameter
IVS
CT and MRI (primary):
IVS
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Table 3. Cont.

Treatment Trial/Year/N/Duration Outcomes

Renal Denervation

SNYPER-PS (ongoing) [139]
NCT05577208
N~20
6 months

SPECT (primary):
Cardiac sympathetic nerve activity (123I-MIBG washout
rate measured with scintigraphy)
Echo (secondary):
LVM
LVOT-G (Valsalva)

Mavacamten

MavaPET (ongoing) [140]
NCT06023186
N~20, oHCM
12 months

PET-CT (primary):
Myocardial perfusion reserve

CMR: cardiac magnetic resonance, CT: computed tomography, IVS: intraventricular septum, LAD: left anterior
descending, LV: left ventricular, LVEF: left ventricular ejection fraction, LVM: left ventricular mass, LVOT: left
ventricular outflow tract, LVOT-G: left ventricular outflow tract gradient, MBF: myocardial blood flow, MRI:
magnetic resonance imaging, PET: positron emission tomography, PET-CT: positron emission tomography–
computed tomography, SPECT: single-photon emission computed tomography.

8.1. Endpoint Determination (Efficacy, Safety)

Imaging endpoints, such as changes in LV wall thickness, LV volumes, LA volumes,
and fibrosis, are often used in trials to assess the efficacy of therapeutic interventions. In
trials of cardiac myosin inhibitors (CMIs), TTE plays a crucial role in assessing change in
LVOT gradients (efficacy) and LVEF change (safety), which guide dose titration.

8.2. Confirm Diagnosis and Determine Eligibility

Detailed imaging can help in selecting the right patient cohort by confirming the
diagnosis and disease type, e.g., obstructive versus non-obstructive HCM.

8.3. Mechanism of Action

Imaging can shed light on how therapies impact myocardial structure and function.
For example, the CMI mavacamten has been shown to cause beneficial cardiac remodelling
through reduction in the LVM index and maximum LA volume index [25].

9. Challenges and Opportunities
9.1. Standardization of Imaging Protocols and Analysis Technique

Standardization is critical in clinical research and trials to ensure that imaging data are
consistent and comparable across different sites and over time. This involves implementing
uniform protocols (acquisition and post-processing), training, and quality control.

9.2. Tailored Imaging Strategy

Given the diverse manifestations of HCM, an individualized approach to imaging
is often necessary. Imaging modalities can be selected based on the patient’s risk profile,
symptoms, and stage of the disease. It is also important to consider other patient-specific
factors, such as age, gender, BSA, and the presence of comorbid conditions, in the inter-
pretation of imaging findings for diagnoses and tailoring treatment as part of precision
medicine. Other things to consider are contraindications to certain imaging modalities (e.g.,
advanced renal failure may contraindicate the use of gadolinium contrast in MRI). Table 4
summarizes the strengths and limitations of cardiac imaging modalities in HCM.
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Table 4. Strengths and limitations of cardiac imaging modalities in HCM.

Imaging Modality Strengths Limitations

Echocardiography

• Relatively inexpensive
• Widely available
• Good assessment of wall thickness, chamber size,

and systolic/diastolic function
• Good assessment of dynamic LVOT and

mid-cavity gradients
• Excellent valvular assessment
• No radiation
• Few contraindications
• TTE and TOE can be used perioperatively to aid

septal reduction therapy

• Operator variability
• Reliance of good acoustic windows

Cardiac magnetic
resonance

• Gold standard for wall thickness, chamber size,
and systolic function

• Use of gadolinium contrast, allows identification
of fibrosis/scarring (presence of LGE)

• Excellent for tissue characterisation to exclude
HCM phenocopies

• Good valvular assessment
• Excellent myocardial perfusion assessment
• No radiation

• Relatively expensive
• Less widely available
• Claustrophobia
• Limitations if ferromagnetic implant or

devices are present in some CMR centres
• Limitation if there is advanced renal

dysfunction (eGFR < 30 mL/min)
• Tend to underestimate LVOT gradient

Cardiac computed
tomography

• Excellent assessment of surrounding anatomical
structures

• Excellent coronary artery disease and anatomy
assessment

• Reasonable assessment of wall thickness and
chamber size

• Less widely available
• Use of radiation
• Limitations if there is renal dysfunction

(eGFR < 30 mL/min)

Nuclear imaging
• Excellent myocardial perfusion assessment
• Can be used to aid diagnosis of ATTR cardiac

amyloidosis (HCM phenocopy)
• Less widely available

ATTR: Transthyretin amyloidosis, CMR: cardiac magnetic resonance, eGFR: estimated glomerular filtration rate,
HCM: hypertrophic cardiomyopathy, LGE: late gadolinium enhancement, LVOT: left ventricular outflow tract,
TTE: transthoracic echocardiogram, TOE: transoesophageal echocardiogram.

9.3. Heterogeneity of Phenotypes

Imaging strategies may differ for various subtypes of HCM, such as obstructive vs.
non-obstructive, apical hypertrophy, or the presence of apical aneurysms. Imaging can
help elucidate the underlying pathophysiology, whether it is predominantly hypertrophy,
fibrosis, or myocardial disarray.

9.4. Timing of Imaging

The recommended frequency of follow-up cardiac imaging in patients with HCM
varies based on several factors, including the patient’s symptoms, stage of disease, risk
profile, treatment regimen, and changes in clinical status. These decisions are best made
in conjunction with a cardiologist who specializes in HCM. Individuals with a higher risk
profile (e.g., severe LVH, history of NSVT, abnormal blood pressure response to exercise,
family history of SCD, LGE) and genetic predispositions may need more frequent imaging.

9.5. Predictive Modelling

Advanced imaging data can feed into predictive models to improve risk stratification
and patient counselling.

10. Conclusions

In summary, multi-modality imaging in HCM provides comprehensive insights into
the anatomical, functional, and prognostic aspects of the disease. This improves our un-
derstanding, allows for better patient stratification, and helps in evaluating therapeutic
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interventions as emerging novel disease-modifying treatments are being developed. As
imaging technology advances, its role in HCM research is likely to grow, offering opportu-
nities for more personalized and effective treatments.
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